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Abstract

This paper demonstrates how state space models can be fitted in EViews. We first
briefly introduce EViews as an econometric software package. Next we fit a local level
model to the Nile data. We then show how a multivariate “latent risk” model can be
developed, making use of the EViews programming environment. We conclude by sum-
marizing the possibilities and limitations of the software package when it comes to state
space modeling.
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1. Introduction

EViews (Quantitative Micro Software 2007a,b,c) is a statistical software package for data
analysis, regression and forecasting. As a direct successor of MicroTSP, EViews is especially
powerful in analysing univariate and multivariate time series, but it also knows how to han-
dle cross-sectional and panel data. EViews offers useful data management and econometric
analysis tools and produces high-quality graphical and tabular model output. It comes with
a windows-based graphical user interface and allows structuring and analyzing data by means
of point-and-click commands and built-in windows, menus and dialogs. Alternatively, users
can write their own programs using the command and batch processing language. The most
recent release of the software package is EViews 7, but the current state space features were
added to the program from version 4 onwards. The analyses in the paper at hand are fitted
in version 6.

At the heart of an econometric analysis in EViews is the construction of objects. Data series
and models are all stored in a workfile as separate objects which can be viewed in various ways.
For an equation object (e.g. a regression model), one can ask for the model specification, the
estimation output, the fitted values and residuals, etc. as alternate views on the same object.

For state space models, an object sspace should be created. This object offers specification
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and estimation options for single or multiple dynamic equations in state space form and
navigates the user to the application of the built-in Kalman filtering algorithm. Exogenous
variables can be included in the state equations and variances for all equations can be specified
in terms of model parameters. Model output is available in tabulated format or in graphs.
New series can be created from the model output and subsequently stored as new objects
for further analysis. These typically include one-step ahead and smoothed states and signals,
filtered states and corresponding residuals and disturbances. More details can be found in
the EViews User’s Guide (Quantitative Micro Software 2007¢c, p. 383—406).

This paper illustrates how linear Gaussian state space models can be fitted to time series
data in EViews. Section 2 presents the specification of a local level model for data on the
annual flow volume from the river Nile in Aswan (1871-1970). Section 3 shows how a “latent
risk model” (Bijleveld, Commandeur, Gould, and Koopman 2008) applied to Belgian road
accident and exposure data can be developed and estimated in EViews. Section 4 concludes.

2. Case 1: The local level model applied to the Nile data

To analyze the Nile data, we need a workfile which contains the data. As is typical in EViews,
a state space model is defined as an object within a workfile which contains, among others,
the time series to be analyzed. The relevant object for a state space model specification is
sspace. Creating a new state space object opens an empty specification window.

2.1. Model specification

Specification can be done in two ways. The first is to use EViews’ auto-specification feature,
which allows indication of the dependent variable(s), the regressors with fixed and/or recursive
coefficients, the stochastic regressors and the variance specification. EViews subsequently
derives the text representation of the model, which can be edited and estimated. The second
— more general — way of describing a state space model is by using keywords and commands
to define the measurement and state equations, the corresponding error terms and, if desired,
aspects related to the estimation procedure like initial conditions and starting values for the
parameters. This second method is more flexible and will be used here.

Using the appropriate commands, the measurement equation, state equation, errors and vari-
ances are defined. To estimate the local level model

y = w+e, &~ NID(0,02), 1)
MHt+1 = MUt + gtv é-t ~ NID(Ov U?)a

for the Nile data, we create an sspace object as shown in Figure 1.

Note that the created sspace object is named LOCAL_LEVEL and that it belongs to the workfile
NILEDATA (all workfiles have extension .wfl). The created sspace object consists of three
parts. In a first part (lines 1 and 2), the error terms for the measurement and state equation
(el and e2) are named using the keyword @ename. Contrary to other objects in EViews, error
terms are not included in the equations of a state space object unless they have been explicitly
specified. In this case, we include an error term for both equations.

The second part (lines 3 and 4) specifies the variances. Error variances are preceded by the
@evar keyword and may be constants or expressions in terms of unknown parameters. In our
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= Sspace: LOCAL_LEVEL Workfile: NILEDATA::Niledata\ [2 [B|X]
Est\mate Forecast

Senarme el
@ename e2

@evarvar(e1) = exp(C(1))
@evar var(e?) = exp(C[2))

@signal volume = W1 + el
@state SW1 = SW1(-1) + e2

Figure 1: A state space object in EViews.

model, the variances are expressed as exponential functions of the coefficients C(1) and C(2),
to guarantee nonnegative variance estimates (Quantitative Micro Software 2007c). Using the
@evar command, one can also specify covariances between error terms, for example @evar
cov(el,e2)=0.5. Variances and/or covariances that have not been specified are assumed to
be equal to zero.

In the third part (lines 5 and 6), the measurement and state equations are defined. The
@signal keyword specifies the measurement equation for the dependent variable volume and
includes an unobserved level SV1 to represent u; and an observation disturbance el which
corresponds to e; and has been declared in line 1. Signal equations may include expressions
of the dependent variable, but no current values or leads of signal variables. Nonlinearities in
the states and leads or lags of states are not allowed. Note that the @signal keyword may
be dropped.

The @state equation defines the random walk for the unobserved model component p;. State
equations should not include expressions of unobserved components (like 1og(SV1)) nor (lags
or leads of) signal equation dependent variables, but may contain (possibly nonlinear trans-
formations of ) exogenous variables. They should be linear in the one-period lags of the states,
where the one-period lag restriction is easily circumvented by including new state variables
for higher order lags.

Error terms should not necessarily be named before specifying the state and observation equa-
tion. One can simply add the variance structure to define an error term, like in @state SV1 =
SV1(-1) + [var=exp(C(2))]. This is called the “error variance specification” (Quantitative
Micro Software 2007¢, p. 389), whereas in our program we used the “named error” approach
(Quantitative Micro Software 2007c, p. 391).

The model presented above can easily be constructed using the auto-specification feature in
EViews. All we need to do is set volume as the dependent variable and include a unit random
walk coefficient.

2.2. Estimation

Once the model has been specified as shown above, the unknown parameters for the variances
and the unobserved component can be estimated. Estimation is done by maximum likelihood.
The loglikelihood function in EViews (Quantitative Micro Software 2007¢c, p. 387) corresponds
to the one given by Durbin and Koopman (2001, p. 138) and is refered to by Harvey as the
“prediction error decomposition” (Harvey 1989, p. 126).

Unless stated otherwise, the starting values for the parameters C(1) and C(2) are those
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Sspace: LOCAL_LEVEL

Method: Maximum likelihood (Marquardt)
Sample: 1871 1970

Included observations: 100

Convergence achieved after 155 iterations

Coefficient Std. Error z-Statistic Prob.

C(1) 9.600350 0.171398 56.01195 0.0000
C(2) 7.348705 0.565220 13.00151 0.0000

Final State  Root MSE z-Statistic Prob.

SV1 795.5689 75.03906 10.60206 0.0000
Log likelihood -645.1781  Akaike info criterion 12.94356
Parameters 2  Schwarz criterion 12.99566
Diffuse priors 1 Hannan-Quinn criter. 12.96465

Figure 2: Output of the local level model for the Nile data.

specified in the coefficient vector, which is yet another object in the EViews workfile. If
necessary, the starting values can be changed by the user with @param statements.

Usually, the end user should not handle the initial conditions. Whenever possible, the steady
state conditions are solved for the mean a; and variance P, of the initial state vector «q.
Otherwise, estimation is started from a diffuse initialization. In case prior information on a
and P; is available, the user can supply initial values by means of the @mprior and @vprior
keywords, for the mean and variance respectively.

EViews offers two first derivative methods for optimizing the loglikelihood function: Marquardt
and Berndt-Hall-Hall-Hausman. The first is a modification of the Gauss-Newton algorithm,
while the second builds on Newton-Raphson. EViews further allows setting the estimation
sample, the maximum number of iterations and the convergence tolerance. Note the impor-
tance of the starting values, whichever optimization method is used. In general, “you may
have to experiment to find good starting values” (Quantitative Micro Software 2007c, p. 626).

2.3. Results

Figure 2 shows the estimation output for the local level model fitted to the Nile data. The out-
put shows that the model has been fitted on 100 observations using the Marquardt optimiza-
tion algorithm. EViews needed 155 iterations to achieve a converging solution. At convergence
the maximum of the log likelihood is found to be —645.1781. The coeflicients C(1) and C(2)
are the logs of the variances of the error terms for the measurement and state equations. We
therefore estimate that o2 = exp(9.6004) = 14769.9537 and ag = exp(7.3487) = 1554.1828.
The final state of the unobserved component is 816.7538. The value shown in the output,
795.5689, is the one-step ahead predicted value for the first out-of-sample period (Quantita-
tive Micro Software 2007a, p. 428). The initial state value of the level is not reported, but
can be found in the model output to be fi; = 1119.9989.

EViews allows creating new series based on the results of the estimation process. These can be
generated using the appropriate keywords, or they can be selected from the menu screens (see
for example the state and signal screens shown in Figure 3). Some of the generated series for
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Figure 3: Creating signal and state series.

the analysis of the Nile data are summarized in Figure 4. Figure 4a shows the Nile volume data
and the smoothed state estimates together with 90% confidence bands. Figure 4b contains
the standardized prediction errors, which can be calculated from the output as the ratio of
the prediction residuals and the prediction residuals standard errors. They can also readily
be obtained from the EViews output by asking for the “standardized prediction residuals”.
Figures 4c¢ and 4d show the auxiliary residuals for the signal and the state respectively. They
are obtained by selecting the smoothed standardized disturbance estimates in the signal and
state results (via the proc/make signal series menu). Alternatively, they are calculated
by dividing the smoothed observation and state disturbance estimates (¢; and ét) by their
corresponding standard errors. Note that the graphs also include 95% confidence bands to
check for outliers and structural breaks.

Once a series is generated, the usual statistical tools available in EViews can be applied. For
example, in Figure 5 the correlogram with Box-Ljung statistics and the Jarque-Bera normality
test for the standardized prediction errors are shown. Note, however, that these diagnostics
are not readily available and should be generated outside the sspace object. This implies that
the sample for generating the correlogram, as well as the associated degrees of freedom, are
usually incorrect. In the standard setting, the correlogram is generated using the complete
sample (n = 100) and the degrees of freedom in EViews are equal to the number of lags.

To be more precise, we generate the correlogram after a sample adjustment (smpl 1872 1970)
and calculate the degrees of freedom as k — w + 1, where k is the number of lags in the Box-
Ljung statistic and w is the number of diffuse priors (Commandeur and Koopman 2007). For
example, for Q(10) we find a value of 13.117 for n = 99 (instead of 13.310 for n = 100).
Given two disturbance variances in the model, the corresponding p value should be based
on a X%10_2+1) distribution, resulting in a p value of 0.1574 (instead of 0.2172 in Figure 5a).
Correcting for the number of disturbance variances renders the test slightly more conservative,
in the sense that the null hypothesis of independence will be rejected more often. For this
model, the difference in degrees of freedom is small, however, and in practice the standard
output may be used. After sample adjustment, the Jarque-Bera test for normality can easily
be asked for (see Figure 5b: JB = 0.0417, p value = 0.9794).
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Figure 4: Nile data and Kalman filter output.
Sample: 1872 1970
Included observations: 99 14
Autocorrelation Partial Correlation AC PAC Q-Stat Prob ™ ™ ]

12 Jarque-Bera 0.041686
10108 0.108 1.1943 0.274 Probability 0.97937

2 -0.015 -0.027 1.2170 0.544
3 -0.057 -0.053 1.5568 0.669
4 -0.148 -0.139 3.8763 0.423
5 -0.093 -0.068 4.8057 0.440
6 -0.048 -0.041 5.0503 0.537
7
8
9
10

-0.088 -0.100 5.8839 0.553 84
0.108 0.100 7.1656 0.519
-0.120 -0.181 8.7614 0.460
-0.197 -0.206 13.117 0.217 6
11 0.047 0.058 13.369 0.270
12 0.026 -0.002 13.449 0.337
13 0.089 0.036 14.378 0.348 4+
14 0.028 -0.066 14.470 0.415
15 -0.039 -0.056 14.655 0.477
16 0.045 0.017 14904 0532 2
17 -0.039 -0.040 15.085 0.589
18 0.055 0.119 15.460 0.630
19 0.013 -0.087 15.481 0.692 0 D
20 -0.011 -0.082 15.495 0.747

(a) Correlogram (b) Normality test

Figure 5: Analysis of standardized prediction errors.
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Figure 6: Forecasts and 50% confidence interval.

Finally, one-step-ahead forecasts and corresponding standard errors were generated from the
sspace object for the years 1971-1980. The value of the level at t = n + 1 is forecasted to be
795.5689, and the forecast remains constant for the other years. The forecasts and the 50%
confidence interval are shown in Figure 6.

3. Case 2: Fitting a latent risk model in EViews

3.1. Introduction

In this section we show how the latent risk model (Bijleveld et al. 2008) can be fitted in
EViews. Apart from the model specification, an iteration program is presented that can be
used to facilitate convergence of the optimization procedure.

The application presented here belongs to the domain of macroscopic road safety modeling.
One objective of road safety modeling is to describe and explain long term trends in the
number of road fatalities. The annual number of fatalities is an important indicator of the road
safety performance of a country. Policy makers refer to it to investigate past trends in road
safety and to set targets for future improvement. In many countries, long-term quantitative
objectives are expressed in terms of the number of fatalities (e.g. “half the number of fatalities
by 2010”). In Belgium, new road safety targets have been formulated in 2007, aiming at no
more than 500 fatalities in 2015.

Consider the time series in Figure 7, representing the yearly number of vehicle kilometres
(Figure 7a) and the number of road fatalities (Figure 7b) in Belgium for the period 1965—
2008. The number of vehicle kilometres is typically used as a measure of exposure to risk. It
is assumed that the level of exposure is one of the major factors influencing the number of
fatalities. In particular, if “risk” is defined as the ratio of the number of fatalities to the level
of exposure, then the number of fatalities can be expressed as the level of exposure multiplied
by the level of risk, thereby disentangling the number of fatalities in its major components.
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Figure 7: Belgian road fatalities and vehicle exposure.

However, as both exposure and risk can never be faultlessly observed, we model them by
means of unobserved components. A precursor of this application was presented in Van den
Bossche (2006).

3.2. Model development

The latent risk model is a special case of the general Gaussian state space model which can
be written as:

Yt = ZtOét + Et, Et ~ NID(O, Ht), (2)
a1 = Ty + Ry, e ~ NID(0, Qy),
fort =1,...,n. The first equation is the observation equation, in which y; represents a p x 1

vector containing the observed values at time ¢ for the p dependent variables. The e; vector of
dimension (p x 1) contains the p corresponding observation disturbances. These are assumed
to be NID, with zero means and a variance-covariance structure collected in the p X p matrix
H;. Assuming m state components in this model, Z; is a p X m observation matrix, and oy
is the state vector of order m x 1. The transition matrix 7; is a block diagonal matrix of
order m x m. The m state disturbances are gathered in the m x 1 vector 7;. They have zero
means and an unknown variance-covariance matrix @y of order m x m. Finally, R; is usually
an identity matrix of order m x m, but it can also be a selection matrix of order m x r,
with r < m, containing the first r columns of the identity matrix. For further details on the
formulation of this multivariate model, see Harvey (1989), Durbin and Koopman (2001) and
the introductory article of this special volume.

To develop the latent risk model, consider a local linear trend model with two dependent
variables (p = 2), namely the observed annual exposure or mobility M; (expressed as the
number of vehicle kilometres driven per year) and the observed annual number of fatalities
F;. Each observation equation is further described in two state equations, one for the level
and one for the slope (m = 4). To model the mobility and fatalities series simultaneously in
a multivariate model, define the vector y; as (Bijleveld and Commandeur 2006):

1)
| Y _ log(M;)
e < ) ) B ( log(Fy) > ®
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In addition, define the vectors a4, e and 7, and the matrices T3, Ry, Z¢, Hy and Q; as follows:

) e
g ¢ 1100 1000
R B e I VR R I p_ |0 100
TP Tl 0 1 T o0 10
o (@ 0001 0001
(1) (1) _(2)
10 00 € 0. cov(e; /e,
7, — ep = t JH, = e() t St , 4
t= 11 0 1 0} t Lg)] t lcov(ggn’g(z)) o (4)
02(1) 0 cov(ﬁ(l),ﬁ(Q)) 0
0, — 0 ol 0 COV(C(I),(@))
' cov(§W, @) 0 0% 0
0 cov(¢,¢®) 0 0%

These vectors and matrices completely define the latent risk model. Writing out these com-
ponents in scalar notation yields the following two observation equations:

= 4 elh o)
D = 4 2 2 )

while the four state equations can be written as:

Mgl) = Nglﬂ + Vt(i)l + 5151)7 (6a)
! =+, (6b)
) = w2+ 2+ 6, (6¢)
v = v+ . (6d)

The first observation equation (5a) is for the log of the observed mobility (exposure). Equa-
tions (6a) and (6b) are the corresponding state equations for the mobility trend and slope
components. The second observation equation (5b) represents the log of the number of fatali-
ties, for which the dynamics (trend and slope) are determined by the state equations (6¢) and
(6d). Given the vector and matrix definitions in the equation set (4), covariances between
trend and slope components are assumed to be zero. Covariances are estimated mutually for
the trend errors, the slope errors and the observation errors.

Given the fact that this model is linear in the logarithms, it is essentially a multiplicative
model, representing the number of fatalities as the product of exposure and risk. This is
in line with the models developed by Oppe (1989, 1991). The difference with these models,
however, is that the model at hand is multivariate in nature, and that the exposure and risk
components are unobserved, without any assumption about their functional form. Hence the
“latent risk” designation.
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1 | ' generate state space models and save loglikelihood

2 | sspace solution
3 | lloglik=-1000000

4 | table results

5 | results(1,1)="LogLik"

6 | results(1,2)="Result"

7 | results(1,3)="AIC"

8 | results(1,4)="Schwarz"

9 | results(1,5)="Hannan-Quinn"
10 | row =1
11 | for li=110 1000 step 1
12 smpl @all
13 series start = (-1+2*rnd)/100
14 forlj=1t09 step 1
15 Istartvar = start(!j)
16 param c(lj) !startvar
17 next

18 | smpl 1965 2008
19 | sspace ss1

20 | 'define the error terms

21 | ssl1.append @ename e1
22 | ss1.append @ename e2
23 | ss1.append @ename e3
24 | ssi.append @ename e4
25 | ssi.append @ename e5
26 | ss1.append @ename e6

27 | 'define error variances and covariances

28 | ss1.append @evar var(el) = ¢(1)*2+c(7)"2
29 | ssi1.append @evar var(e2) = ¢(2)"2+¢(8)"2
30 | ss1.append @evar var(e3) = ¢(3)"2+c(9)"2
31 | ssi.append @evar var(ed) = c(4)"2
32 | ssi1.append @evar var(e5) = ¢(5)"2
33 | ssi.append @evar var(eS) = ¢(6)"2

34 | ss1.append @evar cov(el,e4) = c(4)*c(7)
35 | ss1.append @evar cov(e2,e5) = c(5)*c(8)
36 | ssi.append @evar cov(e3,e6) = c(6)*c(9)

‘equations for vehkm

ss1.append @signal log(vehkm) = sv1 + el
ss1.append @state sv1l = svi(-1) + sv2(-1) + 2
ss1.append @state sv2 = sv2(-1) + e3

'‘equations for killed

ss1.append @signal log(killed) = sv1 + sv3 + e4
ss1.append @state sv3 = sv3(-1) + sv4(-1) + €5
ss1.append @state sv4 = sv4(-1) + e6

s$s1.ml(m=1000,c=1e-6)
freeze(out1) ss1.output

Y%st1 =@left(out1(6,1),11)

if %st1="Convergence" then
Irow = Irow+1
results(lrow,1) = ss1.@logl
results(!row,2) = out1(6,1)
results(lrow,3) = ss1.@aic
results(lrow,4) = ss1.@sc
results(lrow,5) = ss1.@hq

Pl Lyl Ly

' store initial values of the parameters
forlk =110 9 step 1
results(!row,5+1k) = start(!k)
next

' store final values of the parameters
forlk =11to 9 step 1
results(!lrow,5+9+1k)=C('k)
next

if ss1.@logl > lloglik then
lloglik = ss1.@logl
delete solution
copy ss1 solution
endif
endif

delete out1
delete ss1

next
stop

Figure 8: Iteration program for the latent risk model.

3.3. Iteration program

The errors and variances and the observation and state equations, as described in the previous
section, define the latent risk model. Using the Estimate button in the sspace object, this
model can in principle be estimated. However, because of the more complex multivariate
nature of the model, the optimization procedure may find a suboptimal or no solution. To
decrease the likelihood of estimation problems, a multiple random start procedure is set up,
which runs the optimization algorithm repeatedly, each time starting from a different set of
initial values for the model parameters. The program that executes these iterations is shown
in Figure 8. It is an illustration of how the programming environment in EViews can be used
to support the specification and estimation of state space models.

for ease of reference, they do not belong to the program.

Line numbers are added
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Preparatory declarations

The first part of the program contains declarations of variables and objects that are needed in
the remainder of the program. In line 2, a state space object solution is created. This object
will hold the optimal solution when the iteration program finishes (see below). In line 3, a
variable !'loglik is declared, holding the value —1000000 at the start. This is deliberately
chosen to be a large negative value that will be overwritten by the program as soon as a
model is obtained with a loglikelihood value greater than —1000000. The loglikelihood will
be used as an indicator to compare model solutions obtained during the iteration process.
Line 4 creates a table object called results. This is a table that will hold all solutions for
which the optimization procedure converged. It contains one new row for each converging
estimation run.

The cells in the table are referred to by means of row and column numbers. Lines 5-9 create
the headings LogLik, Result, AIC, Schwarz and Hannan-Quinn in the first row. The LogLik
column will hold the loglikelihood value, and the Result column will show the number of
iterations that were necessary to obtain the solution (for example: Convergence achieved
after 81 iterations). The other headings indicate model quality statistics.

In line 10, the variable row is set equal to 1. This is a counter that will be used to appropriately
fill the results table.

Selection of starting values

In line 11, a for-loop is used to iterate the subsequent code a number of times. In this
program the state space model is solved 1000 times starting from different initial parameter
values. This for-loop ends in line 71. The different steps will be explained below.

Line 12 restores the full sample to create a new series named start in line 13. We will use this
series to select starting values for the parameters that determine the variances and covariances
in the model. The series start is based on a uniform [0, 1] random variable that is generated
by the built-in function rnd. Note that this code generates more starting values than needed
(it is a series), so we will have to select as much values from this series as needed to define
the variances and covariances in the model.

In lines 14 to 17, another for-loop is executed. These lines are used to assign starting values
to the parameters. For the latent risk model, 9 parameters are to be estimated, so the counter
variable takes values 1 up to 9. The scalar !'startvar picks the j-th value from the start
series, and this value is assigned to the j-th parameter in line 16. The keyword next initiates
the next run in the for-loop that started at line 14.

In line 18, the sample for the analysis is set. This may be different from the sample size in
the data set when, for example, forecasting is required. In the program, data from 1965 up
to 2008 will be used to estimate the model.

Definition of the state space program

Once the starting values for the parameters are determined, the state space object ssi is
created in line 19. This object will contain, in every iteration, the estimated solution of the
model. Lines 20-44 contain the state space program, using similar keywords as in Figure 1.
Note the ss1.append command at the beginning of each line, that is used for adding lines to
the state space model in a program.

11
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The latent risk model contains two observation equations and four state equations, leading

0 2

to six error terms ( and ¢;,”’ for the observation equations, él) and 5152) for the trends,

Ct(l) and Cf@ for the slopes). These are defined in lines 21-26 of the program. An error term
is declared by including a line with the keyword @ename, followed by the name of the error.
Errors are named el, e2, and so on. The correspondence in errors with the latent risk model

specification is: el = 5151), e2 = 151), e3 = Ct(l), ed = 61(52)7 eb = fQ) and e6 = t(Q)-

The next step in building the error structure of the model is to define the variances and
covariances associated with the errors. This is done in lines 28-33 (for the variances) and
34-36 (for the covariances). Each of these lines starts with the keyword @evar, followed by
an assignment statement. Three covariances will be estimated, for the observation errors, the
trend errors and the slope errors respectively. All other covariances are not specified, and
are thus assumed to be zero. If an error term is included without a corresponding @evar
specification, its variance is assumed to be zero.

Note that the variances and covariances are defined in terms of the coefficients c (1), ..., c(9)
in such a way that the variance matrices for the measurement, level and slope disturbances are
positive semi-definite. For example, using the coefficient notation from Figure 8, the matrix
H; is defined as:

I — c(1) «<(7) c(1) 0 _ c(D?+c(M? c(a)c(T) (7)
L0 @ [ e @ || c@e( c@? |’

which is a positive semi-definite matrix for any value of c(1), c(4) and ¢ (7). Similar expres-
sions are used for the level and slope disturbances.

Lines 38 and 42 show the two observation equations of the latent risk model. sv1 represents
the unobserved trend component ugl) for the dependent variable log(vehkm), which is the log
of the number of vehicle kilometres. In the second observation equation, where log(killed)
is the log of the number of persons killed, a new component sv3 is added to represent the risk

trend ,u?) .

Lines 39-40 and 43—-44 contain the state equations for log(vehkm) and log(killed) respec-

tively. The unobserved component ,ugl) (sv1) is modelled in the first state equation. sv2

represents the slope Vt(l) for this component, which is specified in the second state equation.

The same goes for the level component ,uEZ) (sv3) and its slope Vt(Q) (sv4). Note that the set

of state equations represents equations (6a) through (6d).

When this code is executed, the complete state space model is written to the object ssi,
which can subsequently be estimated. In line 45, the command is given to estimate the
model. Maximum likelihood estimation is done with a maximum of 1000 iterations each time
the model is fitted, and the convergence criterion is set to 1E-6. Line 46 saves the ss1 model
output by “freezing” the view in a table object called out1.

Treatment of the state space results

In lines 47-68, the state space results are handled. In particular, a distinction is made between
converging and non-converging solutions. The program essentially checks the solution for
convergence, verifies whether it is better than the previous converging solution and saves it
in the results table.



Journal of Statistical Software

In line 47, a string (%st1) is taken from the contents in the cell on row 6 and column 1 of the
outl table, which contains the convergence message. In line 48, it is assessed whether the
first 11 characters in this cell form the word Convergence, which is the case if a valid solution
is obtained.

Once a solution is found, two steps follow: (i) the main results are written on a new line in
the table results, and (ii) the loglikelihood is checked. In addition, if the loglikelihood value
is better than the one of the previous best solution, it has to be saved. In line 49, a new
row in the table results is selected. In the first column, the log likelihood is written (line
50), and the second column contains the convergence message (line 51). The next columns
contain the Akaike, Schwarz and Hannan-Quinn criteria (lines 52-54). The for-loop in lines
56-58 stores the initial values for the 9 parameters, while lines 60-62 are for the final values.
In line 63, it is checked whether the last loglikelihood value is better than the one previously
stored. If the most recent loglikelihood is indeed better, it is written to the variable !loglik
(line 64), and the ss1 model is copied into an object called solution (line 66). If the latter
object already exists, it is first deleted (line 65).

In lines 69-70, the temporary objects outl and ss1 are deleted. They will be re-created in
every new run of the program. In line 71, the next iteration in the for-loop is initiated, and
in line 72 the program terminates. The object solution now contains the final (best and
converging) model, and the table results shows details on all converging solutions. Note,
however, that this program will not always work. The outcome is sensitive to good starting
values. Sometimes no solution and, in rare occasions, a degenerate solution is found.

Results

As an example, the latent risk model has been fitted to the Belgian fatalities and exposure
data shown in Figure 7. In a first run, a possible level shift was noticed in 1978 for the number
of vehicle kilometres. Also, we explicitly modelled the “top” year 1970 by including a pulse
intervention in the slope equation (6d) of the latent risk, and fixing the error of this equation
to zero renders the slope deterministic. In combination with a pulse intervention this results
in a piecewise linear slope component.

We adjust the counter in line 14 of the program to select starting values for 11 instead of
9 parameters. We drop the error declaration for e6 (line 26), its variance (line 33) and
the covariance between e3 and e6 (line 36). Then we change line 38 to ss1.append @signal
log(vehkm) = svl + c(10)*1levell978 + el, where 1level1978 is a level shift variable that
equals 0 at all time points before 1978 and equals 1 in 1978 and subsequent years. Line 44 now
becomes ss1.append @state sv4 = sv4(-1) + c(11)*pulsel970. Note that level1978
and pulsel1970 need to be defined as new series in the work file.

The final model solution has a loglikelihood value of 137.3071 (AIC = —5.7867). The esti-
mated variance-covariance matrices are as follows:

I — [ 0.000019  —0.000064
b | —0.000064 0.000352 |’
[ 0.000071 0 0.000272 )
Q= 0 0.000117 0
| 0.000272 0 0.002399

13
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log(vehkm) log(killed)
statistic critical value value p value | value p value
Independence Q(15) 24.9958 | 17.9518 0.2652 | 8.0704  0.9209
Homoscedasticity 1/H(13) 3.1150 | 2.7297 0.0816 | 1.0918 0.8765
Normality JB 5.9915 | 0.0308 0.9847 | 0.4174 0.8116

Table 1: Diagnostic tests for the latent risk model.

Note that the dimension of the matrix ); is now 3 x 3 because of the deterministic slope
component for the second observation equation. The smoothed final states are ,ugpl ) = 4.5298,

p2 = 22597, v = 0.0020 and »{? = —0.0626. This would indicate that, in 2008, we
estimate a yearly growth in exposure of 100(e%%%20 — 1) = 0.2% (not significant), while
the fatality risk is decreasing at a rate of 100(e=%0626 — 1) = —6.07% per year and the
number of fatalities is decreasing at a rate of 100(e%0020-0.0626 _ 1) — _588% per year.
The parameter for the 1978 level intervention in the log(vehkm) equation is estimated to be
0.0553 (p value = 0.0000). In the sv4 slope equation we find a parameter estimate for the
1970 pulse intervention of -0.0868 (p value = 0.0003), implying that we expect a smoothed
slope component of —0.0626 +0.0868 = 0.0242 f(gr)all periods before 1970, which also happens
2

to be the initial value of the slope component v,

The auxiliary residuals for the two observation equations and three state equations were
checked, and although some of the graphs indicated a few possible outliers and structural
breaks, none of them were exceptional in comparison with the 95% confidence interval. We
further test the model validity by inspecting the standardized prediction errors of both the log
of the number of fatalities and the log of the number of vehicle kilometers for independence,
homoscedasticity and normality (based on Commandeur and Koopman 2007, p. 90-96).
Results are summarized in Table 1. They indicate that all of the model assumptions are
satisfied.

Although EViews allows storing all kinds of series generated by the sspace object, there is no
built-in function for diagnostic testing in state space models. Alternatively, one can save the
residuals and perform the standard tests for independence, normality and homoscedasticity
after correcting for the number of estimated hyperparameters and/or the number of diffuse
initial values, as was done in the analysis of the Nile data in Section 2.3. However, for
non-homogeneous multivariate models it is not clear how the degrees of freedom should be
corrected (Harvey 1989, p. 443). In practice, the corrections are therefore often omitted.

Figure 9 shows the one-step-ahead predictions for the two series. The point estimates on the

original scale were calculated as exp (g,ﬁ” + log (1 + 0.5var(g)§i) ))) For road safety policy

makers, these are interesting outcomes of the latent risk model. The graph in Figure 9b
shows that the number of fatalities in 2015 is estimated to be 631, and we are 90% confident
that the true value will be between 439 and 869. According to this model, the target of at
most 500 fatalities in 2015 (see Section 3.1) is within reach.

4. Conclusion

This paper illustrated how state space models can be fitted in the econometric software
package EViews. First we demonstrated how a local level model can be fitted to the Nile data.
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Figure 9: Predictions of fatalities and exposure, with 90% confidence interval.

Next we presented an iteration program that can be used to estimate a latent risk model.
This is a multivariate linear state space model in which a second signal equation depends on
two unobserved factors: exposure and risk. The latent risk model was applied to Belgian road
safety data.

In general EViews is a flexible and user friendly environment when it comes to developing a
wide range of econometric models. The same goes for state space models. The interface is
accessible and straightforward. Simple models can easily be fitted via the autospecification
option or by writing the sspace object directly. A nice thing about EViews is that the output
can be obtained either by programming or by “point-and-click” action.

Estimation is fast and happens — sometimes regrettably — completely out of sight. Therefore
some aspects of the implemented Kalman filtering algorithm and the corresponding optimiza-
tion of the loglikelihood are not clear to the end user, like for example the diffuse initialization
of the unobserved components. This hinders the comparison of state space results in EViews
with those obtained in other software packages.

For more complex models, converging solutions are usually not obtained in one estimation
run of the sspace object. However, the programming environment holds out a hand here.
Programming estimation runs increases the odds of finding a suitable solution.

Although statistics for diagnostic checking are readily available in EViews, they are not fully
tuned to the output of a state space object. More than a practical knowledge of state space
models is then required. Novice state space developers may experience difficulties in disen-
tangling (the quality of) their output. On the other hand, because state space models are
treated in almost the same way as any other object, the barrier is presumably quite low for
experienced EViews users.
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