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1 Introduction

The wavelet literature has rapidly expanded over the past 15 years, with over 1600 ar-

ticles and papers now published using this methodology in a wide variety of disciplines.

Applications using wavelets in disciplines other than economics are extensive, with many

papers published in areas such as acoustics, astronomy, engineering, medicine, forensics,

and physics. Economics (and to a lesser degree, �nance) is conspicuous in its absence

from this list, largely because for some reason the potential for using wavelets in economic

applications has been overlooked. Although some enterprising economists have attempted

to use wavelet analysis, given the discipline�s �xation on traditional time-series methods,

these papers have not been widely cited and have in fact been largely ignored. The main

aim of this discussion paper is to shed new light on wavelet analysis, to highlight the work

that has already been done using this approach, and to suggest future areas where wavelet

analysis might be able to make a contribution to our discipline. To maximise accessibility

to this material, the discussion paper is pitched at a less technical level than most other

introductions to wavelets, although a fairly complete list of references is provided for those

who might wish to obtain a more technical introduction.

So, what are wavelets? Wavelets are, by de�nition, small waves. That is, they begin

at a �nite point in time and die out at a later �nite point in time. As such they must,

whatever their shape, have a de�ned number of oscillations and last through a certain

period of time or space. Clearly these small wavelike functions are ideally suited to locally

approximating variables in time or space as they have the ability to be manipulated by

being either "stretched" or "squeezed" so as to mimic the series under investigation.

Wavelets possess many desirable properties, some of which are useful in economics and

�nance, but many of which are not. In this paper the focus is placed on the ability of

wavelet analysis to deal with both stationary and non-stationary data, their localization

in time, and on their ability to decompose and analyse the �uctuation in a variable (or in

signal processing, what is called a "signal").

In economics, while providing a review of the possible future contributions of wavelets

to the economics discipline, Ramsey (2000) explored four ways in which wavelets might be

used to enhance the empirical toolkit of our profession. These are as follows:

� exploratory analysis - time scale versus frequency: in economics and �nance an ex-
amination of data to assess the presence and ebb and �ow of frequency components

is potentially valuable.
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� density estimation and local inhomogeneity: wavelets estimators are superior to ker-
nel estimators whenever local inhomogeneity is present (e.g. modelling impact of

minimum wage legislation, tax legistlation, rigidities, innovation)

� time scale decomposition: recognition that relationships between economic variables
can possibly be found at the disaggregate (scale) level rather than at an aggregate

level.

� forecasting: disaggregate forecasting, establishing global versus local aspects of series,
therefore whether forecasting is really possible.

As shall soon be apparent, in this paper the focus is on the �rst and third areas of

empirical analysis. The second and fourth areas have certainly gained popularity and

are still largely unexplored. This paper constitutes an extension to Schleicher (2002) and

Ramsey (2002), given that many of the advances in wavelet analysis have only recently

been made widely available on commercially available statistical software packages. For

those more mathematically inclined, they should refer to the mathematics literature where

Debauchies (1992) andWalnut (2002) are good starting points. Other perhaps less intuitive

but nonetheless technically sound introductions to wavelets can be found in Walker (1999),

Percival and Walden (2000) and Addison (2002). There are three other entry points to

this literature that are speci�cally aimed at economists - the excellent book by Gençay,

Selçuk, and Whicher (2001), an article by Ramsey (2002) which provides a nice rationale

for wavelets in economics, and the discussion paper by Schleicher (2002).

2 What are wavelets?

Wavelet analysis has various points of similarity and contrast with Fourier analysis. The

Fourier transform is based on the usage of the sum of sine and cosine functions at vari-

ous wavelengths to represent a given function. One of the drawbacks of Fourier trans-

forms though is that they assume that the frequency content of the function is stationary

along the time axis. Imagine a minimalist symphony (say John Adams or Steve Reich)

- the analogue here would be each instrument playing a note, with a speci�c loudness:

a0 + a1 cos t + a2 cos 2t + ::: - to represent this signal one would only need the list of am-

plitudes (a0; a1; a2; :::) and the corresponding frequencies (0; 1; 2; :::). In this sense Fourier
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analysis involves the projection of a signal onto an orthonormal1 set of components which

are trigonometric in the case of the Fourier approach. The Fourier transform makes par-

ticular sense when projecting over the range (0; 2�), as Fourier series have in�nite energy

(they do not die out) and �nite power (they cannot change over time).

Windowed Fourier analysis extends basic Fourier analysis by transforming short seg-

ments of the signal (or "symphony") separately. In other words there are breaks where we

just repeat the exercise above. In a visual world we see an edge - in an economics world

we see regime shifts. Once again these are just separate sets of orthonormal components -

one set for each window.

Wavelets are localized in both time and scale. They thus provide a convenient and

e¢ cient way of representing complex variables or signals, as wavelets can cut data up into

di¤erent frequency components. They are especially useful where a variable or signal

lasts only for a �nite time, or shows markedly di¤erent behavior in di¤erent time periods.

Using the symphonic analogy, wavelets can be thought of representing the symphony by

transformations of a basic wavelet, w(t). So at t = 0, if cellos played the same tune twice

as fast as the double basses, then the cello would be playing c1w(2t) while the double basses

play b1w(t), presumably with b1 � c1. At t = 1, the next bass plays b2w(t � 1), and the
next cello plays c2w(2t� 1) starting at t = 0:5. Notice that we need twice as many cellos
to complete the symphony as double basses, as long as each cello plays the phrase once.

If violas played twice as fast as cellos and violins twice as fast as violas, then obviously

this would be 8 times as fast as double basses, and if there were such an instrument as a

hyper-violin, then it would play 16 times faster than a double bass. In general the n-violins

play "translations" of w(2nt).

In wavelet analysis, we only need to store the list of amplitudes, as the translations

automatically double the frequency. With Fourier analysis a single disturbance a¤ects all

frequencies for the entire length of the series, so that although one can try and mimic a

signal (or the symphony) with a complex combination of waves, the signal is still assumed

to be "homogeneous over time". In contrast, wavelets have �nite energy and only last for

a short period of time. It is in this sense that wavelets are not homogeous over time and

have "compact support". In wavelet analysis to approximate series that continue over a

long period, functions with compact support are strung together over the period required,

each indexed by location. In other words at each point in time, several wavelets can be

1An orthonormal tranform is one which preserves the energy of the series and is not a¤ected by shifts
in the data.
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analysing the same variable or signal. The di¤erence between Fourier analysis and wavelet

anaysis is shown in diagrammatic form in �gure 1.

2.1 Elementary wavelets

Wavelets have genders: there are father wavelets � and mother wavelets  . The father

wavelet integrates to 1 and the mother wavelet integrates to 0:Z
�(t)dt = 1 (1)

Z
 (t)dt = 0 (2)

The father wavelet (or scaling function) essentially represents the smooth, trend (low-

frequency) part of the signal, whereas the mother wavelets represent the detailed (high

frequency) parts by scale by noting the amount of stretching of the wavelet or "dilation".

In diagrammatic terms, father and mother wavelets can be illustrated for the Debechies

wavelet, as shown in �gure 2.

Wavelets also come in various shapes, some are discrete (as in the Haar wavelet - the

�rst wavelet to be proposed many decades ago, which is a square wavelet with compact

support), some are symmetric (such as the Mexican hat wavelet, symmlets and coi�ets),

and some are asymmetric (such as daublets)2. Four are illustrated in �gure 3.

All the wavelets given above are mother wavelets. The upper left hand wavelet is a

Haar wavelet, and this is a discrete symmetric wavelet. The upper right hand box contains

a daublet, which is asymmetric, the lower left hand box contains a symmlet and the lower

right hand box a coi�et. The latter two wavelets are nearly symmetric.

The dilation or scaling property of wavelets is particulary important in exploratory

analysis of time series. Consider a double sequence of functions:

 (t) =
1p
s
 

�
t� u

s

�
(3)

where s is a sequence of scales. The term 1p
s
ensures that the norm of  (:) is equal to

one. The function  (:) is then centered at u with scale s. In wavelet language, we would

say that the energy of  (:) is concentrated in a neighbourhood of u with size proportional

to s. As s increases the length of support in terms of t increases So, for example, when

2Other wavelets also exist - notably Morlets, DOGS, Pauls, and bi-orthogonal wavelet functions.
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Figure 1: Fourier vs Wavelet analysis
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Figure 2: Mother and Father Wavelets
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u = 0, the support of  (:) for s = 1 is [d;�d]. As s is increased, the support widens

to [sd;�sd].3 Dilation is particularly useful in the time domain, as the choice of scale

indicates the "packets" used to represent any given variable or signal. A broad support

wavelet yields information on variable or signal variations on a large scale, whereas a small

support wavelet yields information on signal variations on a small scale. The important

point here is that as projections are orthogonal, wavelets at a given scale are not a¤ected

by features of a signal at scales that require narrower support4. Lastly, using the language

introduced above, if a wavelet is shifted on the time line, this is referred to as translation

or shift of u. An example of the dilation and translation property of wavelets is shown in

�gure 4.

The left hand box contains symmlet of dilation 8, scale 1, shifted 2 to the right, while

the right hand box contains the same symmlet with scale 2 and no translation.

2.2 Multiresolution decomposition

The main feature of wavelet analysis is that it enables the researcher to separate out a

variable or signal into its constituent multiresolution components. In order to retain

tractability ( - many wavelets have an extremely complicated functional form), assume we

are dealing with symmlets, then the father and mother pair can be given respectively by

the pair of functions:

�j;k = 2
� j
2�(

t� 2jk
2j

) (4)

 j;k = 2
� j
2 (

t� 2jk
2j

) (5)

where j indexes the scale, and k indexes the translation. It is not hard to show that any

series x(t) can be built up as a sequence of projections onto father and mother wavelets

indexed by both j; the scale, and k, the number of translations of the wavelet for any given

scale, where k is often assumed to be dyadic. As shown in Bruce and Gao (1996), if the

wavelet coe¢ cients are approximately given by the integrals:

3The rescaling characteristic of wavelets in the time domain is thus equivalent to the rescaling of fre-
quencies in Fourier analysis.

4It is only true in the simplest of cases, however, that large scale wavelets are associated with low
frequencies. Consider for example, a given scale, say 23, or 8 months, and that the signal has components
at that scale. It could still be true that the signal could contain projections that oscillate with any period
greater than 8 months as well.
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Figure 3: Families of wavelets
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sJ;k �
Z
x(t)�J;k(t)dt (6)

dj;k �
Z
x(t) j;k(t)dt (7)

j = 1; 2; :::J such that J is the maximum scale sustainable with the data to hand. A

multiresolution representation of the signal x(t) is now be given by:

x(t) =
X
k

sJ;k�J;k(t) +
X
k

dJ;k J;k(t) +
X
k

dJ�1;k J�1;k(t) + :::+
X
k

d1;k 1;k(t) (8)

where the basis functions �J;k(t) and  J;k(t) are assumed to be orthogonal, that is:R
�J;k(t)�J;k0 (t) = �k;k0R
 J;k(t)�J;k0 (t) = 0R

 J;k(t) J 0 ;k0 (t) = �k;k0�j;j0
(9)

where �i;j = 1 if i = j and �i;j = 1 if i 6= j. Note that when the number of observations is

dyadic, the number of coe¢ cients of each type is given by:

� at the �nest scale 21 :there are n
2
coe¢ cients labelled d1;k.

� at the next scale 22 :there are n
22
coe¢ cients labelled d2;k.

� at the coarsest scale 2J :there are n
2J
coe¢ cients dJ;k and SJ;k

In wavelet language, each of these coe¢ cients is called an "atom" and the coe¢ cients

for each scale are termed a "crystal"5. The multiresolution decomposition (MRD) of the

variable or signal x(t) is then given by:

fSJ ; DJ ; DJ�1; :::D1g (10)

For ease of exposition, the informal description above assumes a continuous variable or

signal, which in signal processing is usually the case, but in economics although variables

we use for analysis represent continuous "real time signals", they are invariably sampled at

pre-ordained points in time. The continuous version of the wavelet transform (known as

the CWT) assumes an underlying continuous signal, whereas a discrete wavelet transform

(DWT) assumes a variable or signal consisting of observations sampled at evenly-spaced

5Hence the atoms make up the crystal for each scale of the wavelet resolution.

9



points in time. Apart from a later section in the paper, only the DWT (or variations on

the DWT) will be used from this point onwards.

The interpretation of the MRD using the DWT is of interest in terms of understanding

the frequency at which activity in the time series occurs. For example with a monthly or

daily time series table 1 shows the interpretation of the di¤erent scale crystals:

Scale
crystals

Annual
frequency
resolution

Monthly
frequency
resolution

Daily
frequency
resolution

d1 1-2 1-2 1-2
d2 2-4 2-4 2-4
d3 4-8 4-8 4-8
d4 8-16 8-16=8m-1yr4m 8-16
d5 16-32 16-32=1yr4m-2yr8m 4-8=4d-1wk 3d
d6 32-64 64-128=6yrs-10yr8m 32-64=6wks 2d-12wks 4d
d7 64-128 128-256=10yr8m-21yr4m 64-128=12wks 4d-25wks 3d
d8 128-256 etc etc

Table 1: Frequency interpretation of MRD scale levels

Note four things from table 1:

i) the number of observations dictates the number of scale crystals that can be produced

- only j scales can be used given that the number of observations, N � 2j. Using

the example given in this paper of industrial production, we have 1024 monthly ob-

servations, so the maximum number of scales is in theory j = 9: If there are only

255 observations, then no more then 7 crystals can be produced, but as the highest

scale (lowest frequency crystal) can only just be properly resolved, it is usually rec-

ommended that only 6 crystals be produced. With 512 observations, although the

d7 crystal can be produced, the trend crystal (or "wavelet smooth"), denoted s7 will

yield further �uctuations from trend for all periodicities above a 256 month period.

ii) the choice of wavelet used in the analysis also �gures into the number of scale crystals

that can be produced. Say you have a choice between an "s4" and an "s8" wavelet

for the MRD analysis. An "s4" wavelet means that the symmetric wavelet starts

with a width of 4 observations for its support - this corresponds to the wavelet used

to obtain the d1 crystals.6 Using an s4 wavelet with annual or quarterly data will

6Care should be taken not to confuse what the letter "d" means here. The d4 crystal refers to the
detail crystal at the 4th scale, where as a d4 wavelet refers to a Debauchies wavelet of length 4.
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still capture the correct periodicities, but will enable the researcher to decompose to

higher order scales. Clearly the higher the frequency of data, the more likely the

researcher is to use a longer supported wavelet though, as very short wavelets are

unlikely to yield any additional information.

iii) wavelet MRD analysis assumes that data is sampled at equally spaced intervals. The

frequency resolution interpretation is more di¢ cult with daily data, as daily (or hourly

or even more frequently sampled) data is not evenly sampled. Note that with yearly

data the resolution limit on a d3 crystal is half the time period on the minimum

frequency picked up by a d4 crystal. Clearly this would not be the case when using

daily data though.

iv) existing stylized facts need to be taken into account when applying an MRD to eco-

nomic data. For example as economists know that business usually last for a decade

at the most, it does not make sense to decompose a series beyond this level - so with

annual data it wouldn�t make sense to use anything more than the d4 scale crystals

- doing so would cause "redundancy". So for example, with monthly economic data,

if business cycles and their sub-cycles are to be identi�ed, then it is desirable to have

at least 512 observations.

Obviously the �rst and fourth point noted above pose major constraints for MRD with

economic data, as virtually no annual economic time series contain more than 100 observa-

tions, and very few quarterly data series contain more than 200 observations. In �nance,

when using high frequency data, the MRD yields more information on activity at many

di¤erent scale levels in the data, perhaps explaining the more frequent usage of wavelet

analysis in this domain. With most economic and �nance data of a reasonable time span,

choice of wavelet type doesn�t make a signi�cant di¤erence to the MRD ( - perhaps with

the exception of the Haar wavelet).

2.3 Examples

2.3.1 Continuous variable: a noisy doppler

A doppler signal7 is de�ned by:

x(t) =
p
t(1� t) sin(

2:1�

t+ 0:05
) (11)

7The "waning" of a signal heard when for example passing a police siren.
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Hence a doppler is sinusoid with a changing amplitude and decreasing frequency. If we

now generate a doppler signal with 1024 datapoints and add white noise to the doppler

signal the MRD plot using a symmlet is obtained in �gure 5.

The �rst line gives the signal, then the plots labelled D1-D4 plot the crystals (or detail

signals) associated with the scale of resolution, while the �nal plot gives the coarseset

approximation of the signal. Clearly the MRD separates out the noise in the D1-D4 plots,

with most of the action appearing within the �rst 200 observations of the plot. Beyond

this, crystals D1 and D2 contain mostly white noise, while D3 and D4 contain hardly any

of the signal and S4 contains the majority.

2.3.2 Discretely sampled variable: Canadian industrial production

Canadian industrial production data is available on a monthly basis from 1919 to 2004

by splicing together three Statistics Canada series. The data was used in annual percent

change format, giving 1014 datapoints. Because of the advantages of using dyadic series in

wavelet analysis, the series was padded with extra data ( - the August value was continued

through to the end of the series) so as to render a series of 1024 datapoints. The data is

shown in appendix A, together with data for US industrial production and Finnish industrial

production. It can be immediately seen that the index was extremely volatile during the

inter-war years, and then also during the second world war, but stabilised in the late 1940s.

Spectral analysis reveals that there appears to be more than one cycle active in this

series, and using a spectral analysis of autocovariances this is con�rmed for both the Cana-

dian industrial production series and the US industrial production series, as shown in �gure

?? . Inspection of the �gures shows that i) there appears to be activity at 5 di¤erent

frequencies in the series, and that ii) clearly the US industrial production series also exhibits

the same frequency patterns.

When wavelet MRD analysis is used for the Canadian series, 7 scales are used, which

then encompasses business cycles with frequencies of up to nearly 11 years. The results

are illustrated in �gure 8 which indicates that small scale frequency changes mostly took

place at the beginning of the series in the 1920s and 1930s but that other cycles have been

active in the data since.the 1920s and 30s.

In �gure 8, as wavelets for each scale are convolved with the data, crystal values are

given at increasingly large intervals - these are the "spikes" that appear in the multireso-

lution decomposition in the stack plot, where the crystals at each scale level are plotted in

ascending order. The crystals d1, d2 contain mostly noise, d3 appears to have contained
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Figure 7: Spectra for Canadian and US industrial production

some explanatory power during the 20s and 30s, but now most variability is to be found in

crystals d4 to d7 and s7. These cyclical interpretation of these crystals corroborates the

spectra obtained in �gure 7 as 4 separate cycles are identi�ed (crystals d4, d5, d6 and d7),

with crystals d1 to d3 containing mostly noise. Crystal s7 is interpreted as a trend or drift

variable, and does not capture any distinct cycles in the data.

There are various ways of looking at the resulting DWT in graphical terms as shown in

�gure 9.

First, a in the upper left plot, a time-frequency graph shows activity in each scale

through time. The y-axis is the inverse of scale - so large-scale (dilated) wavelets are given

by �at wide boxes, and small-scale (very compact) wavelets are given by tall thin boxes.

Each box should have the same area. This illustrates the localization in time of both

large-scale and small-scale wavelets. Figure 10 shows this idea schematically.

The colour of the boxes re�ects the size of the crystal coe¢ cients - in this schema green,

black and brown represent increasingly large coe¢ cient sizes. Second, in the upper right

hand panel, a dot chart shows the percentage of energy by crystal for scale j, Ej, which is

given by:
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Figure 10: The time-frequency plot

Edj =
1

E

n

2jX
k=1

d2j;k (12)

where d refers to the detail crystals, but the same can be done for the smoothness crystals.

Orthogonal wavelets they are energy (variance) preserving, so that:

E = Esj +

jX
i=1

Edj (13)

As already noted, crystals d4, d5, d6 d7 and s7 contain most of the series energy. For the

bottom left hand panel, a box plot should be self explanatory, and here the width of the

boxes represent the number of data points or coe¢ cients. Lastly the bottom right hand

�gure shows an energy plot which provides the cumulative energy function for the data and

the DWT. Clearly the DWT contains the salient information about the series much better

than the original untransformed data, which helps to explain why wavelets are so popular

as a means of data compression.

Extracting information about individual crystals is also possible and easily implemented.

For example in this instance, we have con�rmed interest in crystals d4, d5 and d6. For

example a panel plot for crystal d4 is illustrated in �gure ??. The upper left hand plot gives
the d4 coe¢ cients together with the reconstructed compoenent signal D4. The upper right

hand plot is an ACF for the d4 coe¢ cients with 95% con�dence intervals. The bottom

left hand plot is a quantile-quantile plot of the d4 coe¢ cients versus those for a normal

distribution. Clearly the distribution is fat-tailed at one end, which perhaps emphasises

the role that the d4 crystal played in representing the increased volatility in the series in

the earlier part of the series.
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2.4 Multiresolution analysis (MRA)

The sequence of partial sums of crystals:

Sj�1(t) = SJ(t) +DJ(t) +DJ�1(t) + :::+Dj(t) (14)

provides a multiresolution approximation (MRA) to the variable. This works by building

up the variable from the highest numbered (coarsest) scale downwards. An MRA therefore

could be viewed as a �ltered version of the series which retains the most important parts

of the series, but de-noises the series to a greater or lesser degree. Indeed, because wavelet

analysis essentially �lters certain information at di¤erent scales, many of those involved

in the development of wavelets label them �lters (of limited bandwidth)8. To show how

the inverse discrete wavelet transform (IDWT) can approximate the series by acting as a

band-pass �lter, a smooth MRA representation of the data using the 4-6 scale crystals is

calculated as follows:

S4 = S6 +D4 +D5 +D6 (15)

Clearly one could also reconstruct the signal again by adding lower scale crystals to equation

15. One interesting application for wavelet analysis, given that we have determined which

crystals are most relevant for describing the Canadian industrial production, would be to

invert the wavelet transform so as to reconstruct the series using an MRA. If this is done,

�gure 12 shows what is obtained. S7 represents both the s7 and d7 crystals combined, and

then when d6 is superimposed, S6 is obtained etc.

Putting the wavelet analysis of the Canadian industrial production series together, it

is now quite apparent (from �gures 8, ?? and 12) that crystals d7, d6, d5, and d4 largely
show the movement of the series. Adding d3 (to get S3 in �gure 12), adds very little

to explaining any movement in the series (except perhaps towards the beginning), and if

shorter term �uctuations are desired, then clearly s2 captures some more of the noise but

adds very little to the analysis. The real value added here is the recognition from �gures

?? and 12 that there appear to be 5 di¤erent sources of variation in the series - one longer
term, two medium term, one shorter term, and lastly very short-term "noise" variations,

the latter appearing not to be cyclical in nature.

8In this parallel literature the mother wavelet is usually called a "wavelet �lter" and the father wavelet
is called a "scale �lter", and a DWT can be thought of as an "octave band" �lter bank (see Bruce, Hong-Ye,
and Ragozin (1995))
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0 200 400 600 800 1000

S7

S6

S5

S4

S3

S2

S1

Data

Figure 12: MRA for Canadian industrial production

18



3 How does a DWT work?

The principle behind the notion of the wavelet transform is deceptively simple, and orig-

inated in the pioneering work of Mallat (1989) in signal processing. The core of this

approach is the usage of a "pyramid algorithm" which uses 2 �lters at each stage (or scale)

of analysis.�gure 14 represents the pyramid algorithm approach for MRD, where L rep-

resents a low-band �lter and H represents a high-band �lter.

Figure 13: Mallat�s DWT Pyramid Algorithm

If the input to the algorithm is X = (x1; x2; :::xn) and then de�ne a �lter to be F =

(f1; f2; :::fm);then the convolution of the �lter and variable is given by9:

yt =
mX
i=1

fixt (16)

If we use two �lters, one low-pass ( - a father wavelet) and one high-pass (mother

wavelet) �lter, then this will produce two series. Now drop every other data point in terms

of the output from these two �lters to get:

yt =

mX
i=1

fix2t+i�2 (17)

The output will be s1 for the low-pass �lter and d1 for the high-pass �lter. These details

coe¢ cients are kept, and s1 is now put through a further high-pass and low-pass �lter, etc,

to �nally produce:

dj = WH;#(sj�1) (18)

9An interesting applet showing convolution is located at http://www.jhu.edu/~signals/discreteconv/ on
the web.
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a set of j detail coe¢ cients and:

sj = WL;#(sj�1) (19)

a set of level j smooth coe¢ cients. The choice of �lter obviously aligns with the choice

of wavelet here. This is the output given by the MRD of a variable. To construct an

MRA an inverse DWT needs to be performed. In algorithm terms, this is shown as �gure

14.Here the crystals are taken and convolved with a synthesis �lter, and at the same time

Figure 14: The IDWT (MRA) algorithm

"upsampled" by inserting zeros between every other value of the �lter input. The smoothed

coe¢ cients for scale j � 1 are obtained as:

sj�1 = WL;"(sj) +WH;"(dj) (20)

where WF;" is an upsampling convolution operator for �lter F .

4 Wavelet packet transforms

One important extension to wavelet analysis was introduced by Ronald Coifman and others

Coifman, Meyer, Quake, and Wickerhauser (1990). Wavelet packets are a generalisation of

wavelets, as they take a wavelet of a speci�c scale and add oscillations. Following the nota-

tion used above, in mathematical terms they can be represented as functions Wj;b;kwhere j

corresponds to the scale/resolution level, k corresponds to the shift and b indicates the num-

ber of oscillations10. A discrete wavelet packet table is shown schematically in �gure 15,

unfortunately using slightly di¤erent notation than used in previous sections The �rst line

of the �gure gives the original data or variable. The data is �rst �ltered (convolved) with

10Only for the Haar wavelet does b represent the number of zero crossings - for other wavelets the number
of zero crossings is usually larger than b.
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Figure 15: Wavelet packet tree

a high level �lter to get A1and a low level �lter to get D1 The wavelet packet transform

then departs with the DWT by continue to apply high level and low level �lters to these

crystals, with the result that wavelets with oscillations are introduced. Mathematically

these wavelet packet basis functions can be written as:

Wj;b;k = 2
�j=2Wb(2

�jt� k) (21)

and the theoretical wavelet packet coe¢ cients can be given as approximately:

wj;b;k �
Z
Wj;b;k(t)f(t)dt (22)

Put another way, a wavelet packet crystal wj;b can be written as a vector:

wj;b = (wj;b;1; wj;b;2; :::; wj;b; n
2j
)0 (23)

where wj;b is the result of selecting n linearly independent rows from a matrix W, such

that:

w =Wx (24)

where x is the original signal/series.

Wavelet packet functions are illustrated in �gure 16.

The �rst step in doing wavelet packet analysis is to use a wavelet packet table. Suppose

the series of interest has n observations, where n is a muliple of 2j(i.e. dyadic), then the

wavelet packet table will have J + 1 resolution levels where J is the maximum resolution
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Figure 16: Debauchies wavelet packet functions

level. If the (J+1) resolution levels are stacked in order a table of n� (J+1) coe¢ cients is
obtained. At level J the table has n coe¢ cients divided into 2jcoe¢ cient blocs (crystals).

In other words, each row represents a certain scale, and as you read across the wavelet

packet table you see wavelet �lters with increasing large numbers of oscillations at that

scale. To illustrate, a generated linear chirp signal of 1024 datapoints is analysed in a

wavelet packet table in �gure 17 and then the Canadian industrial production series is also

analysed in �gure 18

Figure 17 shows the crystals for each wavelet basis in a box bordered by dots. The

series is well represented by certain wavelets, and notably those wavelets that have a lower

number of osceillatoins, although the higher the scale level, the more larger oscillation

wavelets appear to have crystal values signi�cantly di¤erent from zero. Take level 2 for

example: here there are 4 crystals, w2;0; w2;1; w2;2; w2;3- as the chirp oscillates more rapidly

so the coe¢ cients in w2;0seem to wane, only for the coe¢ cients in w2;1 to provide a better

�t. Clearly w2;2;and w2;3 have little explanatory power, although towards the end of the

series the values of these wavelet coe¢ cients appear to start to respond.
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Figure 18: Wavelet packet table for Canadian industrial production
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When turning to Canadian industrial production data, �gure 18 tends to suggest that

the zero oscillation wavelets characterise the series fairly well, so the improvement over a

DWT by using a packet transform might be signi�cant, as the DWT uses single oscillation

wavelets at all scales. One of the more interesting uses of wavelet packet transforms is to

characterise series in terms of a particular set of crystals of a certain scale. So for example,

using an inverse wavelet packet transform with say level 4 crystals, a reconstruction of a

series can be made. This is done in �gure 19 for the Canadian industrial production series.

Figure 20 presents the time-frequency plot for the level 4 packet transform for the

Canadian industrial production series, and compares it with the original time-frequency

plot for the DWT.

First note that in the left hand plot in the panel, the boxes are exactly the same size -

that is because all the crystals are level 4, but representing di¤erent numbers of oscillations.

In �gure 19 there are 16 crystals, and these are stacked up in the left hand panel of �gure 20

- once again, wavelets with large numbers of oscillations tend to have signi�cant coe¢ cients

only for the �rst part of the series.

5 Optimal transforms

Coifman and Wickerhauser (1992) developed a "best basis" algorithm for selecting the

most suitable bases for signal representation using a wavelet packet table. The best basis

algorithm �nds the wavelet packet transforms W that minimises a cost function E:

E(W ) =
X
j;b2I

E(wj;b) (25)

where I is the set of index pairs (j; b)of the crystals in the transform W: Typically, the

entropy cost function is used, in which case the cost function is of the form:

Eentropyj;b =
X
k

�
wj;b;k
kw0;0k2

�2
log

(�
wj;b;k
kw0;0k2

�2)
(26)

where wj;b;k represents the crystal coe¢ cients and kk2 is the L2 norm of the matrix

w de�ned above in equation (equation 23). Other cost functions are also used in wavelet

analysis, such as the threshold function ( - which takes the coe¢ cients with values greater

than a certain threshold), Stein�s unbiased risk estimate (SURE) function and the Lp.norm

cost function. The entropy cost function essentially applies higher costs to packets with

higher energy, thus favouring large crystal coe¢ cients in packets with lower levels of energy.

24



0 200 400 600 800 1000

w4.15
w4.14
w4.13
w4.12
w4.11
w4.10
w4.9
w4.8
w4.7
w4.6
w4.5
w4.4
w4.3
w4.2
w4.1
w4.0
iwpt

Figure 19: Level 4 packet transform for Canadian industrial production
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Figure 20: Time-freq plots for Canadian industrial production a) level 4 DWPT and b)
DWT
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Figure 21: Wavelet packet tables for Canadian industrial production: a) DWT; b) best
basis using entropy cost function; c) scale level 4 basis; d) entropy cost function basis

Once the cost function is applied to the series in question, a best basis plot is obtained. Of

course, as the algorithm for choosing the best representation of the series uses orthogonal

wavelet transforms, so the the choice of best wavelets must not overlap at each scale. This

is shown in the wavelet packet table as a series of shaded boxes such that every column in

the table is covered by one crystal so the series can be reconstructed, while at the same

time no column has more than one crystal. To compare the best basis with a DWT and

an arbitrary choice of crystal to represent the series (d4 here), �gure 21 plots the best

basis cost function for the Canadian series (lower right hand plot) with the wavelet packet

representations for three other cases (top left hand plot: WPT; top right: best basis; bottom

left: scale 4 crystals).

The best basis transform for Canadian industrial production clearly shows the best

basis packets emanating from the crystals at scales 4 to 7, with scale 4 actually being more

strongly represented than might have been suggested by the DWT. Once the best basis

transform has been found.the original series can be plotted with an indication of which

crystals best represent the variable/signal over various periods of time. .The coe¢ cients in

�gure are ordered roughly by oscillation and scale.

Another way to view packet wavelet transforms is to display them in the form of a tree
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Figure 22: Time representation of Canadian industrial production using best basis packet
selection.

plot - the tree plots for the best basis, the level 4 basis and the DWT are shown in �gure 23.

The length of the arc denotes the cost savings by using the alternative transforms (the two

left hand plots) compared with the DWT (right hand plot). There are clearly considerable

cost savings by using the best basis as compared with the DWT in this instance, as the

higher scales crystals are not particularly relevant for the series in question here.

6 Other useful wavelets and wavelet transforms

6.1 Bi-orthogonal wavelets

These are wavelets that are not orthogonal.but are symmetric, and were introduced by

Cohen, Daubechies, and Feauveau (1992) Biorthogonal wavelets are characterised by

wavelets of four types: �;  ; e� and e , where � and  are the usual father and mother

wavelets respectively, but biorthogonal wavelets necessitate the introduction of two new

types of wavelets, e� and e , which are called the "dual" wavelets. These dual wavelets have
di¤erent lengths of support so that while the original mother and father wavelets analyze

the variable in question the dual wavelets act to synthesize the wavelets through time. The

wavelet approximation can be expressed as a variation on the DWT, but using the dual

wavelet functions, as in equation 27 :
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Figure 23: Tree plots for Canadian industrial production: a) best basis; b) level 4 crystal;
c) DWT

f(t) =
X
k

sJ;ke�J;k(t) +X
k

dJ;ke J;k(t) +X
k

dJ�1;ke�J�1;k(t) + :::+
X
k

d1;ke 1;k(t) (27)

Biorthogonal wavelets satisfy the following conditions:R
�J;k(t)e�J;k0 (t) = �k;k0R
 J;k(t)

e�J;k0 (t) = 0R
 J;k(t)

e J 0 ;k0 (t) = �k;k0�j;j0

(28)

so that is, there is orthogonality between the father and mother dual wavelets (and vice-

versa), but not between the mother and dual or father and dual. Note from equation

27 that if either of the duals are set equal to the usual father and mother wavelet, then

we revert back to a DWT (as given by equation ??. There are two popular forms of

bi-orthogonal wavelets, namely B-spline and S-spline wavelets - with the former based on

a simple polynomial spline function and the latter designed speci�cally to try and mimic

an orthogonal wavelet. Examples of biorthogonal wavelets are given in �gure 24. Bi-

orthogonal wavelets are used in storing information in JPEG �le formats.

6.2 Maximal-overlap DWT (MODWT)

Although extremely popular due to its intuitive approach, the classic DWT su¤ers from two

drawbacks: dyadic length requirements and the fact that the DWT is non-shift invariant.
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Figure 24: Examples of biorthogonal wavelets

In order to address these two drawbacks, the maximal-overlap DWT (MODWT)11 gives up

the orthogonality property of the DWT to gain other features, such as given in Percival

and Mofjeld (1997) as:

� the ability to handle any sample size regardless of whether dyadic or not;

� increased resolution at coarser scales as the MODWT oversamples the data;

� translation-invariance - in other words the MODWT crystal coe¢ cients do not change
if the time series is shifted in a "circular" fashion; and

� the MODWT produces a more asymptotically e¢ cient wavelet variance estimator

than the DWT.

Both Gençay, Selçuk, and Whicher (2001) and Percival and Walden (2000) give a de-

scription of the matrix algebra involved in the MODWT, but for our purposes the MODWT

can be described simply by referring back to �gure ??. In contrast to the DWT the

11As Percival and Walden (2000) note, the MODWT is also commonly referred to by various names in
the wavelet literature. Equivalent labels for this transform are non-decimated DWT, time-invariant DWT,
undecimated DWT, translation-invariant DWT and stationary DWT. The term "maximal overlap" comes
from its relationship with the literature on the Allan variance (the variation of time-keeping by atomic
clocks) - see Greenhall (1991).
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Figure 25: MODWT for Canadian industrial production

MODWT simply skips the downsampling after �ltering the data, and everything else de-

scribed in the section on MRDs using DWTs above follows through, including the energy

(variance) preserving property and the ability to reconstruct the data using MRA with an

inverse MODWT. A simple derivation of the MODWT following both Gençay, Selçuk, and

Whicher (2001) and Percival and Walden (2000) can be found in appendix C.

Figure 25 shows the MODWT for Canadian industrial production. Clearly the resolu-

tion dramatically increases for the coarser scales, and now the intermediate cycles are more

clearly apparent in the data.

One of the problems with the DWT is that the calculations of crystals occurs at roughly

half the length of the wavelet basis (length) into the series at any given scale. Thus in

�gure 8 crystal coe¢ cients start further and further along the time axis as the scale level

increases. As the MODWT is shift invariant, the MRD will not change with a circular

shift in the time series, so that each scale crystal can be appropriately shifted so that the

coe¢ cients approximately line up with the original data (known as "zero phase" in the

signalling literature). This is done by shifting the scales to the left by increasingly large

amounts as the scale order increases, and the y=axis of �gure ?? shows.
Although the MODWT has a number of highly desirable properties, the transform leads

to a large amount of "redundancy", as even though the transform is energy preserving, the
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distribution of energy is clearly inferior to the original data. Similar analysis can be done

with MODWTs as with DWTs and appendix C shows an example of a MODWPT, which

as expected yields almost exactly the same results as obtained for its discrete counterpart.

6.3 "à trous" WT

For smaller time series, the scale crystals obtained may contain few data points, another

simpler approach sometimes used in wavelet analysis which pre-dates the MODWT is called

the à trous non-decimated wavelet approach. The algorithm over-samples at coarser scales

so as to provide better spatial resolution but it does this by calculating the detail coe¢ cients

as simple di¤erences between the smooth coe¢ cients at di¤erent levels:

dj;k = sj�1;k � sj;k (29)

While this is computationally simpler, the MODWT possesses other properties which

make it superior in most cases to the à trous, such as the shift invariance property referred

to above. Figure 6.3 shows the construction of the à trous WT in diagrammatic terms.

6.4 Matching pursuit decompositions

This is another form of non-orthogonal wavelet decomposition, but using so-called waveform

"dictionaries". The original idea here was to represent a series using linear combinations

of a small number of wave-like functions (waveforms) selected from a large and redundant

collection of functions. The original work on this algorithm started with Mallat and Zhang

(1993) who used either wavlet packet tables, cosine packet tables, or gabor function tables

to generate non-orthogonal "dictionaries" of waveforms to �t to any given series. The

algorithm essentially takes each part of the series and attempts to �t a waveform to that
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Figure 26: Matching pursuit decomposition for Canadian industrial production

part ( - many wave shapes are used). The approximation to the actual series can be

expressed as:

f(t) =
NX
n=1

�ng
n(t) +RN(t) (30)

where g
n(t) are a list of waveforms coming from a dictionary, �n is the matching pursuit

coe¢ cient, and RN(t) is the residual which is still unexplained once the best atoms have

been located. The best �tting waveforms from the dictionary are then preserved in a list,

and are called "atoms". Figure 26 shows the best 100 atom coe¢ cients for the Canadian

industrial production series.

Most of the atoms are once again in the 4th to 7th crystals, and indeed if split down

in terms of energy, 42% of the total energy is located in the scale level 4 atoms. It is

noteworthy that the matching pursuit actually gives the scale 3 atoms 18% of the energy

and scale 5 and 6 around 15% each, which is a somewhat di¤erent result that we obtained

when using the DWT, as with the DWT the level 3 crystal had little explanatory power

but the level 7 had signi�cant explanatory power. Figure 27 compares the top 15 crystals

from the matching pursuit algorithm with the top 15 from the DWT.

Clearly the matching pursuit algorithm does a better job of matching waveforms to the

series than the DWT. It uses a much richer collection of waveforms than the DWT, which

is always limited to one particular wavelet form.
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Figure 27: Top 15 atoms for Canadian industrial production: a) matching pursuit and b)
DWT

6.5 Wavelet shrinkage

Donoho and Johnstone (1995) �rst introduced the idea of wavelet shrinkage in order to

denoise a time series. The basic idea here is to shrink wavelet crystal coe¢ cients, either

proportionately, or selectively, so as to remove certain features of the time series. The

initial version of the waveshrink algorithm was able to de-noise signals by shrinking the

detail coe¢ cients in the lower-order scales, and then applying the inverse DWT to recover

a de-noised version of the series. This idea was then extended to di¤erent types of shrinkage

function, notably so-called "soft" and "hard" shrinkage (reviewed in Bruce and Gao (1995))

. In mathematical terms, following the notation of Bruce, Hong-Ye, and Ragozin (1995)

these di¤erent types of shrinkage can be de�ned by application of a shrinkage function to

the crystal coe¢ cients such that:

edj = �j�(x)dj (31)

where dj is a vector of scale j crystal coe¢ cients and �j�(x) is de�ned as a shrinkage

function which has as parameters the variance of the noise at level j; �j; and the threshold

de�ned within the shrinkage function. The threshold argument can be de�ned in three

di¤erent ways:
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�Sj (x) =

�
0 if jxj � ec

sign(x)(jxj � ec) if jxj > ec (32)

�Hj (x) =

�
0 if jxj � bc
x if jxj > bc (33)

�SSj (x) =

8<:
0 if jxj � cL

sign(x) cU (jxj�cL)
cU�cL if cL > jxj � cU

x if jxj > cU

(34)

where �S(x) is a generic soft shrinkage function, �H(x) is a generic hard shrinkage function

and �SS(x) is a generic semi-soft shrink function for coe¢ cients of any scale crystal. �H(x)

essentially sets all crystal coe¢ cients to zero below a speci�ed coe¢ cient value ec, �S(x) just
lowers the crystal coe¢ cients above a de�ned scale by the same amount, and the semi-soft

version has the hard function property above scale cU and below scale cL but in between

these two scales adopts a linear combination of the two approaches. There are a variety of

ways of choosing ec; bc or cLand cU ; some based on statistical theory and others rather more
subjective. In some cases, such as the universal threshold case (setting bc = p2 log n), the
threshold is constant at all scale levels, and in other cases such as the "adapt" threshold,

the threshold changes according to scale level.

7 Extensions

7.1 Wavelet variance, covariance and correlation analysis

7.1.1 Basic analysis

Given that wavelet analysis can decompose a series into sets of crystals at various scales, it

is not such a big leap to then take each scale crystal and use it as a basis for decomposing

the variance of a given series into variances at di¤erent scales. Here we follow a very

simpli�ed version according to Constantine and Percival (2003) which is originally based

on Whitcher, Guttorp, and Percival (2000b) (with full-blown mathematical background

provided in Whitcher, Guttorp, and Percival (1999)). Other more technical sources for

this material are Percival and Walden (2000) and Gençay, Selçuk, and Whicher (2001).

Let xt be a (stationary or non-stationary) stochastic process, then the time-varying

wavelet variance is given by:

�2x;t(�j) =
1

2�j
V (wj;t) (35)
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where �j represents the jth scale level, and wj;t is the jth scale level crystal. The main com-

plication here comes from making the wavelet variance time independent, the calculation

of the variance for di¤erent scale levels (because of boundary problems) and accounting for

when decimation occurs, as with the DWT. For ease of exposition, assume we are dealing

with an MODWT, and assume that a �nite, time-independent wavelet variance exists, then

we can write equation 35 as:

e�2x;t(�j) = 1

Mj

N�1X
t=Lj�1

d2j;t (36)

whereMj is the number of crystal coe¢ cients left once the boundary coe¢ cients have been

discarded. These boundary coe¢ cients are obtained by combining the beginning and end

of the series to obtain the full set of MODWT coe¢ cients, but if these are included in the

calculation of the variance this would imply biasedness. If Lj is the width of the wavelet

(�lter) used at scale j, then we can calculate Mj as (N � Lj + 1)
12.

Calculation of con�dence intervals is a little more tricky. Here the approach is to �rst

assume that dj � iid(0; e�2j) with a Gaussian distribution, so that the sum of squares of dj is
distributed as ��2�, and then to approximate what the distribution would look like if the dj
are correlated with each other ( - as they are likely to be). This is done by approximating

� so that the random variable (�2x;t�
2
�)=� has roughly the same variance as e�2x;t - hence � is

not an actual degrees of freedom parameter, but rather is known as an "equivalent degrees

of freedom" or EDOF. There are three ways of estimating the EDOF in the literature,

and these can be summarised as i) based on large sample theory, ii) based on a priori

knowledge of the spectral density function and iii) based on a band-pass approximation.

Gençay, Selçuk, and Whicher (2001) show that if dj is not Gaussian distributed then by

maintaining this assumption this can lead to narrower con�dence intervals than should be

the case.

As an example of calculating wavelet variances for the three industrial production series,

�gure 28 shows the variances and con�dence intervals by scale using a band-pass approxi-

mation to EDOF. The change in wavelet variance by scale is quite similar for Canada and

the US, but Finland�s wavelet variance appears not to show a similar pattern, even when

the US series is adjusted so as to coincide with the Finnish IP period.

Once the wavelet variance has been derived, the covariance between two economic series

can be derived, as shown by Whitcher, Guttorp, and Percival (2000b) (with mathematical

12Lj = [(2
j � 1)(L� 1) + 1] as an L tap �lter will clearly have a larger base at larger scales.
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Figure 28: Wavelet variance by scale for Canada and Finland industrial production vs the
US.

background provided in Whitcher, Guttorp, and Percival (1999)). The covariance of the

series can be decomposed by scale, and thus di¤erent "phases" between the series can

be detected. Figure 29 shows how the covariance between Canadian and US industrial

production series breaks down by scale and then �gure 30 shows cross covariances.between

the Canadian and Finnish series and the US equivalent.

Once covariance by scale has been obtained, the wavelet variances and covariances can

be used together to obtain scale correlations between series. Once again, con�dence inter-

vals can be derived for the correlation coe¢ cients by scale (these are derived in Whitcher,

Guttorp, and Percival (2000b)). The correlation between the Canadian and Finnish in-

dustrial production series and their US counterpart are estimated and plotted in �gure 31

by scale, and then the cross-correlations for a 25 lag span.are plotted in �gure 32.

Several interesting points emerge from �gures 31 and 32:

� First, even for time series that are not particularly highly correlated such as that of
Finland and the US, the cyclical nature of the co-correlation at every scale implies

that there is co-movement of business cycles at a variety of di¤erent levels;

� Second, for Canada the co-correlation appears to increase as scale increases - this
would be perhaps be expected for series that are highly correlated (or co-integrated)
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Figure 29: Wavelet covariance by scale for Canadian and Finnish industrial production vs
the US.
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over time; whereas for Finland, beyond scale 4, the co-correlation doesn�t appear to

follow any pattern by scale;

� Thirdly, as we are comparing crystals for increasingly wide wavelet support, we would
expect the positive correlations to persist much longer as lag length is increased - this

is found to be the case here;

� Lastly, at the same lag length the co-correlation can be quite di¤erent according
to scale ( - for example for Canada at a lag length of 12, scales 1-4 show negative

co-correlation, scale 5 shows zero co-correlation and scales 6 and 7 exhibit positive

correlation).

7.1.2 Testing for homogeneity

Whitcher, Byers, Guttorp, and Percival (1998) developed a framework for applying a test

for homogeneity of variance on a scale-by-scale basis to long-memory processes. A good

summary of the procedure is located in Gençay, Selçuk, and Whicher (2001). The test

relies on the usual econometric assumption that the crystals of coe¢ cients, wj;t for scale j

at time t have zero mean and variance �2t (�j): This allows us to formulate a null hypothesis

of:

H0 : �
2
Lj
(�j) = �2Lj+1(�j) = :::: = �2N�1(�j) (37)

against an alternative hypothesis of:

HA : �
2
Lj
(�j) = ::: = �2k(�j) 6= �2k+1(�j) = :::: = �2N�1(�j) (38)

where k is an unknown change point and Lj represents the scale once the number of bound-

ary coe¢ cients have been discarded.. The assumption is that the energy throughout the

series builds up linearly over time, so that for any crystal, if this is not the case, then the

alternative hypothesis is true. The test statistic used to test this is the D statistic, which

has previously been used by Inclan and Tiao (1994) for the purpose of detecting a change

in variance in time series. De�ne Pk as:

Pk =

Pk
j=1w

2
jPN

j=1w
2
j

(39)

then de�ne the D statistic as D = max(D+; D�) where D+ = (bL�Pk) and D� = (Pk� bL)
where bL is the cumulative fraction of a given crystal coe¢ cient to the total number of
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coe¢ cients in a given crystal. Percentage points for the distribution of D can be obtained

through Monte Carlo simulations, if the number of coe¢ cients is less than 128 and is

obtained through large sample properties. Table 2 shows the results of applying this test

to the industrial production series at a 5% level of signi�cance.

Scale Canada IP US IP Finnish IP
1 F F F
2 F F F
3 F F F
4 F F T
5 T F T
6 F F T
7 T T NA

Table 2: Testing for Homogeneity

Gençay, Selçuk, and Whicher (2001) provides two examples of tests for homogeneity of

variance - one for an IBM stock price and another for multiple changes in variance using

methodology extending this framework which was developed by Whitcher, Guttorp, and

Percival (2000a).

7.2 Wavelet analysis of fractionally di¤erenced processes

Granger and Joyeux (1980) �rst developed the notion of a fractionally di¤erenced time series

and in turn, Jensen (1999) and Jensen (2000) developed the wavelet approach to estimating

the parameters for this type of process. A fractionally di¤erenced process generalises the

notion of an ARIMA model by allowing the order of integration to assume a non-integer

value, giving what some econometricians refer to as an ARFIMA process. In the frequency

domain, this means that a fractionally di¤erenced process has a spectral density function

that varies as a power law over certain ranges of frequencies - implying that a fractionally

di¤erenced process will have a linear spectrum when plotted with log scales. A fractionally

di¤erenced process (FDP) can be de�ned as di¤erence stationary if:

(1�B)dxt =

dX
k=0

�
d

k

�
(�1)kxt�k = �t (40)

where �t is a white-noise process, d is a real number and
�
d
k

�
= d!

k!(d�k)! =
�(d+1)

�(k+1)�(d�k+1) ; �

being Euler�s gamma function. Wavelets can be used to estimate the fractional di¤erence

parameter, d, as the variance of an ARFIMA type process can be expressed in the form:
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�2x(�j) � �2�ec(ed)[�j]2ed�1 (41)

where ec is a power function of ed and ed = (d� 0:5): Equation 41 suggests that to estimateed a least squares regression could be done to the log of an estimate of the wavelet variance
obtained from an MODWT. This represents the �rst way of estimating ed, but there is a
problem as here the MODWT yields correlated crystals, so the estimate of d would likely

be biased upwards.

Another way of estimating the parameters of the FDP is to go back to the DWT, as the

scale crystals are uncorrelated, and use the likelihood function for the interior coe¢ cients (

- in other words after discarding the boundary coe¢ cients). Let dI be a vector of lengthM

containing all the DWT wavelet coe¢ cients for all j scales (for which there areMj elements

for each scale), then the liklihood function for �2� and ed will be:
L(ed; �2� j dI) = expf(�d0I��1dI dI)=2g

(2�)M=2 j�dI j
1=2

(42)

where �dI is the variance covariance matrix. Using the fact that the wavelet coe¢ cients

at di¤erent scales are uncorrelated, we can use an approximation to the variance Cj(ed; �2�)
so that equation 42 can be rewritten as:

L(ed; �2� j dI) = JY
j=1

Mj�1Y
t=0

expf�d2j;t=2Cj(ed; �2�)g
(2�Cj(ed; �2�))1=2 (43)

where dj;t is once again a crystal coe¢ cient. Equivalently we can estimate a reduced log

likelihood, such as:

`(ed j dI) =M ln(e�2�(ed)) + JX
j=1

Mj ln( bCj(ed)) (44)

where e�2�(ed) = 1
M

PJ
j=1

1bCj(ed)
PMj�1

t=0 and bCj(ed) = Cj(ed; �2�)=�2� : Minimizing equation 44

yields a maximum likelihood estimate for ed; bedMLE, which can then be substituted into the

de�nition of e�2�(ed) to obtain an estimate for the variance. Percival and Walden (2000)

devotes a whole chapter to the issue of FDPs and provides examples of MLEs for non-

stationary processes, and Constantine and Percival (2003) provides routines for chopping

the series up into blocks to obtain "instantaneous" estimators for the FDP parameters.

To illustrate wavelets applied to a �nancial time series, take the British pound daily

series against the US dollar (details given in appendix D), and after taking log di¤erences
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Figure 33: Instantaneous di¤erence parameter estimates using LS for abs(GBP/USD)

of the series, take the absolute value of the log di¤erences and use an instantaneous para-

meter estimation of the di¤erence coe¢ cient ed: This series will likely have long memory as
volatility appears in clusters, so that the di¤erence coe¢ cient is unlikely to be an integer.

Figure 33 plots the instantaneous estimate of the di¤erence coe¢ cient together with

a 95% con�dence interval band. The mean of the parameter estimates is 0.236, and the

mean of the variance estimates for the 10 scale levels estimated is 0.1002.

7.3 Dual Tree WTs using wavelet pairs

This is relatively recent research and uses a so-called dual tree wavelet transform (DTWT or

complex wavelet transform), which was developed by Kingsbury (see Kingsbury (1998) and

Kingsbury (2000)) with particular applications in image compression and reconstruction in

mind. The DTWT di¤ers from a traditional DWT in two distinct ways:

i) after the �rst application of a high �lter (as in �gure 13), then the data are not

decimated and are handed to two di¤erent banks of �lters - the even observations are

passed to one set of �lters that then convolve with the data in the usual DWT process

(with decimation), but the other �lter bank takes the odd numbered observations and

convolves that set of data with the �lters coe¢ cients reversed.
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Figure 34: Dual Tree WT for Finnish Industrial Production

ii) the pair of �lters have the character of "real" and "imaginary" parts of an overall

complex wavelet transform. If the mother wavelets are the reverse of one another,

they are called Hilbert wavelet pairs.

The big advantages of the DTWT are that they are shift invariant, without the "re-

dundancy" associated with the MODWT. This is particularly useful for data and image

compression applications. Figure 34 shows the DTWT for the Finnish industrial produc-

tion series. The two branches of the DTWT yield quite di¤erent results, as might be

expected given the somewhat erratic movements at the beginning of the series.

Kingsbury (2000) de�nes 4 types of biorthogonal �lters for the �rst stage of the DTWT

and then another 4 types of so called "Q shift" �lters for the subsequent stages of the

process. Two of these �lters, one from each set, are shown in appendix B. Craigmile and

Whitcher (2004) further extend the DTWT to a maximal overlap version (MODHWT) in

order to produce wavelet based analogues for spectral analysis. This enables the frequency

content between two variables to be analysed simultaneously in both the time and frequency

domain.
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8 Frequency domain analysis

Wavelet analysis is neither strictly in the time domain nor the frequency domain: it straddles

both. It is therefore quite natural that wavelets applications have also been developed in

the frequency domain using spectral analysis. Perhaps the best introduction into the

theoretical side of this literature can be found in Lau and Weng (1995) and Chiann and

Morettin (1998), while Torrence and Compo (1998) probably provides the most illuminating

examples of applications to time series from meteorology and the atmospheric sciences.

Spectral analysis is perhaps the most commonly known frequency domain tool used by

economists (see Collard (1999), Camba Mendez and Kapetanios (2001), Valle e Azevedo

(2002), Kim and In (2003), Süssmuth (2002) and Hughes Hallett and Richter (2004) for

some examples), and therefore needs no extended introduction here. In brief though, a

representation of a covariance stationary process in terms of its frequency components can

be made using Cramer�s representation, as follows:

xt = �+

Z �

��
ei!tz(!)d! (45)

where i =
p
�1; � is the mean of the process, ! is measured in radians and z(!)d! represents

complex orthogonal increment processes with variance fx(!), where it can be shown that:

fx(!) =
1

2�

 

(0) + 2

1X
�=1


(�) cos(!�)

!
(46)

where 
(�) is the autocorrelation function. fx(!) is also known as the specturm of a

series as it de�nes a series of orthogonal periodic functions which essentially represent

a decomposition of the variance of the series into an in�nite sum of waves of di¤erent

frequencies. A given large value for equation, say at fx(!i) implies that frequency !i is a

particularly important component of the series.

To intuitively derive the wavelet spectrum, recall using the de�nition of a mother wavelet

convolution from equation 5, that the convolution of the wavelet with the series renders an

expression such as that given in equation 16, and associated crystals given by equation 18,

then a continuous wavelet transform (CWT) for a frequency index k will analogously yield:

Wk(s) =
NX
k=0

bxtb �(s!k)ei!kt@t (47)

where bxk is the discrete Fourier transform of xt:
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Figure 35: CWT 3D magnitude spectrum for US industrial production

bxk = 1

(N + 1)

NX
k=0

xt exp

�
�2�ikt
N + 1

�
(48)

so bxk;represents the Fourier coe¢ cients, b
� is the Fourier transform of a normalized scaling
function de�ned as:


� =

�
t

s

�0:5



�
t� �

s

�
(49)

so that in the frequency domain the CWTWk(s) is essentially the convolution of the Fourier

coe¢ cients and the Fourier transform of 
�; b
�: The angular frequency for !k in equation
47 is given by:

!k =

(
2�k
(N+1)

: k � N+1
2

� 2�k
(N+1)

: k > N+1
2

(50)

The CWT,Wk(s); can now be split into a real and complex part, <fWk(s)g ; and=fWk(s)g ;
or amplitude/magnitude, jWk(s)j and phase, tan�1

h
<fWk(s)g
=fWk(s)g

i
:

To show some examples of wavelet spectra, �rst �gure 35 shows a 3-dimensional plot for

the US industrial production series.using a log frequency scale and altering the reversing

the time sequencing so as to show the evolution of the spectrum to best e¤ect.

This CWT spectral plot displays similar characteristics to that of the time-frequency

plots of �gure 20, in that the high frequency content is particularly marked in the earlier
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Figure 36: CWT 3D phase spectrum for US industrial production

part of the 19th century, with mostly low frequency content evident throughout the entire

time period. As might be expected, the ridge lines in the 3D magnitude plot for the series

suggest that there are roughly 5 distinct frequencies active in the series, as was already

con�rmed with the use of a DWT. Figure 36.now plots the phase for the US industrial

production series - here the phasing pattern is very unclear..

It is probably a better strategy to project both 3D plots onto the magnitude or phase

axis, respectively, so as to view the plots in terms of their contours. This is done in

�gure 37 �rst for the scale-averaged (or integrated) power spectrum, jWk(s)j2 ; which, as
expected, shows that the volatile short-term �uctuations in the early part of the series tend

to dominate and then in �gure 38 for the phase contour plot. With reference to �gure

42, �gures 39 gives CWT a magnitude contour plot (against log of frequency) using a Paul

(complex) wavelet with initial width of 6 months. This is an asymmetric wavelet, and so

the frequency is only roughly related to the scale of the wavelets, hence the approximation

that s�1 is equivalent to the maximum of b
 is not analytically correct13. The contour plots
point to several other features from the frequency domain, notably:

i) three areas of notable high frequency activity, two of which coincide with the rebounds

in production in the early 1920s and mid 1930s;

13The relationship between scale and frequency depends on the form of the wavelet. For more on this
see the discussion in Torrence and Compo (1998) (p67).
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Figure 37: CWT scale-averaged wavelet power spectrum for US industrial production

ii) the constant presence of a relatively low frequency pattern throughout the period of

the data;

iii) the disappearance of almost all high frequency activity since 1945 and the dying out

of a long medium frequency pattern over the period 1945-1980.

iv) a range of frequencies where phases interact quite frequently (the "�ngers" in the

phase contour plot), sometimes at a large range of frequencies (the longer �ngers)

and sometimes over a smaller range (the smaller thinner �ngers).

Torrence and Compo (1998) rightly observes that one of the major drawbacks of spectral

analysis has been that signi�cance testing was di¢ cult to implement in the frequency do-

main. But by assuming a "background" spectra such as white noise, or an AR(1) process,

a null hypothesis is formed by subtracting a Monte Carlo simulated background spectrum

from the time series wavelet spectrum to yield a "di¤erenced" spectrum. By assuming

a gaussian distribution con�dence intervals can then be constructed as any point on the

di¤erenced spectrum should be distributed as 0:5Pk�22 where Pk is the Fourier power spec-

trum. Here two di¤erent background spectra are assumed for the US industrial production

series. First, a random walk is assumed for the series, and then an AR(1) series, which then

allows for con�dence intervals to be constructed for di¤erences between the two di¤erent

spectra.

The largest (red) shaded areas for �gure 40 shows the parts of the US industrial produc-
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Figure 39: CWT magnitude contour plot using US industrial production
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Figure 40: CWT magnitude contour plot assuming white noise background spectrum

tion spectrum that are outside the 99% con�dence interval14 for a white noise spectrum.

Similarly, 41 shows the parts of the spectrum that are outside the 99% con�dence interval

for a AR(1) process with coe¢ cient 0.9515.

Clearly, as this series could easily be characterised as an AR(1) process, only in the

earlier parts of the period under study does the spectrum show a signi�cant departure from

an AR(1) process, and this is only for the higher frequencies. When testing against white

noise, however, the departures are signi�cant in the higher frequencies during the early part

of the series, but continue to be signi�cant in the lower frequency bands throughout the

series.

Torrence and Compo (1998) also go on to use a similar approach to analyze co-spectrum

for use in multivariate time series analysis.

9 Economics and wavelet analysis

As with many applied statistical techniques, wavelet analysis undoubtedly has unful�lled

potential in economics. Several pioneering economic researchers should be recognized as

having seen this potential16, and then devoting considerable amounts of time and e¤ort to

understanding and using wavelets in their work. As many of the advances in this area

14The software used here actually uses critical limits, such that a 95% critical limit means that in only
1 in 20 similar size random data sets would the largest CWT spectral peak attain this height.
15The estimated AR(1) coe¢ cient attained for this series was 0.96.
16James Ramsay of New York University is particularly notable in this regard.
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Figure 41: CWT magnitude contour plot assuming AR(1) process with 0.95 coe¢ cient for
background spectrum

are not being made in economics, but rather in signal and image processing, engineering,

astronomy and meteorology, it is perhaps understandable that the uptake by the economics

profession has not been swift. Like spectral analysis, wavelet analysis will never dominate

mainstream time-series econometrics, but it should be seen as another useful mode of

analysis in the applied economist�s toolkit.

In this �nal section a brief list of practical issues is �rst presented and then a description

of the rapidly expanding literature on wavelets in economics is provided.

9.1 Practical issues

These points are largely taken from Percival and Walden (2000) and Torrence and Compo

(1998) where, in the latter case the approach is related speci�cally to atmospheric and

oceanic research data.

1. Su¢ cient data is required given the observed nature of the time series. This implies

that in economics, if for example business cycles are to be analysed, quite long time

series are necessary if all scales are to be properly resolved. Many economists believe

that wavelet analysis requires high frequency data, as the technique has been applied

much more frequently in �nance.- this is not the case, as table 1 details.

2. Choice of wavelet function - issues arise such as whether to use orthogonal or non-

orthogonal, complex or real, and the choice of width and type of wavelet function
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is also an issue. For analysis of economic time series, clearly the Haar wavelet is

not really appropriate, given the discontinuous nature of its waveform, but beyond

this, the choice is largely one for the researcher, and is likely limited by the software

being used. Width of wavelet function is also very data dependent, but as most

economic time series are not high frequency, large numbers of oscillations are usually

not relevant.

3. Dyadic series - some wavelet applications require dyadic time series. This is obviously

not attractive for usage with economic time series as it implies discarding data or

padding series with extra data if the series is not dyadic. In the examples used in

this paper, the Canadian and US time series were padded to 1024 datapoints, but

the Finnish industrial production series was left with 604 data points. Clearly the

MODWT and the DTWT show most promise here, as they do not require dyadic

series.

4. Boundary or cone of in�uence e¤ects. With the DWT these are usually labelled

boundary e¤ects, but with the CWT they are called cone of in�uence e¤ects. There

are many di¤erent types of boundary treatment rules, such as i) a periodic rule -

assumption that the series is periodic, that is for any xi = xi+nk; where k is an

integer and i = 1; 2; 3; ::; n; ii) a re�ection rule - assumption that xn is re�ected at

the boundaries and then periodically extended; iii) a zero padding rule - at each step

of the �ltering process the series is padded at the beginning and end with zeros; iv)

a polynomial extension - padding the beginning and end of the series by repeating

the beginning and end series values before and after the series respectively; and v)

an interval rule - using special "interval" wavelets at the boundaries, whose �lter

coe¢ cients are zero outside the range of the data.

Obviously software is also an issue, as many of these procedures in wavelet analysis are

not easy to implement unless the researcher is an experienced programmer. Appendix E

provides a list of software resources for wavelet analysis.

9.2 The wavelet literature in economics

There are relatively few contributions to economics that use wavelets in the existing lit-

erature, although in recent months this list has expanded considerably, which signals that

wavelet analysis is at last being recognised as a legitimate methodological approach in

economics. The contributions located to date are described in chronological order below:
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a. Ramsey and Zhang (1995) analyses high-frequency foreign exchange rates using wave-
form dictionaries and a matching pursuit algorithm and determines that there is

structure only at the lowest frequencies. At the highest frequencies "chirp" like

bursts of energy are distributed across frequencies throughout the year.

b. Ramsey and Lampart (1998b) takes seasonally unadjusted monthly money supply data
and nominal personal income for the US from 1960-1998, and then use Granger causal-

ity tests for each of the sets of crystals. They �nd that the relationship between money

and income varies according to scale, with money supply Granger causing income at

higher scale levels, and income Granger causing money supply at low scale levels.

c. Ramsey and Lampart (1998a) does the same thing as in a. except for durable and
non-durable expenditures and income.

d. Conway and Frame (2000) analyses di¤erent measures of the output gap in New Zealand
using time dependent spectra with wavelet analysis.

e. Tkacz (2000) uses the Jensen wavelet estimator Jensen (2000) to estimate the fractional
order of integration for Canadian and US interest rates. He �nds that US nomi-

nal interest rates likely follow long-memory processes, and that Canadian rates also

exhibit strong persistence, giving even a larger order of integration than for the US.

f. Renaud, Starck, andMurtagh (2003) propose a new forecasting method based on wavelets
whereby MRD crystals are used with a simple AR process.

g. Atkins and Sun (2003) uses Jensen�s estimator of the long-memory parameter coupled
with Fisher regressions in the wavelet domain to show that in the short run, there

is no relationship between interest rates and in�ation for shorter time scales but is

statistically signi�cant at longer time scales.

h. Kim and In (2003) investigate whether US �nancial variables have predictive power over
US industrial production data over various frequency domains and time scales using

spectral, wavelet analysis and Granger causality tests. They �nd that the relationship

between US �nancial and real variables runs from �nancial variables to real at short

time scales and from real to �nancial at longer time scales.

i. Capobianco (2004) uses matching pursuit algorithms with waveform dictionaries are

used to scale decompose intra-day stock return dynamics. Wavelet analysis helps to

identify hidden intraday periodicities both at the 1 minute and 5 minute timescale.
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j. Crivellini, Gallegati, Gallegati, and Palestrini (2004) scale decompose G6 (G7 minus
Canada) industrial production data and then look at the characteristics of the di¤erent

scale cycles and do a rolling correlation analysis of these scale components between

countries17. Their results indicated an increase in correlation of business cycles at all

scales in the 1970s, a decrease in the 1980s at the medium and short run scales, and

in the 1990s relatively high long term correlations. The EU countries also tended to

have high medium term correlations in the 1990s, with the UK an exception to this

rule.

k. Dalkir (2004) scale decomposes personal income, sum and divisia monetary aggregates

for the US and uses Granger causality tests to review the Ramsey and Lampart

(1998b) results. The �ndings are that in the majority of cases money Granger causes

personal income, although this relationship does reverse, usually during a shift in

monetary policy regime.

l. Fernandez (2004) looks at returns spillover in stockmarkets at di¤erent time scales us-
ing wavelet analysis. She �nds evidence of price spillovers from North America to

Latin America, emerging Asian and Far East markets, and Paci�c markets, and also

evidence of spillovers from European and Latin America to North American markets.

In the latter part of the paper she also controls for conditional heteroskadasticity and

serial correlation by using an asymmetric power GARCH model.

m. Lee (2004) uses wavelets to analyse the relationship between the South Korean and
US stockmarkets. Using MRA at di¤erent scales, it is determined that there is

strong evidence of price and volatility spillovers from developed country to developing

country stockmarkets.

n. Neumann and Greiber (2004) use scale decompositions of M3 money growth and euro-
zone in�ation to compare MRDs with other �lters and also to look at the relationship

between M3 and in�ation for the eurozone on a scale by scale basis. They �nd that

short- to medium-term �uctuations of money growth with cycles of up to about 8

years were not sign�cant causes of a¤ecting trend in�ation.

o. Vuorenmaa (2004) analyses Nokia share volatility using wavelet MRA analysis.and �nds
that wavelet variance and covariance analysis reveals a considerable amount about

17One of the problems with the analysis here, is that the monthly industrial production data is only
analysed to the 6th scale level, which implies that longer business cycles are not properly resolved.
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stock market activity at intra-day levels. He then applies a local scaling law and long

memory in volatility, and �nds that time-varying long-memory is supported over a

medium term period (months).

p. Gençay and Whitcher (2005) use wavelets with high-frequency �nancial data and a
hidden Markov tree model to establish a "new" stylized fact about volatility - that

low volatility at a long time horizon is most likely followed by low volatility at shorter

time horizons - the reverse for high volatility doesn�t seem to be the case. The authors

label this phenomenon asymmetric vertical dependence.

10 Conclusions

Perhaps because economics does not usually deal with long data series with "natural"

periodicity, traditional spectral analysis never had a large amount to o¤er the economics

discipline. Time series analysis is probably much better suited to analysis of shorter time

series with variable "non-natural" periodicity, coupled with its emphasis on causation and

underlying processes. Wavelet analysis, however, di¤ers from spectral analysis in that it

straddles both the time and frequency domains, thereby allowing identi�cation of both time

period and scale. In this sense, it likely has a lot more to o¤er economists.

Wavelet analysis has the potential to o¤er much to empirical economic research. The

potential is particularly apparent in two areas of economics: that of business cycle analy-

sis, which naturally lends itself to analysis of periodicities, and where �ltering has been

a particularly controversial issue; and in any part of macro or monetary economics where

theoretical long-run and short-run relationships can be distinguished. It�s ability to sepa-

rate out the dynamics in a time series over a variety of di¤erent time horizons, the number

of which being directly related to the type of time series and the number of observations

available, can reveal interesting insights into cycles at di¤erent time scales. It�s ability to

work with non-stationary data is particularly advantageous, as most econometric method-

ology assumes stationarity, which may or may not be apparent in economic data (either

locally or globally).

In particular, wavelet analysis now o¤ers economic researchers the availability of the

MODWT, so that time series can be decomposed into identical numbers of scale-decomposed

equivalent series, making statistical testing and time series analysis possible for individual

scale crystals. The real challenge will be to integrate the wavelet approach with the

traditional time-series toolkit of the econometrician, as perhaps here the potential con-

54



tribution is greatest, and here there is the greatest chance of impressing upon the wavelet

research.community that this methodology has something to o¤er outside of its most widely-

applied research areas.
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Appendices

A Industrial production indices

In the paper, three industrial production indices are used. These are as follows:

� Canadian industrial production - this is available in a monthly format from January

1919, although it is necessary to construct a full data series from three di¤erent Sta-

tistics Canada (CANSIM) series, and then splice together. The series was seasonally

adjusted by the Bank of Finland using the Stamp programme. The resulting series

gave 1014 percentage year-over-year observations, just shy of a dyadic series of 1024

points. The series was therefore padded by using the August 2004 value for the

percent change of the index over the remaining 10 months.

� US industrial production - this is available from the Bureau of Economic Analysis

(BEA) of the US Department of Commerce. The data is available on the web, and

was again seasonally adjusted by the Bank of Finland. Again, only 1015 monthly

data points were available obtained when transformed to a percentage year-over-year

series, so these were padded using the last observation for September 2004.

� Finnish industrial production - the source was Statistics Finland, seasonally unad-
justed. The series was seasonally adjusted by the Bank of Finland using the Stamp

programme. As this was a non-dyadic series, it is only used in the later sections of

the paper..

The seasonally adjusted data are shown in �gure 42 with right hand side plots rep-

resenting the industrial production index and the right hand side plots representing the

year-on-year change in the three indices.

The Finnish industrial production series starts in 1954 and so has a shorter time-span

than the other two series Figure 43 shows a spectral decomposition for the Finnish series.

Note that the raw periodogram appears to be quite similar to the periodograms for the

Canadian and US series, which suggests that monthly industrial production series tend to

embed 5 frequencies.
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Figure 42: Canadian, US and Finnish Industrial Production Series
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Figure 43: Finnish industrial production: a) series; b) annual % change; c)raw periodogram;
d) autocorrelation spectra.

B Wavelets as �lters

For most purposes in practical applications wavelets only need to be de�ned over a speci�c

span of points in time. In place of actual wavelets sequences of values representing the

wavelet are used - these are commonly called wavelet �lters. The number of values in the

series is called the length of the wavelet �lter and the number of values is known as the

"tap" of the �lter. Given a wavelet �lter fhlg where l = 0; ; ; (L � 1), the set of wavelet
coe¢ cients hl have to satisfy: PL�1

l=0 hl = 0PL�1
l=0 h

2
l = 1PL�1

l=0 hlhl+2k = 0

(51)

- in other words, the coe¢ cients must sum to zero have unit energy and be orthogonal to

even shifts in the �lter. The last two conditions in equation are called the orthonormality

conditions. This de�nes the father wavelet in �lter terms. To obtain a mother wavelet

�lter, which is known in the �lter literature as a "scaling wavelet", the wavelet �lter is

converted using a quadrature mirror �lter so that the coe¢ cients of the mother wavelet

�lter are given by:
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gl = (�1)l+1hL�1�l (52)

The mother wavelet �lter also satis�es the orthonormality condition but does not have

unit energy: PL�1
l=0 gl =

p
2PL�1

l=0 g
2
l = 1PL�1

l=0 glgl+2k = 0

(53)

The shape of the wavelet �lter is known in this literature as the "impulse response".

There are several di¤erent types of wavelet �lters, which all correspond to a continuous

wavelet counterparts discussed in the main part of the text, but are referred to using �lter

terminology. Examples of these are as follows:

1. Extremal phase �lters - here energy increases rapidly - these are asymmetric �lters,

which are also known as minimum phase �lters or "daublets", as they roughly corre-

spond to Daubechies wavelets.

2. Least asymmetric �lters - �lters in this group are smoother and are nearly symmetric -

the magnitudes of their discrete fourier transforms are the same, and they correspond

to Symmlet wavelets.

3. Best localized �lters - these �lters are also nearly symmetric and they also have the

same gain functions.

4. Coi�et �lters - these �lters approximate linear phase �lters, and have di¤erent gain

functions from the other three types above - they clearly correspond to a Coi�et

wavelet.

A DWT simply corresponds to repeated application of a chosen �lter, which is often

referred to as a "�lter bank". Obviously for any scale level J , an amplitude reduced

and dilated �lter can be derived (using the pyramid algorithm) for the original data to be

convolved with, giving one �lter for each level of the transform. In this sense the �lter

bank acts as a bandpass �lter, and the frequency response of any combined �lter can be

obtained. For example, �gure 44 shows the frequency response for a Coi�et 6 length �lter

at scale levels of J = 1; 2; ::5.

For the DTWT, there are four types of scale �lters and four types of wavelet �lters to

select from. In �gure nearsyma and Qshiftc �lters are shown. The �rst row of �gure
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Figure 44: Squared gain function for Coi�et c6 �lter

shows the �lters that are applied to all of the data, then the second row shows the �lters

that are applied to one tree and the third row shows the �lters that are applied to the

second tree. Clearly the frequency response for the Qshift scaling �lter will be oriented

towards the higher frequency parts of the series and the nearsyma wavelet �lters will be

oriented towards the lower frequency �uctuations of the series.

C MODWT

Here we use matrix notation. Let x be a vector ofN observations. The vector of MODWT

coe¢ cients is given by:

ew = fWx (54)

where fW is the (J+1)NxN matrix de�ning the MODWT, and so ew is a (J+1)N vector

of wavelet coe¢ cients which result from the transform. Similarly to a DWT, the MODWT

matrix fW can be rewritten as:
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Figure 45: DTWT �lters. Top row - level 1 �lters; middle row - tree A �lters, bottom row
- tree B �lters

fW =

2666664
fW1fW2

:::fWJeVJ

3777775 (55)

where fW1 is an NxN matrix representing the �lter components at each scale level. But

also each scale level in the matrix can be rewritten as:

fW1 =
h eh11 eh21 eh31 ::: ehN�21

ehN�11
eh1 iT (56)

for scale 1, where the vector of �lter coe¢ cients ehk1 represent the rescaled jth scale �lter
coe¢ cients:

ehj = hj
2j

(57)

where hj is the vector of DWT �lter coe¢ cients shifted k intergers to the right.

61



Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Figure 46: MODWPT for Canadian industrial production

In other words, the MODWT essentially takes a DWT and shifts the the wavelet �lters

one to the right to interweave with any given level of the equivalent DWT submatrix fW.

In practice a pyramid algorithm is used, but without the downsampling inherent in a DWT.

Figure 46 shows the MODWT packet table for Canadian industrial production:

D British pound exchange rate

This daily series was taken from the Bank of England�s exchange rate database. The series

runs from 1975 to 26 October 2004, and contains 7540 datapoints. The original series and

the absolute value of the log di¤erenced series are plotted below in �gure 47

E Software sources

Software for wavelets is now quite widely available. Both SPLUS and Matlab have mod-

ules for extensive wavelet analysis that can be separately purchased from the publishers

themselves, and a separate wavelet module is available as freeware for use with the open

source R statistical software. Apart from this, software is available for specialist wavelet

applications, for example Autosignal implements the CWTs spectral analysis described in

this paper, and freeware is also available to implement this with Matlab. An additive
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Figure 47: USD/GBP exchange rate: a) daily exchange rate; b) abs(di¤(log(USD/GBP)))

package called TSM is available for GAUSS as well, although this appears to only do a

limited degree of wavelet analysis.
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