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Abstract

We consider time series forecasting in the presence of ongoing structural change where
both the time series dependence and the nature of the structural change are unknown.
Methods that downweight older data, such as rolling regressions, forecast averaging
over different windows and exponentially weighted moving averages, known to be robust
to historical structural change, are found to be also useful in the presence of ongoing
structural change in the forecast period. A crucial issue is how to select the degree
of downweighting, usually defined by an arbitrary tuning parameter. We make this
choice data dependent by minimizing forecast mean square error, and provide a detailed
theoretical analysis of our proposal. Monte Carlo results illustrate the methods. We
examine their performance on 191 UK and US macro series. Forecasts using data-based
tuning of the data discount rate are shown to perform well.
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1 Introduction

It is widely accepted that structural change is a crucial issue in econometrics and forecasting.

Clements and Hendry suggest forcefully (in e.g. 1998a,b) that such change is the main source

of forecast error; Hendry (2000) argues that the dominant cause of forecast failures is the

presence of deterministic shifts. Convincing evidence of presence of structural change was

offered by Stock and Watson (1996) who looked at many forecasting models of a large number

of US time series, and found evidence for parameter instability in a substantial proportion.

This remains relevant: the literature on forecasting in the presence of instabilities was surveyed

in Rossi (2012) for the Handbook of Forecasting. In her conclusions, Rossi (2012) writes ‘the

widespread presence of forecast breakdowns suggests the need of improving ways to select

good forecasting models in-sample.’ Our work is a contribution to precisely this, taking

a novel approach that is both robust and data driven. In general, model parameters may

change continuously, drift smoothly over time or change at at discrete points, in an unknown

manner, and both within the sample and over the forecast period. We therefore consider a

very general setting accommodating an unknown model structure and structural change.

There is a large literature on the identification of breaks, and forecasting methods robust

to them, and Rossi (2012) surveys the relevant literature. However, the deeply practical need

to forecast after a recent structural change, or during a period of such change, has received

very little attention. It is further compounded by the unknown and therefore unspecified

nature of any structural change, since most forecast approaches are only effective in specific

cases. Detection has a long history, mainly in the context of structural breaks (although see

Kapetanios (2007) for the case of smooth structural change). The seminal paper on structural

change where the break point is known was Chow (1960). Andrews (1993) introduced a testing

methodology that allowed for unknown break-points, while another influential contribution

on multiple structural changes in linear regression is Bai and Perron (1998). The question

of amendment of forecasting strategies then arises. While this problem has been tackled by

many authors, a major contribution has been made by Pesaran and Timmermann (2007),

who combine a number of alternative forecasting strategies in the presence of breaks. They

conclude that forecast pooling using a variety of estimation windows provides a reasonably

good and robust forecasting performance.

Most of the existing work on forecasting assumes that change has occurred when sufficient

time has elapsed for post-break estimation. However, the issue of change occurring in real
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time is a clear problem, which is addressed in Eklund, Kapetanios, and Price (2010). They

consider a variety of forecasting strategies which can be grouped in two distinct groups. One

group monitors for change and adjusts forecasts once change has been detected. The other

group does not attempt to identify breaks, since that requires substantial time lags. Instead

it uses break-robust forecasting strategies that essentially downweight data from older periods

that are deemed to be irrelevant for the current conjuncture.

While moving in an interesting direction, Eklund, Kapetanios, and Price (2010) do not

elaborate two closely related issues: how much to downweight, and whether older data should

be downweighted monotonically. Clearly, any arbitrary discount factor is unlikely to be op-

timal. And neither may monotonicity: for example, if regimes (e.g., monetary policy) come

and go then older data, from a period where the current regime held, would be more relevant

than more recent data from other regimes.1

This paper suggest approaches that address these issues. Our main contribution is to intro-

duce and analyse a cross-validation based method which selects a tuning parameter defining

the downweighting rate of the older data. We show that the implied discount rate minimizes

the MSE of the forecast in the weighting schemes we consider. Further, we consider a non-

parametric approach for determining a flexible weighing scheme for past data, to be used in

constructing forecasts. The latter does not assume any particular shape for the weight func-

tion, such as monotonic decline. We explore the properties of the new methods for variety of

models in terms of theory, with a Monte Carlo exercise and empirically.

An interesting byproduct of our results is a novel and simple way to accommodate trends of

a generic nature in forecasting. Unlike many forecasting approaches that require the removal

of stochastic or other trends before forecasting, our methods are designed for, and work best,

in relative terms compared to existing methods, when applied to the level of the forecast series.

The rest of the paper is organized as follows. Section 2 presents a new approach for

forecasting in the presence of recent structural breaks. We provide its theoretical justification

and asymptotic MSE, and describe some robust forecasting strategies. Section 3 includes

an extensive Monte Carlo study in which all these strategies are evaluated. In Section 4

the forecast methods are used to examine a large number of US and UK macroeconomic

time series, where we find results broadly consistent with the Monte Carlo study. Section 5

concludes. Proofs are reported in Appendix A.

1This might suggest a need to estimate regimes, but as our focus is on time series forecasting methods and
not inference, one is free to be agnostic about the presence of particular regimes.
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2 Adaptive forecasting: econometric framework

2.1 Forecasting strategies

Our framework may be summarised by the general model

yT,t = βT,t + ut, t = 1, · · · , T, (2.1)

where βT,t is an unobserved process, and ut is a stationary dependent noise process that is

independent of βT,t. Unlike most previous work we wish to place as little structure as possible

on the process βT,t. We do not specify whether βT,t is a stochastic or deterministic process, or

whether it is discontinuous or smooth. We will consider two distinct but related approaches

to the question of forecasting under such a model.

Eklund, Kapetanios, and Price (2010) find that simple robust forecasting, based on weight-

ing schemes that discount past data, works very well in practice. Examples include expo-

nentially weighted moving average forecasting, or forecast combinations based on different

estimation windows. By varying a tuning parameter of parametrically defined weights, such

methods simply impose different shapes on the weight functions that downweight past data.

One crucial problem with most such methods is that the tuning parameters driving weight

functions, are usually a priori pre-selected. Hence, they can be suboptimal and a data

dependent method for choosing these parameters is of great interest.

One way to calibrate parameters of forecasting strategies is by optimizing on in-sample

forecasting performance. Although this idea is not common in the literature, it is not new.

For example, Kapetanios, Labhard, and Price (2006) suggest forecasts where models are av-

eraged with weights that depend on the forecasting performance of each model in the recent

past. That approach was found to work very well and to be preferable to alternative ways of

determining the weights. In what follows we formalize the above ideas, presenting a data

driven weighting strategy and its theoretical analysis. It is instructive to focus first on a sim-

ple location model such as (2.1). Extension of the results to models with regressors is briefly

discussed.

The error process {ut} is stationary linear process with mean zero and finite variance σ2
u

and independent of {βT,t}. The persistent component βT,t is allowed to be a triangular array,

and can be a deterministic trend, a unit root type process or a combination of both. This

set-up provides sufficient flexibility to our theoretical analysis since it allows for βT,t’s such as

those used in locally stationary models (e.g. Dahlhaus (1996)), or persistent stochastic trend
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models. For simplicity of notation, we write yT,t as yt and βT,t as βt.

We consider the properties of a linear forecast of yt, based on past values yt−1, · · · , yt:

ŷt|t−1 ≡ ŷt|t−1(H) =
t−1∑
j=1

wtj;Hyt−j = wt1;Hyt−1 + · · ·+ wt,t−1;Hy1. (2.2)

Such an averaging-type forecast involves standardized non-negative weights wtj;H , j = 1, · · · , t−
1, wt1;H + · · · + wt,t−1;H = 1, parameterized by a single tuning parameter H, controlling the

rate at which past observations are downweighted (e.g., the width of the rolling window). We

assume that H ∈ IT = [α, T 1−δ] where α > 0 and δ > 0 is small.

The class of weights wtj;H which we consider are described in the following assumption.

ḟ and f̈ denotes the first and second derivatives of a function f , a ∧ b = min(a, b), a ∨ b =

max(a, b) and I(A) is the indicator function. aT ∼ bT indicates that aT/bT → 1, as T increases.

Assumption 1 For t = 1, · · · , T , T ≥ 1,

wtj,H =
K( t−j

H
)∑t

k=1 K( k
H
)
, j = 1, · · · , t, H ∈ IT . (2.3)

The function K(x) ≥ 0, x ≥ 0 is a continuous function twice differentiable on its support and

such that
∫∞
0

K(u)du = 1,

inf
0≤x≤1/α

K(x) > 0, max{K(x), |K̇(x)|, |K̈(x)|} ≤ C

1 + x8
. (2.4)

The main classes of weights that are commonly employed satisfy this Assumption. For

example,

(i) Rolling window

K(u) = I(0 ≤ u ≤ 1). (2.5)

(ii) Exponential weighted moving average (EWMA) weights

K(u) = e−u, u ∈ [0,∞). (2.6)

Let ρ = exp(−1/H). Then K(j/H) = ρj and wtj;H = ρt−j/
∑t−1

k=1 ρ
k, 1 ≤ j ≤ t− 1.

(iii) Triangular window

K(u) = 2(1− u)I(0 ≤ u ≤ 1). (2.7)
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The forecasts ŷt|t−1 in (2.2) are based on (local) averaging. While the rolling window simply

averages the H previous observations, the EWMA forecast uses all observations y1, · · · , yt−1,

increasinly downweighting more distant observations.

In practice, forecasting of yt with a persistent unobserved deterministic or stochastic com-

ponent βt, e.g. a unit root or a linear trend, is often conducted by averaging over the last few

observations. When persistence in βt falls, wider windows may be expected to yield smaller

forecast MSE. It is plausible that for a stationary process {yt}, the sample mean average fore-

cast (yt+· · ·+y1)/t will be outperformed by a forecast discounting past data when dependence

in {yt} becomes sufficiently strong. This hypothesis is supported by the theory presented be-

low. The implication is that selection of H depends on the unknown and unspecified level of

persistence in βt and ut, in contradiction to the usual practice of specifying an arbitrary value.

2.2 Selection of weights

Given a sample y1, · · · , yT , to compute the forecast yT+1|T we need to select the parameter H.

We use cross-validation, obtaining H by numerically minimizing the mean squared forecast

error of the forecasts produced at desired horizons. The objective function associated with

the above minimization problem is given by

QT (H) :=
1

T

T∑
t=1

(ŷt|t−1 − yt)
2, Ĥ := argminH∈ITQT (H). (2.8)

Subsequently we will show Ĥ defines ‘optimal’ weights for the forecast ŷT+1|T (H) of yT+1,

minimizing the mean squared error (MSE), eT (H) := E(ŷT+1|T (H) − yT+1)
2 in H, hence

making the forecast procedure (2.2) operational and optimal. In addition, quantity QT (Ĥ)

will evaluate the forecast error as follows:

inf
H∈IT

eT (H) ∼ eT (Ĥ) ∼ QT (Ĥ), or (2.9)

inf
H∈IT

eT (H)− σ2
u ∼ eT (Ĥ)− σ2

u ∼ QT (Ĥ)− σ2
u,

bearing in mind that in a number of settings discussed below, eT (Ĥ) → σ2
u.

Justification of minimization procedure (2.8) will require some restrictions on βt and ut,

and some technical effort. To give a hint of how the data based selection of the tuning

parameter H works, denote by σ̂2
T,u := T−1

∑T
j=1 u

2
j the sample variance of error process {ut}.
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In the main set-ups of βt, considered below, QT (H) has the following property: as T → ∞,

QT (H) = σ̂2
T,u + E[QT (H)− σ̂2

T,u](1 + oP (1)),

= σ̂2
T,u + (A

Hγ

T δ
+

B

H
)(1 + oP (1)), H → ∞, (2.10)

with some constants A ≥ 0, |B| < ∞, and γ, δ ∈ {0, 1, 2}. The term AHγ/T δ comes from βt

while B/H is contributed by ut.

For a linear or stochastic unit root trend βt, δ = 0. Then, limT E[QT (H)− σ̂2
T,u] = Q(H)

achieves its minimum on a bounded interval, and thus, Ĥ remains bounded. In particular,

Ĥ → argminH∈ITQ(H). For a bounded smooth deterministic or bounded stochastic (unit

root) trend βt, minimization may reduce to Ĥ ∼ arminH{A(H/T ))δ + (B/H)}, δ > 0, B > 0

which leads to Ĥ ∼ cT δ/(1+δ) increasing with T . For a sufficiently persistent stationary process

yt = ut, Ĥ may stay bounded and minimize the limit Q(H) := limT E[QT (H)− σ̂2
T,u], whereas

for i.i.d. or weakly dependent process, H will tend to take large values. Here (2.10) holds

with A = 0. The results for a break in the mean of a stationary process occurring at the time

L < T show that the rolling window forecast will be built using the data from the post-brake

period [L, T ] after time τ := T − L >
√
T .

2.3 Properties of Ĥ

Now we turn to the theoretical justification of the selection procedure of H and investigate

the properties of Ĥ.

The next assumption specifies restrictions on a stationary process {ut}. Denote by γu(k) =

Cov(uk, u0), k ≥ 0 the autocovariance function, and by s2u :=
∑

k∈Z γu(k) > 0 the long-run

variance of {ut}. Under Assumption 2 on {ut} below,
∑

k∈Z |γu(k)| < ∞.

Assumption 2 {ut} is a stationary short memory linear process

ut =
∞∑
j=0

ajεt−j, t ∈ Z, {εj} ∼ IID(0, σ2
ε) (2.11)

such that |aj| ≤ Cj−1−v for some v > 0 and s2u > 0, with εj having all moments finite.

We will write {ut} ∈ I(0) to denote that {ut} satisfies Assumption 2. We write {βt} ∈ I(1),

if {∇βt := βt−βt−1} satisfies Assumption 2 with innovations having four moments finite. The

class I(1) contains unit root processes and will be used to model {βt}. We denote by G the

class of continuous functions g(x), x ∈ (0, 1) with a bounded second derivative.
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We will consider the following settings for β1, · · · , βT :

b1. Stationary process βt = μ, yt = μ+ ut.
b2. Unit root {βt} ∈ I(1).
b3. Deterministic trend βt = tg(t/T ), where g ∈ G.
b4. Bounded unit root βt = T−1/2β̃t, {β̃t} ∈ I(1).
b5. Bounded deterministic trend βt = g(t/T ), where g ∈ G.
b6. Break in the mean βt =

{
μ1, t = 1, · · · , L,
μ2, t = L+ 1, · · · , T, (T/2 ≤ L < T ).

We assume that Δ := μ1 − μ2 �= 0.

We will use the following notation:

ν1,K = (
∫∞
0

K(x)xdx)2, ν2,K =
∫∞
0

K(x)x2dx, ν3,K =
∫ ∫∞

0
K(x)K(y)(x ∧ y)dxdy.

κ(g) =
∫ 1

0
ġ2(x)dx, g ∈ G; Qu,T (H) := T−1

∑T
t=1 |

∑t−1
j=1(uj − ut)|2.

We now are ready to analyze the properties of QT (H), Ĥ and the MSE of the forecast error

eT (H) = E(yT+1|T (Ĥ)− yT+1)
2.

2.4 Stationary case

First we consider {yt} as a stationary process. Denote K2 =
∫∞
0

K2(x)dx, K0 = K(0),

Qu(H) :=
∞∑

j,k=1

vj;Hvk;Hγu(j − k)− 2
∞∑
j=1

vj;Hγu(j), bu,K := s2u{K2 −K0}+ σ2
uK0,

where vj;H = kj;H/
∑∞

k=1 kj;H , j ≥ 1 with kj;H := K(j/H).

Theorem 1 Let yt = μ + ut, t = 1, · · · , T , where {ut} ∈ I(0). Then, as T → ∞, uniformly

in H ∈ IT ,

QT (H) = σ̂2
u,T + E[Qu,T (H)− σ̂2

u,T ](1 + op(1)), (2.12)

E[Qu,T (H)− σ̂2
u,T ] = Qu(H)(1 + o(1)), (2.13)

Qu = H−1bu,K + o(H−1), H → ∞. (2.14)

Theorem 1 shows that minimization ofQT (H) reduces to that ofQu(H) := limT E[QT (H)−
σ̂2
u,T ], while by the corollary below, the forecast, based on Ĥ minimizes the MSE of the forecast

with respect to H and allows its evaluation.

Corollary 1 Under assumptions of Theorem 1,

inf
H∈IT

eT (H) = σ2
u + inf

H∈IT
{QT (H)− σ̂2

u,T}(1 + o(1)). (2.15)
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Moreover, if Qu(H) has a minimum at some H0 < T , then

inf
H∈IT

eT (H) = eT (Ĥ) + o(1) = QT (Ĥ) + o(1). (2.16)

Otherwise, if function Qu(H) > 0 is strictly positive, then Ĥ ∼ T 1−δ tends to take the largest

possible value in IT , and

inf
H∈IT

eT (H) = eT (Ĥ)(1 + oP (1)) = QT (Ĥ)(1 + o(1)). (2.17)

Remark 1 Equation (2.15) indicates that minimization of eH,T in H is equivalent to that of

QT (H). Moreover, EWMA weights may lead to smaller MSE compared to a rolling window:

for rolling windows, bu,K = σ2
u > 0, while for EWMA weights bu,K = (2σ2

u−s2u)/2 ≤ σ2
u. In the

latter case bu,K < 0 if a stationary sequence {ut} has long-run variance such that s2u > 2σ2
u,

e.g. for an AR(1) model with parameter φ ∈ (1/3, 1). Hence, the shape of weights and the

strength of dependence in {ut} have a crucial impact on the the optimal forecast error and the

rate of down-weighting the data. Moreover, for bu,k < 0, Qu(H) achieves its minimum at some

finite H0. Thus, Ĥ → H0 remains finite, and the forecast MSE, eT (Ĥ) → σ2
u +Qu(H0) < σ2

u,

is smaller than that of the sample mean. However, if bu,K > 0 and Qu(H) > 0, H ∈ IT , then

by (2.13), Ĥ takes large values of order T 1−δ and the asymptotic forecast error eT (Ĥ) → σ2
u

is the same as for the sample mean forecast.

Unlike with EWMA weights, under rolling window weights bu,T > 0 is always positive, and

therefore it is hard to conclude if Qu(H) may be negative for any H. Monte Carlo simulation

in Table 2 for ut following an AR(1) model with parameter 0.7 indicates that the MSE for

rolling window forecast is the same as that for the sample mean, whereas the EWMA weights

reduce it by 33%.

2.5 Strong persistence

This corresponds to stochastic (b2) and deterministic (b3) trend {βt}.
Set γβ(j, k) := E[(βj − β0)(βk − β0)], j, k ≥ 0,

V 2
URβ,H :=

∑∞
j,k=1 vj;Hvk;H γβ(j, k), Vtr,H :=

∑∞
j=1 vj;Hj.

Theorem 2 Let yt = βt + ut, t = 1, · · · , T with {βt} as in (b2) or (b3), {ut} ∈ I(0). Then,

as T → ∞, uniformly in H ∈ IT ,

QT (H) = σ̂2
u,T + {E[QT (H)− σ̂2

u,T ]}(1 + op(1)) (2.18)

= σ̂2
u,T +Q(H)(1 + op(1)),
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where

Q(H) := s2∇βV
2
URβ,H +Qu(H) in case (b2), (2.19)

= {Hs2∇βν3,K +H−1bu,K}(1 + o(1)).

Q(H) := κ(g̃)V 2
tr,H +Qu(H) in case (b3), (2.20)

= {H2κ(g̃)ν1,K +H−1bu,K}(1 + o(1)), g̃(x) = xg(x), x ∈ [0, 1].

Again, as in Theorem 1, minimization of QT (H) reduces to that of Q(H), and the forecast,

based on Ĥ minimizes MSE, and the forecast MSE can be computed.

Corollary 2 Under assumptions of Theorem 2, in cases (b2) and (b3), Ĥ = Op(1) and

inf
H∈IT

eT (H) = σ2
u + inf

H∈IT
{QT (H)− σ̂2

u,T}(1 + o(1)). (2.21)

Moreover, if Q(H) has a unique minimum at some H0, then Ĥ →P H0 and

inf
H∈IT

eT (H) = eT (Ĥ) + o(1) = QT (Ĥ) + op(1). (2.22)

Remark 2 Theorem 2 shows, that for strongly persistent βt, Ĥ → H0 = argminH∈ITQ(H),

assuming H0 is unique. By (2.21), Ĥ minimizes the forecast MSE, eT (Ĥ) → σ2
u +Q(H0).

To illustrate the selection of H for rolling window forecast, consider the case of a random

walk {βt}, when {∇βt} ∼ IID(0, σ2
b ) and {ut} ∼ IID(0, σ2

u) are such that σ2
b/σ

2
u < 2/3.

Then,

eT (1) ∼ σ2
u +Q(1) = σ2

u + (σ2
b + σ2

u), H = 1;

eT (2) ∼ σ2
u +Q(2) = σ2

u + (7/4)σ2
b + (1/2)σ2

u < eT (1), H = 2.

Hence, Ĥ ≥ 2. MSE could be minimized further by selecting K, giving smallest QT (Ĥ).

2.6 Weakly persistent case and structural break

Next we consider the bounded stochastic trend (b4), deterministic trend (b5), and structural

break (b6). Weaker persistence of these models results in Ĥ increasing with T .

Theorem 3 Let yt = βt+ut, t = 1, · · · , T , where {βt} is as in (b4), (b5) or (b6), {ut} ∈ I(0).

Then, as T → ∞, uniformly in H ∈ IT ,

QT (H) = σ̂2
u,T + {E[QT (H)− σ̂2

u,T ]}(1 + op(1)) (2.23)

= σ̂2
u,T + Q̄T (H)(1 + op(1)),
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where

Q̄T (H) := T−1s2∇βV
2
URβ̃,H

+Qu(H) in case (b4), (2.24)

= {(H/T )s2∇β̃
ν3,K +H−1bu,K}(1 + o(1)), H → ∞.

Q̄T (H) := (H/T )2κ(g)V 2
tr,H +Qu(H) in case (b5), (2.25)

= {(H/T )2κ(g)ν1,K +H−1bu,K}(1 + o(1)), H → ∞.

In case of the break (b6), for the rolling window weights, uniformly in H, with τ := T − L,

Q̄T (H) := Qbr(H) +Qu(H), (2.26)

Qbr(H) := Δ2T−1

T∑
t=L

∣∣ L∑
j=1

wtj;H

∣∣2 (2.27)

= Δ2 H

3T
(1 + o(1)), α ≤ H ≤ τ ;

=
Δ2τ

T
{1− τ

H
+

τ 2

3H2
}(1 + o(1)), τ < H ≤ T.

Again, minimization of QT (H) reduces to that of Q̄T (H), and the forecast, based on Ĥ

minimizes MSE.

Corollary 3 Under assumptions of Theorem 3, in cases (b4) to (b6),

inf
H∈IT

eT (H) = σ2
u + inf

H∈IT
(QT (H)− σ̂2

u,T )(1 + o(1))}; (2.28)

= eT (Ĥ) + op(T
−1/2) = QT (Ĥ) + o(T−1/2) in cases (b4) and (b6),

= eT (Ĥ) + o(T−2/3) = QT (Ĥ) + op(T
−2/3) in case (b5). (2.29)

Remark 3 To illustrate selection of Ĥ and the order of eT (Ĥ) for the rolling window forecast

in cases (b4) to (b6), assume that {ut} ∼ IID(0, σ2
u). Then Qu(H) = σ2

u > 0, and Theorem

3 and Corollary 3 imply the following results about Ĥ and eT (Ĥ).

(b4) For the bounded unit root βt,

Ĥ ∼ argminH

{H
T
s2∇β̃

ν3,K +
σ2
u

H

} ∼ σu

s∇β̃

√
ν3,K

T−1/2,

QT (Ĥ) = σ2
u + 2s∇β̃

√
ν3,KσuT

−1/2 + op(T
−1/2).
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(b5) For the bounded smooth trend βt,

Ĥ ∼ argminH

{H2

T 2
κ(g)ν1,K +

σ2
u

H

} ∼
( σ2

u

2κ(g)ν1,K

)1/3

T−2/3,

QT (Ĥ) = σ2
u + 2σu{2σuκ(g)ν1,K}1/3T−2/3 + op(T

−2/3).

(b6) For the forecast under break, when τ = T − L >> T 1/2,

Ĥ ∼ (σu/Δ)
√
3T , (2.30)

QT (Ĥ) = σ2
u + 2σuΔ/

√
3T + op(T

−1/2).

To verify (2.30), notice that

inf
H≤τ

Q̄T (H) ∼ inf
H≤τ

(Δ2H

3T
+

σ2
u

H

) ∼ 2σuΔ√
3T

, Ĥ1 := argminH≤τ Q̄T (H) ∼ σu

√
3T

Δ
,

whereas Q̃T (H) ∼ Δ2τ/T > T−1/2, for H > τ . Hence, for breaks such that τ > T 1/2,

Ĥ ∼ Ĥ1 ∼ (σu/Δ)
√
3T and the forecast error eT (Ĥ) is as in (2.30). In finite samples,

if τ > (σu/Δ)
√
3T , then Ĥ1 ≤ τ , and the forecast will be based on the data from the

post-break period. However, for more recent breaks, such that τ < (σu/Δ)
√
T , it holds

Ĥ ∼ argminHH
−1(σ2

u + o(1)), indicating that the forecast will not be affected by the break

and not switching to the post-break period.

Similar patterns are observed in the case of EWMA weights. The above examples show

that the tuning parameter Ĥ is robustly adjusted to the unknown structure of the data

optimizing the MSE of the forecast. The range of Ĥ may stretch over all of the interval IT .

2.7 Examples

In order to get a better feel for the behaviour of the data-selected tuning parameters, we

consider one single realization of sequentially computed Ĥt, t = T0, T0 + 1, · · · , T for two

structural change experiments used in our Monte Carlo study below. We look at rolling

window forecasts. Figures 1 and 2 report the beginning (dashed line) of the data selected

rolling window for a structural break in the mean (Experiment 4 of our Monte Carlo study)

and a unit root model (Experiment 11), respectively. The sample size T is 200 and the

forecasting starts at T0 = 100.2 For comparison, we also report the first observation in the

2Details on how the parameter Ĥt is estimated are given in Section 3.
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data-estimated rolling window when the model has no structural change (Experiment 1 in

the Monte Carlo study), based on the same realizations of the noise ut, as in the previous

two cases (solid line). The vertical distance between the diagonal and the dashed (solid) line

for a given t = 100, · · · , 200 shows the time span of observations (graphical realization of the

tuning parameter) used for forecasting, that is t−Ĥt, t. It is clearly seen, that under structural

change the estimated tuning parameter selects a much smaller sample used for forecast than

in its absence. Figure 1 shows, that for the structural break (at observation 110) the data

dependent method is attempting to get more information about the change immediately after

the break by initially using a larger sample for forecasting. This then becomes smaller than

that in the no-change case, as more data after the breakpoint accrue. Interestingly, after

observation 125, the starting point of the rolling window is the first post break observation

111 (the dotted line), as suggested by theory. 125 is close to the roughly estimated theoretical

switching time 110 +
√

3(110) = 128 (see Remark 3). Moreover, it remains at that point for

much of the rest of the sample. In Figure 2, we can see that with a unit root, the window

remains short throughout the sample. A final diagnostic for the method may be obtained by

considering the value of the estimated mean squared error obtained in real time. This is given

in Figure 3, where the solid line relates to the stationary case, the long-dashed line to the

structural break case and the short-dashed line to the unit root case. The smallest MSE is

obtained in the stationary case followed by the structural break case and finally the unit root

case, which is the ranking one would expect.

2.8 Extensions

Our proposed method extends in several practically relevant ways. In this section we briefly

discuss some of these extensions.

Sub-samples

The first relates to the possibility that the forecast MSE may be evaluated and minimized

over different sample periods, in order to select the optimal subsample and a specific tuning

parameter. Theory indicates that an optimal tuning parameter and subsample may be se-

lected evaluating MSE over different sample periods [k, · · · , T ]. Selecting H, one may wish to

consider only the recent (and most relevant data in the evaluation of the MSE to reflect the

evolution of structural change). This is achieved by an extended two-parameter minimization
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Figure 1: Realization of the data selected rolling window for a structural break. The solid
line represents beginning of the window when there is no structural change, and the dashed
line (long dashes) the starting point of the window for a structural break model with a break
at observation 110 (Experiment 4 of the Monte Carlo study). The dotted line indicates the
first post break observation and the dashed line (short dashes) represents the last observation
in the window.

procedure given by

QT (H, k) :=
1

T − k

T∑
t=k

(ŷt|t−1 − yt)
2, {Ĥ, k̂} := argminH∈IT ,k∈{kmin,··· ,kmax}QT (H, k).

(2.31)

The selected values of (Ĥ, k̂) can then be used to construct forecasts based on the subsample

[k̂, · · · , T ]. This value of H may be different from that obtained by the optimization in

(2.8). Such a procedure, when building forecasts, seeks for an optimal subsample yk̂, · · · , yT
(‘stability period’) and an optimal tuning parameter Ĥ = Ĥ(k̂) for it. Observe that for the

rolling window forecast, obviously k̂ ≤ Ĥ ≤ T , however using exponential downweighting,

only data yk̂, · · · , yT should be used.
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Figure 2: Realization of the data selected rolling window for a unit root. The solid line
shows the beginning of the window when there is no structural change, and the dashed line
the starting point of the window for a unit root model (Experiment 11 of the Monte Carlo
study). The dotted line shows the last observation in the window.

The advantage of the two parameter procedure becomes obvious in rolling window forecasts

under the break in the mean, discussed in Remark 3. If the rolling window is selected using all

the data in a large sample y1, · · · , yT , then it takes
√
T time lags for the forecast to switch to

the postbreak data. However, the switch may be faster when less observations are used (i.e.,

when k̂ >> 1 is selected, reducing the weight of irrelevant past information). Our theoretical

findings show that the two parameter minimization will minimize the forecast MSE leading

to smallest possible MSE with optimal downweighting and the most relevant data subsample.

Non-parametric method

The above analysis presupposes a particular parametric form for the weight function. While

that might be desirable from the usual motivation of parsimony, in some circumstances it
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Figure 3: Realization of the estimated MSE. The solid line shows the MSE for the stationary
case, the long-dashed line for the structural break case and the short-dashed line for the unit
root case.

will be restrictive. For example, monotonic downweighting might be counterproductive when

data may come from a processes that follows a finite number of regimes. Data from the same

regime as that holding during the latest forecast period may be more relevant compared to

more recent data. To account for such possibilities, we construct a nonparametric weighting

scheme.

Again we focus on the simple location model (2.1) assuming that βT,t is some smooth

deterministic function of t and ut is a standardized iid(0, 1) noise. We consider forecasts of

yt−1 of the form

ŷt|t−1 =
t−1∑
j=1

wtjyt−j. (2.32)

We wish to determine a nonparametric set of weights wTj, j = 1, · · · , T − 1, such that the
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forecast MSE of ŷT |T−1 is minimised subject to
∑T−1

i=1 wTj = 1. Letting β̃t = βt − βT ,

E(ŷT |T−1 − yT )
2 =

(T−1∑
j=1

wTjβ̃T−j

)2
+ σ2

u

T−1∑
j=1

w2
Tj.

We construct the Lagrangean

L(λ,wT1, · · · , wT,T−1) =
(T−1∑
j=1

wTjβ̃T−j

)2
+ σ2

u

T−1∑
j=1

w2
Tj − λ

(T−1∑
i=1

wTj − 1
)
.

Taking derivatives of L w.r.t. wTj’s and equalling them to zero, gives T − 1 equations

(β̃2
T−j + σ2

u)wTj + β̃T−j

T−1∑
i=1,i �=j

β̃T−iwT i = λ/2, j = 1, · · · , T − 1.

We need to solve this set of T − 1 equations. As a system they are written as

(B̃ + σuI)wT = (λ/2)1, or BwT = Λ, (2.33)

where B̃ = (β̃T−jβ̃T−k)j,k=1,...,T−1 is (T −1)×(T −1) matrix, I is (T −1)×(T −1) unit matrix,

wT = (wTj)j=1,··· ,T−1 is (T − 1)× 1 vector and 1 is (T − 1)× 1 unit vector.

Whence wT = B−1Λ, and λ is determined such that the sum of the elements of B−1Λ is

unity. This is not an operational procedure as βT is unknown at time T − 1. We suggest

setting βt = β̂t, t = 1, · · · , T − 1 and βT = β̂T = β̂T−1 where β̂t denotes some estimator of βt.

This approach does not allow for a dependent ut, but we discuss possible extensions of (2.1)

below that make the assumption of a serially uncorrerelated ut more plausible.

The method can be extended to allow for time varying variances E(u2
t ) = σ2

u,t. Then, the

forecast MSE takes the form

E(ŷT |T−1 − yT )
2 =

(T−1∑
j=1

wTjβ̃T−j

)2
+

T−1∑
j=1

w2
Tjσ

2
u,T−j.

Following the steps of the previous argument gives the following system of equations

(B̃ + Ĩ)wT = (λ/2)1, or BwT = Λ,

where Ĩ = diagonal(σ2
u,T−1, · · · , σ2

u,1) is (T − 1) × (T − 1) diagonal matrix. Once again this

procedure becomes operational by replacing σ2
ε,t with an estimate. We note that estimation

of βt and σ2
ε,t is discussed widely in the literature when βt and σ2

ε,t are deterministic functions

of time (see, e.g., Orbe, Ferreira, and Rodriguez-Poo (2005) and Kapetanios (2007)), and is

discussed in Giraitis, Kapetanios, and Yates (2011) for stochastic βt.
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Dynamic weighting and regression models

Another alternative and simple way to allow for extra flexibility in the weight function is to

allow the first p weights w1, · · · , wp (p ≥ 0) to vary freely by specifying

w̃tj,H =

{
wt−j, j = t− 1, · · · , t− 1,
K( t−j

H
), j = 1, · · · , t− p− 1, H ∈ IT ,

and standardizing the weights: wtj,H =
w̃tj,H∑t
j=1 w̃tj,H

. This allows the first few lags of yt to enter

freely into the forecast rather than through a given parametric function. Then, QT can be

minimized jointly over H, w̃1, · · · , w̃p, and, potentially, even p.

Hitherto we have been dealing with a simple location model, which, although allowing

for dependent ut and accommodating a wide range of behaviours for yt, may be considered

somewhat restrictive. It can be extended to a regression model of the form

yT,t = β′
T,txt + ut, t = 1, · · · , T, T ≥ 1, (2.34)

where xt is a K × 1 vector of predetermined (stochastic) variables, βt’s are K × 1 vectors

of parameters, and ut is a stationary dependent noise process that is independent of xt.

Setting βt = (E (xtx
′
t))

−1 E (x′
tyt) = (Σxx

t )−1 Σxy
t , where Σxx

t = [σxx
ij,t], and Σxy

t = [σxy
i,t ] are

corresponding covariance matrices, we allow the relevant expectations to be time-varying.

Here, the main task of interest becomes to estimate the expectations Σxx
t and Σxy

t over time

by the robust methods outlined above. To achieve that, we write down zij,t = xi,txj,t and

zi,t = xi,tyt as simple location models: zij,t = σxx
ij,t + uij,t, and zi,t = σxy

i,t + ui,t. This way,

the regression (2.34) can be reduced to estimation of a sequence of simple location models.

Subsequently, some practical questions regarding estimation of the tuning parameters arise,

i.e. whether each of those simple location models should be treated independently or pooled,

which is more straightforward to handle.

An alternative and perhaps more attractive way to accommodate regressors is to modify

(2.2) so that

ŷt|t−1 ≡ ŷt|t−1(H1, · · · , HK+1) =
t−1∑
j=1

wtj;H1yt−j +
K∑
i=1

t−1∑
j=1

wtj;Hi+1
xi,t−j, (2.35)

and then minimise QT (H1, · · · , HK+1) with respect to H = (H1, · · · , HK+1)
′, where QT (H1

, · · · , HK+1) is defined similarly to QT (H) in (2.8). It is equally easy to consider multi-step

ahead forecasts by simply setting ŷt|t−s ≡ ŷt|t−s(H) =
∑t−1

j=s w
(s)
tj;Hyt−j, and then minimizing

the relevant MSE.
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2.9 Theoretical conclusions

We conclude this section by noting some important implications from our analysis. Firstly, the

dominant tendency in the forecasting literature of using models developed for other purposes

such as impulse response or policy analysis, to obtain forecasts may be counterproductive.

Our arguments suggest that if good forecasting is the aim, then forecasting by averaging and

appropriately weighting down past data, without engaging in further modelling, is a viable

strategy.

Secondly, appropriately downweighting past can provide a general approach for handling

trends of any nature. Our theoretical results show that this method applies for stochastic,

linear or nonlinear deterministic trends and structural breaks without knowledge of the na-

ture of the trend. It is therefore a tractable method for forecasting the levels of apparently

nonstationary processes. As a result it bypasses difficult problems of combining appropriate

detrending of level series with the subsequent forecasting of stationary processes. Importantly,

the proposed forecasting approach continues to be valid if a series is actually stationary.

3 Monte Carlo Study

In this section we explore the finite sample performance of the forecasting strategies discussed

in Section 2.1. The simulation study consides Monte Carlo experiments for the forecast of

yT+1 based on the sample y1, · · · , yT for a number of specific designs for the simple location

model (2.1) with βt as in (b1) to (b6). For the one-step ahead forecasts, the benchmark is

the sample mean forecast ŷbenchmark,T+1 = T−1
∑T

t=1 yt, while for two-step ahead forecasts,

it is (T − 1)−1
∑T−1

t=1 yt. The benchmark disregards the possibility of structural change. We

compare the performance of forecasts in terms of relative root MSE.

3.1 Design: data generating processes

We consider the following location shift model for generating the data:

yt = βt + ut, t = 1, · · · , T,

namely a version of (2.1), where ut is a standard normal iid(0, 1) noise, or an AR(1) process

with parameter ρ = 0.7 and standard normal iid innovations. The process βt is either a

deterministic or stochastic trend as in (b1) to (b5), or a process with a break in the mean as

in (b6). We consider the following data generating processess, denoted in tables as Ex1–Ex11:
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1. yt = ut.
2. yt = 0.05t+ 5ut.
3. yt = 0.05t0.5+0.75(t/T ) + 5ut.

4. yt =

{
εt, t ≤ (11/20)T,
1 + εt, t > (11/20)T.

5. yt = 2 sin
(
2πt
T

)
+ 3ut.

6. yt = 5 sin
(
2πt
T

)
+ 3εt.

7. yt = (0.025t− 2.5)2 + 5ut.

8. yt = (0.025t− 2.5)2 + 3ut.

9. yt =
2√
T

∑t
i=1 vi + ut.

10. yt =
2√
T

∑t
i=1 vi + 0.05t+ ut.

11. yt = 2
∑t

i=1 vi + ut,

where vt is a standard normal iid(0, 1) sequence.

The selection of deterministic trends provides a variety of shapes of the functions driving

the structural change in the unconditional mean of yt.

Ex1 is the case of no structural change. Here, as long as the noise ut is an iid or very

weakly dependent process, the benchmark (sample mean) forecast should do best, and the

robust methods at most should not lag far behind the benchmark. However, when ut is

sufficiently persistent, such as, e.g., an AR(1) process with ρ = 0.7, then the robust forecast

with EWMA weights should outperform the benchmark, see Remark 1. Theory indicates,

that the exponential weights should outperform the rolling window, but it leaves open the

possibility that the rolling window can outperform the benchmark when a stationary process

yt becomes persistent. Table 2 indicates that the latter is not true for rolling window, but it

is obvious for exponential weights.

The functional forms in Ex2 and Ex3 are respectively a linear and nonlinear monotonic

trend of type (b2). While such trends may be unrealistic, at least for processes which have

been detrended applying filters or differencing, they provide a useful benchmark. Further,

these trends are sufficiently subtle and minor to be swamped visually by the noise process.

Functions in Ex7 and Ex8 provide hump shaped quadratic trends which again are likely to

be relevant in practice. According to the theory, for such (b2)-type trends, robust methods

should obviously outperform the benchmark. Moreover, performance of the robust methods

should improve when the level of the noise (or Var(ut)) decreases, which is confirmed by

simulations in Tables 1 and 2 comparing Ex7 and Ex8. The tables also show strong benefits

from the use of robust forecasting when the noise ut becomes more dependent, see Ex7 and

Ex8 in Tables 1 and 2. Obviously, presence of a stronger nonlinear trend improves the effect
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of using a robust forecast, as seen from Ex2 and Ex3 in Tables 1 and 2.

The purpose of Ex4 is to introduce a break in the mean, to see if our robust methods can

help under traditional structural change specifications. The break occurs at time L ∼ T/2,

and the after-break time T/2 is greater than
√
T , as required in (b6). Hence the break is not

‘too recent’ and it will be taken into account by the robust forecasting method, leading to

significant improvement of forecast quality comparing to the benchmark, see Tables 1 and 2.

Moreover, the effect is amplified by the increase of dependence in the error process ut.

Functions in Ex5 and Ex6 represent smooth cyclical bounded trends. These are more likely

to remain after standard detrending and provide a realistic scenario. Tables 1 and 2 show that

presence of cyclical trends is taken into account by the adaptive forecast. Moreover, wider

oscillation of the trend in Ex6 seems to lead to a stronger deterioration of relative performance

of the benchmark.

Finally, Ex9−10 deal with a bounded stochastic trend βt which is relevant to popular time-

varying coefficient specifications in the macroeconometric and forecasting literature, while

Ex11 deals with a random walk (unit root) process, observed under noise. Tables 1 and 2

show that robust forecast outperforms the benchmark in Ex9− 10, and by more than 80% in

Ex11. Moreover, exponential weights outperform rolling windows.

3.2 Forecast methods

We examine the robust forecasting using three classes of parametric weight functions.

Rolling window. This is a flat weight function

wtj,H = 1/H, t−H ≤ j ≤ t− 1, if H ≤ t− 1,

= 1/t, 1 ≤ j ≤ t− 1, if H ≥ t,

= 0, otherwise,

giving equal weight to recent data and zero weight to older data, see (2.5).

We denote it in tables by ‘Rolling H’ where H is the window size.

Exponential weights (EWMA). For 0 < ρ < 1,

wtj;ρ =
ρt−j∑t−1
k=1 ρ

k
1 ≤ j ≤ t− 1.
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Here the main weight is placed on the last few data, downweighting others to zero exponentially

fast when ρ is small, and more equally when ρ is close to 1, see (2.6).

We denote this as ‘Exponential ρ’.

Polynomial weights. For α > 0,

wtj;ρ =
(t− j)−α∑t−1

k=1 k
−α

1 ≤ j ≤ t− 1. (3.1)

They are downweighting the past slower than exponential weights. We denote them in tables

by ”Polynomial α”.

We consider forecasts with fixed values of H and ρ, and data selected values Ĥ, ρ̂ and

α̂ for the tuning parameters. In case of polynomial weights we do not use fixed values of

parameters. We set H = 20, 30 for rolling window; ρ = 0.99, 0.95, 0.9, 0.8, 0.7 and 0.5 for

exponential weights. Using fixed values will allow us to compare the performance of the

forecast with data tuned parameter with the best fixed one that gives the smallest Monte

Carlo forecast MSE among fixed tuning parameters, roughly speaking with the best possible.

Our objective is to verify in simulations that these two MSE’s are comparable, as indicated

by Corollaries 1 to 3.

Non-parametric method. We also consider the non-parametric forecast method as in

(2.32) and (2.33) based on the non-parametric weighting scheme. In the Tables 1-3 the

corresponding results are referred to as ‘Non-parametric’.

‘Rolling (k̂Ĥ) method’ This is the rolling window forecast where k̂ and Ĥ are selected

minimizing QT,k(H) in H and k as in (2.31).

Averaging method. The final robust method we examine is the averaging method of rolling

window forecasts over different periods advocated by Pesaran and Timmermann (2007):

ȳT+1|T =
1

T

T∑
H=1

ŷ
(H)
T+1|T , ŷ

(H)
T+1|T =

1

H

T∑
t=T−H+1

yt. (3.2)

It combines rolling window forecasts of yT+1 using all possible windows that include the last

available observation. One major advantage of this method is that it does not require selecting

tuning parameter apart from choosing the mimimum sample size used for forecasting, which
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choice is usually of minor significance for the performance of this method. We refer to this

method as Averaging.

3.3 Monte Carlo results

Tables 1-3 are produced as follows. We choose a particular starting point in time T0 of the

forecasting by any given method. Then, one-step ahead forecasts yT0|T0−1, · · · , yT |T−1 are

computed for the subsequent period ending at T . To compare different forecast methods, as

the performance criterion we use the forecast root MSE relative to the benchmark of the sample

mean of all data (MSERR) . For method ”i”, we compute MSEi =
1

T−T0

∑T
t=T0

(ŷ
(i)
t|t−1 − yt)

2

and define the relative root MSERR =
√
MSEi/

√
MSE0 where MSE0 correspond to the

benchmark forecast by the sample mean. For all experiments, forecasting starts at T0 =

100, an the samples size is T = 200. MSERR below unity shows that the forecast method

outperforms the sample mean.

The relative root MSE results for models Ex1 to Ex11 obtained applying various forecast-

ing methods with data selected and fixed tuning parameters are reported Tables 1 and 2. In

Table 1, the noise ut is an iid standard normal process, whereas in Table 2, ut are dependent

variables, generated by a stationary AR(1) process with parameter ρ = 0.7 and iid standard

normal innovations. Finally, in Table 3 we report similar results as in Table 1 but for two-step

ahead forecasts. The results in Table 3 are, in general, similar to those in Table 1 and so we

focus mainly on Tables 1 and 2.

The first column, labelled Ex1, corresponds to the stationary case yt = ut, or no-change

baseline. In the iid case, as expected, the sample mean outperforms the forecasts for each

method, especially those penalised by the loss of information from strong discounting. How-

ever, for sufficiently dependent ut, discounting improves the forecast as indicated by Remark 1.

For the other experiments, in almost all cases, downweighting beats the sample mean in the

sense that the MSERR is considerably below unity. Generally, all these methods are useful,

including the simple rolling window and averaging method. In the case of a fixed tuning

parameter, for the model with a strong trend, the largest reduction of MSERR comes from

the exponential weights with the highest discount rates. In the set of experiments with iid

noise ut, for this particular design, the exponential weights with a ρ = 0.9 discount perform

well in the sense that it has the largest number of minimum MSERR’s. Although the tuned

exponential weights are not the best, they are where they should be according to theory:
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comparable to the best fixed value methods and never among the poor performers. Note,

that the exponential weights with a ρ = 0.9 discount can perform considerably worse than

the tuned exponential weights in cases such as Ex3 and Ex11 illustrating the importance of

data-dependent tuning.

Given that optimal fixed ρ for exponential weights cannot be observed in practice, our

simulation study suggests the efficiency and usefulness of data based downweighting. The

nonparametric method similarly offers a powerful alternative, for iid noise ut slightly beating

the tuned parameter methods in all cases except Ex11, see Table 1. However, being designed

for an iid noise ut, in case of a dependent AR(1) noise this method is outperformed by the

parametric tuning methods, see Table 2.

Comparing exponential, rolling window and polynomial methods, exponential method out-

performs rolling windows while the latter beats polynomial windows when the noise ut is de-

pendent and is outperformed by it when the noise is iid. The averaging method outperforms

the benchmark but is beaten by the rolling windows with data selected Ĥ. The rolling window

forecast using a data dependent window, Ĥ, and an evaluation period [k̂, T ], is equivalent to

a rolling window with Ĥ and k = 1 under the iid noise, but outperforms it when the noise,

ut, is dependent.

It is worth noting that, in applications, one could select from a set of available forecasts

with data dependent and fixed discounting rates, the one minimizing the criterion function

QT (H) of (2.8), and respectively, the forecast MSE, σ2
u + E(QT (H) − σ̂2

u). This possibility

illustrates the more wide relevance our cross-validation approach.

Simulation results suggest that robust forecasting methods with data selected parametric

downweighting are effective in the face of a variety of types of structural change, and that

data-dependent tuning is a viable approach, in some cases preventing significant errors. For

models with iid noise, nonparametric methods can be very effective. It remains to be seen in

the next section whether they are effective in practice.

4 Empirical Application

In this section we examine how our methods would have fared when applied to a large range

of UK and US quarterly data series.3 We are not trying to establish the best methods for

particular data series, but instead to get an impression of whether the issues identified above

3We take no account of real-time data revisions.
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are important in practice. In all cases we transform series to stationarity and employ either a

simple location or an AR(1) forecasting model. We use data on 94 series for the UK and 97 for

the US, taken for ease of comparison from Eklund, Kapetanios, and Price (2010). 4 The data

span 1977Q1 to 2008Q2 for the UK (1960Q1 to 2008Q3 for the US). We examine two forecast

evaluation sub-periods within this (1992Q1 to 1999Q4 and 2000Q1 to 2008Q2 for the UK and

1992Q2 to 200Q1 and 2000Q2 to 2008Q3 for the US) so that the periods evaluated are the same

length for comparability. For each series, we compare RMSFEs to that from the benchmark

simple location model estimated using equal weights on all data. The methods we report

relate to those in the Monte Carlo study, and are rolling window forecasts, averaging across

estimation periods, exponentially weighted moving average forecasts, polynomially weighted

moving average forecasts and forecasts produced using nonparametric weights.

Table 4 reports results for the location model over the two samples we examine. We report

the median RRMSFE (relative to the full sample (equal weight) benchmark. We also report

some other summary statistics for the RRMSFE. Namely, the minimum, maximum, variance

and skewness. DM1 and DM2 report the number of significant Diebold-Mariano tests where

the null is equality of the robust method and the benchmark. The alternative for DM1 is that

the benchmark is the better forecast, and for DM2 that the robust method is superior.

In almost all cases, the methods beat the benchmark for the median. Results are partic-

ularly good for the first half of the sample. Clearly, looking at the minima, in some cases

there is an enormous gain, whereas the penalty in the worst case, although large in some

cases, is several orders of magnitude lower. As for the Monte Carlo, the EWMA with a fixed

large discount (ρ = 0.50) performs poorly. Tuning parameters for EWMA provides a good

median performance, whereas (in contrast to the Monte Carlo) the nonparametric methods

perform relatively badly. Nevertheless, all methods significantly outperform the equal weight

benchmark in at least 19% of cases.

Qualitatively, for the US the results are even stronger. The median reduction in the

optimised EWMA is large, over 30% in both samples. Generally, most methods preform

relatively better than for the UK data.

One final issue we examine relates to the well known fact that AR models are a good

benchmark for many macroeconomic series. We have not attempted to incorporate lags into

the procedure (as described in Section 2.8). Despite this, when we compare the tuned expo-

4See Eklund, Kapetanios, and Price (2010) for details of the data.
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nential method to a benchmark AR process, the median relative RMSE for the UK remains

below unity (0.925 for the first subsample and 0.962 for the second). For all other meth-

ods, the relative RMSE slightly exceeds unity. Rather less favourable results hold for the US

(0.992 and 0.996), but the median RMSE is still below unity. This is further evidence for the

usefulness of the data based tuning.

5 Conclusions

Forecast methods that are known to be robust to historical structural change, have been re-

cently found to be useful forecasting tools under ongoing structural change. They include

rolling regressions, forecast averaging over different windows and exponentially weighted mov-

ing averages. However, the, a priory set, degree of downweighting older data, which is a

common feature shared by these methods, is suboptimal by its nature. The alternative ap-

proach suggested here is that, although we do not know the structure of the model and the

nature of structural change, we can make the choice of the tuning parameter data-dependent

and select it by cross-validation using in sample forecast performance. As we have shown,

such discounting has a number of attractive properties. It minimizes asymptotic forecast

MSE over the class of parametrically weighted moving average forecasts. Rather remarkably,

it allows also the evaluation of the forecast error, and provides a framework for a number

of new developments for forecasting under ongoing structural change. Our theory and small

sample evidence suggests that exponential weighting may be most helpful and efficient, and

that data selected tuning can provide a useful framework for avoiding large forecast errors.

The simulation study and the empirical exercise using over 190 UK and US macroeconomic

series show that fixed low-discount EWMA weighting is often good, but is outperformed by

the data selected downweighting. This is strong support for our approach, motivated by the

impossibility of knowing the optimal degree of discounting ex ante.
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A Appendix: Proofs

A.1 Proof of Theorems 1-3 and Corollaries 1-3

We decompose the objective function QT (H) and the forecast MSE, eT (H) = E(ŷT+1|T −yT )
2,

into terms corresponding to βj and uj of (2.1) which will be analyzed separately.

Let

vtj;H := wt,t−j, 1 ≤ j ≤ t− 1; vtj;H := 0, t ≤ j < ∞. (A.1)

Then

ŷt|t−1 − yt =
t−1∑
j=1

wtj;H(yj − yt) =
t−1∑
j=1

vtj;H(yt−j − yt) (A.2)

=
t−1∑
j=1

vtj;H(βt−j − βt) +
t−1∑
j=1

vtj;H(ut−j − ut) =: eβ,tH + eu,tH .

Hence, (ŷt|t−1 − yt)
2 = e2β,tH + e2u,tH + 2eβ,teu,tH , and

QT (H) =
1

T

T∑
t=1

(ŷt|t−1 − yt)
2 =

1

T

T∑
t=1

e2β,tH +
1

T

T∑
t=1

e2u,tH +
2

T

T∑
t=1

eβ,tHeu,tH

=: Qβ,T (H) +Qu,T (H) + 2Qβu,T (H).

Because {βt} and {ut} are independent,

E[QT (H)− σ̂2
u] = E[Qu,T (H)− σ2

u] + EQβ,T (H), (A.3)

Var(QT (H)) ≤ C{Var(Qu,T (H)) + Var(Qβ,T (H)) + |EQβu,T (H)|}.

Similarly,

eT (H) = E[e2β,(T+1)H ] + E[e2u,(T+1)H ] = eβ,T (H) + eu,T (H). (A.4)

In the next lemmas we derive asymptotic of the terms on the r.h.s. of (A.3) required for

the proof of the main results.

Claims of Theorems 1, 2 and 3 and Corollaries 1, 2 and 3 is straightforward implication of

the Lemmas A.1, A.2, A.3 and A.4 below.

Recall that IT = [α, T 1−δ] where δ > 0 is assumed to be small.
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A.2 Properties of Qβ,T (H)

First we consider the case when βt is a unit root process as in (b2). Then ζj := ∇βt = βt−βt−1

is stationary I(0) process, and the correlation

γβ(j, k) := E[(βj − β0)(βk − β0)] = E[(βt − βt−j)(βt − βt−k)], 0 ≤ j, k ≤ t

does not depend on t. Since βj − β0 =
∑j

l=1 ζl, then E(βj − β0)
2 ∼ js2∇β, j → ∞, where s2∇β

is the long-run variance of {ζj}, and

γβ(j, k) = s2∇β(j ∧ k) + o(j ∧ k), (j ∧ k) → ∞, (A.5)

|γβ(j, k)| ≤ C(jk)1/2.

First we approximate the mean E[Qβ,T (H)] by V 2
β,H :=

∑∞
j,k=1 vj;Hvk;Hγβ(j, k). By standard

argument, from definition of weights vj,H , using (A.5) and (A.51) it follows

V 2
β,H ≤ C

( ∞∑
j=1

vj,Hj
1/2

)2

≤ CH, H ∈ IT ,

V 2
β,H = Hs2∇β

∞∑
j,k=1

vj,Hvk,H(j ∧ k) + o(H−1) = Hs2∇βν3,K + o(H−1), H → ∞. (A.6)

The next lemma deals with the case of a unit root trend βj (b3), and implies the corre-

sponding results for the bounded unit root trend (b4).

Lemma A.1 Let βt be as in (b2) and Assumption 1 be satisfied. Then uniformly in H ∈ IT ,

the following holds.

(i) As T → ∞,

sup
H∈IT

V −2
β,H |E[Qβ,T (H)]− V 2

β,H | → 0, (A.7)

sup
H∈IT

V −2
β,H |eβ,T (H)− V 2

β,H | → 0. (A.8)

(ii) In addition,

sup
H∈IT

V −2
β,H |Qβ,T (H)− E[Qβ,T (H)]| = op(1). (A.9)

Proof. (i) We first show that for H ∈ IT ,

|E[e2β,tH ]− V 2
β,H | ≤ CH2(t ∨H)−1. (A.10)
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Denote by it the l.h.s. of (A.10). Since by (A.5), |γβ(j, k)| ≤ C(jk)1/2, and for any real

numbers (ajak − bjbk) = (aj − bj)(ak − bk) + bk(aj − bj) + bj(ak − bk), then

it ≤
∞∑

j,k=1

|vtj;Hvtk;H − vj;Hvk;H | |γβ(j, k)| (A.11)

≤ C
∞∑

j,k=1

|vtj;Hvtk;H − vj;Hvk;H |(jk)−1/2 ≤ C{p21,t + p1,tp2,t}

where p1,t :=
∑∞

j=1 |vtj;H − vj;H |j1/2 and p2,t :=
∑∞

k=1 vk;Hk
1/2. By (A.45), p1,t ≤ CH3/2(t ∨

H)−1, and by (A.51), p2,t ≤ CH1/2. Hence, it ≤ C{H3(t ∨H)−2 +H2(t ∨H)−1} ≤ CH2(t ∨
H)−1. Therefore,

H−1|E[Qβ,T (H)]− V 2
β,H | ≤ C(HT )−1

T∑
t=1

E|e2β,tH − V 2
β,H |

≤ CHT−1

T∑
t=1

t−1 ≤ CHT−1 log T ≤ T−δ log T

which proves (A.7), bearing in mind (A.6).

Finally, by (A.10), H−1|eT (H) − V 2
β,H | ≤ CHT−1 ≤ T−δ → 0, which together with (A.6)

implies (A.8) and completes the proof of (i).

(ii) Let ht,j := βt−j − βt and v̄tj;H := H−1/2vtj;H . Recall that Qβ,T (H) := T−1
∑T

t=1 e
2
β,tH .

We will approximate

ēβ,tH := H−1/2eβ,tH =
t−1∑
j=1

v̄tj;Hht,j by eΔβ,tH =

[LH]∑
j=1

vΔtj;H h̄t,j, (A.12)

H−1Qβ,T (H) := T−1

T∑
t=1

ē2Δβ,tH by QΔβ,T (H) := T−1

T∑
t=1

e2Δβ,tH ,

where eΔβ,tH is defined below. We shall show that, as T → ∞,

E[ sup
H∈IT

|H−1Qβ,T (H)−QΔβ,T (H)|] → 0, (A.13)

sup
H∈IT

QΔβ,T (H) = op(1), (A.14)

which proves (A.9).

We set L = log T , whereas vΔtj;H is a step function in H: letting Δ := log−4 T we split the

interval IT = ∪N
i=0[Hi, Hi + Δ) into small subintervals, where Hi = α + Δi, i = 0, · · · , N =

[T 1−δ] + 1. We define

vΔtj;H := v̄tj;Hi
, H ∈ [Hi, Hi +Δ). (A.15)
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Variables h̄t,j are m-dependent having all moments finite. Recall that h̄t,j = βt−j − βt =

−∑t
l=t−j+1 ζj, where by Assumption 2, ζj = ∇βj =

∑∞
k=0 bkηj−k is a linear process, ηj ∼

IID(0, σ2
η), and |bk| ≤ Ck−1−v for some v > 0. Set ζ̄j =

∑m
k=1 bkη̄j−k where η̄j := ηjI{|ηj| ≤

(log T )4} is the truncated noise withm = mT = (log T )p, p ≥ 8/v. Define h̄t,s = −∑t
l=t−j+1 ζ̄j.

Notice that η̄j’s arem-dependent r.v.’s, whereas by construction eΔβ,tH , e
2
Δβ,tH are m̃-dependent

r.v.’s, with m̃ := (log T )p + [LH] ≤ CH(log T )p

Proof of (A.13). First we show that

|ēβ,tH − eΔβ,tH | ≤ C[{Δ+ L−5}ST + S∗
T ], (A.16)

|ēβ,tH |+ |eΔβ,tH | ≤ CST

where ST :=
∑t−1

j=1 j
−3/2ht,j and S∗

T :=
∑T

j=1 j
−3/2|ht,j − h̄t,j| do not depend on H. The first

claim follow applying to the r.h.s. of

|ēβ,tH − eΔβ,tH | ≤
T∑

j=1

|v̄tj;H − vΔtj;H | |ht,j|+
t−1∑

j=[LH]+1

vΔtj;H |ht,j|+
[LH]∑
j=1

vΔtj;H |ht,j − h̄t,j|

the bound (A.47) and (A.46),

v̄tj;H ≤ Cj−3/2, 1 ≤ j ≤ t; v̄tj;H ≤ CL−5j−3/2, [LH] ≤ j ≤ t, L ≥ 1; (A.17)

|v̄tj;H − v̄tj;H+θ| ≤ C|Δ|j−3/2, 1 ≤ j ≤ t, θ ∈ [0,Δ],

which also imply the second claim of (A.16).

Hence, by (A.16) and equality a2 − b2 = (a− b)(a+ b),

|ē2β,tH − e2Δβ,tH | ≤ ({Δ+ L−5}S2
T + STS

∗
T

)
, (A.18)

|H−1Qβ,T (H)−QΔβ,T (H)| ≤ T−1

T∑
t=1

|ē2β,tH − e2Δβ,tH |

= C({Δ+ L−5}S2
T + STS

∗
T ).

By the bound E|ht,jht,k| ≤ C(jk)1/2,

ES2
T ≤ C

T∑
j,k=1

(jk)−3/2E[|ht,jht,k|] ≤ C log2 T.

Similarly, by definition of h̄t,j, using E(ηj − η̄j)
2 = E[η2j I(|ηj| ≥ log4 T )] ≤ C(log T )−4E[η4j ],
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then

E(ht,j − h̄t,j)
2 ≤ Cj{(

∞∑
k=m

|bk|)2 + E(ηj − η̄j)
2} (A.19)

≤ Cj{(
∞∑

k=m

k−1−v)2 + (log T )−8} ≤ Cj(log T )−8.

Therefore, with L = log T and Δ = (log T )−4,

ES∗
T
2 ≤ C(log T )−8

( T∑
j=1

j−1
)2 ≤ C(log T )−6,

E[(Δ + L−5}S2
T + STS

∗
T ] ≤ C[(Δ + L−5}ES2

T + (ES2
TES∗

T
2)−1] ≤ C(log T )−2 = o(1),

which together with (A.18) proves (A.13).

Proof of (A.14). It suffices to show that, as T → ∞,

max
i=1,··· ,N

|QΔβ,T (Hi)− EQΔβ,T (Hi)| = oP (1). (A.20)

Notice that QΔβ,T (Hi) = T−1
∑T

t=1 e
2
Δβ,tHi

is the sum of mi-dependent r.v.’s with mi ≤
H(log T )p ≤ CT 1−δ/2 (H ≤ T 1−δ), and N ≤ CT 1−δΔ−1 ≤ CT . Thus, by Lemma 2, (A.20)

holds if

max
t,i

E(e2Δβ,tHi
)2k ≤ C(log T )8k. (A.21)

To show the latter, firstly observe, that is h̄t,j the sum of linear variables with i.i.d. innovations

η̄j, and therefore its moments satisfy

Eh̄2k
t,j ≤ C

E[η̄2kj ]

(Eη̄2j )
k
(E[h̄2

t,j])
k, k ≥ 1,

see, e.g., Proposition 4.4.3 in Giraitis, Koul, and Surgailis (2012). Since E[η̄2kj ] ≤ (log T )8k,

Eη̄2j → Eη2j > 0 and Eh̄2
t,j ≤ Eh2

t,j ≤ Cj, we conclude that

Eh̄2k
t,j ≤ Cjk(log T )8k, 1 ≤ j ≤ t− 1. (A.22)

By (A.22) and Cauchy inequality,

t−1∑
j=1

|v̄tj;H | ≤ H−1/2, (A.23)

E[e4kΔβ,tH ] ≡ E
([HL]∑

j=1

v̄tj;H h̄t,j

)4k

≤
( t−1∑

j=1

v̄tj;H

)4k

max
1≤j≤LH

Eh̄2k
t,j

≤ H−2k{(LH)2k(log T )8k} ≤ C(log T )10k,
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which implies (A.21) and completes the proof of the lemma. �

In the next lemma we consider the case of a bounded deterministic trend βj (b5) and the

break in the mean (b6), while the corresponding results for the deterministic trend (b3) follow

straightforwardly from (b5).

In case (b5), recall Vtr,H :=
∑∞

j=1 vj,H(j/H), κ(g) =
∫ 1

0
ġ(x)2dx. By (A.51), V 2

tr,H → ν1,K

as H → ∞.

Lemma A.2 (i) Let βt be as in (b5). Then, T → ∞,

sup
H∈IT

∣∣∣( T
H
)2Qβ,T − κ(g)V 2

tr,H

∣∣∣ → 0, sup
H∈IT

∣∣∣( T
H
)2eβ,T (H)− ġ(1)2V 2

tr,H

∣∣∣ → 0. (A.24)

(ii) Let βt be as in (b6). Then (2.26) holds.

Proof. (i) For simplicity, denote g((t− j)/T ) = g(t−j)/T . Then eβ,tH =
∑t−1

j=1 vtj;H(g(t−j)/T −
gt/T ). Let ēβ,tH = −(H/T )ġt/TvH . By Taylor expansion,

|eβ,tH − ēβ,tH | ≤
t−1∑
j=1

{|vtj;H − vj;H ||g(t−j)/T − gt/T |+ vj;H
∣∣g(t−j)/T − gt/T + (H/T )ġt/T

∣∣}

≤ C(H/T )
t−1∑
j=1

{|vtj;H − vj;H |(j/H) + vj;H(j/H)2(H/T )}.

For H ∈ IT , (H/T ) ≤ T−δ, by (A.45)
∑t−1

j=1 |vtj;H −vj;H |(j/H) ≤ CH(t∨H)−1 and by (A.51),∑t−1
j=1 vj;H(j/H)2 ≤ C. So,

(T/H)|eβ,tH − ēβ,tH | ≤ C{H(t ∨H)−1 + T−δ}, (A.25)

(T/H)(|eβ,tH |+ |ēβ,tH |) ≤ C
t−1∑
j=1

(vtj;H(j/H) + 1) ≤ CH(t ∧H)−1,

(T/H)2|e2β,tH − ē2β,tH | ≤ C{H(t ∨H)−1 + T−δ}H(t ∧H)−1 ≤ C(Ht−1 + T−δ).

Notice that

(T/H)2T−1

T∑
t=1

ē2β,tH = T−1

T∑
t=1

ġ(t/T )2V 2
tr,H = κ(g)V 2

tr,H + o(1),

(T/H)2T−1

T∑
t=1

|e2β,tH − ē2β,tH | ≤ CT−1

T∑
t=1

(Ht−1 + T−δ) ≤ CT−δ → 0,

which proves the first claim of (A.24). The second claim follows from (A.25):∣∣∣( T
H
)2eβ,T (H)− ġ(1)2V 2

tr,H

∣∣∣ = (T/H)2|e2β,(T+1)H − ē2β,(T+1)H |
≤ C(HT−1 + T−δ) ≤ CT−δ → 0,
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which completed the proof of the lemma.

(ii) In case of the break in the mean βt of (b6), (2.26) follows by standard calculus. �

A.3 Properties of Qu,T (H)

Lemma A.3 Let yt = ut be a stationary process. Under Assumptions of Theorem 1, as

T → ∞,

(i) sup
H∈IT

H
∣∣E[Qu,T (H)]− σ2

u −Qu(H)
∣∣ → 0, (A.26)

sup
H∈IT

H|eT (H)− σ2
u −Qu(H)| → 0, (A.27)

where Qu(H) = H−1bu,K + o(H−1) as H → ∞.

(ii) sup
H∈IT

H
∣∣Qu,T (H)− σ̂2

u − E[Qu,T (H)− σ̂2
u]
∣∣ →p 0, (A.28)

Proof. (i) Because of stationarity of {uj},

E[Qu,T (H)− σ̂2
u] = T−1

T∑
t=1

{E(ŷt|t−1 − yt)
2 − σ2

u}, (A.29)

E(ŷt|t−1 − yt)
2 − σ2

u =
∞∑

j,k=1

vtj;Hvtk;Hγu(j − k)− 2
∞∑
j=1

vtj;Hγu(j),

Qu(H) =
∞∑

j,k=1

vj;Hvk;Hγu(j − k)− 2
∞∑
j=1

vj;Hγu(j).

Below we show that

|{E(ŷt|t−1 − yt)
2 − σ2

u} −Qu(H)| ≤ Ct−1, t ≥ 2, (A.30)

where C does not depend on t and H ∈ IT . Then,

H
∣∣∣E[Qu,T (H)− σ̂2

u]−Qu(H)
∣∣∣ ≤ CHT−1

T∑
t=1

t−1

≤ CHT−1 log T ≤ T−δ/2,

which proves (A.26). In addition, by (A.30)

H|eT (H)− σ2
u −Qu(H)| ≤ C(H/T ) ≤ CT−δ,

35



which implies (A.27). The last claim of the lemma about Qu(H) is shown in (A.52).

(ii) Proof of (A.28). We shall use the following notation:

ht,j :=

j∑
l=1

ut−j, j = 1, · · · , t− 2; ht,t−1 :=
t−1∑
l=1

ut−j,

v̄tj;H := H1/2(vtj;H − vt,j+1;H), j = 1, · · · , t− 2, v̄tj;H := H1/2vt,t−1;H .

Using summation by parts, write

ēu,tH := H1/2

t−1∑
j=1

vtj;Hut−j =
t−1∑
j=1

v̄tj;Hht,j. (A.31)

Then,

H(Qu,T (H)− σ̂2
u) = T−1

T∑
t=1

(ēu,tH −H1/2ut)
2 −Hσ̂2

u (A.32)

= T−1

T∑
t=1

ē2u,tH − 2utH
1/2T−1

T∑
t=1

ēu,tH =: Q
(1)
u,T (H)− 2Q

(2)
u,T (H).

To prove (A.28) it suffices to show that

sup
H∈IT

∣∣Q(i)
u,T (H)− E[Q

(i)
u,T (H)]

∣∣ = op(1), i = 1, 2. (A.33)

Case i = 1. The proof follows by the same argument as the proof of Lemma A.7. By

(A.49) and (A.48), the weights v̄tj;H have properties (A.17) and (A.23). Moreover, htj is

a sum of linear variables satisfying Eh2
tj ≤ Cj. Therefore, similarly as in (A.15), defining

vΔutj;H := v̄tj;Hi
, H ∈ [Hi, Hi +Δ) and euΔ,tH :=

∑[LH]
j=1 vΔutj;H h̄t,j, we obtain same bounds as

|ēu,tH − euΔ,tH | ≤ C[{Δ+ L−5}ST + S∗
T ], (A.34)

|ēu,tH |+ |euΔ,tH | ≤ CST ,

and (A.33) follows by the argument as in the proof of (A.9).

Consider the case i = 2. To handle the addition factor H1/2, we modify definition (A.15)

as follows:

ṽΔtj;H := H
1/2
i v̄tj;Hi

, H ∈ [Hi, Hi +Δ), i = 0, · · · , N ; (A.35)

ẽΔu,tH :=
t−1∑
j=1

ṽΔtj;Hut−j, Q
(2)
Δu,T (H) := T−1

T∑
t=1

utẽΔu,tH .
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The bound (A.48) with γ = 1 yields

|H1/2v̄tj;H − vΔtj;H | ≤ CΔj−2, |H1/2ēu,tH − ēΔu,tH | ≤ CΔj−2. (A.36)

Recall that Δ = (log T )−4. Hence,

∣∣Q(2)
u,T (H)− Q̃

(2)
Δu,T (H)

∣∣ ≤ T−1

T∑
t=1

|ut{H1/2ēu,tH − ẽΔu,tH}| ≤ CΔT−1

T∑
t=1

t−1∑
j=1

j−2|ht,sut|,

where the r.h.s. does not depend on H. Since E|ht,sut| ≤ (Eh2
t,sEu2

t )
1/2 ≤ Cj1/2, then

E
[
sup
H∈IT

∣∣Q̄(2)
u,T (H)− Q̃

(2)
Δu,T (H)

∣∣] ≤ CΔT−1

T∑
t=1

∞∑
j=1

j−3/2 ≤ CΔ → 0.

Since Q̃
(2)
Δu,T (H) is a step function in H, it remains to show that

max
i=1,··· ,N

|Q̃(2)
Δu,T (Hi)− E[Q̃

(2)
Δu,T (Hi)]| = oP (1).

As in (A.58), it suffices to verify, that there exist k ≥ 1 and γ > 1, such that

max
i=1,··· ,N

E|qiT |2k ≤ CT−γ, qiT := Q̃
(2)
Δu,T (Hi)− E[Q̃

(2)
Δu,T (Hi)]. (A.37)

To prove (A.37), let H = Hi. Notice that

Q̃
(2)
Δu,T (Hi) = HiT

−1

T∑
t=1

ut

t−1∑
j=1

vtj;Hut−j = HT−1

T∑
t=1

t−1∑
j=1

wt,jutut−j

is a centered quadratic form with weights wt,j. Set wt,j = 0, j = t, · · · , T .
The 2k-th moment, k ≥ 1, of a general centered quadratic form pT :=

∑T
t,j=1 bT,tjutut−j of

a linear process uj (2.11) with i.i.d. innovations εj satisfies the bounds

E(pT − E[pT ])
2k ≤ CAk

T , AT :=
T∑

t,t′,j,j′=1

bT,tjbT,t′j′γu(t− t′)γu(j − j′), (A.38)

as long as Eε4k1 < ∞. For a linear process uj, for k = 1 (A.38) follows from Lemma 4.5.1. in

Giraitis, Koul, and Surgailis (2012), while its generalization for k > 2 is also straightforward.

Notice that for bT,tj = wtj;H ,

AT ≤ C(logH + TH−1) (A.39)
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because w2
tj ≤ CK((t − j)/H)C−2

tH , CtH :=
∑t−1

k=1 K(k/H),
∑

j∈Z |γu(j)| < ∞, and CtH ≤
C(t ∧H)−1 of (A.43) imply

AT ≤
T∑

t,t′,j,j′=1

w2
tj|γu(t− t′)γu(j − j′)| ≤ C

T∑
t=1

C−2
tH {

t−1∑
j=1

K(j/H)}{
∑
j′∈Z

|γu(j′)|}2

≤ C
T∑
t=1

C−1
tH ≤ C(log T + TH−1).

Consequently, from (A.38) and (A.39), for H ≤ IT , H/T ≤ T−δ, we obtain

Eq2kiT = (H/T )2k(pT − E[pT ])Ep2kT ≤ C(H/T )2kAk
T

≤ C(H/T )2k(logH + TH−1)k ≤ CT−δk,

which implies (A.37) choosing k > 1/d. This completes the proof of the lemma. �

A.4 Properties of Qβu,T

In the following lemma we set dβ = 1 for βt and in (b2), (b4) and (b6), and dβ = 2 for βt and

in (b3) and (b5).

Lemma A.4 (i) Under assumption of Theorems 2 and 3,

sup
H∈IT

{H−dβ
∣∣Qβu,T (H)

∣∣} →p 0, as in (b2) and (b3); (A.40)

sup
H∈IT

{[( T
H
)dβ ∧H]

∣∣Qβu,T (H)
∣∣} →p 0, as in (b4), (b5) and (b6). (A.41)

Proof. Consider the case when βt is a unit root process (b2). Then E[Qβu,T (H)] = 0, and

using notation (A.2), ēβ,tH of (A.12), ēu,tH of (A.31), we can write

eβ,tHeu,tH = eβ,tH

t−1∑
j=1

vtj;H(ut−j − ut) = ēβ,tH ēu,tH − eβ,tHut,

Qβu,T (H) = T−1

T∑
t=1

eβ,tHeu,tH = T−1

T∑
t=1

ēβ,tH ēu,tH − (HT )−1

T∑
t=1

H1/2ēβ,tHut

= : q
(i)
T,H −H−1q

(2)
T,H .

We will verify that

sup
H∈IT

|q(i)T,H | →p 0, i = 1, 2. (A.42)
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The terms ēβ,tH and ēu,tH are of the similar type, satisfy conditions (A.16) and (A.34) and

E[ēβ,tH ēu,tH ] = 0. Therefore, the same argument as in the proof of (A.9) yields (A.42) for

i = 1. For i = 2 the latter follows using (A.36) and the argument used in the proof of (A.9).

Clearly this implies (A.40) for the rescaled unit root process βt, (b4).

The bound (A.41) for βt (b5) and (b6) follows combining the approached used in the proofs

of Lemmas A.1, A.4 and A.3. The case (b5) also implies (A.40) for (b3). �

A.5 Auxiliary results

Denote CtH :=
∑t−1

j=1 K(j/H), t ≥ 1. Recall (A.1).

Lemma 1 Under Assumption 1, uniformly in H ∈ IT , T ≥ 1, the following holds.

(i) There exists C > 0 such that for all t ≥ 1 and j ≥ 1.

C−1
tH ≤ C(t ∧H), vtj;H ≤ C(t ∧H)−1, vj;H ≤ C(H ∨ j)−1, (A.43)

|vtj;H − vj;H | ≤ Ct−1, j ≥ 1, (A.44)
∞∑
j=1

|vtj;H − vj;H |(j/H)γ ≤ CH(t ∨H)−1, (0 ≤ γ ≤ 2). (A.45)

(ii) The following holds uniformly in t, H,H ′ ∈ IT and L ≥ 1.

(a) Let 0 ≤ γ ≤ 2 and v̄tj;H := H−γvtj;H , 1 ≤ j ≤ t− 1. Then

v̄tj;H ≤ Cj−γ−1, v̄tj;H ≤ CL−5j−γ−1, (A.46)

|v̄tj;H′ − v̄tj;H | ≤ C|H ′ −H|j−γ−2, |H ′ −H| ≤ 1. (A.47)

(b) Let 0 ≤ γ ≤ 1 and v̄tj;H := Hγ(vtj;H − vt,j+1;H), 1 ≤ j ≤ t − 2 and v̄t,t−1;H := Hγvt,t−1;H .

Then

v̄tj;H ≤ Cj−2+γ, v̄tj;H ≤ CL−5j−2+γ, (A.48)

|v̄tj;H′ − v̄tj;H | ≤ C|H ′ −H|j−3+γ, |H ′ −H| ≤ 1. (A.49)

(iii) As H → ∞,

∞∑
j=1

v2j;H = H−1

∫
R

K2(x)dx+ o(H−1), v0;H = H−1K(0) + o(H−1); (A.50)

∞∑
j=1

vj;H(
j

H
)γ =

∫
R

K(x)xγdx+ o(H−1), 0 ≤ γ ≤ 2, (A.51)

Qu(H) = H−1bu,K + o(H−1), (A.52)
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where bu,K is as in Theorem 1.

Proof (i) Proof of (A.43). Let ε > 0 be a small number. Assume that H > 1/ε. Then for

1 ≤ j ≤ εH, K(j/H) ≥ inf0≤u≤ε K(u) =: c∗ > 0 since K(0) > 0 and K is continuous at 0 by

Assumption 1. Hence, for t ≥ 2, CtH ≥ c∗ min(t, εH) ≥ c∗ε(t ∧H), for some c∗ > 0 implying

(A.43). Assume that H ≤ 1/ε, then by assumption (2.4), CtH ≥ K(1/H) ≥ inf0≤u≤1/α K(u) ≥
c(t ∧H) > 0, for some c > 0, which completes the proof of (A.43).

The second claim of (A.43) follows from the first because K is bounded, while the third

claim follows for j ≥ H from vtj;H ≤ CH−1K(j/H) ≤ Cj−1, because K(x) ≤ Cx−1, and for

j ≤ H it holds vtj;H ≤ C(t ∨H)−1.

Proof of (A.44). For t ≤ H, |vtj;H − vj;H | ≤ Ct−1 by (A.43).

Let t ≥ H. First notice that by (A.43) and K(x) ≤ Cx2,

∞∑
j=t

vj;H ≤ H−1

∞∑
t=t

(H/j)2 ≤ CHt−1. (A.53)

This and (A.43) imply

|vtj;H − vj;H | = vtj;H

∞∑
j=t

vj;H ≤ CH−1{Ht−1} ≤ Ct−1 (A.54)

completing the proof.

Proof of (A.45). Write

∞∑
j=1

|vtj;H − vj;H |( j
H
)γ =

H∑
j=1

[· · · ] +
∞∑

j=H+1

[· · · ] =: s1H + s2H .

Then s1H ≤ ∑H
j=1(vtj;H + vj;H) ≤ 1, whereas by (A.53) and (A.54),

s2,H ≤
∞∑
j=1

vtj;H(
j

H
)γ{

∞∑
j=t

vj;H} ≤ C∞H

CtH

{
∞∑
j=1

vj;H(j/H)γ}(H ∧ t)t−1

≤ C
H

t ∧H
{C}H ∧ t

t
= CHt−1,

in view of (A.43) and (A.51), completing the proof.

(ii) (a) Proof of (A.46). Let t < H, j < t. Then similarly as above vtj;HH
−γ ≤

CK(j/H)t−1H−γ ≤ Cj−1−γ. Next let j ≤ H. Then t ≥ H and using K(x) ≤ x−γ−1,

vtj;HH
−γ ≤ CK(j/H)H−1−γ ≤ j−1−γ. The proves the first claim of (A.46), while the sec-

ond claim follows using K(x) ≤ Cx−γ−5, which for t ≥ H and j/H ≤ L gives vtj;HH
−γ ≤

CK(j/H)H−1−γ ≤ j−1−γL−5.
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Proof of (A.47) By the mean value theorem,

H ′−γ
vtj;H′ −H−γvtj;H =

K(j/H ′)
H ′γCtH′

− K(j/H)

H ′γCtH

= (H ′ −H)g(H̃), H̃ ∈ [H, H ′],

g(H) =
d

dH
{K(j/H)

HγCtH

} =
K̇(j/H)(j/H)H−1

HγCtH

−K(j/H){ 1/2

Hγ+1CtH

+
(d/dH)CtH

HγC2
tH

}.

Let t ≥ H. Then by (A.43) CtH ≥ cH, and by (2.4), |K̇(x)x|+K(x) ≤ cx−3/2. So,

g(H) ≤ CH−γ−2(|K̇(j/H)(j/H)|+K(j/H)) ≤ Cj−γ−2.

Let t < H. Then by (A.43) CtH ≥ ct ≥ cj, H ≥ j, and by (2.4), we can bound |K̇(x)x| +
K(x) ≤ C. So, g(H) ≤ Cj−γ−2, which completes the proof of (A.47).

(b) To show (A.47) and (A.46) for the weights (b) v̄tj;H := Hγ(vtj;H−vt,j+1;H), 1 ≤ j ≤ t−2,

apply the mean value theorem to obtain v̄tj;H := H−(1−γ)(K̇(j̃/H)/CtH), j̃ ∈ [j, j + 1] and

use the same argument as for the weights (a). Proof of (A.47) and (A.46) for v̄t,t−1;H follows

similarly as above.

(iii) Proof of (A.50) and (A.51). Under (2.4), these claims follow using standard argument

of approximation of a sum by an integral.

Proof of (A.52). Let θs;H :=
∑∞

k=1 vk,Hvk+|s|,H and fs;H := θ|s|;H − θ0;H − v|s|,H + v0,H ,

s ∈ Z. Then

Qu(H) =
∞∑

j,k=1

vj,Hvk,Hγu(j − k)− 2
∞∑
j=1

vj,Hγu(j)

=
∞∑

s=−∞
(θ|s|;H − vs,H)γu(s) + v0,Hγu(0)

=
{
(θ0;H − v0,H)

∞∑
js=−∞

γu(s) + v0,Hγu(0)
}
+

∞∑
js=−∞

fs;Hγu(s) =: iH + rH .

By (A.50), iH = H−1s2u(K2 −K0) +H−1K0 + o(H−1) = H−1bu,K + o(H−1). To complete the

proof, it suffices to show that

rH = o(H−1). (A.55)

Notice that by (A.43),

H|vk+|s|,H − vk,H | ≤ C|K(
k + |s|
H

)−K(
s

H
)| ≤ C sup

x
K(x), for all s,

≤ C sup
x

|K̇(x)| |s|
H

→ 0, ∀s fixed.
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Hence,

max
s

H|fs;H | ≤
∞∑
k=1

vk,HH|vk+|s|,H − v|s|,H |+H|vk,H − v0,H | ≤ C
∞∑
k=1

vk,H < ∞,

H|fs;H | ≤ C|s|H−1 → 0, ∀s fixed.

Since
∑∞

k=−∞ |γu(s)| < ∞, this by dominated convergence theorem implies (A.55). �

Lemma 2 Let ST i = T−1
∑T

t=1 zTt,i, i = 1, · · · , N , N ≤ T , be the sums of arrays of zero

mean mi-dependent r.v.’s zTt,i such and maxi mi ≤ T 1−δ, 0 < δ < 1. If for some integer

k ≥ (1/2) + 1/(2δ),

max
t,i

E[z2kT t,j] ≤ C(log T )p, (∃p ≥ 1), (A.56)

then as T → ∞, maxi=1,··· ,NT
|ST i| = op(1).

Proof. It suffices to show that, for some k > 1 and γ > 1,

max
i=1,···N

ES2k
T i ≤ CT−γ, (A.57)

since then for any a > 0,

P ( max
i=1,··· ,N

|ST i| ≥ a) ≤
N∑
i=1

P (|ST i| ≥ a) ≤ a−2k

N∑
i=1

E[S2k
T i ] ≤ CNT−γ → 0. (A.58)

By assumption, γ∗ = (2k − 1)δ > 0. Because r.v.’s zTt,i are mi-dependent, then

E[S2k
T i ] ≤ CT−2k

∑
1≤t2k≤···≤t2k≤T : t1−t2k≤2kmi

E
[ 2k∏
s=1

(zTt,i − zTt,i)
]

≤ C{ max
t=1,··· ,T

E[z2kT t,i]}(mi/T )
2k−1 ≤ C(log T )pT−δ(2k−1) ≤ C(log T )pT−γ∗,

which proves (A.57). �
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Table 1: Monte Carlo Results. T = 200. One-Step Ahead Forecasts. Table reports relative root mean square error using a
full sample mean benchmark

Experiments
Method Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Ex10 Ex11

Exponential ρ = ρ̂ 1.045 0.700 0.168 0.773 0.805 0.337 0.985 0.826 0.674 0.696 0.170

Rolling H = Ĥ 1.134 0.745 0.203 0.826 0.866 0.373 1.041 0.877 0.756 0.726 0.334
Rolling H = 20 1.047 0.667 0.211 0.755 0.767 0.342 0.940 0.797 0.670 0.667 0.291

H = 30 1.028 0.666 0.272 0.764 0.775 0.384 0.940 0.820 0.693 0.664 0.361
Exponential ρ = 0.99 1.002 0.836 0.754 0.896 0.909 0.765 0.990 0.973 0.865 0.835 0.738

ρ = 0.95 1.020 0.671 0.301 0.757 0.779 0.407 0.940 0.829 0.681 0.668 0.339
ρ = 0.90 1.048 0.672 0.194 0.742 0.769 0.333 0.941 0.793 0.649 0.667 0.231
ρ = 0.80 1.103 0.705 0.164 0.763 0.803 0.325 0.984 0.815 0.658 0.698 0.181
ρ = 0.70 1.169 0.749 0.163 0.802 0.851 0.338 1.042 0.861 0.688 0.739 0.167
ρ = 0.50 1.317 0.846 0.178 0.897 0.961 0.378 1.174 0.970 0.769 0.833 0.166

Averaging 1.005 0.754 0.644 0.844 0.858 0.630 0.989 0.966 0.799 0.753 0.610
Nonparametric 1.108 0.686 0.166 0.759 0.786 0.321 0.966 0.798 0.661 0.683 0.210
Polynomial α = α̂ 1.010 0.773 0.444 0.941 0.917 0.555 1.005 0.952 0.789 0.767 0.354

Rolling H = Ĥ, k = k̂ 1.145 0.780 0.210 0.853 0.900 0.436 1.051 0.891 0.780 0.747 0.281
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Table 2: Monte Carlo Results. T = 200. One-Step Ahead Forecasts. ut ∼ AR(0.7). Table reports relative root mean square
error using a full sample mean benchmark

Experiments
Method Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Ex10 Ex11

Exponential ρ = ρ̂ 0.660 0.394 0.087 0.631 0.466 0.188 0.582 0.483 0.410 0.407 0.121

Rolling H = Ĥ 1.016 0.660 0.132 0.863 0.620 0.282 0.788 0.666 0.561 0.568 0.141
Rolling H = 20 1.028 0.645 0.204 1.013 0.772 0.329 0.890 0.768 0.692 0.648 0.332

H = 30 1.020 0.655 0.264 1.029 0.788 0.371 0.916 0.803 0.721 0.656 0.407
Exponential ρ = 0.99 0.989 0.816 0.745 0.984 0.900 0.758 0.971 0.959 0.867 0.825 0.759

ρ = 0.95 0.938 0.598 0.282 0.924 0.723 0.376 0.845 0.753 0.656 0.606 0.372
ρ = 0.90 0.870 0.536 0.166 0.851 0.644 0.278 0.760 0.646 0.573 0.543 0.248
ρ = 0.80 0.781 0.473 0.119 0.758 0.567 0.232 0.678 0.566 0.497 0.481 0.178
ρ = 0.70 0.715 0.429 0.100 0.691 0.514 0.208 0.624 0.519 0.449 0.439 0.146
ρ = 0.50 0.639 0.384 0.085 0.619 0.456 0.185 0.566 0.469 0.400 0.395 0.120

Averaging 0.996 0.730 0.632 0.989 0.852 0.623 0.967 0.950 0.808 0.743 0.649
Nonparametric 1.019 0.585 0.138 0.984 0.717 0.274 0.854 0.682 0.624 0.590 0.233
Polynomial α = α̂ 0.713 0.472 0.176 0.743 0.559 0.352 0.635 0.529 0.545 0.448 0.205

Rolling H = Ĥ, k = k̂ 0.941 0.597 0.117 0.718 0.509 0.228 0.658 0.545 0.448 0.467 0.107
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Table 3: Monte Carlo Results. T = 200. Two-Step Ahead Forecasts. Table reports relative root mean square error using a
full sample mean benchmark

Experiments
Method Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Ex10 Ex11

Exponential ρ = ρ̂ 1.046 0.691 0.169 0.760 0.796 0.335 0.975 0.824 0.663 0.701 0.191

Rolling H = Ĥ 1.069 0.702 0.202 0.822 0.807 0.344 0.970 0.913 0.685 0.716 0.175
Rolling H = 20 1.039 0.662 0.219 0.741 0.766 0.341 0.936 0.797 0.664 0.674 0.293

H = 30 1.026 0.660 0.283 0.753 0.774 0.384 0.936 0.823 0.687 0.672 0.360
Exponential ρ = 0.99 1.001 0.836 0.759 0.893 0.911 0.767 0.990 0.975 0.866 0.843 0.740

ρ = 0.95 1.017 0.666 0.312 0.746 0.779 0.409 0.938 0.833 0.678 0.678 0.347
ρ = 0.90 1.046 0.664 0.202 0.730 0.765 0.333 0.938 0.792 0.643 0.675 0.242
ρ = 0.80 1.102 0.696 0.168 0.753 0.795 0.324 0.980 0.811 0.651 0.706 0.199
ρ = 0.70 1.169 0.737 0.165 0.792 0.842 0.337 1.038 0.853 0.680 0.747 0.188
ρ = 0.50 1.318 0.830 0.177 0.889 0.950 0.377 1.171 0.954 0.757 0.841 0.193

Averaging 1.004 0.753 0.650 0.839 0.860 0.633 0.987 0.968 0.799 0.763 0.611
Nonparametric 1.104 0.678 0.171 0.745 0.780 0.319 0.960 0.797 0.653 0.691 0.219
Polynomial α = α̂ 1.005 0.776 0.401 0.960 0.932 0.567 0.998 0.958 0.780 0.789 0.353

Rolling H = Ĥ, k = k̂ 1.062 0.706 0.195 0.810 0.819 0.349 0.952 0.898 0.674 0.721 0.154
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Table 4: Empirical relative root mean square error results for the UK.
Second subsample First subsample

Method Median Min Max Var Skew DM1 DM2 Median Min Max Var Skew DM1 DM2
Exponential ρ = ρ̂ 0.858 0.006 1.280 0.309 -1.233 2 21 0.803 0.012 1.445 0.373 -0.552 4 29

Rolling H = Ĥ 0.886 0.006 1.503 0.300 -1.207 2 19 0.899 0.010 1.592 0.300 -0.939 7 26
Rolling H = 20 0.887 0.005 1.518 0.309 -1.063 4 18 0.927 0.009 1.519 0.314 -0.955 12 22

H = 30 0.903 0.006 1.845 0.312 -0.821 6 19 0.897 0.010 1.329 0.268 -1.193 10 24
Exponential ρ = 0.99 0.927 0.462 1.060 0.127 -1.703 3 26 0.946 0.699 1.019 0.077 -1.315 0 40

ρ = 0.95 0.858 0.007 1.252 0.270 -1.437 5 22 0.839 0.100 1.111 0.239 -1.145 2 37
ρ = 0.90 0.858 0.005 1.254 0.299 -1.233 6 20 0.812 0.012 1.222 0.304 -0.909 4 33
ρ = 0.80 0.884 0.005 1.273 0.327 -1.078 9 21 0.817 0.010 1.358 0.355 -0.673 7 31
ρ = 0.70 0.929 0.006 1.409 0.360 -0.907 12 20 0.841 0.011 1.468 0.398 -0.516 10 29
ρ = 0.50 1.047 0.007 1.755 0.438 -0.623 22 19 0.927 0.013 1.716 0.486 -0.324 13 27

Averaging 0.883 0.069 1.203 0.235 -1.625 3 22 0.884 0.258 1.180 0.193 -1.321 2 33
Nonparametric 0.926 0.034 1.699 0.351 -0.870 8 20 0.899 0.038 1.591 0.380 -0.765 7 21
Polynomial α = α̂ 0.863 0.011 1.263 0.266 -1.203 0 22 0.817 0.017 1.365 0.330 -0.821 0 26

Rolling H = Ĥ, k = k̂ 0.860 0.005 1.292 0.292 -1.266 1 22 0.821 0.010 1.158 0.266 -1.202 2 30
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Table 5: Empirical relative root mean square error results for the US.
Second subsample First subsample

Method Median Min Max Var Skew DM1 DM2 Median Min Max Var Skew DM1 DM2
Exponential ρ = ρ̂ 0.639 0.020 1.246 0.382 -0.178 0 37 0.647 0.007 1.288 0.387 -0.212 1 39

Rolling H = Ĥ 0.883 0.076 1.606 0.299 -0.763 14 24 0.900 0.136 1.918 0.362 0.307 6 30
Rolling H = 20 0.869 0.078 1.635 0.317 -0.665 11 23 0.997 0.118 2.744 0.506 1.224 10 27

H = 30 0.857 0.130 1.623 0.293 -0.837 6 30 0.958 0.158 2.064 0.384 0.667 10 30
Exponential ρ = 0.99 0.937 0.606 1.078 0.093 -1.297 9 42 1.023 0.672 2.060 0.191 2.895 24 21

ρ = 0.95 0.796 0.196 1.350 0.266 -0.784 2 38 0.899 0.164 1.738 0.302 -0.083 11 30
ρ = 0.90 0.745 0.066 1.319 0.295 -0.673 1 39 0.818 0.071 1.786 0.380 0.047 5 34
ρ = 0.80 0.689 0.036 1.201 0.323 -0.340 3 39 0.760 0.031 1.661 0.413 -0.168 5 36
ρ = 0.70 0.661 0.028 1.308 0.356 -0.091 4 39 0.727 0.016 1.315 0.426 -0.195 4 37
ρ = 0.50 0.658 0.020 1.563 0.422 0.176 4 38 0.729 0.007 1.589 0.497 0.152 5 39

Averaging 0.914 0.448 1.146 0.135 -1.183 11 40 1.070 0.459 3.322 0.389 3.410 24 20
Nonparametric 0.825 0.042 1.579 0.341 -0.522 2 22 1.105 0.050 4.805 0.917 2.181 16 30
Polynomial α = α̂ 0.670 0.023 1.347 0.378 -0.220 2 38 0.729 0.002 1.176 0.330 -0.561 3 37

Rolling H = Ĥ, k = k̂ 0.802 0.076 1.619 0.283 -0.659 2 40 0.817 0.102 1.339 0.301 -0.690 2 30
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