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Abstract 

The traditional causality relationship proposed by Granger (1969) assumes the relationships 

between variables are short range dependent with the same integrated order. Chen (2006) 

proposed a bi-variate model which can catch the long-range dependent among the two 

variables and the series do not need to be fractionally co-integrated.  A long memory 

fractional transfer function is introduced to catch the long-range dependent in this model and 

a pseudo spectrum based method is proposed to estimate the long memory parameter in the 

bi-variate causality model. In recent years, a wavelet domain-based method has gained 

popularity in estimations of long memory parameter in unit series. No extension to bi-series or 

multi-series has been made and this paper aims to fill this gap. We will construct an estimator 

for the long memory parameter in the bi-variable causality model in the wavelet domain. The 

theoretical background is derived and Monte Carlo simulation is used to investigate the 

performance of the estimator.  
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1. Introduction 

 

In time series econometric study, the causality relationship between subsets is an important 

subject and the Granger test proposed by Granger (1969) has been most frequently used in 

previous studies. The main idea of the Granger causality test is to measure whether the past 

information of a set of variables contains information on changes in another set of variables 

and helps to predict them. When excluding the self-lag influence, the framework in which the 

causality test is carried out can be represented in the following model: t t( ) tY B X ε= Ψ +  

where B  is the lag parameter and 
0

( )
n

k
k

k
B Bυ

=

Ψ =∑ . The Granger causality test will check the 

significance of the linear coefficients of the lagged variables. In this framework, the lag 

specification plays an important role as it is the trade-off between bias and efficiency. The 

general principle is that the smaller lag length has smaller variance but confronts a risk of bias 

while larger lags will reduce the bias problem but may bring up inefficiency. A rule of thumb 

is that the lags on the independent variable should be relatively short to conserve degrees of 

freedom. Thornton and Batten (1985) pointed out that this rule of thumb ‘fails to ensure that 

the results are not based on the capricious choice of the lag structure’ and a safer approach is 

to perform an extensive search of the lag space. However, in practice there may exist a certain 

relationship where the impact effect decays quite slowly, thus the lag coefficients and cross-

correlations will remain significant after the long term. In this situation, the lag searching 

procedure will be quite complicated and a model with too long lags will lose parsimony. 

The discussion of the long memory dependence in the causality model continued with 

Hidalgo (2000), who mentioned that the long-range dependent process has already attracted 

immense attention in recent econometric study; Chen (2006) introduced a fractional transfer 

function which can model the long memory causality dependence between two series; 

Smirnov and Mokhov (2009) discussed the long-term causality effect from variation in 

atmospheric content, solar activity and volcanic activity which can affect global surface 

temperature up to 150 years. Among the studies, the model proposed by Chen (2006) is quite 

straight forward and parsimonious: 

                                                   t t(1 ) ( )d
tY B B X ε−= − Ψ +                                                      (1) 

where 0 0.5d< <  indicates a stationary long memory dependence and ( )BΨ  captures the 

short memory causality relationship. The out point of this model is that the slow decay pattern 

in the cross-correlation between two series of relationships is similar to the low speed auto-



correlation fading pattern in the long memory unit series. From equation (1), the specification 

of the long memory causality relationship will turn to be a problem in estimating the 

fractional difference parameter d  and check how profoundly tX  will influence tY . To 

estimate d , Chen (2006) applied a cross-pseudo spectrum-based method and it is the bi-

variate correspondence to the Geweke-Porter-Hudak (GPH) regression estimator (Geweke 

and Porter-Hudak, 1983) in unit long memory series.  

Recently, to estimate the fractional difference parameter in unit series, a wavelet domain-

based method began to gain popularity and become a powerful tool due to its self-similarity 

(Masry, 1993; Wornell, 1993). Based on the property of de-correlating the long memory 

series in the frequency domain, McCoy and Walden (1996) proposed a wavelet  Maximized 

Likelihood Estimation (MLE) where a reduced computational order of likelihood is 

approximated in wavelet domain. This method is useful to the large data set and quite robust 

to model specification under the assumption that the auto-covariance of the wavelet 

coefficients decays rapidly enough. Later, Jensen (1999) pointed out that the precision of the 

wavelet MLE depends on how rapidly the auto-covariance of the wavelet coefficients decays. 

Instead of the maximum likelihood based estimator, Jensen (1999) proposed a wavelet 

Ordinary Least Square (OLS) estimation of the long memory parameter and showed it over 

performance of the wavelet MLE in simplicity of implementing and non-numerical nature, 

with a slightly larger Mean Square Error (MSE) than the wavelet MLE method. The wavelet 

OLS estimation was further widely applied and developed by Whitcher and Jensen (2000), 

Hsu (2006), Gonzaga and Kawanaka (2007). However, little work has been done to expand 

the wavelet domain-based estimation for bi- or multi-series. This paper will then aim to 

combine the wavelet methodology to estimate the long memory dependence in the bi-variate 

causality model proposed by Chen (2006). We give out the theoretical background of the 

estimator and further use the Monte Carlo method to evaluate the performance of the 

estimation.  

The paper will be divided as follows: the second section briefly introduces the long memory 

dependence model and the wavelet estimation for the unit long memory parameter; the third 

section is the theoretical illustration on how to combine the wavelet method to estimate the 

long memory parameter in the bi-variate causality model; the fourth section uses the Monte 

Carlo simulation to show the estimation procedure in the wavelet domain; and the conclusion 

can be found in the last section.  

 



2. Model structure and wavelet method 

2.1. Long memory causality model 

The model which can capture the long memory Granger causality effect was recently 

proposed and investigated by Chen (2006). The main idea is that, for a bi-variate long range 

dependence model ( )t t tY B Xυ ε= +  where ( ) k
k

k
B Bυ υ

+∝

=−∞

= ∑ , the regression coefficient for the 

non-negative power polynomial kυ  will not eliminate to zero even after large lag numbers. A 

fractional transfer function (1 ) dB −−  is applied as a more parsimonious manner to catch this 

long-range dependence and the model will turn out to be (1 ) d
t t tY B X ε−= − + . In this way, the 

requirement to estimate the large number of explanatory lagged coefficient will then be 

simplified to estimate the fractional different parameter d . A straightforward example of this 

model can be illustrated by setting 0.4d = , with the independent variable tX  is generated 

separately from Auto-Regressive (AR) process t(1 0.3 ) tB X ε− =  and Moving Average (MA) 

process t (1 0.3 ) tX B ε= − . The cross-correlation between the two series will turn out to be: 
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                                                               Figure 1. Cross-correlation of X and Y to lag 40 

We see that there still exists a significant cross-correlation for data which are far apart even 

after 40 lags; this persistence behaviour mimics the slow decay auto-correlation in fractional 

difference data. This long-range dependence is predictable as the fractional difference 

operator (1 ) dB −−  can be written as 
0

( )
( 1) ( )

k

k

k d B
k d

∞

=

Γ +
Γ + Γ∑  by the binomial expansion. The uni-

direct effect of tX  on tY  will last long and the traditional linear Granger causality test will 

give the following results: 
                                  Table 1. P-Values of Granger causality for an independent AR variable 

Lag            1       2      3      4       5      6      7      8      9     10    …       31     32    33    34    35    36    37    38    39    40 

x -> y 

y -> x 

   0       0      0      0       0      0      0      0      0      0     …       0      0      0     0     0     0     0      0     0     0  

 0.74 0.32 0.45 0.50 0.60 0.70 0.80 0.67 0.37 0.32    …     0.78 0.64 0.67 0.65 0.64 0.71 0.72 0.77 0.76 0.73 

      



                                  Table 2. P-Values of Granger causality for an independent MA variable  

Lag            1       2      3     4       5       6      7     8      9     10    …       31     32    33    34     35    36    37    38    39    40 

x -> y 

y -> x 

    0      0      0      0      0       0      0     0      0      0     …      0      0      0     0      0     0     0      0     0      0  

 0.91 0.17 0.11 0.32 0.57 0.74 0.78 0.73 0.81 0.84   …      0.35 0.48 0.39 0.43 0.48 0.51 0.51 0.54 0.55 0.54 

 

Table 1 and Table 2 show that if we just fit a linear model to the long memory dependence 

and use a traditional Granger causality test, there exists a uni-direct causality running from X  

to Y  even to lag 40. Thus compared to the linear bi-variate model, the long memory 

dependence model shows an advantage of much more parsimony as the main parameter that 

needs to be specified is just the fractional difference parameter d . In Chen (2006), this 

parameter is estimated by a way which has its univariate correspondence in GPH Geweke-

Porter-Hudak (GPH) regression estimator (Geweke and Porter-Hudak, 1983). Geweke and 

Porter-Hudak (1983) show that, in the unit case (1 ) t tB Zδ ε− = , the fractional difference 

parameter δ  is estimated by the regression model from the linear relationship between the 

periodogram and low frequency ordinate as: Z 2 Z
0 1ln( ( )) ln(4sin ( / 2))k kI λ β β λ≈ +  where 

Z( )kI λ  is the pseudo spectrum at frequency kλ  and 1̂limp β δ= − . In Chen (2006), the pseudo 

cross-spectrum instead of the pseudo auto-spectrum is then applied to estimate the long 

memory parameter in the transfer function. The main procedure is as follows: after using the 

same filter to pre-whiten tX  and tY  into white noise tα  and tβ , the equation at the low band 

frequencies 
( )

( )

( )
ln( ) ln( )

( )

A T
k

kT
k

f
d

f
βα

α

λ
α λ

λ
≈ −  is applied to estimate d , with ( ) ( )T

kfα λ being the 

pseudo spectrum of white noise and the pseudo cross-spectrum ( ) ( )A T
kfβα λ . The cross-

spectrum ( ) ( )A T
kfβα λ  is estimated from the cross-periodogram which is the Fourier transform 

of the cross-covariance 
1

1ˆ ( ) ( )( )
n k

yx t t k
t

c k y y x x
n

−

−
=

= − −∑ . However, it is well known that, in the 

unit series, using a periodogram as a estimation of the spectrum suffers from the problem of 

inconsistency and leads to a unsatisfactory asymptotic properties of the GPH estimator (see 

Jensen, 1999); the same problem will happen when using the cross-periodogram to estimate 

the cross-spectrum. Thus in this paper, instead of using the periogogram-based method, we 

will try to develop a wavelet domain-based estimation for the long memory parameter d  in 

the bi-variate model.  

 

 



2.2. Wavelet transform for the unit long memory process 

Wavelet methods have been widely applied in the field of signal and image processing after 

their theoretical development in the 1980s (Grossmann and Morlet, 1984; Mallat, 1989). The 

wavelet transformation can capture the characteristics of data series both in the frequency 

domain and the time domain using a two-dimensional resolution. Corresponding to sinusoidal 

waves in the Fourier transform, the wavelet bases { }, : ,k a k a Rψ ∈  used in the wavelet 

transform are generated by translations and dilations of a basic mother wavelet 2 ( )L Rψ ∈  and 

can be expressed as ,
1( ) ( )k a

z kz
aa

ψ ψ −
= . For the signal ( )f z , the wavelet transform is 

*
, ,( , ) , ( ) ( )k a k ak a f f z z dzγ ψ ψ= 〈 〉 = ∫ . When the mother wavelet satisfies the condition 

2

0

( )H
d

ω
ω

ω
∞

< ∞∫ , with ( )H ω  as the Fourier transform of the ( )zψ , we can reconstruct 

( )f z  using the inverse ,( ) ( , ) ( )k jf z k a z dkdaγ ψ= ∫∫ . For the discrete series 

Z { , 1,..., }tZ t N= = , the level J  maximal overlap discrete wavelet transform (MODWT) 

contains 1J +  vectors (Z) (Z) (Z)
1 ,..., ,J JW W V    with wavelet coefficients (Z) (Z)

,{ , 1,..., }j j tW t N= =W   

corresponding to changes of scale 12 j
jτ

−= , while the wavelet scaling coefficients 

(Z) (Z)
,{ , 1,..., }J J tV t N= =V   corresponds to averages on a scale of 2 j

Jλ = . The N  dimensional 

vectors jW  and JV  are computed by Z, Zj j J Jw v= =W V 

   where jw  and Jv  are N N×  

matrices defined separately as the wavelet high band pass filter at level j  and low band pass 

filter at level J . Thus after the wavelet transform, the frequency resolution of Z  can be 

decomposed as jW  contains the information in frequency band 1

1 1( , )
2 2j j+  and JV  contains 

information in the frequency band 1(0, )
2J .  

 

3. Wavelet-weighted least square estimation for the causality relationship 

3.1. Wavelet estimation for the unit long memory process 

The wavelet transform analysis and inverse synthesis are particularly suitable to measure the 

variability in fractional difference series with long memory dependence. For the long memory 

series Z { }t tZ ∈=


 with spectral density z ( )f λ , we have 
2 2

Z 2 2( )
[4sin ( )] [2 ]

f ε ε
δ δ

σ σλ
πλ πλ

= ≈  as 



0λ → , where δ  is the long memory parameter and the process is stationary for 0 0.5δ< < . 

Furthermore, defining 
2

( )jH λ  being the squared gain function for the wavelet filters at level 

j, Percival (1995) shows that the variance for the wavelet coefficients is:  

    
1 1

2 221/ 2 1/ 2 1/ 2Z 2 1
Z 2 2 21/ 2 1/ 2 1/ 2

2 1( ) ( ) 2
(2 ) (2 ) ( )

j j

j jj j jH f d d d C δε ε
δ δ δ

σ σγ λ λ λ λ λ τ
πλ π λ+ +

−

−
= ≈ ≈ =∫ ∫ ∫                       (2) 

Thus a linear relationship can be built after the log transformation as:  

                                 Zln( ) ln( ) (2 1) ln( )j jCγ δ τ≈ + −                                                                 (3) 

One important property of the wavelet coefficient (Z)
,j kW  is that they are zero mean and 

approximately de-correlated (see Percival, 1995). As it is well known, for the random variable 

Z , the variance 2 21ˆ ( Z)X t
k

Z
N

σ = −∑  will be seriously biased if (Z)E  is unknown. The zero 

mean character of (Z)
,j kW  will help us to construct an unbiased estimator of variance for the 

scale-based wavelet coefficient Z
jγ  as 

1 2Z (Z)
,

1

1ˆ
1

j

N

j j k
k LjN L

γ
−

= −

=
− + ∑ W  with jL  being the boundary 

coefficients at thj  scale. Thus equation (3) can be further written as:  

                                  Z *ˆln( ) (2 1) ln( )j j jCγ δ τ ε= + − +                                                             (4) 

with jε  being zero mean random errors, thus an unbiased and consistent estimator of δ  is 

then available by OLS or Weighted Least Square (WLS) from equation (4). On the other 

hand, δ  can also be estimated by MLE in wavelet domain after approximating the fractional 

difference time series Z  by 1/2 *Z= ZTw Λ , where w  is the Discrete Wavelet Transform 

(DWT) matrix, 1/2Λ  is a K K×  diagonal matrix with diagonal elements being wavelet 

variance at different scale as Z Z Z Z Z Z Z Z
1 1 2 2 1 1 1

/ 2 / 4 2

,..., , ,..., ,..., , , ,J J J J

K K

γ γ γ γ γ γ γ γ− − +

  
 
  
  

 and *Z  is vector of 

deviations drawn from a standardized Gaussian distribution. One advantage of the wavelet-

based MLE is that the computational order of the likelihood calculating is reduced and is 

suitable for a large data set (see McCoy and Walden, 1996). However, Jensen (1999) pointed 

out that the simplicity of the wavelet MLE is based on the assumption that the covariance of 

the wavelet coefficients decays rapidly enough. Jensen (1999) further proposed a wavelet 

OLS estimator which has a significantly lower MLE than the GPH estimator. The wavelet 

OLS estimator also over performs the wavelet MLE estimator in McCoy and Walden (1996) 



with simplicity of implementing and non-numerical nature, although the wavelet MLE 

produces a slightly less MSE than the wavelet OLS estimation. Thus the wavelet OLS-based 

estimation is more frequently applied to estimate the long memory parameters further in 

Whitcher and Jensen (2000); Gonzaga and Kawanaka (2007); and Hsu (2006). As this paper 

deals with bi-variate data which will bring in the cross-correlation, the MLE method will be 

even more complicated in numeric computation; thus we concentrate on a least square-based 

method when we extend the wavelet method in unit series to bi-variate series when estimating 

the long memory parameter in the causality transfer function in the next section.  

 

3.2. Wavelet weighted least square estimation for the causality relationship 

The wavelet domain-based OLS estimator is shown to be asymptotically unbiased and 

consistent in the unit series. This paper aims to extend the wavelet-based methodology to the 

bi-variate model in Chen (2006) where there exists a long memory effect under Granger’s 

causality sense. In this model, the cross-correlation of the two series tX  and tY  is not possible 

to be summed and decays to zero slowly at a hyperbolic rate with XY 2 1( ) dk kγ ς −
  as k →∞ , 

Chen (2006) proved this will lead to that 2
XY ( ) df λ κλ−

  as 0λ → . In the wavelet domain, 

the covariance at scale j between the wavelet coefficient (X)
,j kW  and (Y)

,j kW  is: 

1/ 2XY
XY1/ 2

( ) ( )j jH f dγ λ λ λ
−

= ∫  , thus combined with 2
XY ( ) df λ κλ−

  we have the following 

equation:  

                           1

21/ 2 1/ 2XY 2 2 1
XY1/ 2 1/ 2

( ) ( ) 2 ´
j

j

d d
j j jH f d d Cγ λ λ λ κλ λ τ

+

− −

−
= ≈ ≈∫ ∫                                   (5) 

The estimator of the covariance is 
1

XY (X) (Y)
, ,

1

1ˆ
1

j

N

j j k j k
k LjN L

γ
−

= −

=
− + ∑ W W   where jL  is the boundary 

coefficient at thj  scale. Theorem 2 in Whitcher et al. (1999) shows that XYˆ jγ  is an asymptotic 

unbiased estimator for XY
jγ with XY XY 1 XYˆ ( , (0))j j j jN N Sγ γ −∈ . The Delta method will give 

XY XY 2 1 XY
XY

lnˆln (ln , ( ) (0))j j j j
j

eN N Sγ γ
γ

−∈ , then by setting XY XYˆln lnj j jε γ γ= −  we have 

2 1 XYln(0, ( ) (0))j j jXY
j

eN N Sε
γ

−∈ . Thus equation (5) will further lead to the following equation:  

                                         XYˆln ln ´ (2 1) lnj j jC dγ τ ε= + − +                                                       (6) 



where jε  will be approximately uncorrelated to the scale jτ  for large jL  (see Gonzaga and 

Kawanaka, 2007). By setting XYˆ[1, ln ], Y= ln , [ln ,́ 2 1]j j C dτ γ βΧ = = − ,   and eΣ  being the 

variance matrix with diagonal elements being 2 var( )j jσ ε= , an asymptotically unbiased and 

consistent WLS estimator for β  can be straightforwardly built up as 
T 1 1 T 1( ) YWLS

e eβ − − −= Χ Σ Χ Χ Σ     with T 1 1( , ( ) )WLS
eNβ β − −∈ Χ Σ Χ  .  

 

4. Monte Carlo experiment  

This paper will apply the Monte Carlo experiment to show how the long memory parameter in 

the long-run relationship can be estimated. The model structure is t t(1 ) d
tY B X N−= − + , thus 

the data-generating process only needs to generate the independent variable tX . Chen (2006) 

pre-whitens tX  and tY  by filtering both series to a common pre-whitening function, and they 

estimate the parameter by using the white noise process. This will bring up two problems in 

application: the first is that we need to identify the structure of tX  to get the filter; the second 

is that, when we use the filter to tY , the long memory dependence between tX  and tY  are 

destroyed which leads to serious under-bias problems in finite sample size. Thus in this paper, 

we will use the original data and investigate the model estimation across a range of parameter 

settings. Although Chen (2006) claims that the short memory part in X  will converge to a 

constant in the frequency domain as the frequency approaches zero, the estimation will be 

tortured in finite samples when short memory auto-correlation appears in X . This can be 

shown in the following where we set 0.3d = , X  is AR series 1 t(1 ) tB Xφ ε− =  with 1φ  being 

separately 0.3, 0.5 and 0.7: 

                       1 0.3φ =                                    1 0.5φ =                                    1 0.7φ =  

      
0.5 1.0 1.5 2.0

-1
.2

-1
.0

-0
.8

-0
.6

Wavelet Scale    
0.5 1.0 1.5 2.0

-1
.2

-1
.0

-0
.8

-0
.6

Wavelet Scale    
0.5 1.0 1.5 2.0

-0
.8

-0
.7

-0
.6

-0
.5

Wavelet Scale  
                         Figure 2. The linear relationship between XYˆln jγ  and ln jτ when 1φ  increase 



Figure 2 shows that the short memory in tX  destroys the linear relationship between XYˆln jγ  

and ln jτ  at the low-scale level, which leads to an over-bias problem if we include all the 

scales in estimation. Another important issue is that equation (6) is an approximation 

relationship, and in the finite sample size the log–log relationship is not strictly linear in small 

samples. Especially when d  increases to 0.5, the slope value 2 1d −  increases to zero and the 

linear relationship becomes more and more flat; this will lead to the large-scale end point 

derive from the linear relationship. A straightforward illustration is shown in the following 

figure when t (1 0.3 ) tX B ε= −  and d  is separately 0.2, 0.3 and 0.4: 

                         0.2d =                                   0.3d =                                      0.4d =  
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                        Figure 3. The linear relationship between XYˆln jγ  and ln jτ when d increases 

Figure 2 and Figure 3 show that, as the linear relation in equation (4) is an approximation 

under the assumption of infinite sample size, the estimation in the finite sample size will be 

disturbed by the deviation of end points in both sides: Figure 2 shows that the short memory 

part will influence the linear relationship in the lower scales and Figure 3 shows that, when d  

increases, the slope of the linear relationship will become flatter and the end points will 

deviate from the linear line. These two deviations bring in an important issue in the choice of 

the wavelet decomposition level J  and the starting scale level K . The same issue of the scale 

level chosen in the unit series case is discussed in Hsu (2006), where it is suggested that J  

and K  can be selected via certain model selection criterion such as Akaike information 

criterion (AIC). In the simulation, J  and K  can be decided based on the least mean square 

method. When setting the sample size as 1,000 the Monte Carlo experiment based on 1,000 

replication is listed as follows:  
            Table 3. Mean and standard deviation of the estimation change AR parameter 

d                    
1 0.3φ =                              

1 0.5φ =                              
1 0.7φ =                                   

           Mean    S.D.   MSE   (K J)     Mean    S.D.   MSE   (K J)      Mean    S.D.   MSE   (K J) 

0.2 

0.3 

0.4 

0.192  0.037  0.0014  (2 7) 

0.304  0.031  0.0009  (1 6) 

0.350  0.027  0.0034  (1 5) 

0.204  0.060  0.0036  (3 7) 

0.317  0.078  0.0063  (3 6) 

0.399  0.035  0.0012  (2 7) 

0.230  0.098  0.0105  (4 7) 

0.304  0.082  0.0067  (4 7) 

0.430  0.055  0.0056  (3 7) 



 
                Table 4. Mean and standard deviation of the estimation change MA parameter 

d                    
1 0.3φ =                              

1 0.5φ =                              
1 0.7φ =                                   

           Mean    S.D.   MSE   (K J)     Mean    S.D.   MSE   (K J)      Mean    S.D.   MSE   (K J)                   

0.2 

0.3 

0.4 

0.212  0.028  0.0009  (1 7) 

0.284  0.030  0.0011  (1 5) 

0.308  0.029  0.0096  (1 5) 

0.180  0.039 0.0023  (2 6) 

0.330  0.026 0.0009  (1 6) 

0.396  0.026 0.0007  (1 5) 

0.194  0.042 0.0018  (2 6) 

0.333  0.028 0.0023  (1 7) 

0.409  0.028 0.0009  (1 6) 

  

Table 3 and 4 show that the estimation performs well with low bias, small variance and low 

MSE. However, there exists underestimate problems when  0.4d =  for 1θ =0.3, The reason 

lies behind that, when d  increases to 0.5, the slope of the linear relationship 2 1d −  will tend 

to be zero, which results in that any deviation from the linear relationship will tend to make 

the estimation for 2 1d −  deviate from zero and then results in the underbias estimation. Table 

3 also shows that, when 1φ  grows the lower-scale information should be abandoned to avoid a 

serious over-bias problem. Our suggestion in the empirical example is to draw a linear graph 

before estimation and gain a first impression of the linear slope. Then the initial choice of J  

and K  can be selected based on the performance of the end points in both sides. The final 

selection of J  and K  can be decided after an iterative procedure based on certain model 

selection criteria.  
                 

5. Conclusion  

This paper has talked about the long memory causality relationship between two series – the 

model framework proposed by Chen (2006). In Chen (2006), the long memory parameter is 

estimated by a spectrum-based estimator, while this paper proposes a wavelet WLS estimator. 

The main gain in this paper is to extend the widely applied wavelet estimation in unit series to 

a bi-variate series. The derivation of the estimator is presented and we further use Monte 

Carlo simulation to investigate separately how the AR and MA parameter will influence the 

estimation. We show that attention should be paid to the choice of decomposition level J  and 

starting scale K in the finite sample application. In general, the wavelet based estimation is 

straightforward and quite easy to apply as well as a decent result. 
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