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Abstract

There is no standard economic forecasting procedure that systematically out-
performs the others at all horizons and with any dataset. A common way to
proceed, in many contexts, is to choose the best model within a family based on
a fitting criteria, and then forecast. I compare the out-of-sample performance
of a large number of autoregressive integrated moving average (ARIMA) models
with some variations, chosen by three commonly used information criteria for
model building: Akaike, Schwarz, and Hannan-Quinn. I perform this exercise
to identify how to achieve the smallest root mean squared forecast error with
models based on information criteria. I use the Chilean GDP dataset, estimat-
ing with a rolling window sample to generate one- to four-step ahead forecasts.
Also, I examine the role of seasonal adjustment and the Easter effect on out-
of-sample performance. After the estimation of more than 20 million models,
the results show that Akaike and Schwarz are better criteria for forecasting pur-
poses where the traditional ARMA specification is preferred. Accounting for the
Easter effect improves the forecast accuracy only with seasonally adjusted data,
and second-order stationarity is best.
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1 Introduction

An accurate forecast is a key element for successful economic decision-making, but
there is no standard procedure for selecting a model that systematically beats the
others at all horizons and with any dataset. A common way to proceed is to choose
the best specification within a family of models based on a fitting criterion, and then
to generate a forecast. In this paper, I compare the out-of-sample performance of a
large number of autoregressive integrated moving average models (ARIMA) chosen
by three commonly used information criteria for model building: Akaike, Bayesian or
Schwarz, and Hannan-Quinn1 (henceforth AIC, BIC, and HQ), with a publicly available
Chilean GDP dataset without revisions2, estimated with a rolling window sample for
1- to 4-step-ahead forecasts. I also examine the role of seasonal adjustment and the
Easter effect on out-of-sample performance, which becomes a pseudo-real-time exercise
whose results are not comparable across all kinds of series (Ghysels, Osborn, and
Rodrigues, 2006). The forecast evaluation is based on the root mean squared forecast
error (RMSFE) and considers different aggregation blocks. I perform this exercise to
determine which information criterion leads the forecaster to select the most accurate
model.

The goals of this paper are: (i) to investigate the use of the traditional Box-Jenkins3

approach to find an adequate out-of-sample benchmark for sectorial studies, going
beyond the typical naive model; (ii) to provide an educated opinion on the use of three
popular information criteria for forecasting in the Chilean economy; (iii) to investigate
the accuracy achieved by using seasonally-adjusted data and considering the impact
of the Easter effect on RMSFE as a parallel exercise; and (iv) to provide a systematic
data snooping analysis to reveal what the dataset can tell us about the future, and to
evaluate the informational gains from incorporating higher frequency variables in the
model building process.

The results obtained with this exercise should be read with caution, given that the
forecasts may come from models that explain more than what actually is explained
by the data generating processes, known as overfitting. An overfitted model may have
poor predictive performance, as it can exaggerate minor fluctuations in the data. In
the context of this paper, the only mechanism to prevent overfitting is the penalty
term imposed by each information criterion to the number of regressors included in the
model. To identify which strategy offers the best accuracy in a statistical sense —and
not by pure luck— it is necessary to perform a reality check, as developed in White
(2000), Hansen (2005), and in the spirit of Pincheira (2011). Instead, this work tries
to give clues on how to do so in a reduced and easy-to-handle context.

As pointed out by Granger and Jeon (2004), most results on comparing the perfor-
mance between information criteria are theoretical, and the empirical evidence with

1See Akaike (1974), Schwarz (1978), and Hannan and Quinn (1979) for details.
2That is, not in real-time.
3See Box and Jenkins (1970).
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actual data on the relative forecast accuracy from using each information criterion has
not been thoroughly examined. Granger and Jeon (2001), by comparing the number
of regressors chosen according to each information criterion, find that the AIC tends
to select more dynamic models than that found using the BIC. Further, Clark (2004)
proves that the number of (auto)regressors of a model is inversely related to out-of-
sample forecast capacity, highlighting the cost of overfitting. This leads us to expect
BIC to beat AIC in out-of-sample exercises. Moreover, Granger and Jeon (2004) find
that an equally-weighted combination between the forecasts delivered by each infor-
mation criterion increases effi ciency. It is intuitive to think of HQ as a combination of
the AIC and BIC by including a penalization of the number of regressors as well the
asymptotic, suggesting that it may be worth learning about its out-of-sample model-
based features. Notwithstanding, and besides some theoretical findings, I treat the
matter of which information criterion outperforms the others as an empirical question,
while being dependant on the characteristics of the dataset at hand to some extent.
For example, in the case of Chilean inflation, Cobb (2009) uses multivariate time-series
models based on AIC and BIC, finding that AIC consistently gives more predictive
power. Using the proposed Extended SARIMA models, Pincheira and García (2010)
also point out that AIC gives better predictive results than those chosen with BIC.

This paper also relates to seasonal adjustment and treatments of the Easter effect. I
replicate the exercise of choosing the best ARMAmodel to generate multi-horizon fore-
casts in the same setting, considering data that has been seasonally adjusted using: (i)
the X12-ARIMA methodology4, and (ii) explicit regressors (Seasonal ARMA models,
SARMA). As pointed out by Granger (1979), since seasonality can contribute sub-
stantially to the variance of a series while being economically unimportant, its absence
helps to build more parsimonious models with a better fit5. More recently, Capistrán,
Constandse, and Ramos-Francia (2010) estimate the portion of the Mexican CPI com-
ponents due to seasonality, finding that it can account for almost 80% of the observed
variation. Bell and Sotiris (2010) also show that certain fundamental choices about
seasonal adjustment affect subsequent forecasts by improving their accuracy. I study
the impact of the Easter effect —a special feature of seasonal components—on RMSFE
in two ways: (i) including the regressors proposed by Bell and Hillmer (1983) in an
ARMA environment, and (ii) isolating the seasonal adjustment process prior to mod-
eling, by first including and later excluding the Easter effect using X12-ARIMA. The
fundamental reason to make a statement about the out-of-sample impact of the Easter
effect, particularly in the Chilean GDP series, lies in the findings of Cobb and Medel
(2010) that its exclusion can generate seasonally-adjusted series with very different
dynamics from those that include it, and because it is information known with high
confidence several quarters after its realization. Both elements are subjects of interest
to an out-of-sample evaluation, and also make the results uncomparable between the
different kinds of data.

4The version of X12-ARIMA used in this paper is 0.2.7. A detailed description of the program can
be found in Findley et al. (1998) and US Census Bureau (2007).

5A result shared by Bell (1995).
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After the estimation of more than 20 million models, the results show the following. On
average, with actual series, the information criteria that show lower RMSFE across all
horizons are the AIC and BIC. While HQ forecasts better 1-step ahead, BIC does so at
2- and 3-steps ahead, and AIC at 4-steps ahead. In the case of seasonally-adjusted data,
BIC shows better performance 1-step ahead, while AIC is the best at the remaining
horizons.

In the case of model specification, the best results are obtained with ARMA and
SARMA models, despite a tie at the 1-step ahead horizon between ARMA and AR-
MAX. The traditional ARMA specification outperforms at 1-, 2-, and 4-steps ahead,
while SARMA does so in the remaining cases. This proves that the Easter effect does
not help to improve forecasting with original series, a result contrary to that found with
seasonally-adjusted data. Working with seasonally-adjusted series, the best results for
all horizons are obtained with the ARMA specification that explicitly accounts for the
Easter effect in X12-ARIMA.

Regarding the order of differencing, an overwhelming result is found in favor of second-
order differencing with actual series: for all horizons the second differentiation outper-
forms by at least 50%. With seasonally-adjusted data there is mixed evidence. While
the third order is best at 1- and 3-steps ahead, the second order is best for 2-steps
ahead, and the first for 4-steps ahead.

There is a huge literature related to issues raised in this paper, especially on ARMA (un-
structured) modeling6, conjunctural forecasting (short-term and multi-horizon), sea-
sonal adjustment, Easter-effect treatment, and information criteria for model building.
Notwithstanding, this work follows closely in the spirit of Granger and Jeon (2004)
by trying to reveal the empirical out-of-sample performance of in-sample information
criteria using actual data, and doing so to determine if the behavior is slightly different.
Stock and Watson (2007) also study the performance of many forecasting techniques
with 215 macro series from the United States, including ARMA models chosen with in-
formation criteria and comparing those with nonlinear models. The results are mixed,
but seasonality is found to play a role in favor of nonlinear models, and there are mixed
results between AIC and BIC depending on the type of series employed.

For the case of Chile, no similar systematic analysis exists on the relative effi ciency
of information criteria using the same dataset. A related work is Medel and Urrutia
(2010), which evaluates the forecasting procedure contained in the X12-ARIMA, but
with a previous vintage of Chilean GDP data and using another criterion (Ljung-Box
Q-statistic). This automatic procedure has the advantage that it filters the series of
outliers and the Easter effect, reducing the variance of actual series. In this work I also
try this procedure to model the seasonally-adjusted data, but this filtering makes the
results uncomparable.

6A recent and complete survey on ARMA modeling and its variants is provided by Holan, Lund,
and Davis (2010).

3



The paper is organized as follows. In section 2, I describe the Chilean GDP dataset,
the transformations applied to achieve stationarity, and my treatment of seasonality
and the Easter effect. In section 3, I explain the setting for model estimation, and
in section 4, I analyze the results for each series by giving a recommendation of what
specification, information criterion, and transformation is most accurate for each of the
four horizons considered, and for the two kinds of data, based on the minimization of
RMSFE. Finally, section 5 concludes.

2 Data

I use the Central Bank of Chile’s Quarterly National Accounts (QNA) starting with
GDP as the most aggregated, and with three levels of disaggregation on the demand
and supply sides. The original series are in levels, denominated in millions of 2003
Chilean pesos. I use the first release of the QNA that includes 2010.IV, leaving a
real-time analysis for further research7. The initial estimation sample covers 1986.I
to 1995.IV (40 observations), and the size of the rolling window is kept fixed. The
remaining sample for evaluation covers 1996.I to 2010.III (59 observations).

The series compound the Chilean GDP by demand and supply side. A scheme of
demand-side aggregations of all series and the acronyms used in this paper are shown
in Table 1, and of supply-side in Table 2.

Table 1: Chilean GDP by demand side

gdp=id+ed=c+i+g+(x-m)=

(cn+cd)+(meq+cw+ci)+g+(xg+xs-mg-ms)

cn Household consumption c Household consumption id Internal demand gdp Gross

expenditure: nondurables expenditure (c+i+g) domestic

cd Household consumption (cn+cd) ed External demand product

expenditure: durables i Investment (x-m) (id+ed)

meq Machinery and equipment (meq+cw+ci)

cw Construction and works g Government consumption

ci Changes in inventories (*) expenditure (g)

g Government consumption x Exports

expenditure (xg+xs)

xg Exports of goods m Imports (**)

xs Exports of services (mg+ms)

mg Imports of goods (**)

ms Imports of services (**)

(*) Not considered in analysis. (**) Imports are subtracted. Source: Central Bank of Chile.

7A framework for a real-time approach that can be used to this end is provided by Clements and
Galvão (2010).
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Table 2: Chilean GDP by supply side

gdp=gdp nr+gdp nnr+others=(egw+caf+min)+

(com+man+con+agr+tra+fin+per+ood+pub)+(vat+cif-dut)

gdp Gross gdp nr GDP Natural resources egw Electricity, gas and water

domestic (egw+caf+min) caf Capture fishery

product gdp nnr GDP Non-natural resources min Mining

(gdp nr+ (com+man+con+ com Wholesale and retail trade,

gdp nnr+ agr+tra+fin+ hotels and restaurants

others) per+ood+pub) man Manufacturing

others Other sectors con Construction

(-dut+vat+cif ) agr Agriculture and forestry

tra Transportation and communications

fin Financial intermediation and

business services

per Personal and social services

ood Owner-occupied dwellings

pub Public administration

dut Duties + taxes on goods and services (*)

vat Non-deductible VAT

cif Imports CIF

(*) DUT are subtracted. Source: Central Bank of Chile.

To achieve stationarity I consider the following five transformations8:

(i− iv) : ∆dyt = ∆d[log(Yt)− log(Yt−1)], d = {0, ..., 3},
(v) : yt = (Yt/Yt−4) · 100− 100,

where Yt is the variable in levels. Hereafter, these transformations are denominated
d1, d2, d3, d4 and %. All of these are stationary transformations of the series in levels.

Besides the use of actual data, the complete exercise is carried out with two kinds of
seasonally-adjusted data: (i) with special regressors to control for seasonality (SARMA
models), and (ii) with the X12-ARIMA procedure. In both cases the Easter effect is
considered but of different forms. This effect relates to the fact that the composition
of a month or quarter in terms on number of working days affects the dynamics of
a series. Typical examples, in the Chilean case, are: retail in September (09/18 is
Chilean independence day) and December (Christmas and New Year), manufacturing
in the summer holiday month of February, and consumption in March (several one-time
annual payments). It is considered "exogenous", as the X variables in ARMAX and
SARMAX specifications9 when the dependent variable is not seasonally adjusted. The

8In Table A1, in the appendix, I compute the typical statistics of all these transformations for all
series (panel A: demand side, panel B: supply side).

9I use "exogenous" to mean that there is new information being used to model the dependent
variable, instead of the case when it is considered within the seasonal adjustment with X12-ARIMA,
in which case it is considered "endogenous".
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Xt matrix contains a set of six series, defined as the number of working days within
a quarter minus the number of Sundays within the same period, Dayt = {#Dayt −
#Sundayt}. Bell and Hillmer’s (1983) regressors are thus:

Xt =
[
Mondayt ... Saturdayt

]
.

The other case with seasonally-adjusted data consists of comparisons including and
excluding the use of X12-ARIMA, such that I can isolate the impact of the Easter
effect on forecast performance. As X12-ARIMA changes the autocorrelation structure
of the series, the results when using this treatment are not comparable with those with
regressors on actual series.

The treatment of the Easter effect by X12-ARIMA is as follows10. First, the program
is an automatic procedure based on moving averages to seasonally adjust economic
time series —that is, a separation of a series into a trend-cycle component (TCt), a
seasonal component (St), and an irregular component (It). This decomposition can be
typically additive or multiplicative, depending on It (that it really be irregular) based
on a battery of tests contained in the routine. So, supposing an additive decomposition,
the series can be split as:

Yt = TCt + St + It,

where the seasonally-adjusted series corresponds to Yt − St. Second, before the ap-
plication of filters (moving averages) that identify the above mentioned components,
X12-ARIMA applies a whitening based on a special module: regARIMA (regression
with ARIMA noise), which automatically filters for the Easter-effect, leap years, level
shifts, additive outliers, transitory changes, ramp, among other considerations11. By
doing so, the whitening series added to the seasonally-adjusted series is Ẑt, obtained
from:

Yt =
∑
i

βi|tCi|t + Zt,

Ẑt = Yt −
∑
i

β̂i|tCi|t,

where Ci|t is the control i, and β̂i|t is the estimated coeffi cient associated to the control
i. This implies that the predicted series is not the actual one, but rather an automatic
filtered version. Third, the regressors applied by X12-ARIMA to control for the Easter
effect consist of the same Bell and Hillmer regressors used in ARMAX and SARMAX
specifications in this work. After the identification of all effects, the share excluded by
filtering is added to the irregular component to preserve the equality Yt = TCt+St+It.

10A complete description can be found in US Census Bureau (2007).
11See Table 4.1, pp. 36-38, of US Census Bureau (2007) for formal definitions.
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3 Setting up the estimations

3.1 Models

I estimate 6 families of models (with intercepts) for each of the five stationarity trans-
formations mentioned above:

Actual series:

(i) : ARMAX(p, q), p, q = {0, 1, 2, 3, 4},
(ii) : SARMAX(s, p, q), p, q = {0, 1, 2, 3, 4}, s = {4},

(iii) : ARMA(p, q), p, q = {0, 1, 2, 3, 4},
(iv) : SARMA(s, p, q), p, q = {0, 1, 2, 3, 4}, s = {4},

Seasonally-adjusted series:

(v) : ARMA(p, q), p, q = {0, 1, 2, 3, 4}, (X12-ARIMA sa with Easter effect),
(vi) : ARMA(p, q), p, q = {0, 1, 2, 3, 4}, (X12-ARIMA sa without Easter effect).

I consider the fourth order for frequency considerations; hence, monthly cases are a
bit more complicated to compute12. All the estimations were programmed using the
ARIMASel add-in for Eviews 7.1. Each model is re-estimated as the rolling window is
moved one observation ahead. Each family of models produces a total of 25 (without
seasonal regressors) or 36 (with seasonal regressors) models by combining non-skipped
AR(p), MA(q), SAR(s) and SMA(s) regressors with (p, q) ⊆ {0, 1, 2, 3, 4}2 and s = {4}.

The three IC used are as follows:

AIC : −2(`/T ) + 2(k/T ),

BIC : −2(`/T ) + k log(T )/T,

HQ : −2(`/T ) + 2k log(T )/T,

where ` is the value of the log-likelihood function, with k parameters estimated using
T observations. These expressions jointly imply that BIC ≤ AIC when T ≥ 8,
BIC ≤ HQ when T ≥ 2, and AIC ≤ HQ when T ≥ 3. In other words, it is expected
for a reasonable sample size that BIC ≤ AIC ≤ HQ, because BIC puts a heavier
penalty on additional parameters. From an empirical viewpoint, the resolution of this
matter depends strictly on how the lag structure in the model fits the series, i.e. how
systematic is the behavior of the series within a year across the years. I find some
evidence in favor of the abovementioned inequalities with actual series, and also to a
lesser extent, with seasonally-adjusted series.

Accounting for 5 transformations, 6 specifications, 34 variables, 4 horizons, 3 criteria,
28.6 averaged combinations of AR, MA, SAR, SMA regressors, 59 observations within

12Coincidentally, Granger and Jeon (2004) find that an AR(4) model re-estimated when a new
monthly observation has been added to the sample, outperforms those chosen by AIC and BIC.
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evaluation window, the number of estimated models raises:

5× 6× 34× 4× 3× 28.6× 59 = 20, 653, 776 models.

The number of realized estimations is slightly lower because in a few cases the value
of the log-likelihood function could not be computed.

3.2 Forecast evaluation

The evaluation of forecasts is based on comparisons of Root Mean Squared Forecast
Error (RMSFE), defined as:

RMSFEh =

[
1

T

T∑
t=1

(yt+h − ŷt+h|t)2
] 1
2

,

where ŷt+h|t is the forecast of yt+h (with seasonal correction when appropriate), h-
quarters ahead (h = {1, 2, 3, 4}), and T is the size of the evaluation sample (from
1996.I to 2010.III, 59 observations). Notwithstanding the transformations, the results
are shown and the conclusions made with year-on-year variation of the series in levels.
I do not consider any aggregation strategy nor combination of disaggregated data to
obtain an aggregated forecast built from its components13.

4 Results

This section provides a detailed analysis of the results for all horizons, series, specifi-
cations, transformations, and IC for every kind of data. The results obtained are fully
computer-based, implying that extreme forecasts are not trimmed by the judgement
of the forecaster14. Thus, the RMSFE results can be easily improved by avoiding such
"crazy" forecasts by allowing for a "no change" forecast (yt+h|t = yt) given a thresh-
old, as used by Stock and Watson (2007). I opt for not intervening to ensure a more
fair comparison between the IC, and because it has relevant effects on accuracy as is
highlighted by Mélard and Pasteels (2000).

There are two kinds of results: with and without seasonal adjustment, to allow a fair
comparison of the RMSFE for the same dependent variable. For each variable, the
following RMSFE is reported:

RMSFE
{IC,Model,T rans}
h = min

{IC,Model,T rans}

[
1

T

T∑
i=1

(yt+h − ŷ{IC,Model,T rans}
t+h|t )2

] 1
2

,

13Hyndman et al. (2011) provide a methodology of the so-called hierarchical forecasts, that is, to
consider a particular structure of aggregate forecasts based on disaggregations chasing effi ciency.
14See Goodwin, Önkal, and Lawrence (2011) for a formal treatment of the role of the forecaster’s

judgment in forecasting practice.
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where:

IC = {AIC,BIC,HQ},
Model = {ARMAX,SARMAX,ARMA,SARMA}, if data is not seasonally-adjusted, or
Model = {ARMAE−e, ARMANo}, if data includes a seasonal correction,

with ARMAc corresponding to:

ARMAE−e : seasonally-adjusted data with a treatment of the Easter-effect, and

ARMANo : seasonally-adjusted data without accounting for the Easter-effect.

Finally, Trans = {d1, ..., d4,%} are the transformations for stationarity. The RMSFE
ratio, defined as the lowest RMSFE obtained with seasonally adjusted data divided by
the lowest RMSFE obtained with seasonally unadjusted data, is also reported.

As I said, these results should be read with caution given the issue of overfitting. An
overfitted model may have poor predictive performance, as it can exaggerate minor
fluctuations in the data. Given that, all the results identifying the best forecasting
strategy, that are not statistically tested against one or several rivals may be obtained
as a special case of the sample, in other words, by pure luck. A common way to face the
misleading inference coming from data snooping exercises is by performing a reality
check (White, 2000). Instead, the aim of this paper is to give a first look at what
elements (i.e. specifications, transformations, data filtering, etc.) need to be present
to carry out a less cumbersome reality check.

The results are shown in Tables 3 to 6. For each variable the lowest RMSFE, infor-
mation criteria, model, and transformation that gives the most accurate forecasts are
reported. For each horizon the results show the following:

• For 1-step ahead the results are shown in Table 3. The results show that the
Easter effect plays a non-prominent role at this horizon for both kinds of adjusted
data. In the case of actual series, the IC that work best are HQ and AIC for
the demand side, HQ for the supply side, and HQ dominates over the entire
horizon. The preferred specification is a simple ARMA model, and the most
frequent transformation used is the second-order of differencing, for both the
demand and supply sides. In the case of seasonally adjusted data, the ICs with
better performance for the supply side are AIC and BIC, and for the demand side
there is virtually a tie between the three IC. The preferred orders for differencing
are the second and the third.

• For 2-steps ahead the results are shown in Table 4. When the forecasted series
is the actual one, it is recommended to estimate an ARMA or SARMA model
chosen according to the BIC, using the second difference of series in levels, for
both the demand and supply sides. As in the 1-step ahead case, the Easter effect
plays no role in improving forecast accuracy with actual series. For forecasts with

9



seasonally-adjusted data, the recommendation is to use the series that includes
the Easter effect modeled with an ARMA specification chosen by AIC, and for
the unadjusted series, using the second order of differencing.

• For 3-steps ahead the results are shown in Table 5. For actual series, the results
are similar to the previous case, such that it is recommended to model the actual
series with a SARMA specification chosen with the BIC, using the second order of
differencing. To forecast with seasonally-adjusted data, the recommendation is to
use the series that includes the Easter effect modeled with an ARMA specification
chosen by AIC, and using the third or the first order of differencing.

• For 4-steps ahead the results are shown in Table 6. For actual series, the results
show that modeling with a traditional ARMA specification chosen by AIC, using
the second order of differencing of the dependent variable yields the best forecast
accuracy. To forecast with seasonally-adjusted data, the recommendation is to
use the series that includes the Easter effect modeled with an ARMA specification
chosen by AIC, and using the first order of differencing.
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Table 3: RMSFE results for demand and supply side (h=1 )

Not seasonally adjusted Seasonally adjusted RMSFE

RMSFE IC Model Transf RMSFE IC Model Transf ratio

cn 2.08 BIC ARMA d2 1.16 HQ ARMANo d3 0.56

cd 9.72 AIC SARMA d4 7.20 BIC ARMANo d2 0.74

meq 13.70 HQ ARMAX d2 9.41 HQ ARMAE−e d3 0.69

cw 5.81 AIC SARMA d2 4.25 AIC ARMAE−e d3 0.73

g 1.84 AIC ARMA d2 0.48 BIC ARMANo d3 0.26

xg 5.60 HQ ARMAX d3 3.87 BIC ARMANo d1 0.69

xs 10.86 HQ ARMAX d1 6.72 BIC ARMAE−e d2 0.62

(mg) 7.72 BIC ARMAX d2 6.22 HQ ARMAE−e d2 0.81

(ms) 6.41 BIC ARMA d1 4.51 BIC ARMAE−e d1 0.70

c 2.46 HQ ARMA d2 1.62 HQ ARMANo d2 0.66

i 6.79 AIC SARMAX d3 5.01 HQ ARMAE−e d3 0.74

x 6.19 AIC SARMA d2 4.34 AIC ARMANo d1 0.70

(m) 6.14 AIC SARMAX d2 4.90 AIC ARMAE−e d2 0.80

id 2.97 BIC SARMAX d2 2.34 AIC ARMAE−e d2 0.79

ed 2.12 HQ ARMA d2 1.25 BIC ARMANo d3 0.59

gdp 2.26 HQ ARMAX d3 1.49 AIC ARMAE−e d2 0.66

egw 6.52 HQ ARMA d3 6.70 BIC ARMANo d2 1.03

min 3.76 BIC SARMA d2 2.64 AIC ARMANo d3 0.70

caf 11.76 BIC SARMA d2 6.07 BIC ARMAE−e d1 0.52

agr 5.86 HQ ARMA d2 1.78 HQ ARMAE−e d3 0.30

man 2.76 BIC ARMAX d2 1.77 HQ ARMAE−e d2 0.64

com 4.19 HQ ARMAX d2 2.18 AIC ARMANo d4 0.52

con 4.88 AIC SARMA d3 4.51 AIC ARMANo d3 0.92

tra 1.85 BIC ARMA d2 1.48 BIC ARMANo d2 0.80

fin 2.33 AIC SARMA d3 1.73 AIC ARMAE−e d2 0.74

per 2.06 HQ ARMA d2 0.71 BIC ARMAE−e d1 0.35

ood 0.08 BIC ARMAX d3 0.06 AIC ARMANo d3 0.70

pub 0.29 HQ SARMA d3 0.18 BIC ARMANo d1 0.60

(dut) 2.35 HQ ARMAX d3 1.76 AIC ARMAE−e d2 0.75

vat 2.29 AIC SARMA d2 1.40 HQ ARMANo d3 0.61

cif 8.58 AIC ARMA d1 6.92 BIC ARMAE−e d3 0.81

gdp nr 2.91 HQ ARMA d1 2.29 AIC ARMAE−e d2 0.79

gdp nnr 2.44 AIC ARMAX d1 1.71 BIC ARMANo d3 0.70

others 2.50 HQ ARMAX d3 1.59 HQ ARMANo d3 0.63

Source: Author’s computations.
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Table 4: RMSFE results for demand and supply side (h=2 )

Not seasonally adjusted Seasonally adjusted RMSFE

RMSFE IC Model Transf RMSFE IC Model Transf ratio

cn 4.58 HQ ARMA d2 1.33 AIC ARMANo d1 0.29

cd 77.14 HQ SARMA d4 32.97 HQ ARMAE−e d2 0.43

meq 157.13 HQ ARMAX d2 91.89 BIC ARMAE−e d3 0.58

cw 43.87 BIC SARMA d2 20.19 AIC ARMAE−e d1 0.46

g 2.29 BIC ARMA d2 0.23 BIC ARMANo d3 0.10

xg 28.03 AIC SARMA d2 14.11 HQ ARMANo d1 0.50

xs 133.61 BIC ARMA d3 68.89 BIC ARMAE−e d2 0.52

(mg) 90.59 BIC ARMAX d1 40.76 HQ ARMAE−e d2 0.45

(ms) 43.39 BIC SARMA d3 12.81 AIC ARMAE−e d2 0.29

c 5.53 AIC ARMA d3 2.56 AIC ARMAE−e d1 0.46

i 36.98 AIC SARMAX d3 26.70 HQ ARMAE−e d2 0.72

x 22.95 AIC SARMA d2 16.24 BIC ARMANo d1 0.71

(m) 54.80 BIC SARMAX d2 23.30 AIC ARMAE−e d3 0.43

id 12.32 BIC SARMAX d2 5.30 AIC ARMAE−e d2 0.43

ed 3.54 BIC SARMA d3 1.52 HQ ARMANo d3 0.43

gdp 4.39 AIC SARMAX d2 2.32 BIC ARMANo d2 0.53

egw 44.84 AIC ARMA d2 36.83 BIC ARMANo d1 0.82

min 17.19 BIC SARMA d2 7.09 AIC ARMANo d3 0.41

caf 150.37 BIC SARMA d2 35.45 BIC ARMAE−e d1 0.24

agr 33.94 BIC ARMA d2 4.27 HQ ARMAE−e d2 0.13

man 11.71 BIC ARMA d1 4.19 HQ ARMAE−e d2 0.36

com 14.58 BIC ARMAX d2 5.32 BIC ARMAE−e d2 0.37

con 32.05 AIC SARMA d2 26.36 HQ ARMANo d2 0.82

tra 3.60 BIC ARMA d3 2.33 HQ ARMANo d2 0.65

fin 5.06 AIC SARMA d2 2.99 AIC ARMAE−e d2 0.59

per 2.20 HQ ARMA d3 0.52 BIC ARMAE−e d1 0.24

ood 0.01 BIC ARMAX d3 0.00 HQ ARMANo d3 0.56

pub 0.09 BIC SARMA d3 0.04 AIC ARMAE−e d1 0.43

(dut) 6.32 HQ ARMAX d3 3.23 AIC ARMAE−e d2 0.51

vat 4.76 AIC ARMA d1 2.15 AIC ARMANo d3 0.45

cif 55.93 AIC ARMAX d2 50.11 BIC ARMAE−e d1 0.90

gdp nr 8.23 BIC ARMA d1 6.67 AIC ARMAE−e d2 0.81

gdp nnr 5.88 AIC ARMAX d1 2.92 AIC ARMANo d1 0.50

others 5.43 AIC ARMA d1 2.29 AIC ARMANo d3 0.42

Source: Author’s computations.
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Table 5: RMSFE results for demand and supply side (h=3 )

Not seasonally adjusted Seasonally adjusted RMSFE

RMSFE IC Model Transf. RMSFE IC Model Transf. ratio

cn 5.32 AIC ARMA d3 1.31 AIC ARMANo d3 0.25

cd 137.05 HQ ARMAX d2 31.01 AIC ARMAE−e d4 0.23

meq 137.75 AIC ARMAX d2 91.87 BIC ARMAE−e d3 0.67

cw 37.66 BIC SARMA d2 22.45 AIC ARMAE−e d2 0.60

g 1.74 BIC SARMA d2 0.46 BIC ARMAE−e d3 0.26

xg 31.07 AIC SARMA d1 13.70 HQ ARMANo d1 0.44

xs 83.32 AIC ARMA d2 28.94 HQ ARMAE−e d2 0.35

(mg) 66.61 BIC SARMA d3 35.75 AIC ARMAE−e d2 0.54

(ms) 36.38 AIC ARMAX d1 13.08 AIC ARMAE−e d2 0.36

c 4.15 HQ SARMA d2 1.70 AIC ARMAE−e d1 0.41

i 50.20 AIC ARMA d2 22.65 AIC ARMAE−e d1 0.45

x 25.48 AIC SARMA d2 12.57 BIC ARMANo d1 0.49

(m) 58.93 BIC ARMAX d4 27.55 BIC ARMAE−e d2 0.47

id 14.29 BIC SARMAX d2 6.21 HQ ARMAE−e d2 0.43

ed 3.91 BIC SARMA d3 1.25 HQ ARMANo d1 0.32

gdp 4.10 BIC ARMAX d3 2.70 AIC ARMANo d3 0.66

egw 50.77 AIC ARMA d2 35.39 AIC ARMANo d1 0.70

min 18.54 BIC SARMA d2 8.64 BIC ARMANo d3 0.47

caf 140.02 BIC SARMA d2 45.74 BIC ARMAE−e d1 0.33

agr 31.44 HQ ARMA d2 4.92 AIC ARMAE−e d3 0.16

man 6.59 AIC ARMAX d2 3.75 HQ ARMAE−e d21 0.57

com 15.34 BIC ARMA d2 4.64 BIC ARMANo d2 0.30

con 30.74 BIC SARMA d2 29.84 HQ ARMANo d2 0.97

tra 4.62 BIC ARMA d3 2.17 HQ ARMANo d1 0.48

fin 5.14 AIC ARMA d2 2.71 BIC ARMAE−e d1 0.53

per 3.29 BIC ARMA d3 0.60 BIC ARMAE−e d3 0.18

ood 0.01 BIC ARMAX d2 0.00 AIC ARMANo d1 0.45

pub 0.08 AIC SARMA d3 0.03 AIC ARMAE−e d3 0.42

(dut) 5.71 HQ ARMAX d2 3.65 AIC ARMAE−e d3 0.64

vat 3.98 AIC SARMA d2 2.30 BIC ARMANo d3 0.58

cif 61.09 BIC ARMAX d2 50.75 BIC ARMAE−e d3 0.83

gdp nr 5.87 BIC ARMA d1 6.12 AIC ARMANo d2 1.04

gdp nnr 5.33 BIC SARMAX d1 2.82 BIC ARMANo d3 0.53

others 5.00 AIC ARMA d1 2.10 BIC ARMANo d3 0.42

Source: Author’s computations.
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Table 6: RMSFE results for demand and supply side (h=4 )

Not seasonally adjusted Seasonally adjusted RMSFE

RMSFE IC Model Transf. RMSFE IC Model Transf. ratio

cn 5.38 AIC ARMA d2 1.18 AIC ARMANo d3 0.22

cd 90.94 AIC SARMA d4 29.04 HQ ARMAE−e d2 0.32

meq 148.95 AIC ARMAX d2 87.47 HQ ARMAE−e d3 0.59

cw 46.29 BIC ARMA d2 23.04 AIC ARMAE−e d2 0.50

g 2.08 HQ ARMA d3 0.41 BIC ARMANo d3 0.20

xg 28.87 HQ ARMA d1 10.90 BIC ARMANo d1 0.38

xs 93.92 HQ ARMA d2 34.90 HQ ARMAE−e d2 0.37

(mg) 71.09 HQ ARMAX d3 40.12 AIC ARMAE−e d2 0.56

(ms) 38.01 BIC ARMA d1 17.74 AIC ARMAE−e d2 0.47

c 3.57 AIC SARMA d2 2.37 BIC ARMAE−e d1 0.66

i 42.20 AIC ARMAX d2 19.27 AIC ARMAE−e d3 0.46

x 26.67 AIC SARMA d2 14.14 HQ ARMAE−e d2 0.53

(m) 41.70 BIC ARMAX d1 23.90 BIC ARMAE−e d1 0.57

id 16.72 HQ ARMAX d3 5.92 HQ ARMAE−e d3 0.35

ed 4.51 AIC ARMA d2 1.52 HQ ARMANo d2 0.34

gdp 3.57 AIC ARMAX d3 2.37 HQ ARMAE−e d3 0.66

egw 46.98 BIC ARMA d3 44.38 AIC ARMAE−e d1 0.94

min 14.37 AIC ARMA d2 8.03 AIC ARMANo d3 0.56

caf 114.49 BIC SARMA d2 47.52 BIC ARMAE−e d1 0.42

agr 37.53 HQ SARMA d2 9.16 AIC ARMANo d2 0.24

man 8.24 AIC ARMAX d2 3.46 AIC ARMAE−e d3 0.42

com 12.41 HQ ARMAX d3 5.01 BIC ARMAE−e d1 0.40

con 40.04 HQ ARMA d2 26.36 AIC ARMAE−e d1 0.66

tra 3.85 BIC ARMA d3 2.09 AIC ARMANo d1 0.54

fin 5.26 BIC SARMA d2 3.86 HQ ARMANo d1 0.73

per 2.28 BIC ARMA d3 0.61 BIC ARMAE−e d1 0.27

ood 0.00 HQ ARMAX d3 0.00 BIC ARMANo d3 0.69

pub 0.09 BIC SARMA d2 0.03 AIC ARMAE−e d1 0.32

(dut) 5.56 AIC ARMAX d3 3.61 HQ ARMAE−e d2 0.65

vat 4.62 HQ ARMA d1 1.82 BIC ARMANo d1 0.39

cif 54.92 HQ ARMAX d2 45.78 BIC ARMAE−e d1 0.83

gdp nr 7.08 BIC ARMA d3 4.25 BIC ARMANo d3 0.60

gdp nnr 5.56 AIC SARMA d2 2.41 HQ ARMAE−e d3 0.43

others 5.35 AIC ARMA d1 2.40 AIC ARMANo d1 0.45

Source: Author’s computations.

Table 7 presents a summary of findings for all IC, models, and transformations, series
and horizons. It states the shares of cases in which an IC gives the most accurate
forecasts for both kinds of series. For seasonally unadjusted series the best model spec-
ification for forecasting purposes is a traditional ARMA estimation. The Easter effect
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plays no role in improving the forecast performance. The overall order of differencing
that fits better is the second. When the forecasted series is seasonally adjusted, the
results show that the ARMA model chosen with AIC gives better performance, closely
followed by BIC, and finally HQ. It is preferrable that the dependent variable includes
the Easter-effect treatment provided by X12-ARIMA. There is weak evidence in favor
of using the second order of differencing, while the first and third also perform well.
The year-on-year variation of series in levels never gives the best forecasting results in
either kind of data.

Table 7: Summary of findings

h=1 h=2 h=3 h=4 All h=1 h=2 h=3 h=4 All

NSA NSA NSA NSA NSA SA SA SA SA SA

IC (%)

AIC 32% 35% 38% 38% 36% 35% 42% 41% 38% 39%

BIC 27% 50% 50% 30% 39% 38% 29% 38% 32% 35%

HQ 41% 15% 12% 32% 25% 27% 29% 21% 30% 26%

Model (%)

ARMAX 32% 21% 27% 32% 29% - - - - -

SARMAX 9% 12% 6% 0% 7% - - - - -

ARMA 32% 35% 32% 44% 35% - - - - -

SARMA 27% 32% 35% 24% 29% - - - - -

ARMAE−e - - - - - 50% 59% 56% 62% 57%

ARMANo - - - - - 50% 41% 44% 38% 43%

Transformation (%)

d1 15% 18% 15% 15% 16% 18% 32% 32% 41% 31%

d2 50% 50% 59% 50% 52% 38% 44% 29% 27% 35%

d3 32% 29% 23% 32% 29% 41% 24% 35% 32% 33%

d4 3% 3% 3% 3% 3% 3% 0% 3% 0% 1%

% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

NSA: Not seasonally adjusted. SA: Seasonally adjusted.

Source: Author’s computations.

A bird’s eye view reveals that the strategy analyzed in this work does not encounter
a single optimal forecast strategy across horizons, in the sense of Patton and Timmer-
mann (2010). Their main claim is that the RMSFE must increase or at least remain
constant as the forecast horizon increases. As a counterpart, the squared forecast must
decline or remain constant for each additional forecast. The covariance between these
two series is supposed to have an expected value equal to zero. If that is what occurs,
then that forecast strategy is optimal under a quadratic loss function across horizons.
If it is not the case, it is possible to improve quality by using the same information set
used to forecast. A coarse check can be made by observing the results of which report
RMSFE (Tables 3-6). Only in three cases of actual and four with seasonal-adjusted
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data can this optimality be observed without a formal test: for unadjusted series of
exports (x), internal demand (id), and household consumption expenditure (c), and
for adjusted series of construction and works (cw), imports of services (ms), capture
fishery (caf), and agriculture and forestry (agr).

5 Concluding remarks

The main aim of this paper is to identify which of three commonly used IC has the
highest predictive power to forecast Chilean GDP and its components. Over 20 million
ARMA models were estimated using stationary transformations of the original series.
Then, there were computer-based non-trimmed projections from 1- to 4-steps ahead
using a rolling window estimation scheme for a sample of 59 observations. I also
investigate the effect of seasonality and the impact of the Easter effect on the RMSFE.

On average, the ICs that show the lowest RMSFE across all horizons are the BIC and
AIC. While HQ forecasts better for the original series at a horizon of 1-step ahead, BIC
does so better at 2- and 3-steps ahead, and AIC at 4-steps ahead. With seasonally-
adjusted data, BIC shows better performance 1-step ahead, and AIC in the remaining
horizons.

For model specification, the best results are obtained with ARMA and SARMAmodels.
A traditional ARMA specification outperforms 1-, 2- and 4-steps ahead, while SARMA
does so in the remaining case. This implies that the Easter effect does not help to
improve forecasting with original series. For seasonally-adjusted series, the best results
for all horizons are obtained with ARMA specifications that include the Easter effect.

Regarding the order of differencing, an overwhelming result is found in favor of second-
order differencing with actual series: for all horizons the second difference is better 50%
or more of the times. With seasonally-adjusted data there is mixed evidence. While
the third order is the best 1- and 3-steps ahead, the second order is for 2-steps ahead,
and the first for 4-steps ahead.

These results must be read with caution, given the exposure of the forecasting process
to the problem of overfitting that may arise. This work moves in that direction, by
identifying key elements that a reality check should evaluate.
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Appendix

A Typical statistics of series

Table 1A: Typical statistics of demand side series, full sample

Mean
(Standard deviation)

Maximum
(Minimum)

d1 d2 d3 d4 % d1 d2 d3 d4 %

cn 0.014
(0.054)

0.000
(0.100)

0.001
(0.194)

-0.003
(0.381)

0.058
(0.029)

0.135
(-0.084)

0.172
(-0.203)

0.331
(-0.358)

0.670
(-0.634)

0.157
(-0.018)

cd 0.033
(0.152)

-0.006
(0.247)

0.003
(0.449)

-0.021
(0.845)

0.139
(0.209)

0.582
(-0.341)

0.637
(-0.695)

1.019
(-1.002)

1.267
(-1.909)

0.769
(-0.361)

meq 0.031
(0.114)

-0.002
(0.175)

-0.005
(0.313)

-0.009
(0.584)

0.147
(0.207)

0.310
(-0.384)

0.382
(-0.423)

0.714
(-0.746)

1.215
(-1.199)

0.645
(-0.319)

cw 0.014
(0.080)

0.000
(0.120)

-0.002
(0.199)

-0.005
(0.349)

0.062
(0.096)

0.203
(-0.176)

0.263
(-0.235)

0.342
(-0.438)

0.702
(-0.617)

0.327
(-0.218)

g 0.011
(0.117)

-0.001
(0.197)

-0.001
(0.350)

-0.007
(0.652)

0.041
(0.023)

0.199
(-0.182)

0.357
(-0.184)

0.517
(-0.536)

0.663
(-1.046)

0.086
(-0.039)

xg 0.017
(0.102)

-0.002
(0.154)

0.004
(0.241)

-0.004
(0.392)

0.073
(0.071)

0.235
(-0.213)

0.364
(-0.363)

0.639
(-0.613)

1.076
(-0.981)

0.246
(-0.065)

xs 0.016
(0.383)

0.014
(0.580)

-0.011
(0.954)

0.003
(1.686)

0.130
(0.291)

1.290
(-1.236)

2.287
(-2.242)

2.643
(-3.177)

5.206
(-5.270)

1.693
(-0.462)

(mg) 0.031
(0.074)

-0.001
(0.100)

-0.001
(0.164)

-0.003
(0.285)

0.128
(0.136)

0.195
(-0.260)

0.300
(-0.215)

0.465
(-0.287)

0.658
(-0.743)

0.413
(-0.224)

(ms) 0.020
(0.112)

-0.003
(0.176)

0.004
(0.302)

-0.004
(0.551)

0.077
(0.101)

0.380
(-0.226)

0.541
(-0.400)

0.762
(-0.941)

1.480
(-1.703)

0.473
(-0.279)

c 0.016
(0.058)

0.000
(0.109)

0.000
(0.210)

-0.004
(0.412)

0.063
(0.039)

0.138
(-0.093)

0.173
(-0.208)

0.344
(-0.369)

0.699
(-0.652)

0.181
(-0.051)

i 0.022
(0.071)

-0.001
(0.109)

-0.003
(0.198)

-0.007
(0.372)

0.098
(0.132)

0.219
(-0.235)

0.268
(-0.297)

0.485
(-0.553)

0.730
(-0.913)

0.368
(-0.256)

x 0.017
(0.099)

0.001
(0.146)

0.001
(0.227)

-0.002
(0.368)

0.077
(0.069)

0.261
(-0.203)

0.286
(-0.376)

0.552
(-0.533)

1.013
(-0.654)

0.271
(-0.072)

(m) 0.029
(0.069)

-0.002
(0.095)

0.001
(0.158)

-0.004
(0.281)

0.116
(0.118)

0.233
(-0.219)

0.255
(-0.188)

0.388
(-0.414)

0.549
(-0.802)

0.349
(-0.192)

id 0.018
(0.056)

-0.002
(0.098)

0.000
(0.185)

-0.005
(0.359)

0.069
(0.067)

0.159
(-0.118)

0.204
(-0.220)

0.357
(-0.418)

0.707
(-0.716)

0.212
(-0.100)

ed 0.015
(0.064)

-0.001
(0.122)

0.000
(0.240)

-0.005
(0.474)

0.059
(0.033)

0.117
(-0.099)

0.193
(-0.199)

0.370
(-0.346)

0.704
(-0.685)

0.157
(-0.039)

gdp 0.013
(0.040)

-0.001
(0.069)

0.000
(0.126)

-0.005
(0.238)

0.054
(0.037)

0.094
(-0.082)

0.164
(-0.127)

0.272
(-0.210)

0.396
(-0.482)

0.163
(-0.045)

Source: Author’s computations.
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Table 1B: Typical statistics of supply side series, full sample

Mean
(Standard deviation)

Maximum
(Minimum)

d1 d2 d3 d4 % d1 d2 d3 d4 %

egw 0.011
(0.070)

-0.001
(0.090)

0.002
(0.143)

-0.001
(0.247)

0.047
(0.141)

0.203
(-0.219)

0.246
(-0.215)

0.333
(-0.295)

0.564
(-0.618)

0.483
(-0.387)

min 0.010
(0.069)

0.000
(0.117)

-0.001
(0.215)

-0.004
(0.408)

0.043
(0.064)

0.155
(-0.144)

0.204
(-0.298)

0.468
(-0.433)

0.826
(-0.691)

0.181
(-0.086)

caf 0.010
(0.283)

-0.008
(0.434)

0.002
(0.707)

-0.011
(1.215)

0.065
(0.141)

0.661
(-0.524)

0.967
(-0.869)

1.567
(-1.724)

2.750
(-3.048)

0.458
(-0.374)

agr 0.002
(0.516)

-0.007
(0.729)

-0.003
(1.041)

-0.009
(1.509)

0.052
(0.048)

0.903
(-0.892)

1.070
(-1.076)

1.915
(-1.948)

2.511
(-2.307)

0.177
(-0.097)

man 0.010
(0.041)

-0.001
(0.066)

0.001
(0.118)

-0.003
(0.221)

0.039
(0.051)

0.116
(-0.130)

0.163
(-0.197)

0.356
(-0.282)

0.591
(-0.565)

0.187
(-0.122)

com 0.016
(0.083)

-0.001
(0.136)

0.001
(0.241)

-0.005
(0.445)

0.067
(0.060)

0.204
(-0.108)

0.293
(-0.232)

0.460
(-0.525)

0.811
(-0.985)

0.236
(-0.092)

con 0.013
(0.074)

0.000
(0.113)

-0.002
(0.190)

-0.005
(0.337)

0.056
(0.085)

0.178
(-0.149)

0.210
(-0.245)

0.347
(-0.456)

0.736
(-0.620)

0.304
(-0.190)

tra 0.020
(0.033)

0.000
(0.055)

0.000
(0.101)

-0.003
(0.190)

0.080
(0.044)

0.091
(-0.082)

0.165
(-0.130)

0.296
(-0.217)

0.460
(-0.512)

0.212
(-0.030)

fin 0.016
(0.044)

-0.001
(0.073)

0.001
(0.132)

-0.004
(0.248)

0.065
(0.045)

0.129
(-0.093)

0.136
(-0.197)

0.321
(-0.307)

0.628
(-0.480)

0.170
(-0.043)

per 0.012
(0.216)

-0.003
(0.370)

0.001
(0.673)

-0.013
(1.274)

0.036
(0.015)

0.357
(-0.361)

0.706
(-0.396)

1.102
(-1.036)

1.534
(-2.137)

0.071
(-0.017)

ood 0.006
(0.003)

0.000
(0.003)

0.000
(0.004)

0.000
(0.005)

0.026
(0.009)

0.012
(-0.013)

0.025
(-0.021)

0.026
(-0.022)

0.041
(-0.022)

0.040
(-0.006)

pub 0.004
(0.006)

0.000
(0.009)

0.002
(0.016)

0.000
(0.028)

0.018
(0.013)

0.019
(-0.026)

0.026
(-0.041)

0.067
(-0.068)

0.135
(0.105)

0.040
(-0.022)

(dut) 0.016
(0.041)

0.000
(0.058)

0.000
(0.088)

-0.001
(0.136)

0.065
(0.049)

0.107
(-0.096)

0.173
(-0.116)

0.289
(-0.193)

0.340
(-0.458)

0.186
(-0.046)

vat 0.012
(0.034)

-0.001
(0.058)

-0.002
(0.108)

-0.004
(0.204)

0.051
(0.034)

0.079
(-0.068)

0.117
(-0.110)

0.215
(-0.171)

0.330
(-0.372)

0.134
(-0.042)

cif 0.033
(0.086)

-0.004
(0.128)

0.000
(0.221)

-0.007
(0.402)

0.140
(0.151)

0.256
(-0.177)

0.318
(-0.360)

0.538
(-0.658)

1.055
(-1.196)

0.448
(-0.201)

gdp nr 0.010
(0.053)

-0.001
(0.086)

0.000
(0.153)

-0.001
(0.284)

0.043
(0.056)

0.196
(-0.096)

0.265
(-0.169)

0.341
(-0.428)

0.593
(-0.725)

0.218
(-0.087)

gdp nnr 0.013
(0.037)

-0.001
(0.064)

0.000
(0.119)

-0.004
(0.228)

0.052
(0.035)

0.080
(-0.070)

0.129
(-0.116)

0.222
(-0.196)

0.340
(-0.419)

0.142
(-0.045)

others 0.013
(0.034)

-0.001
(0.057)

0.000
(0.105)

-0.004
(0.199)

0.052
(0.034)

0.078
(-0.068)

0.112
(-0.110)

0.204
(-0.167)

0.316
(-0.357)

0.136
(-0.045)

gdp 0.013
(0.040)

-0.001
(0.069)

0.000
(0.126)

-0.005
(0.238)

0.054
(0.037)

0.094
(-0.082)

0.164
(-0.127)

0.272
(-0.210)

0.396
(-0.482)

0.163
(-0.045)

Source: Author’s computations.
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