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The motivation of this paper is to investigate the use of a Neural Network (NN) architecture, the Psi Sigma
Neural Network (PSN), when applied to the task of forecasting and trading the Euro/Dollar (EUR/USD) ex-
change rate using the European Central Bank (ECB) fixing series and to explore the utility of Kalman Filters
in combining NN forecasts. This is done by benchmarking the statistical and trading performance of PSN
with a Naive Strategy, an Autoregressive Moving Average (ARMA) model and two different NN architectures,
a Multi-Layer Perceptron (MLP) and a Recurrent Network (RNN). We combine our NN forecasts with Kalman
Filter, a traditional Simple Average, the Bayesian Average, the Granger–Ramanathan's Regression Approach
(GRR) and the Least Absolute Shrinkage and Selection Operator (LASSO). Finally, we apply a time-varying le-
verage strategy based on RiskMetrics volatility forecasts in order to further improve the forecasting perfor-
mance of our models and combinations. The statistical and trading performance of our models is estimated
throughout the period of 2002–2010, using the last two years for out-of-sample testing. In terms of our re-
sults, the PSN outperforms all models' individual performances in terms of statistical accuracy and trading
performance. The forecast combinations also present improved empirical evidence, with Kalman Filters out-
performing by far its benchmarks. We also note that after the application of the time varying leverage, all
models except ARMA show a substantial increase in their trading performance.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The term of Neural Network (NN) originates from the biological
neuron connections of human brain. The artificial NNs are computa-
tion models that embody data-adaptive learning and clustering abili-
ties, deriving from parallel processing procedures [34]. The NNs are
considered a relatively new technology in Finance, but with high po-
tential and an increasing number of applications. However, their
practical limitations and contradictory empirical evidence lead to
skepticism on whether they can outperform existing traditional
models.

The motivation for this paper is to investigate the trading perfor-
mance of a novel Neural Network (NN) architecture, the Psi Sigma
Neural Network (PSN), and explore the utility of Kalman Filters in
combining NN forecasts. Firstly, we apply the EUR/USD European
Central Bank (ECB) fixing series to a Naive Strategy, an Autoregressive
Moving Average (ARMA) model and three NNs, namely a Multi-Layer
Perceptron (MLP), a Recurrent Network (RNN) and a PSN. Secondly,
(G. Sermpinis),
J. Laws),

rights reserved.
we compare the Kalman Filter with four forecast combination
methods. That is the traditional Simple Average, the Bayesian Aver-
age, Granger–Ramanathan's Regression Approach (GRR) and the
Least Absolute Shrinkage and Selection Operator (LASSO). The
models' performance is estimated using the EUR/USD ECB fixing se-
ries of the period of 2002–2010, using the last two years for out-of-
sample testing. We also introduce a time-varying leverage strategy
based on RiskMetrics volatility forecasts.

Our results show, PSN outperforms its NN and statistical bench-
marks in terms of annualized returns and information ratios. The NN
forecast combinations, excluding the Bayesian Average model, present
improved annualized returns and information ratios and in almost all
cases outperform every individual NN performance. More specifically,
the Kalman Filter outperforms all individual models and combination
forecasts. We also note that the Kalman Filter forecasts are statistically
different from their benchmarks under the Diebold–Marino test [11].
Finally we note that, after applying the time-varying leverage strategy,
all models except ARMA show substantial increase in their trading
performance.

Section 2 is a literature review of previous research on PSNs and
combination forecasts, especially Kalman Filters. Section 3 follows
the detailed description of the EUR/USD ECB fixing series, used as
our dataset. Section 4 gives an overview of the benchmark models
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1 We also explored as inputs autoregressive terms of other exchange rates (e.g. the
USD/JPY and GBP/JPY exchange rates), commodities prices (e.g. Gold Bullion and Brent
Oil) and stock market prices (e.g. FTSE100 and DJIA). However, the set of inputs pres-
ented in Table 2 gave our NNs the highest trading performance in the training period
and were thus retained.
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and the architectures of the NNs selected, while Section 5 describes
the forecast combination methods we implemented. The statistical
and trading performance of our models is presented in Sections 6
and 7. Finally, some concluding remarks are summarized in Section 8.

2. Literature review

Themost commonNN architecture is theMLP and seems to perform
well at time-series financial forecasting [38], although the empirical
evidence can be contradictory in many cases. For example, Tsaih et al.
[53] attempt to forecast the S&P 500 stock index futures and in
their application Reasoning Neural Networks perform better than
MLPs. Lam [35] also examines the financial forecasting performance
of feed-forward NNs and concludes that they fail to outperform the
maximum benchmarks in all cases. Ince and Trafalis [31] forecast
the EUR/USD, GBP/USD, JPY/USD and AUD/USD exchange rates with
MLP and Support Vector Regression and their results show that
MLP achieves less accurate forecasts. Finally, according to Alfaro et al.
[2] the AdaBoost algorithm is superior to MPLs, when applied to the
task of forecasting bankruptcy of European firms. On the other hand,
Tenti [49] and Dunis and Huang [15] achieved encouraging results also
by using RNNs to forecast the exchange rates. But the PSN architecture
presents remarkable empirical evidence compared to both MLP and
RNN. PSNswere first introduced byGhosh and Shin [23] as architectures
able to capture high-order correlations. Ghosh and Shin [23,24] also
present results on their forecasting superiority in function approxi-
mation, when compared with a MLP network and a Higher Order Neu-
ral Network (HONN). Ghazali et al. [22] compare PSN with HONN and
MLP in terms of forecasting and trading the IBM common stock closing
price and the US 10-year government bond series. PSN presented im-
proved statistical accuracy and annualized return compared with both
benchmarks. Satisfactory forecasting results of PSN were presented by
Hussain et al. [30] on the EUR/USD, the EUR/GBP and the EUR/JPY ex-
change rates using univariate series as inputs in their networks. On
the other hand, Dunis et al. [16] also study the EUR/USD series with
PSN and fail to outperform MLP, RNN and HONN in a simple trading
application.

Bates and Granger [4] and Newbold and Granger [39] suggested
combining rules based on variances–covariances of the individual
forecasts, while Granger and Ramanathan [26] presented a regression
combination forecast framework with encouraging results. According
to Palm and Zellner [40], it is sensible to use Simple Average for com-
bination forecasting, while Deutsch et al. [10] achieved substantially
smaller squared forecast errors combining forecasts with changing
weights. The regression framework, presented in the 90s, performs
poorly though in many cases, which leads the research to turn to
more sophisticated methods. For example, Chan et al. [8] suggested
the use of Ridge Regression, while Swanson and Zeng [48] use Bayesian
Information Criteria. However, in real applications there are also contra-
dictory results regarding both thesemodels (see Stock andWatson [46]
and Rapach and Strauss [42]). Finally, Leigh et al. [36] presented novel
experiments of combining pattern recognition, NNs and genetic algo-
rithms, in order to forecast price changes for the NYSE Composite
Index. From their approach stock market purchasing opportunities are
identified and encouraging decision-making results are achieved.

Time-series analysis is often based on the assumption that the
parameters are fixed. However, in reality financial data and the correla-
tion structure between financial variables are time-varying. Harvey [28]
and Hamilton [27] both suggest using state space modeling, such as
Kalman Filter, for representing dynamic systems where unobserved
variables (so-called ‘state’ variables) can be integrated within an ‘ob-
servable’ model. According to Goh and Mandic [25] the recursive
Kalman Filter is suitable for processing complex-valued nonlinear,
non-stationary signals and bivariate signals with strong component
correlations. Kalman Filter is also considered an optimal time-varying
financial forecast for financial markets [19]. Anandalingam and Chen
[3] compare Kalman Filter with Bayesian combination forecast model,
while Sessions and Chatterjee [44] conclude that recursive methods
are found to be very effective. LeSage and Magura [37] extend the
Granger–Ramanathan combination method by allowing time-varying
weights and their methodology outperforms traditional and other fore-
cast combinations. Terui and van Dijk [50] also suggest that the com-
bined forecasts perform well, especially with time varying coefficients.
Finally, Stock and Watson [46] try to forecast the output growth of
seven countries and note that time-varying combination forecasts can
lack in robustness, despite performing well in many cases.
3. The EUR/USD exchange rate and related financial data

The European Central Bank (ECB) publishes a daily fixing for se-
lected EUR exchange rates: these reference mid-rates are based on a
daily concentration procedure between central banks within and out-
side the European System of Central Banks, which normally takes
place at 2.15 p.m. ECB time. The reference exchange rates are pub-
lished both by electronic market information providers and on the
ECB's website shortly after the concentration procedure has been
completed. Although only a reference rate, many financial institutions
are ready to trade at the EUR fixing and it is therefore possible to
leave orders with a bank for business to be transacted at this level.

In this paper, we examine the EUR/USD over period 2002–2010,
using the last two years for out-of-sample. In order to train our Neural
Networks we further divided our in-sample dataset in two sub-
periods (see more in Section 4.2) (Table 1).

The graph below shows the total dataset for the EUR/USD and its
volatile trend since early 2008 (Fig. 1).

The EUR/USD time series, shown above, is non-normal and non-
stationary. Jarque–Bera statistics confirm its non-normality at the
99% confidence interval with slight skewness and low kurtosis. To
overcome the non-stationary issue, the EUR/USD series is trans-
formed into a daily series of rate returns. So given the price level P1,
P2,…, Pt, the return at time t is calculated as:

Rt ¼
Pt

Pt−1

� �
−1: ð1Þ

The stationary property of the EUR/USD return series is confirmed
at the 1% significance level (ADF and PP test statistics) and its summa-
ry statistics are shown in Fig. 2. From those it is obvious that the slight
skewness and low kurtosis remain. The Jarque–Bera statistic confirms
again that the EUR/USD series is non-normal at the 99% confidence
interval. For more details on Jarque–Bera statistics see Jarque and
Bera [32].

In the absence of any formal theory behind the selection of the in-
puts of a Neural Network, we conduct some Neural Network experi-
ments and a sensitivity analysis on a pool of potential inputs in the
training dataset in order to help our decision. Our aim is to select
the set of inputs for each network which is the more likely to lead
to the best trading performance in the out-of-sample dataset. In our
application, we select as inputs the set of variables that provide the
higher trading performance for each network in the test sub-period.
To our surprise this set of inputs is identical for all Neural Network
models. These sets of inputs for each network are presented in
Table 2 below.1



2 Backpropagation networks are the most commonmulti-layer networks and are the
most commonly used type in financial time series forecasting [33].

Table 1
The EUR/USD dataset–Neural Networks' training datasets.

Periods Trading days Start date End date

Total dataset 2295 3/01/2002 31/12/2010
Training dataset (in-sample) 1270 3/01/2002 29/12/2006
Test dataset (in-sample) 511 02/01/2007 31/12/2008
Validation dataset (out-of-sample) 514 02/01/2009 31/12/2010
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4. Forecasting models

4.1. Benchmark forecasting models

In this paper we use two traditional forecasting strategies, the
Naive Strategy and the Auto-Regressive Moving Average (ARMA)
model, in order to benchmark the efficiency of the NNs' trading
performance.

4.1.1. Naive Strategy
The Naive Strategy is considered to be the simplest strategy to

predict the future. That is to accept as a forecast for time t+1, the
value of time t, assuming that the best prediction is the most recent
period change. Thus, the model takes the form:

Ŷ tþ1 ¼ Yt ð2Þ

where Yt is the actual rate of return at time t and Ŷ tþ1is the forecast
rate of return at time t+1. In order to evaluate the Naive trading
performance, a simulated strategy is used.

4.1.2. Auto-Regressive Moving Average Model (ARMA)
The ARMA model is based on the assumption that the current

value of a time-series is a linear combination of its previous values
plus a combination of current and previous values of the residuals
[6]. Thus, the ARMA model embodies autoregressive and moving
average components and can be specified as below:

Yt ¼ φ0 þ φ1Yt−1 þ φ2Yt−2 þ…þ φpYt−p

þ εt−w1εt−1−w2εt−2−…−wqεt−q ð3Þ

Where:

• Yt is the dependent variable at time t
• Yt−1,Yt−2,…Yt−p are the lagged dependent variables
• φ0,φ1,…,φp are the regression coefficients
• εt is the residual term
• εt−1,εt−2,…,εt− q are the previous values of the residual terms
• w1, w2,…,wq are the residual weights.

Based on the In-Sample correlogram (Training and Test subsets), a
restricted ARMA (13,13) model was chosen as the best for an out-of-
sample estimation (See Appendix A). The ARMA model, used in this
paper, can be specified as follows:

Yt ¼ 0:0288−0:2689Yt−3 þ 0:6028Yt−4−0:3921Yt−6−0:6884Yt−9

þ 0:3641Yt−13 þ 0:2638εt−3−0:59εt−4 þ 0:3916εt−6

þ 0:6227εt−9−0:3165εt−13:

ð4Þ

The evaluation of the ARMA model selected comes in terms of
trading performance.

4.2. Neural Networks (NNs)

Neural Networks exist in several forms in the literature. The most
popular architecture is the Multi-Layer Perceptron (MLP). A standard
Neural Network has at least three layers. The first layer is called the
input layer (the number of its nodes corresponds to the number of
explanatory variables). The last layer is called the output layer (the
number of its nodes corresponds to the number of response variables).
An intermediary layer of nodes, the hidden layer, separates the input
from the output layer. Its number of nodes defines the amount of com-
plexity the model is capable of fitting. In addition, the input and hidden
layers contain an extra node called the bias node. This node has a fixed
value of one and has the same function as the intercept in traditional re-
gressionmodels. Normally, each node of one layer has connections to all
the other nodes of the next layer.

The network processes information as follows: the input nodes
contain the value of the explanatory variables. Since each node con-
nection represents a weight factor, the information reaches a single
hidden layer node as the weighted sum of its inputs. Each node of
the hidden layer passes the information through a nonlinear activa-
tion function and passes it on to the output layer if the calculated
value is above a threshold.

The training of the network (which is the adjustment of its weights
in theway that the networkmaps the input value of the training data to
the corresponding output value) starts with randomly chosen weights
and proceeds by applying a learning algorithm called backpropagation
of errors2 [45]. The learning algorithm simply tries to find thoseweights
whichminimize an Error Function (normally the sum of all squared dif-
ferences between target and actual values). Since networks with suffi-
cient hidden nodes are able to learn the training data (as well as their
outliers and their noise) by heart, it is crucial to stop the training proce-
dure at the right time to prevent overfitting (this is called ‘early stop-
ping’). This can be achieved by dividing the dataset into 3 subsets
respectively called the training and test sets used for simulating the
data currently available to fit and tune the model and the validation
set used for simulating future values. The training of a network is
stopped when the mean squared forecasted error is at minimum in
the test-sub period. The network parameters are then estimated by
fitting the training data using the above mentioned iterative procedure
(backpropagation of errors). The iteration length is optimized by maxi-
mizing the forecasting accuracy for the test dataset. Then the predictive
value of the model is evaluated applying it to the validation dataset
(out-of-sample dataset).

Since the starting point for each network is a set of randomweights,
forecasts can differ between networks. In order to eliminate any vari-
ance between our NN forecasts and to add robustness to our results,
we used the Simple Average of a committee of 10 NNs, which presented
the highest profit in the training sub-period. Thiswas necessary in order
to eliminate any outlier network that could jeopardize our conclusions.
The characteristics of the NNs used in this paper are presented in
Appendix B.
4.2.1. The Multi-Layer Perceptron Model (MLP)
MLPs are feed-forward layered NN, trained with a back-propagation

algorithm. According to Kaastra and Boyd [34], they are the most
commonly used types of artificial networks in financial time-series
forecasting. The training of the MLP network is processed on a three-
layered architecture, as described above. A typical MLP model is shown
in Fig. 3.

Where:

• xt
[n](n=1,2,⋯,k+1)Z are the inputs (including the input bias node)

at time t
• ht

[m](m=1,2,…, j+1)Z are the hidden nodes outputs (including the
hidden bias node) at time t

• Ŷ tZ is the MLP output
• ujk, wj are the network weights
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Fig. 1. EUR/USD Frankfurt daily fixing prices.
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• is the transfer sigmoid function

S xð Þ ¼ 1
1þ e−x ð5Þ

• is a linear function

F xð Þ ¼ ∑
i
xi: ð6Þ

The Error Function to be minimized is

E c;wj

� �
¼ 1

T

XT
t¼1

yt � ~yt wk; cð Þð Þ2 ð7Þ

with yt being the target value. The evaluation of theMLPmodel selected
comes in terms of trading performance.

4.2.2. The Recurrent Neural Network (RNN)
The next model is the recurrent Neural Network. While a complete

explanation of RNN models is beyond the scope of this paper, we
present below a brief explanation of the significant differences between
RNN and MLP architectures. For an exact specification of Recurrent
Networks, see Elman [21].

A simple Recurrent Network has an activation feedback which
embodies short-term memory. The advantages of using Recurrent
Networks over feed-forward networks for modeling non-linear time
series have been well documented in the past. However, as mentioned
by Tenti [49], “the main disadvantage of RNNs is that they require
substantially more connections, and more memory in simulation than
the standard back-propagation networks” (p. 569), thus resulting in a
substantial increase in computational time. However, having said this,
RNNs can yield better results in comparison with simple MLPs due to
the additional memory inputs. A simple illustration of the architecture
of an Elman RNN is presented below (Fig. 4).
Fig. 2. EUR/USD returns
Where:

• xt
[n](n=1,2,…,k+1),ut

[1],ut
[2]Z are the RNN inputs at time t

(including bias node)
• ~yt is the output of the RNN

• dt
[f](f=1,2) and wt

[n](n=1,2,…,k+1)are the weights of the
network

• Ut
[f], f=(1,2) is the output of the hidden nodes at time t

• is the transfer sigmoid function: S xð Þ ¼ 1
1þe−x

• is a linear function: F xð Þ ¼ ∑
i

xi:

The Error Function to be minimized is

E dt ;wtð Þ ¼ 1
T

XT
t¼1

yt � ~yt dt ;wtð Þð Þ2 ð8Þ

In short, the RNN architecture can provide more accurate outputs
because the inputs are (potentially) taken from all previous values
(see inputs Uj−1

[1] and Uj−1
[2] in the figure above). The evaluation of

the RNN model selected comes in terms of trading performance.

4.2.3. The Psi-Sigma Neural Network (PSN)
The PSNs are a class of Higher Order Neural Networks with a fully

connected feed-forward structure. Ghosh and Shin [23] were the first
to introduce the PSN, trying to reduce the numbers of weights and con-
nections of a Higher Order Neural Network. Their goal was to combine
the fast learning property of single-layer networks with the mapping
ability of Higher Order Neural Networks and avoid increasing the re-
quired number of weights. The training process is again three-layered.
The PSN architecture of a one-output layer is shown in Fig. 5.

Where:

• xt (n=1,2,…,k+1) are the model inputs (including the input bias
node)
summary statistics.



Fig. 4. Elman RNN with two nodes in the hidden layer.

Table 2
Explanatory variables.

Νumber Explanatory variables Laga

1 EUR/USD exchange rate return 1
2 EUR/USD exchange rate return 2
3 EUR/USD exchange rate return 4
4 EUR/USD exchange rate return 5
5 EUR/USD exchange rate return 8
6 EUR/USD exchange rate return 10
7 EUR/GBP exchange rate return 1
8 EUR/GBP exchange rate return 2
9 EUR/JPY exchange rate return 1

a In our application the term ‘Lag 1’means that today's closing price is used to forecast
the tomorrow's one.
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• ~ytZ is the PSN output
• wj (j=1,2..,k) are the adjustable weights (K is the desired order of
the network)

• h xð Þ ¼ ∑
i
xi is the hidden layer activation function ð9Þ

• σ xð Þ ¼ 1
1þ e−xc is the output sigmoid activation function

c the adjustable termð Þ

ð10Þ

The Error Function minimized is

E c;wj

� �
¼ 1

T

XT
t¼1

yt−~yt wk; cð Þð Þ2 ð11Þ

with yt being the target value. The training of the PSN is achieved
also with the backpropagation and the ‘early-stopping’ procedure,
as described in Section 4.2. The structure of the PSN and the sigmoid
output function require the normalization of the inputs and the
de-normalization of the outputs. Based on Ghazali et.al [22], our inputs
are normalized between the values of 0.2 and 0.8 and at the end the
outputs of the network are de-normalized back.

For example let us consider a Psi Sigma network which is fed with a
N+1 dimensional input vector x=(1,x1,…,xN)T. These inputs are
weighted by K weight factorswj=(w0j,w1j,…,wNj)T,j=1,2,..K and
summed by a layer of K summing units, where K is the desired order
of the network. So the output of the j-th summing unit,hj in the hidden

layer, is given by: hj ¼ wT
j x ¼ PN

k¼1
wkjxk þwoj,j=1,2,…, K while the out-

put ~y of the network is given by ~y ¼ σ ∏Κ
j¼1hj

� �
. Note that by using

products in the output layer we directly incorporate the capabilities of
higher order networkswith a smaller number ofweights andprocessing
units. For example, a k-th degree higher order Neural Network with

d inputs needs
Pk
i¼0

dþi−1ð Þ!
i! dþ1ð Þ! weights if all products of up to k components

are to be incorporated while a similar Psi Sigma network needs only
(d+1)*k weights. Also note that the sigmoid function is neuron
MLP

[k]
tx [m]

th

jku
jw

t̂Y

Fig. 3. A single output, fully connected MLP model (bias nodes are not shown for
simplicity).
adaptive. As the network is trained not only the weights but also c in
Eq. (10) is adjusted. This strategy seems to provide better fitting
properties and increases the approximation capability of a Neural
Network by introducing an extra variable in the estimation, compared
to classical architectures with sigmoidal neurons [54].

The price for the flexibility and speed of Psi Sigma networks is that
they are not universal approximators. We need to choose a suitable
order of approximation (or else the number of hidden units) by consid-
ering the estimated function complexity, amount of data and amount of
noise present. To overcome this, our code runs simulations for orders
two to six and then it presents the best network. The evaluation of the
PSN model selected comes in terms of trading performance.

5. Forecasting combination techniques

In this section we present the five techniques that we used to
combine our NN forecasts. It is important to outline that a forecast
combination targets either to follow the trend of the best individual
forecast (‘combining for adaptation’) or to significantly outperform
each one of them (‘combining for improvement’) [57]. Consequently,
we decided to exclude the ARMA and the naive strategy from our
combination techniques. Both strategies present a considerably worse
trading performance than their NNs' counterparts both in-sample and
out-of-sample. Therefore, their inclusion in our combination techniques
will deteriorate their performance rather than improve it.
Fig. 5. A PSN with one output layer.



Table 3
Summary of in-sample statistical performance.

Traditional techniques Neural Networks Forecast combinations

NAIVE ARMA MLP RNN PSN Simple Average Bayesian Average GRR LASSO Kalman Filter

MAE 0.0065 0.0045 0.0044 0.0042 0.0039 0.0037 0.0037 0.0035 0.0038 0.0033
MAPE 399.44% 122.20% 97.13% 93.35% 89.43% 84.98% 85.13% 82.78% 87.63% 71.51%
RMSE 0.0086 0.0060 0.0053 0.0050 0.0041 0.0036 0.0036 0.0032 0.0037 0.0023
Theil-U 0.7021 0.6948 0.6686 0.5087 0.4292 0.4522 0.4625 0.4245 0.4613 0.2713
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5.1. Simple Average

The first forecasting combination technique used in this paper is
Simple Average, which can be considered a benchmark forecast
combination model. Given the three NNs' forecasts fMLP

t , fRNNt , fPSNt at
time t, the combination forecast at time t is calculated as:

f tc
NNs

¼ f tMLP þ f tRNN þ f tPSN
� �

=3: ð12Þ

5.2. Bayesian averaging

A Bayesian Average model specifies optimal weights for the
combination forecast based on the Akaike Information Criterion
(AIC) and Schwarz Bayesian Information Criterion (SIC). According
to Buckland et al. [7] the Bayesian weights using AIC, can be estimated
as:

wAIC;i ¼
e−0:5ΔΑΙCiP3

j¼1
e−0:5ΔΑΙCj

ð13Þ

Where:

• i=1,2,3 for fMLP, fRNN, fPSNrespectively
•

ΔAICi ¼ AICi–AICi;min: ð14Þ

Based on the above, the combination forecast at time t is

f tcNNs ¼
P3
i¼1

wAIC;i f
t
i

 !
=3 and in our case the AIC Bayesian models take

the following form:

f tcAIC ¼ 0:334209988f tMLP þ 0:330831059f tRNN þ 0:334958953f tPSN
� �

=3: ð15Þ

The Bayesian Average weights for SIC are defined similarly and in
our case the SIC Bayesian model is specified as follows:

f tcSIC ¼ 0:334210009f tMLP þ 0:330831081f tRNN þ 0:33495891f tPSN
� �

=3: ð16Þ

Eqs. (15) and (16) are similar as the AIC and SIC criteria for our
NNs in the in-sample period are very close. For that reason we will
present only the Bayesian Average based on the AIC criterion, the one
that presented a marginally better trading performance in-sample.
Table 4
Summary of out-of-sample statistical performance.

Traditional techniques Neural Networks Fo

NAIVE ARMA MLP RNN PSN Si

MAE 0.0084 0.0059 0.0058 0.0056 0.0048
MAPE 405.62% 131.20% 112.37% 105.97% 97.88% 9
RMSE 0.0107 0.0077 0.0061 0.0060 0.0054
Theil-U 0.7958 0.8749 0.7301 0.6001 0.4770
Nonetheless, the weights are in favor (maximized) of PSN, namely the
model with the minimum AIC and SIC respectively. For details on the
exact calculation of the AIC and SIC and their Bayesian Average weights
see Appendix C.

5.3. Granger and Ramanathan Regression Approach (GRR)

According to Bates and Granger [4], a combining set of forecasts out-
performs the individual forecasts that the set consists of. Taking this
basic idea one step further, Granger and Ramanathan [26] suggested
three regression models as follows:

f c1 ¼ a0 þ
Xn
i¼1

aif i þ ε1 ½GRR � 1�

f c2 ¼
Xn
i¼1

aif i þ ε2 ½GRR � 2�

f c3 ¼
Xn
i¼1

aif i þ ε3; where
Xn
i¼1

ai ¼ 1 ½GRR � 3�

Where

• fi, i=1,…,n are the individual one-step-ahead forecasts,
• fc1, fc2, fc3 are the combination forecast of each model,
• α0 is the constant term of the regression
• αi are the regression coefficients of each model
• ε1, ε2, ε3 are the error terms of each regression model.

The GRR-1 model, which was selected for our case, is usually pre-
ferred in order to avoid forecast errors correlated with the individual
forecasts fi [48]. Thus, the GRR model at time t used in this paper is
specified as shown below:

f tcNNs ¼ 0:0422þ 35:023f tMLP þ 13:461f tRNN þ 56:132f tPSN þ εt : ð17Þ

However, the variety of data and the biased and correlated fore-
casts raise questions on GRR model selection or modification, which
are further discussed in the literature [9,12].

5.4. Least Absolute Shrinkage and Selection Operator (LASSO)

The LASSO Regression is a class of Shrinkage or Regularization
Regressions, which applies when multicollinearity exists among the
regressors [47]. The main difference between this technique and the
Ordinary Least Squares (OLS) Regression is that LASSO method also
recast combinations

mple Average Bayesian Average GRR LASSO Kalman Filter

0.0048 0.0048 0.0047 0.0046 0.0044
4.07% 93.76% 92.83% 92.05% 88.37%
0.0053 0.0051 0.0049 0.0053 0.0043
0.5672 0.5598 0.5297 0.6142 0.5212



Table 5
Summary results of Diebold–Mariano statistic for MSE and MAS loss functions.

NAIVE ARMA MLP RNN PSN Simple Average Bayesian Average GRR LASSO

sMSE −9.307 −9.321 −6.244 −5.698 −5.184 −4.869 −4.896 −4.351 −4.112
sMAE −9.845 −9.832 −9.189 −8.881 −8.159 −7.851 −7.873 −7.679 −7.352
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minimizes the residual squared error, by adding a coefficient constraint
(similarly to Ridge Regression [8]).

Compared to Ridge Regression, LASSO best applies in samples of
few variables with medium/large effect such in our case [29]. For
more details on the mathematical specifications of LASSO see Wang
et al. [55]. Given the vectors of independent and dependent variables:

XT
1
⋮
XT
N

0@ 1A ¼
x11 … x1N
⋮ ⋱ ⋮

xN1 ⋯ xNN

0@ 1A; Y ¼ y1;…; yNð ÞT ð18Þ

and the training data {(X1,y1),…,(XN,yN)}, the LASSO coefficients are
estimated based on the following argument:

β̂ lasso ¼ argminβ

XN
i¼1

yi−β0−
Xd
j¼1

βixij

0@ 1A28<:
9=; subject to

Xd
j¼1

βj

��� ���≤k; k > 0:

ð19Þ

The argument (19) is based on Breiman's non-negative garrote
minimization process [58]. Here k stands for the ‘tuning parameter’,
because it controls the amount of shrinkage applied to the coefficients
[52]. In our case, we experimented with various values of k in the
in-sample period and we concluded that the best results in terms
of trading performance are acquired when the constraint takes the
following form:

βMLPj j þ βRNNj j þ βPSNj j≤10:6: ð20Þ

Subject to this constraint our model takes the form:

f tcNNs ¼ 3:284f tMLP þ 1:591f tRNN þ 5:623f tPSN þ εt : ð21Þ

This LASSO constraint makes the model adaptive, since it creates a
penalization balance on each estimate, by leading some coefficients to
zero or close to zero (see the unconstrained regression of GGR (17)
compared to LASSO (21)).

5.5. Kalman Filter

Kalman Filter is an efficient recursivefilter that estimates the state of
a dynamic system from a series of incomplete and noisymeasurements.
Table 6
Summary of in-sample trading performance.

Traditional
techniques

Neural Networks

NAIVE ARMA MLP RNN PSN

Annualized return
(excluding costs)

1.49% 13.87% 23.19% 26.14% 28.10%

Annualized volatility 9.68% 9.70% 9.38% 9.59% 9.23%
Information ratio
(excluding costs)

0.15 1.43 2.47 2.73 3.05

Maximum drawdown −8.59% −6.52% −5.91% −6.55% −6.55%
Annualized transactions 130 100 121 136 74
Transaction costs 0.91% 0.70% 0.85% 0.95% 0.52%
Annualized return
(including costs)

0.58% 13.17% 22.34% 25.19% 27.58%

Information ratio
(including costs)

0.06 1.36 2.38 2.63 2.99
The time-varying coefficient combination forecast suggested in this
paper is shown below:

Measurement equation:

f t
cNNs

¼
X3
i¼1

ati f
t
i þ εt ; εteNID 0;σ2

ε

� �
ð22Þ

State equation:

ati ¼ at−1
i þ nt ; nteNID 0;σ2

n

� �
ð23Þ

Where:

• f
cNNs

t is the dependent variable (combination forecast) at time t
• fi

t(i=1,2,3) are the independent variables (individual forecasts) at
time t

• ai
t(i=1,2,3) are the time-varying coefficients at time t for each NN

• εt,nt are the uncorrelated error terms (noise).

When Kalman Filter is applied, all aitare estimated in time, along
with the log-likelihood of the model based on the observations up to
time t. Then the likelihood function is maximized with a numerical op-
timization algorithm, based onσn

2. The updated alphas for the state
equation are estimated at time t based on the new observations at
time t and then the state estimates are propagated in time t+1. Thus,
the Kalman Filter update can be considered as the best unbiased linear
estimate of the individual forecastsfit, given f

cNNs

t and the prior informa-
tion. After Kalman Filter and the numerical optimization algorithm, a
Kalman smoothing algorithm should be applied, because the accuracy
is increased to the end of the sample. This algorithm ‘smoothes’ the es-
timates by running backwards in time and using information acquired
after time t and allows our model to compute forecasts, which use all
available measurement data over the forecast sample.

FollowingWelch and Bishop [53] and Dunis et al. [14], in our study
the alphas are calculated by a simple random walk and we
initialized ε1=0. Based on the above, our Kalman Filter model has
as a final state the following:

f tcNNs ¼ 5:80f tMLP þ 1:16f tRNN þ 75:89f tPSN þ εt ð24Þ
Forecast combinations

Simple Average Bayesian Average GRR LASSO Kalman Filter

32.74% 32.39% 33.99% 30.57% 42.63%

9.51% 9.52% 9.49% 9.54% 9.35%
3.44 3.4 3.58 3.21 4.56

−6.55% −6.55% −6.55% −6.55% −6.66%
107 106 104 106 121
0.75% 0.74% 0.73% 0.74% 0.85%
31.99% 31.65% 33.26% 29.83% 41.78%

3.36 3.32 3.50 3.13 4.47



Table 7
Summary of out-of-sample trading performance.

Traditional
techniques

Neural Networks Forecast combinations

NAIVE ARMA MLP RNN PSN Simple Average Bayesian Average GRR LASSO Kalman Filter

Annualized return
(excluding costs)

−4.80% 10.60% 14.80% 16.07% 18.37% 16.37% 16.59% 16.99% 20.23% 28.79%

Annualized volatility 12.03% 11.07% 11.83% 11.02% 10.89% 10.85% 10.85% 11.02% 10.99% 10.92%
Information ratio
(excluding costs)

−0.4 0.96 1.25 1.46 1.69 1.51 1.53 1.54 1.84 2.64

Maximum drawdown −6.41% −6.23% −6.23% −6.23% −6.31% −6.31% −6.31% −6.31% −6.31% −6.31%
Annualized transactions 77 54 71 71 76 70 71 63 69 73
Transaction costs 0.54% 0.38% 0.50% 0.50% 0.53% 0.49% 0.50% 0.44% 0.48% 0.51%
Annualized return
(including costs)

−5.34% 10.22% 14.30% 15.57% 17.84% 15.88% 16.09% 16.55% 19.75% 28.28%

Information ratio
(including costs)

−0.44 0.92 1.21 1.41 1.64 1.46 1.48 1.50 1.80 2.59
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From the above equation we note that the Kalman filtering process
favors the PSN model. This is what one would expect, since it is the
model that performs best individually.

In order to achieve optimal Kalman Filter estimation, it is important
though to introduce a noise ratio.

nr ¼ σ2
ε=σ

2
n ð25Þ

The results are becoming more adaptive when the noise ratio rises
[14]. Whenσn

2=0, the model transforms to the typical OLS model.
Appendix D describes the Kalman filtering and smoothing process.

6. Statistical performance

As it is standard in the literature, in order to evaluate statistically
our forecasts, the RMSE, the MAE, the MAPE and the Theil-U statistics
are computed (see among others Dunis and Williams [20] and Dunis
and Chen [13]). The statistical analysis will provide some information
regarding the accuracy of our forecasts and strengthen our conclu-
sions. The RMSE and MAE statistics are scale-dependent measures
but give a basis to compare volatility forecasts with the realized vola-
tility while the MAPE and the Theil-U statistics are independent of the
scale of the variables. In particular, the Theil-U statistic is constructed
in such a way that it necessarily lies between zero and one, with zero
indicating a perfect fit. A more detailed description of these measures
can be found on Pindyck and Rubinfeld [41] and Theil [51], while their
mathematical formulas are presented in Appendix E. For all four of
the error statistics retained (RMSE, MAE, MAPE and Theil-U) the
lower the output, the better the forecasting accuracy of the model
concerned. In Tables 3 and 4 we present the in-sample period and
out-of-sample periods respectively.

We note that from our individual forecasts, the PSN outperformed
all other models in both the in-sample and out-of-sample periods.
Similarly, for our forecast combinationmethodologies the Kalman Filter
beat its benchmarks for the four statistical criteria retained in both esti-
mation periods. Adding to the above statistical performance of the
Kalman Filter, the Diebold–Mariano [11] statistic for predictive accuracy
is also computed for bothMSE andMAE loss functions (for more details
on the Diebold–Mariano statistic see Appendix F). The results of the
Diebold–Mariano statistic, comparing Kalman filter with each other
method, are summarized in Table 5.
Table 8
Classification of leverage in sub-periods.

Extremely
low vol.

Medium
low vol.

Lower
high vol.

Upper
high vol.

Medium
high vol.

Extremely
high vol.

Leverage 2.5 2 1.5 1 0.5 0
From the above table we note that the null hypothesis of equal
predictive accuracy is rejected for all comparisons and for both loss
functions at 5% confidence interval, since the test results |sMSE|>1.96
and |sMAE|>1.96. Moreover, the statistical superiority of the Kalman
Filter forecasts is confirmed as for both loss functions the realizations
of the Diebold–Mariano [11] statistic are negative.3We also note that
our second best model in statistical terms, the LASSO regression, has
the closest forecasts with Kalman Filter.
7. Trading performance

7.1. Trading strategy and transaction costs

The trading strategy applied in this paper is to go or stay ‘long’when
the forecast return is above zero and go or stay ‘short’when the forecast
return is below zero. The ‘long’ and ‘short’ EUR/USDpositions are defined
as buying and selling Euros at the current price respectively. The transac-
tion costs for a tradable amount, say USD 5–10 million, are about 1 pip
(0.0001 EUR/USD) per trade (one way) between market makers. But
since we consider the EUR/USD time series as a series of middle rates,
the transaction costs are one spread per round trip. With an average ex-
change rate of EUR/USD of 1.369 for the out-of-sample period, a cost of 1
pip is equivalent to an average cost of 0.007% per position.
7.2. Trading performance before leverage

The trading performancemeasures and their calculation description
are presented in Appendix E. In Table 6 we present the in-sample trad-
ing performance of our models and forecast combinations before and
after transaction cost.

We note that all our models present a positive trading performance
after transaction costs. From our single forecasts the PSN outperforms
each NN and statistical benchmark in terms of annualized return
and information ratio. Our other two artificial intelligence models, the
RNN and theMLP, present the second and third best trading performance
respectively. Concerning our forecast combinations we observe that the
Kalman Filter presents the best trading performance with an annualized
return of 41.78% and an information ratio of 4.47 after transaction costs.
It is also worth noting that all our forecast combinations outperform our
best single forecast, the PSN in terms of trading performance. In Table 7
below we present the out-of-sample performance of our models before
and after transaction costs.
3 In our exercise we apply the Diebold–Mariano test to couples of forecasts (Kalman
Filter vs. another forecasting model). A negative realization of the Diebold–Mariano
test statistic indicates that the first forecast (Kalman Filter) is more accurate than the
second forecast. The lower the negative value, the more accurate are the Kalman Filter
forecasts.



Fig. 6. Leverages assigned in the out-of-sample period.

324 G. Sermpinis et al. / Decision Support Systems 54 (2012) 316–329
From the last two rows of Table 7, we note that the PSN continues
to outperform all other single forecasts in terms of trading perfor-
mance. From our forecast combinations, only the Kalman Filter and
the LASSO methods seem to beat our best single forecast. The Simple
Average, Bayesian Average and GRR methods who demonstrated a
better performance in the in-sample period seem unable to maintain
this superiority in the out-of-sample period. Moreover, we note that
the trading performance of the Bayesian Average and Simple Average
strategies is very close. This was expected as the AIC and the BIC in-
formation criteria for our 3 NNs are very close in the in-sample peri-
od. On the other hand, the GRR strategy still outperforms the MLP and
the RNN models in terms of annualized return and information ratio.
That could be thought as a trend to adapt to the best individual per-
formance (‘combining for adaptation’ [57]). We also note that the
Kalman Filter achieves a 10% higher annualized return than our sec-
ond best methodology, the LASSO regression. It seems that the ability
of Kalman Filter to provide efficient computational recursive means
to estimate the state of our process gives it a considerable advantage
compared to our fixed parameters combination models.
7.3. Leverage to exploit high information ratios

In order to further improve the trading performance of our models
we introduce a leverage based on RiskMetrics one day ahead volatility
forecasts4 (for more details on RiskMetrics model see Appendix G).
The intuition of the strategy is to avoid trading when volatility is very
high while at the same time exploiting days when the volatility is
relatively low. As mentioned by Bertolini [5], there are few papers
on market-timing techniques for foreign exchange, with the notable
exception of Dunis and Miao [17,18]. The opposition between
market-timing techniques and time-varying leverage is only apparent
as time-varying leverage can also be easily achieved by scaling position
sizes inversely to recent risk measures behavior.

Firstly, we forecast with RiskMetrics the one day ahead realized
volatility of the EUR/USD exchange rate in the test and validation
sub-periods. Then, following Dunis and Miao [17,18] we split these
two periods into six sub-periods, ranging from periods with extreme-
ly low volatility to periods experiencing extremely high volatility. Pe-
riods with different volatility levels are classified in the following
4 We also explored a GJR (1,1) model in forecasting volatility. Its statistical accuracy
in the test sub-period in terms of the MAE, MAPE, RMSE and the Theil-U statistics is on-
ly slightly better compared with RiskMetrics. However, when we measure the utility of
GJR in terms of trading efficiency for our models within the context of our strategy in
the test sub-period, our results in terms of annualized returns are slightly better with
RiskMetrics for most of our models. Moreover, RiskMetrics is simpler to implement
than the more complicated GJR. Therefore, we choose to present in this paper the re-
sults obtained with RiskMetrics. The results obtained with GJR, which are very close
to the ones presented here, are available upon request. It is also worth noting that
the ranking of our models in terms on information ratio and annualized return is the
same whether we use GJR or RiskMetrics.
way: first the average (μ) difference between the actual volatility in
day t and the forecasted for day t+1 and its ‘volatility’ (measured
in terms of standard deviation σ) are calculated; those periods
where the difference is between μ plus one σ are classified as
‘Lower high vol. periods’. Similarly, ‘Medium high vol.’ (between
μ+σ and μ+2σ) and ‘Extremely high vol.’ (above μ+2σ) periods
can be defined. Periods with low volatility are also defined following
the same 1σ and 2σ approach, but with a minus sign.

For each sub-period a leverage is assigned startingwith 0 for periods
of extremely high volatility to a leverage of 2.5 for periods of extremely
low volatility (see for leverage factors [17,18]). Table 8 below presents
the sub-periods and their relevant leverages.

The parameters of our strategy (μ and σ) are updated every three
months by rolling forward the estimation period. So for example, for
the first three months of our validation period, μ and σ are computed
based on the eighteen months of the test sub-period. For the following
three months, the two parameters are computed based on the last
fifteen months of our test sub-period and the first three of the validation
sub-period. The leverages assigned in the days of the out-of-sample
period, based on the above strategy are summarized in the following
figure (Fig. 6).

The cost of leverage (interest payments for the additional capital)
is calculated at 1.75%p.a. (that is 0.0069% per trading day5). Our final
results are presented in Table 9 below.

The most striking performance achieved by the time-varying le-
verage strategy is the significant reduction in the maximum draw-
down, the essence of risk for an investor in financial markets. Not
only do all models, except ARMA, experience a higher performance
in terms of return or risk-adjusted return, but maximum drawdowns
are reduced by as much as 50%, from 6.31% to 3.38% in the case of the
Kalman Filter combination! Even the naive strategy seems to try to
invert its previous discouraging performance (see Table 9). The PSN
still outperforms every NN and increases its annualized profit over
3%. Similarly our Bayesian Average and Simple Average combination
methods present a 3% increase of annualized return, but they still can-
not outperform the PSN and RNN individual performance. Our other
two forecast combination techniques, the GGR and the LASSO, also
present an increased annualized return and information ratio. Finally,
the Kalman Filter continues to present a remarkable trading perfor-
mance with the highest information ratio and a 5.67% increase in
terms of annualized return. When transaction and leverage costs are
included, the profit decreases, but the trend of the results is not af-
fected. That allows us to conclude, that in all cases the Kalman Filter
5 The interest costs are calculated by considering a 1.75% interest rate p.a. (the
Euribor rate at the time of calculation) divided by 252 trading days. In reality, leverage
costs are also applied during non-trading days so that we should calculate the interest
costs using 360 days per year. But for the sake of simplicity, we use the approximation
of 252 trading days to spread the leverage costs of non-trading days equally over the
trading days. This approximation prevents us from keeping track of how many non-
trading days we hold a position.



Table 9
Summary of out-of-sample trading performance — final results6

6 Not taken into account the interest that could be earned during times where the capital is not traded (non-trading days) or not fully invested and could therefore be invested.

Traditional
techniques

Neural Networks Forecast combinations

NAIVE ARMA MLP RNN PSN Simple Average Bayesian Average GRR LASSO Kalman Filter

Annualized return (excluding costs) −2.34% 7.28% 18.13% 19.44% 22.28% 19.12% 19.36% 22.37% 25.08% 34.46%
Annualized volatility 10.14% 10.44% 9.90% 9.04% 9.85% 9.09% 9.13% 9.38% 9.20% 9.32%
Information ratio
(excluding costs)

−0.23 0.7 1.83 2.15 2.26 2.1 2.12 2.38 2.73 3.7

Maximum drawdown −3.50% −3.20% −3.66% −3.14% −3.66% −2.98% −3.21% −2.83% −2.94% −3.38%
Annualized transactions 122 90 115 117 122 111 113 97 110 114
Average leverage factor
(ex post)a

n.a. n.a. 1.13 1.19 1.12 1.09 1.09 1.26 1.18 1.15

Transaction and leverage costs 1.79% 1.57% 1.74% 1.75% 1.79% 1.72% 1.73% 1.62% 1.71% 1.73%
Annualized return
(including costs)

−4.13% 5.71% 16.39% 17.69% 20.49% 17.40% 17.63% 20.75% 23.37% 32.73%

Information ratio
(including costs)

−0.41 0.55 1.66 1.96 2.08 1.91 1.93 2.21 2.54 3.51

a The average leverage factor ex post is computed as the ratio of the annualized returns after costs of Tables 7 and 9 for those models which achieved an in-sample information
ratio of at least 2 and, as such, would have been candidates for leveraging out-of-sample.
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can be considered by far the optimal forecast combination for our
dataset and the models under study.
Fig. A.1. The ARMA model detailed output.
8. Concluding remarks

In this paperwe investigate the trading and statistical performance of
a Neural Network (NN) architecture, the Psi Sigma Neural Network
(PSN), and explore the utility of Kalman Filters in combining NN fore-
casts. Firstly, we apply the EUR/USD European Central Bank (ECB) fixing
series to a Naive Strategy, an Autoregressive Moving Average (ARMA)
model and three NNs, namely a Multi-Layer Perceptron (MLP), a Recur-
rent Network (RNN) and a PSN. Secondly, we compare a Kalman filter-
based combination with four other forecast combination methods. That
is the traditional Simple Average, the Bayesian Average, Granger–Ram-
anathan's Regression Approach (GRR) and the Least Absolute Shrinkage
and Selection Operator (LASSO). The models' performance is estimated
through the EUR/USD ECB fixing series of the period of 2002–2010,
using the last two years for out-of-sample testing. We also introduce a
time-varying leverage strategy based on RiskMetrics volatility forecasts.

As it turns out, the PSN outperforms its benchmark models in terms
of statistical accuracy and trading performance. It is also shown that all
the forecast combinations, outperform out-of-sample all our single
models except the PSN for the statistical and trading terms retained. It
is interesting that the ‘combining for improvement’ pattern that all
combination forecasts showed in the in-sample period pattern, changes
regarding the out-of-sample combination forecasts. Simple Average,
Bayesian Average and GRR do not continue to outperformPSNs' best in-
dividual performance but are better than MLP and RNN, while LASSO
and Kalman Filter present the best results. It seems that the ability of
Kalman Filter to provide efficient computational recursive means to es-
timate the state of our process gives it a considerable advantage com-
pared to our fixed parameters combination models. Finally, all models
except ARMA show a substantial increase in their trading performance
and a striking reduction in maximum drawdowns after applying time-
varying leverage with Kalman Filter still being the best approach. The
remarkable trading performance of Kalman Filter allows us to conclude
that it can be considered as an optimal forecast combination for the
models and time-series under study.

Our results should go some way towards convincing a growing
number of quantitative fundmanagers to experiment beyond the bounds
of the more traditional models and trading strategies. The results in
Table 9, with an information ratio in excess of 3, should also provide
motivation for the use of Kalman Filter in combining model based
forecasts.
Appendix A. The ARMA model

Fig. A.1 shows the output of the ARMA model selected. The null
hypothesis that all the coefficients are not significantly different
from zero is rejected at 95% confidence interval.
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Appendix B. NNs' training characteristics

In Table B.1 we present the characteristics of the Neural Networks with the best trading performance in the test sub-period which we used in
our committees. The choice of these parameters is based on an extensive experimentation in the in-sample sub-period and on the relevant lit-
erature [13,22,49]. For example for the number of iterations, we started our experimentation from 10.000 iterations and we stopped at the
200.000 iterations, increasing in each experiment the number of iterations by 5.000.
Table B.1
The NNs' training characteristics.

Parameters MLP RNN PSN

Learning algorithm Gradient descent Gradient descent Gradient descent

Learning rate 0.001 0.001 0.5
Momentum 0.003 0.004 0.5
Iteration steps 100,000 60,000 40,000
Initialisation of weights N(0,1) N(0,1) N(0,1)
Input nodes 9 9 9
Hidden nodes 7 5 4
Output node 1 1 1
Appendix C. Bayesian Information Criteria

AIC measures the relative goodness of fit of a statistical model, as introduced by Akaike [1]. On the other hand, SIC (also known as BIC or SBIC
[43]) is considered a criterion to select the best model among models with different numbers of parameters. If N is the sample size of the dataset,
k the total number of parameters in the equation of interest and s2 the maximum likelihood estimate of the error variance, then AIC and BIC are
calculated as shown below:

AIC ¼ N log s2
� �

þ 2k ; SIC ¼ N log s2
� �

þ k log Nð Þ ðC:1Þ
Table C.1
Calculation of weights for the AIC and SIC Bayesian Averaging model.

AIC SIC ΔAIC ΔSIC wAIC wSIC

MLP 1.825879871 1.832039254 0.004476988 0.004476604 0.334209988 0.334210009
RNN 1.846203174 1.852362557 0.024800291 0.024799907 0.330831059 0.330831081
PSN 1.821402883 1.827562265 0 0 0.334958953 0.33495891
Table C.1 describes the estimation of the Bayesian Information Criteria for the cases of MLP, RNN and PSN forecasts, based on Eq. (13).

Appendix D. Kalman Filter and smoothing process

A generalized linear state space model of the nx1 vector yt is defined as:

yt ¼ ct þ Ztat þ εt ;εteNID 0;σ2
ε

� �
and atþ1 ¼ dt þ Ttat þ nt ;nteNID 0;σ2

n

� �
ðD:1Þ

where αt is a mx1 vector of possible state variables and ct, Zt, dt and Tt are conformable vectors and matrixes.
The εt and nt vectors are assumed to be serially independent, with contemporaneous variance structure:

Ωt ¼ vart
εt
nt

� �
¼ Ht Gt

Gt
0 Qt

� �
ðD:2Þ

where Ηt is a nxn symmetric variance matrix, Qt is a mxm symmetric variance matrix and Gt is a nxm matrix of covariances [56].
If nowwe consider the conditional distribution of the state vectorαt, given information available at time t-1, we can definewith the Kalman Filter

the mean and variance matrix of the conditional distribution as:

atjt−1 ¼ Et−1 atð Þ ðD:3Þ

Ptjt−1 ¼ Et−1 at−atjt−1

� �
at−atjt−1

� �0h i
: ðD:4Þ
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Thus, the recursive algorithm of the Kalman filter calculates the following three:

1. The one-step ahead mean αt|t− 1 and one-step ahead variance Pt|t−1 of the states. Under the Gaussian error assumption, αt|t−1 is the
minimum mean square error estimator of αt and Pt|t−1 is the mean square error (MSE) of αt|t-1.

2. The one-step ahead estimate of yt as:

ŷt ¼ ytjt−1 ¼ Εt−1 ytð Þ ¼ E ytð jatjt−1Þ ¼ ct þ Ztatjt−1: ðD:5Þ

3. The one-step ahead prediction errors and their variances respectively as:

ε̂ t ¼ εtjt−1 ¼ yt−ŷtjt−1; F̂ t ¼ Ftjt−1 ¼ var εtjt−1

� �
¼ ZtPtjt−1Zt

0 þ Ht : ðD:6Þ

In our case, we set ŷ0 ¼ 0 and P0=1. If P0 was also set equal to zero, that would mean that there is no noise, so all the estimates would be
equal to the initial state. Then, the next step is to embody a smoothing algorithm to our process. The smoothing algorithm, which uses all the
information observed, in other words the whole sample T, to form expectations at any period until T, is known as fixed-interval smoothing.
In this way it is possible to estimate the smooth estimates of the states and the variances:

α̂ t ¼ at T¼ET atð Þand Vt¼ varT atð Þj ðD:7Þ

Additionally, not only the smoothed estimates of yt and their variances can be calculated based on Eqs. (D.5) and (D.6) respectively, but also
the smoothed estimates of the εt and nt vectors and their corresponding smoothed variance matrix:

ε̂ t ¼ εtjT ¼ ET εtð Þ; n̂t ¼ ntjT ¼ ET ntð Þ and Ω̂t ¼ vart
ε̂ t
n̂t

� �
¼ Ĥt Ĝt

Ĝt
0

Q̂ t

� �
: ðD:8Þ

Appendix E. The statistical and trading performance measures

The statistical and trading performance measures are calculated as shown in Tables E.1 and TE.2 respectively:
Table E.2
The trading performance measures and their calculation description.

Performance measures Description

Annualized return RA ¼ 252 � 1
N � PN

t¼1
Rt

� �
where Rtthe daily return

Cumulative return RC ¼ PN
t¼1

Rt

Annualized volatility σA ¼
ffiffiffiffiffiffiffiffiffi
252

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N−1 �
PN
t¼1

Rt−�R

 �2s

information ratio SR ¼ RA

σA

Maximum drawdown Maximum negative value of ∑ Rtð Þ over the period MD ¼ Mini¼1;⋯;t;t¼1;⋯;N
Pt
j¼i

Rj

 !

Table E.1
The statistical performance measures and their calculation description.

Performance measures Description

Mean absolute error MAE ¼ 1
n


 � Ptþn

τ¼tþ1
σ̂ τ−στj j

with στ being the actual volatility and σ̂ τ the forecasted value

Mean absolute percentage error MAPE ¼ 1
n

Ptþn

τ¼tþ1

στ−σ̂ τ
στ

��� ���
Root mean squared error RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Ptþn

τ¼tþ1
σ̂ τ−στð Þ2

s

Theil-U Theil−U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Ptþn

τ¼tþ1

σ̂ τ−στð Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Ptþn

τ¼tþ1

σ̂ 2
τ

r
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Ptþn

τ¼tþ1

σ2
τ

r
0BB@

vuuuuut
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Appendix F. Diebold–Mariano statistic for predictive accuracy

The Diebold–Mariano [11] statistic tests the null hypothesis of equal
predictive accuracy. If n is the sample size and e1i, e

2
i (i=1,2…n) are the

forecast errors of the two competing forecasts, then the loss functions
are estimated as:

LMSE
1 e1i
� �

¼ e1i
� �2

; LMSE
2 e2i
� �

¼ e2i
� �2 ðF:1Þ

LMAE
1 e1i
� �

¼ e1i
��� ���; LMAE

2 e2i
� �

¼ e2i
��� ���: ðF:2Þ

The Diebold–Mariano statistic is based on the loss differentials:

dMSE
i ¼ LMSE

1 e1i
� �

−LMSE
2 e2i
� �

ðF:3Þ

dMAE
i ¼ LMAE

1 e1i
� �

−LMAE
2 e2i
� �

: ðF:4Þ

The null hypotheses tested based on the sMSE and sMAE are:

• H0 :E(diMSE)=0Z against the alternative H1 :E(diMSE)≠0
• H0 :E(diMAE)=0Z against the alternative H1 :E(diMAE)≠0.

The Diebold–Mariano test statistic s is estimated as:

s ¼
�diffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ �di


 �q →
d

N 0;1ð Þ ðF:5Þ

where

V �di


 � ¼ n−1 γ̂0 þ 2
Xn−1

k¼1

γ̂k

" #
andγk ¼ n−1 Xn

i¼kþ1

di−�di


 �
di−k−�di


 � ðF:6Þ

Appendix G. RiskMetrics Volatility Model

The RiskMetrics Volatility Model is a special case of the general
Exponential Weighted Moving Average Model (EWMA). The EWMA
suggests that the variance of a financial asset can be calculated using
the formula:

σ2
t ¼ λσ2

t−1 þ 1−λð Þr2t−1 ðG:1Þ

where σt−1
2 is the EWMA variance at time t−1, rt−1

2 the squared
returns at time t−1 and λ a weight between 0 and 1. The RiskMetrics
Volatility Model assumes that the weight λ=0.94. So in our case,
we estimate the daily volatility with the formula below:

RiskMetricsVol ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:94σ2

t−1 þ 0:06r2t−1

q
: ðG:2Þ
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