
NEURAL NETWORKS TRAINING AND

APPLICATIONS USING BIOLOGICAL DATA

A thesis submitted for the degree of Doctor of Philosophy

for the University of London

By

Aristoklis. D. Anastasiadis

Supervisor: Dr. G. D. Magoulas

School of Computer Science and Information Systems

December 2005

To my parents, and Dimitra.

ii

Abstract

Training neural networks in classification problems, especially when biological

data are involved, is a very challenging task. Many training algorithms have

been proposed so far to improve the performance of neural networks. A popular

approach is to use batch learning that employs a different adaptive learning rate

for each weight. Most of the existing algorithms of this class are based on the

use of heuristics, and they don’t guarantee convergence to a local minimiser from

any initial weights set. In addition, they converge frequently to local minima,

particularly when training starts far away from a minimiser. To alleviate this

situation, this PhD thesis proposes new methods that overcome these problems.

It proposes a new class of sign–based schemes with adaptive learning rates that

are based on the composite nonlinear Jacobi process. It develops an adaptation

strategy that ensures the search direction is a descent one and the decrease of

the batch error is guaranteed. Moreover, it equips the new algorithms with the

global convergence property; i.e. it proves convergence to a local minimiser from

any remote starting point.

The problem of occasional convergence to local minima is then dealt within

the context of global search methods by proposing a hybrid-learning scheme

that combines deterministic and stochastic search, and adaptive learning rates.

Stochastic search is explored in the context of Nonextensive Statistical Mechan-

ics, by modifying the error surface during training using perturbations generated

by the q-nonextensive entropic index. The proposed algorithms are applied to

train feed-forward neural networks and diverse neural ensembles in biological and

bioinformatics datasets.

iii

Acknowledgements

The completion of this thesis came about as the result of invaluable support and

friendship from numerous people.

First and foremost, my utmost gratitude goes out to my family for supporting

me throughout the years. Without them, I would never have made it this far.

I am also deeply grateful to my supervisor, Dr. Magoulas, who has had the

most direct influence on my work over the past three years. He was a real friend

and a mentor throughout these years. Through him, I have learnt to become

more self-critical and meticulous in my work. I am extremely grateful for his

encouragement, support and understanding over the years.

I cannot forget to acknowledge my undergraduate teacher Stavros Koubias at

University of Patras, without whose support and assistance I would have never

started this PhD. I would also like to address special thanks to Prof. Constantino

Tsallis for our very useful discussions, during my stay at Santa Fe Institute where

I was visiting researcher.

Special appreciation also goes out to my dependable friends Dionisis and George

and many others in the Computer Science Department. I wish them all the best

in their future endeavours.

My final words go to my family. Particularly, I would like to thank Dimitris, who

helped me in my first steps of learning Matlab. I will be forever indebted to my

parents, and Dimitra, without whose unconditional support, love, encouragement

and reassurance I would have never finished this thesis. This thesis is dedicated

to them.

iv

Contents

Abstract iii

Acknowledgements iv

List of Tables x

List of Figures xviii

1 Introduction 1

1.1 Introduction . 1

1.1.1 Aims . 3

1.1.2 Objectives . 3

1.1.3 Methodology . 4

1.1.4 Structure of the PhD Thesis 5

1.1.5 Contribution . 7

2 Supervised Training in an Optimization context 9

v

Contents

2.1 Formulation of the Training Problem 9

2.2 Optimisation Approaches . 13

3 Gradient Descent based Training Schemes 15

3.1 Introduction . 15

3.2 The Resilient Propagation Algorithm 18

3.2.1 Simulated Annealing Rprop–SARprop 22

3.2.2 Hybrid Resilient Propagation Algorithms 23

3.2.3 The IRprop algorithm: Improved Rprop 25

3.3 An Approach Based on the Nonlinear Jacobi Methods 27

3.3.1 The Composite nonlinear Jacobi 28

3.3.2 The Jacobi–bisection method 29

3.4 Experimental study using biological datasets 35

3.4.1 Classification of protein Localisations sites 45

3.5 Discussion . 49

3.6 Summary and Contribution of the chapter 49

4 Globally Convergent Training Algorithms 51

4.1 Introduction . 51

4.2 The Notion of Global Convergence 52

4.3 The Globally Resilient Backpropagation Algorithm 54

vi

Contents

4.3.1 Experimental study using biological data sets 57

4.3.2 Discussion . 63

4.4 The Globally Convergent Jacobi-Rprop

Method . 65

4.4.1 Experimental Study using biological datasets 66

4.4.2 Boolean function approximation problems 73

4.5 Summary and Contribution of the Chapter 77

5 Nonextensive Hybrid Learning Schemes 78

5.1 Introduction . 78

5.2 Statistical Mechanics . 79

5.2.1 Boltzmann’s Statistical Mechanics 81

5.3 Statistical Mechanics and Neural Networks 83

5.3.1 Annealing schedules in neural networks learning 85

5.3.2 Boltzmann’s Statistical Mechanics and Neural Networks . 86

5.4 Nonextensive Statistical Mechanics 88

5.4.1 Nonextensive Statistical Mechanics and Neural Networks . 90

5.4.2 Nonextensive Entropy and the Perturbed Error Function . 91

5.5 Experimental Study . 94

5.5.1 Fisher’s Iris data, a benchmark problem 96

vii

Contents

5.5.2 Application to biological data 97

5.5.3 Boolean function approximation problems 101

5.6 Summary and Contribution of the Chapter 104

6 Training Neural Network Ensembles in Bioinformatics problems106

6.1 Introduction . 106

6.2 Description of the Problem and Related Works 107

6.2.1 The Horton-Nakai Model 109

6.2.2 The K Nearest Neighbours Algorithm 109

6.2.3 The PSORT System . 111

6.3 Ensemble-based Methods . 111

6.3.1 The Notion of Diversity and its Levels 112

6.3.2 Measuring Ensemble Diversity. 113

6.4 Experimental Study . 117

6.4.1 Description of Datasets . 117

6.4.2 Classifying E.coli Proteins Using a Feed-forward Neural

Network . 117

6.4.3 Classifying Yeast Patterns Using a Feed-forward Neural

Network . 122

6.4.4 Classifying Protein Patterns Using Ensemble-based Tech-

niques . 125

viii

Contents

6.4.5 Classifying Ecoli and Yeast Patterns Using the Hybrid

Learning Scheme to Train Neural Networks. 133

6.5 Summary and Contribution of the Chapter 137

7 Conclusions and Future work 138

7.1 Discussion . 138

7.2 Future work . 140

A Problems Description–Datasets–Evaluation Methods 143

A.1 Problems description . 143

A.1.1 The Cancer1 problem. 144

A.1.2 The Diabetes1 problem. 144

A.1.3 The Genes2 problem. 144

A.1.4 The Thyroid problem. 144

A.1.5 Fisher’s Iris problem . 145

A.1.6 The Ecoli problem. 145

A.1.7 The Yeast problem. 146

A.2 Evaluation Methods . 147

A.2.1 Cross Validation . 147

A.2.2 The Wilcoxon Test of Statistical Significance 147

ix

List of Tables

3.1 Comparison of algorithms performance in the Cancer problem for

the runs which converged . 38

3.2 Number of times, out of 1000 runs, each algorithm performs better

than the other methods in the Cancer problem with respect to

training speed and generalisation. 39

3.3 Number of times, out of 1000 runs, each algorithm performs better

than the other methods in the Cancer problem with respect to

training speed and generalisation. 40

3.4 Comparison of algorithms performance in the Diabetes problem

for the runs which converged . 41

3.5 Number of times, out of 1000 runs, each algorithm performs better

than the other methods in the Diabetes problem with respect to

training speed and generalisation. 41

3.6 Number of times, out of 1000 runs, each algorithm performs better

than the other methods in the Diabetes problem with respect to

training speed and generalisation. 42

3.7 Comparison of algorithms performance in the Thyroid problem for

the runs which converged . 43

x

List of tables

3.8 Number of times, out of 1000 runs, each algorithm performs better

than the other methods in the Thyroid problem with respect to

training speed and generalisation. 43

3.9 Comparison of algorithms performance in the Genes2 problem for

the runs which converged . 44

3.10 Number of times, out of 1000 runs, each algorithm performs better

than the other methods in the Genes2 problem with respect to

training speed and generalisation. 45

3.11 Number of times, out of 1000 runs, each algorithm performs better

than the other methods in the Genes2 problem with respect to

training speed and generalisation. 45

3.12 Comparison of algorithms performance in the Ecoli problem for

the runs which converged . 47

3.13 Number of times, out of 1000 runs, each algorithm performs bet-

ter than the other methods in the Ecoli problem with respect to

training speed and generalisation. 47

3.14 Comparison of algorithms performance in the Yeast problem for

the runs which converged . 48

3.15 Number of times, out of 1000 runs, each algorithm performs bet-

ter than the other methods in the Yeast problem with respect to

training speed and generalisation. 48

4.1 Comparison of algorithms performance in the Cancer problem for

the converged runs . 58

xi

List of tables

4.2 Number of times, out of 1000 runs, each algorithm performs better

than the other methods in the Cancer problem with respect to

training speed and generalisation. 58

4.3 Comparison of algorithms performance in the Diabetes problem

for the converged runs . 59

4.4 Number of times, out of 1000 runs, each algorithm performs better

than the other methods in the Diabetes problem with respect to

training speed and generalisation. 59

4.5 Comparison of algorithms performance in the Genes problem for

the runs which converged . 60

4.6 Number of times, out of 1000 runs, each algorithm performs better

than the other methods in the Genes problem with respect to

training speed and generalisation. 60

4.7 Comparison of algorithms performance in the Ecoli problem for

the runs which converged . 62

4.8 Number of times, out of 1000 runs, each algorithm performs bet-

ter than the other methods in the Ecoli problem with respect to

training speed and generalisation. 62

4.9 Comparison of algorithms performance in the Thyroid problem for

the runs which converged . 63

4.10 Number of times, out of 1000 runs, each algorithm performs better

than the other methods in the Thyroid problem with respect to

training speed and generalisation. 63

4.11 Summary of GRprop results in terms of learning speed improve-

ment over Rprop. 64

xii

List of tables

4.12 Comparison of algorithms performance in the Cancer problem for

the converged runs . 68

4.13 Number of times, out of 1000 runs, each algorithm performs better

than the other methods in the Cancer problem with respect to

training speed and generalisation. 68

4.14 Comparison of algorithms performance in the Diabetes problem

for the converged runs . 69

4.15 Number of times, out of 1000 runs, each algorithm performs better

than the other methods in the Diabetes problem with respect to

training speed and generalisation. 69

4.16 Comparison of algorithms performance in the Thyroid problem for

the converged runs . 71

4.17 Number of times, out of 1000 runs, each algorithm performs better

than the other methods in the Thyroid problem with respect to

training speed and generalisation. 71

4.18 Comparison of algorithms’ performance in the E.coli problem for

the converged runs . 72

4.19 Number of times, out of 1000 runs, each algorithm performs bet-

ter than the other methods in the E.coli problem with respect to

training speed and generalisation. 72

4.20 Comparison of algorithms performance in the XOR problem for

the converged runs . 73

4.21 Comparison of algorithms performance in the parity–3 problem

for the converged runs . 75

xiii

List of tables

4.22 Comparison of algorithms performance in the parity–4 problem

for the converged runs . 75

4.23 Comparison of algorithms performance in the parity–5 problem

for the converged runs . 76

5.1 Comparison of algorithms performance in the Iris problem for the

converged runs . 97

5.2 Number of times, out of 1000 runs, each algorithm performs better

than the other methods in the Iris problem with respect to training

speed and generalisation. 97

5.3 Comparison of algorithms performance in the Cancer problem for

the converged runs . 98

5.4 Number of times, out of 1000 runs, each algorithm performs better

than the other methods in the Cancer problem with respect to

training speed and generalisation. 99

5.5 Comparison of algorithms performance in the Diabetes problem

for the converged runs . 100

5.6 Number of times, out of 1000 runs, each algorithm performs better

than the other methods in the Diabetes problem with respect to

training speed and generalisation. 100

5.7 Comparison of algorithms performance in the Thyroid problem for

the converged runs . 101

5.8 Number of times, out of 1000 runs, each algorithm performs better

than the other methods in the Thyroid problem with respect to

training speed and generalisation. 101

xiv

List of tables

5.9 Average performance in the XOR and Parity–4 problems 102

5.10 Average algorithm performance in the Parity–3 and Parity–5 prob-

lems . 102

6.1 Example with 3 classifiers and 5 data patterns of Yeast for me2

class . 115

6.2 The mean squared ensemble error for our example 115

6.3 The accuracy of classification of E.coli proteins for each class . . . 118

6.4 Confusion matrix for E.coli proteins with KNN. 119

6.5 Confusion matrix for E.coli proteins with FNN. 120

6.6 Best classification success for each method with 4 fold cross-validation

for E.coli proteins(2nd partition). 121

6.7 Best overall performance for each method with 4-fold cross vali-

dation for each partition. 121

6.8 The accuracy of classification of E.coli proteins for each class using

leave one out cross validation. 122

6.9 Confusion matrix for E.coli proteins with KNN with leave one out

cross validation. 122

6.10 Confusion matrix for E.coli proteins with FNN with leave one out

cross validation. 123

6.11 The accuracy of classification of Yeast proteins for each class. . . 124

6.12 The confusion matrix of Yeast proteins for each class using a neural

network. 125

xv

List of tables

6.13 The confusion matrix of Yeast proteins for each class using the

KNN algorithm. 126

6.14 Best performance for each method using 10 fold cross-validation

for Yeast proteins. 127

6.15 Best performance for each method using one fold cross-validation

for Yeast proteins for each class. 128

6.16 Accuracy of classification for E.coli proteins using ensemble-based

techniques. 129

6.17 Accuracy of classification for Yeast proteins using diverse neural

networks . 129

6.18 Best performance for each method using one fold cross-validation

for E.coli proteins by ensemble-based techniques. 130

6.19 Best performance for each method using one fold cross-validation

for Yeast proteins for each class. 131

6.20 Number of patterns each neural network fails to classify correctly

(FNN1, FNN2, FNN3), and common number of patterns neural

networks fail to classify correctly (FNN12, FNN13,FNN23,FNN123)

for the Ecoli protein problem using 4 fold cross validation and di-

verse neural networks. 132

6.21 Accuracy of classification for Ecoli proteins using 4 fold cross val-

idation and diverse neural networks. 132

6.22 The accuracy of classification of Yeast proteins for each class using

10 fold cross validation. 133

xvi

List of tables

6.23 The accuracy of classification of E.coli proteins for each class Using

the HLS algorithm to train the Neural Networks 134

6.24 Best overall performance for each method with 4-fold cross vali-

dation for each partition. 134

6.25 Mean behaviour in terms of speed, convergence and testing clas-

sification success for each method with 4 fold cross-validation for

E.coli proteins. 135

6.26 The Ensemble performance using 4 fold cross-validation for E.coli

proteins for 50 runs using the new training algorithm. 135

6.27 Mean behaviour in terms of speed, convergence and testing classi-

fication success for each method with 10 fold cross-validation for

Yeast proteins. 136

6.28 The Ensemble performance using 10 fold cross-validation for Yeast

proteins for 50 runs using the new training algorithm. 136

xvii

List of Figures

2.1 The biological neuron . 10

2.2 Supervised Learning . 11

4.1 Weight trajectories of GRprop (left) and Rprop (right). 56

4.2 GRprop and Rprop learning curves: genes (left) and thyroid (right). 61

4.3 GJRprop, JRprop and Rprop learning curves for (a) the cancer

problem and (b) the diabetes problem 67

4.4 GJRprop, JRprop and Rprop learning curves for (a) the E.coli

problem and (b) the thyroid problem. 70

4.5 GJRprop, JRProp and Rprop learning curves: diabetes (left) and

cancer (right). 72

4.6 Learning error curves for the XOR problem 74

4.7 Typical learning error curves for (a) the parity–4 problem and (b)

the parity–5 problem. 76

xviii

List of figures

5.1 The weights trajectory of the Hybrid Learning Scheme converges

to the global minimum (left), whilst the trajectory of Rprop to a

local minimiser (right). 94

5.2 Starting from the same initial weights, the trajectory of the Rprop

converges to a local minimiser (top), whilst the trajectory of HLS

converges to the global minimum (3 different values for the Tem-

perature are shown – see text for details). 95

5.3 Starting from the same initial weights, the trajectory of the Rprop

converges to a local minimiser (top) , whilst the trajectory of HLS

converges to the global minimum (3 different values for the Tem-

perature are shown – see text for details). 96

5.4 Typical learning error curve for the XOR function 103

5.5 Typical learning error curve for the Parity–3 problem 103

6.1 Ensemble Scheme . 116

xix

Chapter 1

Introduction

Beauty is truth, truth beauty, – that is all Ye know on earth, and all ye need to

know. John Keats, May 1819.

1.1 Introduction

Neural networks are very sophisticated modelling techniques capable of modelling

extremely complex functions. Nowadays, they are being successfully applied

across a wide range of problem domains, in areas such as finance, medicine,

engineering, geology and physics.

Indeed, anywhere that there are problems of prediction or classification, neural

networks are being introduced. However, neural network error surfaces are much

more complex, and are characterised by a number of unhelpful features, such

as local minima, flat-spots and plateaus, saddle-points, and long narrow ravines.

These specific characteristics make the training of the neural network particularly

difficult and constitute a crucial factor for the performance of neural networks [91,

87, 64, 49].

1

Chapter 1. Introduction

Many training algorithms have been proposed so far to improve the neural net-

work’s performance [49, 64, 124]. Batch learning that employs a different adap-

tive learning rate for each weight is very popular. Most of the existing algorithms

of this class don’t guarantee convergence to a local minimiser from any initial

weights set. Predominantly, they converge frequently to local minima when

training starts far away from a minimiser.

A variety of approaches inspired from the unconstrained optimisation theory has

also been applied, in order to use second derivative related information to accel-

erate the learning process [13, 65, 71, 135]. Nevertheless, it is not certain that the

extra computational cost these methods require leads to speed ups of the min-

imisation process for nonconvex functions when far from a minimiser [75]. This

problem can be overcome through the use of global optimisation. The drawback

of this class of methods is that they are very computationally expensive.

This PhD thesis proposes new methods that overcome these problems. This

thesis investigates Optimisation methods for Artificial Neural Network training.

It proposes sign–based schemes with adaptive learning rates that are based on

the composite nonlinear Jacobi process. In addition, it equips the new algo-

rithms with the global convergence property; i.e. it proves convergence to a local

minimiser from any remote starting point.

Moreover, the problem of occasional convergence to local minima is also dealt

within the context of Statistical Mechanics. A new hybrid-learning scheme with

adaptive learning rates that combines deterministic and stochastic search, is

presented. Stochastic search is explored in the context of Tsallis Statistical Me-

chanics, by modifying the error surface during training using the q-nonextensive

entropic index.

Lastly, the proposed algorithms are applied for training feed-forward neural net-

works and diverse neural ensembles. Emphasis is given on classification problems

2

Chapter 1. Introduction

that use biological data. Also, in depth survey has been carried out for the pre-

diction of the proteins’ localisation sites. Two of the most thoroughly studied

single-cell organisms, namely the bacterium Escherichia coli and the eukaryote

Saccharomyces cerevisiae, also called Yeast [15, 58] were studied.

1.1.1 Aims

In this PhD, the development and implementation of novel appropriate training

schemes is investigated, in order to overcome drawbacks of the existing training

algorithms. The new proposed methods are tested on benchmark problems so as

to be fine-tuned, and are then applied in problems that use biological data, as well

as bioinformatics problems that cannot be solved with the existing approaches.

Improvement of the learning speed, the classification accuracy and convergence

success are important targets.

1.1.2 Objectives

The main objectives of the PhD are given below:

• Develop and implement new gradient descent based training algorithms for

supervised learning.

• Propose sign–based schemes with adaptive learning rates that are based on

the composite nonlinear Jacobi process.

• Develop a methodology to build globally convergent algorithms.

• Apply Nonextensive Statistical Mechanics in training Neural networks.

• Tested the performance of the proposed schemes using biological data. Also

apply these algorithms to predict the localisation sites of the E.coli and

Yeast proteins.

3

Chapter 1. Introduction

1.1.3 Methodology

Most of the existing batch learning algorithms converge frequently to local min-

ima, particularly when training starts far away from a minimiser. Moreover, the

error surface may have troughs, valleys, canyons, and a host of shapes. Thus, in

presence of many plateaus, and valleys, training gets slow.

To alleviate this situation, this PhD thesis proposes a methodology inspired from

the theory of linear and nonlinear iterative methods. For large systems containing

thousands of equations, iterative methods often have decisive advantages over

direct methods in terms of speed and demands on computer memory. Sometimes,

if the accuracy requirements are not stringent, a modest number of iterations

will suffice to produce an acceptable solution. Also, iterative methods are often

very efficient for sparse systems problems. One of the most widely used class of

nonlinear methods is the nonlinear Jacobi methods, which is used for the solution

of a system of nonlinear equations[35]. In this PhD, Jacobi methods are applied

in the optimisation context. The proposed algorithm of this class follows the

Composite Jacobi procedure [79, 141].

Furthermore, this PhD equips these learning schemes with the global conver-

gence property [75]. The issue of making these globally convergent algorithms,

is treated with principles from unconstrained minimisation theory. These new

globally convergent algorithms converge from a remote starting point. They do

not seek global minimisers of the error function E, but ensure convergence to a

local minimiser with certainty, despite the use of heuristics.

Finally, the problem of occasional convergence to local minimum is dealt within

the context of global search methods. One of these widely used methods is the

Simulated Annealing (SA). In the numerical optimisation framework, Simulated

Annealing is a procedure that has the ability to move out of regions near local

minima [24, 119]. In this PhD work, the methodology that is applied in the

4

Chapter 1. Introduction

construction of the new learning scheme is based on introducing additive noise

in neural network learning by formulating the perturbed energy function. In the

proposed method, noise is generated by a noise source that is characterised by

the nonextensive entropic index q, inspired from Nonextensive Statistical Me-

chanics [125]. This scheme modifies the error surface during the training. Thus,

as the energy landscape is modified during training, the search method is allowed

to explore regions of the energy surface that were previously unavailable.

The last methodology that is applied in this thesis is the diverse neural ensem-

bles. The ensemble approach has been justified both theoretically [42] and em-

pirically [78]. It enables an increase in generalisation performance, by combining

several individual neural networks trained on the same task. The proposed algo-

rithms are applied to training feed-forward neural networks and diverse neural

ensembles. The tested datasets are bioinformatics problems.

1.1.4 Structure of the PhD Thesis

The thesis contains seven chapters. Chapter 2 gives an overview of the basic neu-

ral network definitions, network architectures and well known training methods.

In Chapter 3 a review of relevant previous research concerning first order training

methods for feedforward neural networks is presented. This chapter introduces

a new class of sign–based schemes that are based on the composite nonlinear

Jacobi process. An algorithm of this class that applies the bisection method is

further explored and detailed results of the experimental study are discussed.

The new heuristic algorithm, the JRprop, is built on a theoretical basis.

In Chapter 4 a new class of first order globally convergent batch training algo-

rithms, which employ local learning rates is proposed. The new learning rates

adaptation strategy ensures the search direction is a descent one and the decrease

of the batch error is guaranteed. Finally, convergence to a local minimiser of the

5

Chapter 1. Introduction

batch error function is obtained from any remote initial weights. In this chapter

globally convergent modification of the Rprop [91] (an efficient modification of

Backpropagation that is a sign–based learning scheme) and JRprop algorithms

are introduced, named GRprop and GJRprop respectively. A theoretical justifi-

cation for their development is provided, as well as reported comparative results

in well studied benchmark problems are reported.

Chapter 5 deals with the application of the Statistical Mechanics in Neural Net-

work training. A brief review of the basic concepts of the Statistical mechanics is

presented and the relationship with the neural networks is highlighted. Emphasis

is given on the Nonextensive Statistical Mechanics and how ideas based on this

theory are applied in neural networks. A hybrid learning scheme that combines

deterministic and stochastic search by employing a different adaptive stepsize

for each weight, and a form of noise that is characterised by the nonextensive

entropic index q that is regulated by a weight decay term, is proposed. Finally,

an experimental study is conducted using biological data.

In Chapter 6, we investigate the use of the methods proposed in the previ-

ous chapters in training neural ensembles in bioinformatics problems. Effective

training of neural ensembles is a subject of active research. It enables an increase

in generalisation performance, by combining several individual neural networks

trained on the same task. Furthermore, the generation of ensemble with di-

versity Feedforward Neural Networks (FNNs) provides significant improvement

compared to other approaches in the literature for the two tested bionformatics

problems. In particular the nonextensive hybrid algorithm proposed in this work

generates different classifications, which is an important feature when creating

efficient ensembles of neural nets.

Finally, Chapter 7 summarises the contents of the present PhD thesis and dis-

cusses its contribution. It also identifies areas for future work and makes sugges-

tions on how to take this work forward.

6

Chapter 1. Introduction

1.1.5 Contribution

In Chapter 3, a gradient descent based heuristic scheme that uses one-step of

the bisection method to locate an approximation of the subminimiser along each

weight direction is suggested. The use of the bisection method helps the new

learning scheme to converge more times than the other tested algorithms. This

training scheme, the JRprop algorithm, helps to reduce the computational effort

for high dimensional non convex functions when they are far from a minimiser, as

is common in neural network training. Finally, by taking into account the evolu-

tion of the error in order to update the weights, the JRprop avoids convergence

to local minima in some cases.

In Chapter 4 two globally convergent first order algorithms that possess the

global convergence property to a local minimiser are proposed. The GRprop and

GJRprop improve the learning speed as well as ensure subminimisation of the

error function along each weight direction.

The Hybrid Learning Scheme (HLS) is another new stochastic learning algorithm

for neural networks. It combines deterministic and stochastic search steps by

employing a different adaptive stepsize for each network weight, and applies a

form of noise that is characterised by the nonextensive entropic index q, regulated

by a weight decay term. An experimental study verifies that there are indeed

improvements in the convergence speed and classification success of this new

learning algorithm.

The proposed training algorithms are developed and compared to well known ex-

isting algorithms. It was found that the new developed learning schemes achieve

superior performance in terms of learning speed, and convergence success. Addi-

tionally, the aforementioned characteristics make these algorithms attractive to

be used in wide range of biological and bioinformatics applications, such as the

classification of the proteins into localisation sites and protein folding, as well as

7

Chapter 1. Introduction

the prediction of cancer, diabetes and thyroid.

Finally, this PhD attempts to produce classifiers that will generate different

classifications. It also contributes to the process of building ensembles of neural

nets. These ensembles are shown to improve the overall performance compared

to the single classification methods in difficult biological problems.

8

Chapter 2

Supervised Training in an

Optimization context

2.1 Formulation of the Training Problem

Artificial Neural Networks are relatively crude electronic models based on the

neural structure of the brain. It is a network of interconnected elements inspired

by studies of biological nervous systems. Artificial Neural Networks attempt to

create machines that work in a similar way to the human brain by building them

using components that behave like biological neurons. However, the operation

of artificial neural networks and artificial neuron is far more simplified that the

operation of the human brain; an abridged figure of the biological neuron is

given in Figure 2.1. The brain consists of millions of these neurons, which may

be specialised in some task or not. By modifying the synaptic connections new

dendrites grow lengthening the axon. This behaviour of the brain inspired Mc-

Culloch and Pitts (1943) [70] to devise an artificial neuron called the perceptron,

which is the basis of all neural network models. Neural networks’ basic function

is to produce an output pattern when presented with an input pattern. They

9

Chapter 2. Supervised Training in an Optimization context

Figure 2.1: The biological neuron

have the specific ability to learn and generalise well.

In the 1950’s, Rosenblatt (1958) [96] suggested a two-layer network, which was

capable of learning certain classifications by adjusting connection weights. Al-

though the perceptron was successful in classifying certain patterns, it had a

number of limitations, which led to the decline of the field of neural networks.

However, the perceptron had laid the foundations for later work in neural com-

puting. In the early 1980’s, researchers showed renewed interest in neural net-

works. Recent neural models include Boltzmann machines, Hopfield nets, com-

petitive learning models, multilayer networks, and adaptive resonance theory

models.

Nowadays, artificial neural networks are used in many systems. It has been

widely known that neural networks can serve as a powerful tool for classification.

Learning is essential to most of the neural network models. Learning can be

supervised, when the network is provided with the correct answer for the output

during training, or unsupervised, when no external teacher is present. Figure 2.2

10

Chapter 2. Supervised Training in an Optimization context

αj wij

y
Comparison

d
External signal

(teacher)

Supervised Learning

Algorithm

E = y - d

Figure 2.2: Supervised Learning

presents briefly the supervised learning procedure, where E is the error function,

y is the actual output, d is the external signal, which is the desired output. The

goal of the Neural Network learning is to iteratively adjust the weights, in order

to globally minimise a measure of the difference between the actual output of

the network and the desired output, as specified by a teacher, for all examples

in a training set [43]. The vast majority of artificial neural network solutions

have been trained with supervision. Therefore, emphasis in this work is given

on the development of well-performing supervised learning schemes to apply on

classification problems.

A widely used class of supervised neural network models, is the multilayer feedfor-

ward neural network (FNN). FNNs are nonlinear systems modelled on the general

features of biological systems that exhibit emergent behavior [97]. Statisticians

have studied the properties of this general class and have found that many re-

sults from the statistical theory of nonlinear models can be easily applied directly

to feedforward nets [94]. Methods that are commonly used for fitting nonlinear

models, such as various Levenberg-Marquardt and conjugate gradient algorithms,

can also be used to train feedforward nets [14]. The FNNs can compute predicted

11

Chapter 2. Supervised Training in an Optimization context

values simpler and faster than other neural network models. Finally, FNNs are

better at learning moderately functions, which have discontinuities, than many

other methods do with stronger smoothness assumptions [14].

Thus, at this point it is useful to describe briefly the operation of an FNN. FNN

is usually based on the following equations:

netlj =

nl−1∑
i=1

wl−1,l
ij yl−1

i , yl
j = f(netlj), (2.1)

where l is the number of the layers in the neural network, netlj is for the j-th node

in the l-th layer (j = 1, . . . , nl), the sum of its weighted inputs. The weights from

the i-th node at the (l − 1) layer to the j-th node at the l-th layer are denoted

by wl−1,l
ij , yl

j is the output of the j-th node that belongs to the l-th layer, and

f(netlj) is the j-th’s node activation function.

If there is a fixed, finite set of input–output examples, the squared error over the

training set, which contains P representative examples, is:

E(w) =
P∑

p=1

nL∑
j=1

(
yL

j,p − tj,p
)2

=
P∑

p=1

nL∑
j=1

[
σL

(
netLj + θL

j

)− tj,p
]2

. (2.2)

This equation formulates the energy function, called error function, to be min-

imised, in which tj,p specifies the desired response at the j–th output node for

the example p and yL
j,p is the output of the j–th node at layer L that depends

on the weights of the network, and σ is a nonlinear activation function, such as

the well known logistic function σ(x) = (1 + e−x)
−1

. The weights in the network

can be expressed using vector notation w ∈ Rn, as:

w =
(
. . . , wl−1,l

ij , wl−1,l
i+1 j, . . . , w

l−1,l
Nl−1 j,, θ

l
j, wl−1,l

i j+1, w
l−1,l
i+1 j+1, . . .

)>
, (2.3)

where θl
j denotes the bias of the j–th node (j = 1, . . . , Nl) at the l–th layer

(l = 2, . . . , L), and n denotes the total number of weights and biases in the

network.

12

Chapter 2. Supervised Training in an Optimization context

2.2 Optimisation Approaches

The crucial target of the supervised neural networks is to find the optimal so-

lution. This solution is known as global minimum, which is the lowest possible

error, and it is therefore the acceptable solution. It is well known in the neural

networks field [43, 97] that the rapid computation of such a global minimum is

a difficult task because the dimensionality of the weights space is high, and the

corresponding nonconvex multimodal objective function possesses multitudes of

local minima and has broad flat regions adjoined with narrow steep ones.

First–order gradient based methods are the most widely used class of algorithms

for supervised learning of neural networks [13]. First–order methods are linear

approximators and more practical computationally [62]. Adaptive stepsize algo-

rithms is a popular class of first order training algorithms that try to overcome

the inherent difficulty of choosing the right stepsize for each problem [66]. The

stepsize is used in the same way as the learning rate in the backpropagation.

The step size determines how fast the algorithm moves down the gradient to-

wards the optimal value of the parameters or weights. Too large a step size and

the algorithm may diverges, too small and it will take a long time to reach the

optimal solution. Determining the best step size is highly dependent upon the

data in the specific problem and it is largely a trial and error effort to set the

step size appropriately. Adaptive step size algorithms adjust the step size each

weight update, essentially searching for the best step size. They work by con-

trolling the magnitude of the changes in the weight states during learning in an

attempt to avoid oscillations and, at the same time, maximising the length of

the minimisation step [91].

A variety of approaches inspired by unconstrained optimisation theory has also

been applied, in order to use second derivative related information to acceler-

ate the learning process [13, 65, 71, 135]. Methods such as Conjugate Gradi-

ents [71], the Levenberg-Marquardt algorithm [31, 41], which is based on the

13

Chapter 2. Supervised Training in an Optimization context

model-trust region approach, a popular alternative to the long-established line

search methods [106, p.69], and the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm [37] are considered popular choices for training feedforward neural

networks. Nevertheless, it is not certain that the extra computational cost these

methods require leads to speed ups of the minimisation process for nonconvex

functions when far from a minimiser [75]; this is usually the case with neural

network training problems [13]. Although, the capacity of modern computers

has been improved considerably the last few years, there are still problems that

hamper the use of these powerful second order algorithms in some problems. For

example, a large number of weights often makes the direct application of sec-

ond order methods impractical. Lastly, these methods use approximations of the

Hessian matrix which at some point during training may come close to singular,

or badly scaled, and as a consequence they might produce inaccurate results.

An inherent difficulty with first–order and second–order learning schemes is con-

vergence to local minima. While some local minima can provide acceptable

solutions, they often result in poor network performance. This problem can be

overcome through the use of global optimisation [21, 86, 87, 124]. The drawback

of this class of the training algorithms is that they are very computationally

expensive, particularly for large networks.

The following chapters discuss the class of first order training schemes that are

based on the gradient descent. In the next chapter emphasis is given on the

development of an efficient supervised learning algorithms, [7, 8]. Analytical

theoretical and experimental study is provided and future directions are also

given.

14

Chapter 3

Gradient Descent based Training

Schemes

3.1 Introduction

Gradient descent is the most widely used class of algorithms for supervised learn-

ing of neural networks. The most popular training algorithm of this category is

the batch Back-Propagation (BP) [97]. It is a first order method that minimises

the error function by updating the weights using the steepest descent method

[13]:

w(t + 1) = w(t)− η5 E (w(t)) (3.1)

where E is the batch error measure defined as the Sum of Squared differences

Error function (SSE) over the entire training set, and t indicates iterations (time

steps). The ∇(E) is the gradient vector, which is computed by applying the

chain rule on the layers of the FNN[97]. The parameter η is a heuristic, called

learning rate. The optimal value of η depends on the shape of the error func-

tion. The learning rate values help to avoid convergence to a saddle point or a

maximum. In order to secure the convergence of the BP training algorithm and

15

Chapter 3. Gradient Descent based Training Schemes

avoid oscillations in a steep direction of the error surface a small learning rate is

chosen (0 < η < 1).

One of the most common problems with the BP algorithm is that it leads to

slow training, and often yields suboptimal solutions [38]. Convergence to a lo-

cal minimum prevents the neural network from learning the entire training set

and results in poor performance. Once the backpropagation based learning algo-

rithms settle into one of these local minima, it is very difficult for the algorithms

to continue their search to find the global minimum. This is a result of the insuf-

ficient number of the hidden nodes, as well as an improper initial weight vector.

Furthermore, BP based algorithms tend to get stuck when the error surface is

flat (the gradient is close to zero) or when the surface is rugged. Generally, the

neural networks surfaces are very complex. These nonconvex error surfaces re-

sult to multiple minima. This peculiar neural network surface makes the choice

of the learning rate for each weight direction very crucial. It is possible that

the learning rate in one weight direction is not appropriate for the other weight

directions or for all the portions of the error surface [50].

Many attempts have also been made to improve the performance of the BP algo-

rithm by modifying the way that the learning rate is chosen. Some of them try

to adapt dynamically the learning rate during the training [13, 134], or keeping

constant learning rates and constant momentum [97]. On the other hand, the use

of a constant learning rate introduces difficulties in obtaining convergence. Try-

ing to train a neural network using a constant learning rate is usually a tedious

process requiring much trial [59]. For backpropagation based algorithms with

constant learning rate, there are also theoretical results that show convergence

when the learning rate is constant and proportional to the inverse of the Lipschtz

constant, which in practice is not easily available [64].

Other important efforts to improve the performance of the Back-propagation

16

Chapter 3. Gradient Descent based Training Schemes

algorithm include the application of BP using learning rate adaptation meth-

ods. This can be implemented by using a common adaptive learning rate for

all the weights or an individual adaptive learning for each weight and apply the

Goldstein/Armijo line search [66]. Adaptive training schemes try to overcome

the problems of the BP algorithm by applying a weight specific learning rate

as suggested by Jacobs [50]. A class of adaptive learning schemes is the local

adaptation techniques, which use only weight-specific information (e.g the par-

tial derivative) to adapt weight specific parameters. Well known examples of

this category are the Delta-Bar-Delta and the SuperSAB [123]. Both of them

are based on the idea of the sign-dependent learning rate adaptation. They per-

form a modification of the weight specific learning rate according to the observed

behaviour of the error function. The adapted learning rate is eventually used to

calculate the weight-step [91].

A different approach is that of the Quickprop as proposed by Fahlman [29].

Quickprop method belongs to the class of quasi-Newton methods. A modified

globally convergent modification of the Quickprop has been proposed recently by

Vrahatis et al achieving improved convergence speed and stability [139]. Other

important gradient descent based training schemes that observe the sign of the

gradients are the Silva and Almeida’s method [113] and the Resilient Back-

propagation (Rprop) [91, 92]. Finally, another class of adaptive learning rate

algorithms is to adapt the learning rate by subminimisation in each weight di-

rection [67].

This chapter focuses on first order algorithms which use adaptive learning rates

as the simulations and the evaluation of these methods showed improvement

learning speed and good convergence behavior [64, 66, 67]. Emphasis is given on

the performance of the Adaptive gradient–based algorithms with individual step–

sizes, and more specifically on one of the best algorithms of this class [91, 82, 83,

49, 7, 8], in terms of convergence speed, accuracy and robustness with respect

to its learning parameters, the Resilient Backpropagation (Rprop) algorithm,

17

Chapter 3. Gradient Descent based Training Schemes

introduced by Riedmiller and Braun [91].

Relevant literature [82, 83, 64, 66, 67, 49, 7, 8] shows that Rprop–based learning

schemes exhibit fast convergence in empirical evaluations, but usually require

introducing or even fine tuning additional heuristics. Moreover, literature shows a

lack of theoretical results underpinning the development of Rprop modifications,

particularly in the case of hybrid schemes. This is not surprising as heuristics may

not be able to guarantee convergence to a local minimiser of the error function

when adaptive learning rates for each weight are used in the calculation weight

updates [49, 66, 81, 91]. Nevertheless, no guarantee is provided that the network

error will monotonically decrease at each iteration and that the weight sequence

will converge to a minimiser of the sum-of-squared-differences error function E.

3.2 The Resilient Propagation Algorithm

A widely used example of Adaptive gradient–based algorithms with individual

step–sizes, is the Rprop algorithm. The Resilient backpropagation approach is

considered eminently suitable for applications where the gradient is numerically

estimated or the error is noisy [49]; it is easy to implement it in hardware and it

is not susceptible to numerical problems [80]. The basic principle of Rprop is to

eliminate the harmful influence of the size of the partial derivative on the weight

step. As a consequence, only the sign of the derivative is considered to indicate

the direction of the weight update. The size of the weight change is exclusively

determined by a weight-specific “update–value”

18

Chapter 3. Gradient Descent based Training Schemes

∆wij(t) =

−∆ij(t), if
∂E(t)
∂wij

> 0,

+∆ij(t), if
∂E(t)
∂wij

< 0,

0, otherwise,

where ∂E(t)/∂wij denotes the true gradient, which is summed over all patterns

of the training set. The second step of Rprop learning is to determine the new

update-values.

∆ij(t) =

η+ ·∆ij(t− 1), if
∂E(t− 1)

∂wij
· ∂E(t)

∂wij
> 0,

η− ·∆ij(t− 1), if
∂E(t− 1)

∂wij
· ∂E(t)

∂wij
< 0,

∆ij(t− 1), otherwise,

where 0 < η− < 1 < η+ .

Thus, every time the partial derivative of the corresponding weight wij(t) changes

its sign, which indicates that the last update was too big and the algorithm has

jumped over the local minimum, the update-value ∆ij(t) is decreased by the

factor η−. If the derivative retains its sign, the update value is slightly increased

in order to accelerate convergence in shallow regions. Additionally, in case of a

change in sign, there should be no adaptation in the succeeding learning step. In

practice this can be achieved by setting ∂E(t)/∂wij = 0 in the adaptation rule.

This strategy helps to speed up convergence when the derivative is negative

but may be inefficient when the two derivatives are positive, as in this case the

weight updates may lead the weight trajectory far away from the minimum or

in regions with higher error function values. In an attempt to alleviate these

19

Chapter 3. Gradient Descent based Training Schemes

situations Rprop employs a heuristic parameter ∆max, which constrains the size

of the update step.

In fact the Rprop algorithm requires setting the following parameters: (i) the

increase factor is set to η+ = 1.2; (ii) the decrease factor is set to η− = 0.5; (iii)

the initial update-value is set to ∆0 = 0.1; (iv) the maximum weight step, which

is used in order to prevent the weights from becoming too large, is ∆max = 50,

and the minimum step size is constantly fixed to ∆min = 10−6 [91, 92].

A high level description of the weight update procedure, which shows the kernel

of the Rprop adaptation and learning process, is described below. The mini-

mum/maximum operator is supposed to deliver the minimum/maximum of two

numbers; the sign operator returns +1, when the argument is positive; −1,

when the argument is negative and 0 otherwise, as suggested by Riedmiller and

Braun [91, 92].

Rprop weight update procedure:

repeat

compute the gradient vector ∇E(t)

for all weights and biases

if
∂E(t− 1)

∂wij

· ∂E(t)

∂wij

> 0 then

∆ij(t) = min{∆ij(t− 1) · η+, ∆max}

∆wij(t) = −sign
∂E(t)

∂wij

·∆ij(t)

wij(t + 1) = wij(t) + ∆wij(t)

∂E(t− 1)

∂wij

=
∂E(t)

∂wij

else if
∂E(t− 1)

∂wij

· ∂E(t)

∂wij

< 0 then

20

Chapter 3. Gradient Descent based Training Schemes

∆ij(t) = max{∆ij(t− 1) · η−, ∆min}
∂E(t− 1)

∂wij

= 0

else if
∂E(t− 1)

∂wij

· ∂E(t)

∂wij

= 0 then

∆wij(t) = −sign
∂E(t)

∂wij

·∆ij(t)

wij(t + 1) = wij(t) + ∆wij(t)

∂E(t− 1)

∂wij

=
∂E(t)

∂wij

end if

until termination criterion is met

where the termination criterion will be a predefined number of epochs or specific

error goal.

The effectiveness of Rprop in practical applications has motivated the devel-

opment of several variants aiming at improving the convergence behavior and

effectiveness of the original method. These variants can be roughly categorised

into: (i) hybrid learning schemes that equip Rprop with second derivative re-

lated information, such as the QRprop algorithm, which approximates the sec-

ond derivative by one–dimensional secant steps, and the Diagonal Estimation

Rprop–DERprop [81], which directly computes the diagonal elements of the Hes-

sian matrix; (ii) approaches inspired by global optimisation theory, such as the

Simulated Annealing Rprop–SARprop and the Restart mode Simulated Annealing

Rprop–ReSARprop [124]. Recently, the Improved Rprop–IRprop algorithm [49]

has shown improved convergence speed when compared against existing Rprop

variants, as well as the conjugate gradients and the BFGS training methods.

21

Chapter 3. Gradient Descent based Training Schemes

3.2.1 Simulated Annealing Rprop–SARprop

SARprop introduced by Treadgold and Gedeon [124] is a method that tries to

solve the problem of poor local minima. It attempts to address this problem

by combining the method of Simulated Annealing (SA) [52, 10] and the Rprop

algorithm. SA involves the addition of noise to the parameters undergoing op-

timization. In SARprop, noise is added to the standard Rprop weight update

value when both the error gradient changes sign in successive epochs and the

magnitude of the update value is less than a value proportional to the SA term.

The reason for adding noise to the update value only when both the error gra-

dient changes sign and the update value is below a given setting, is to minimize

the disturbance to the normal adaptation of the update value. This means that

the update value is only modified by noise when it has a relatively small value.

This can allow the weight to jump out of local minima while minimizing the

disturbance to the adaptation process.

The only parameter requiring setting prior to training is the temperature T , a

part of the SA term which affects the speed by which the noise is reduced. The

optimal setting of this parameter is problem dependent, although good values

were found in the range of 0.01 to 0.05 [124]. In general it was found the more

complex the problem, the lower the temperature value required and hence the

slower the annealing process.

Finally, a restart mode Simulated Annealing Rprop–ReSARprop by Treadgold

and Gedeon (1998) [124], is a modification of SARprop. It uses SARprop in a

restart mode. This is done by restarting training whenever SARprop converges.

ReSARprop tries to solve the problem of selecting a good value for the temper-

ature parameter. The temperature can be initially set to give fast annealing. If

a good solution has not been reached this temperature can be reset to allow for

slower annealing when the network is restarted. The removal of the temperature

parameter in ReSARprop results in ReSARprop being parameter free.

22

Chapter 3. Gradient Descent based Training Schemes

3.2.2 Hybrid Resilient Propagation Algorithms

The next two Hybrid Algorithms QRprop and DERprop , as suggested by Pfis-

ter and Rojas (1994), include second order information into an adaptive step

method [82, 83]. They combine the fast convergence speed of Rprop with the

good local properties of second order methods. These algorithms are hybrid

methods using a local strategy i.e. the adaptive inclusion of second order infor-

mation takes place for each weight independently. QRprop and DERprop are

batch algorithms to which no additional parameters have been introduced. For

very large and redundant data sets, there is a waste of computational time in

training the neural networks properly [83].

QRprop: General Description

This algorithm is obtained by adaptively switching between Rprop and local one

dimensional secant steps. The idea of QRprop is the following one: the Rprop is

used if two subsequent error function gradient components ∂E(t)/∂wij have the

same sign which guarantees a fast approach to minimum regions. If the sign of

the gradient changes, we know that we have over jumped a local minimum in this

specific weight direction. Then neither weights nor learning rates are changed,

which is done in the next step using a constrained secant approximation. It is

important to determine the new update-values ∆ij(t) that are used in QRprop

algorithm:

∆ij(t) =

η+ ·∆ij(t), if
∂E(t− 1)

∂wij
· ∂E(t)

∂wij
> 0,

∆ij(t− 1), if
∂E(t− 1)

∂wij
· ∂E(t)

∂wij
< 0,

quadij ·∆ij(t− 1), otherwise,

where 0 < η− < 1 < η+, quadij = max{η−, min
1

η+
, qij}. The factor qij is the

23

Chapter 3. Gradient Descent based Training Schemes

quadratic approximation, which is defined as follows:

qij = |∂E(t− 1)

∂wij

/(
∂E(t)

∂wij

− ∂E(t− 2)

∂wij

)|

DERprop: General Description

DERprop is similar to QRprop. The main difference is that second order infor-

mation is not approximated by secant steps but directly computed by evaluating

the diagonal terms of ∇2E(wt), hence the name of the algorithm which stands

for Diagonal Estimation Rprop (DERprop). Using the diagonal terms of the

Hessian matrix has the advantage that quadratic local minimum regions are not

just recognised after they have been jumped over but eventually earlier. DER-

prop is divided into two ’subalgorithms’. In the first one (DERpropA), second

order information is only used to minimise local minima as in QRprop and in

the second one (DERPropB), second order information is only used to avoid to

overshoot local minima. For DERPropB step, it should not be larger than an

Rprop step to avoid too large steps and oscillations and it should not be smaller

than the previous step so that, in case of a suboptimal step, the learning rate is

at least not worsened. For DERpropA the same constraints for the second order

steps as for QRprop are applied.

In the DERPropB algorithm the learning rate changes following the procedure:

∆ij(t) =

max{min(quadij , ∆max), ∆min}, if
∂E(t− 1)

∂wij
· ∂E(t)

∂wij
> 0,

max{∆ij(t− 1) · η−, ∆min}, if
∂E(t− 1)

∂wij
· ∂E(t)

∂wij
< 0,

∆ij(t− 1), otherwise,

where 0 < η− < 1 < η+, quadij = max{η−, min
1

η+
, qij}. The factor qij is the

quadratic approximation, which is defined as follows:

24

Chapter 3. Gradient Descent based Training Schemes

qij = |∂E(t− 1)

∂wij

/(
∂E(t)

∂wij

− ∂E(t− 2)

∂wij

)|

3.2.3 The IRprop algorithm: Improved Rprop

The IRprop algorithm [49] is a recently proposed modification of the resilient

propagation. The decision in Rprop to undo a step is somewhat arbitrary. Thus,

the idea of IRprop is to make the step reversal depend on the evolution of the

error. It suggests that weight updates that have caused changes to the signs of

the corresponding partial derivatives are reverted, but only in case of an error

increase. It is a backtracking strategy to Rprop update for some or all of the

weights in order to decide for each weight individually whether or not to revert

a step.

IRprop weight update procedure:

repeat

compute the gradient vector ∇E(t)

for all weights and biases

if
∂E(t− 1)

∂wij

· ∂E(t)

∂wij

> 0 then

∆ij(t) = min{∆ij(t− 1) · η+, ∆max}

∆wij(t) = −sign
∂E(t)

∂wij

·∆ij(t)

wij(t + 1) = wij(t) + ∆wij(t)

∂E(t− 1)

∂wij

=
∂E(t)

∂wij

else if
∂E(t− 1)

∂wij

· ∂E(t)

∂wij

< 0 then

∆ij(t) = max{∆ij(t− 1) · η−, ∆min}

if E(t) < E(t− 1) then

wij(t + 1) = wij(t)−∆wij(t− 1)

25

Chapter 3. Gradient Descent based Training Schemes

end if

∂E(t− 1)

∂wij

= 0

else if
∂E(t− 1)

∂wij

· ∂E(t)

∂wij

= 0 then

∆wij(t) = −sign
∂E(t)

∂wij

·∆ij(t)

wij(t + 1) = wij(t) + ∆wij(t)

∂E(t− 1)

∂wij

=
∂E(t)

∂wij

end if

until termination criterion is met

where sign defines the well known triple valued sign function and the termination

criterion will be a predefined number of epochs or specific error goal.

In this algorithm, the previous error E(t − 1) has to be stored, in order to

check the evaluation of the error and decide how the weight update will be

done. Compared to the original Resilient Propagation algorithm (Rprop) only

one additional variable is estimated (i.e the previous error E(t−1)). The IRprop

performs weight-backtracking in the few cases where the overall error increases,

and secondly it always sets the derivative to zero when the sign of the product of

the derivatives is negative. Finally, all the parameters are set at the same values

as suggested by Riedmiller and Braun for the Rprop algorithm [91, 92].

26

Chapter 3. Gradient Descent based Training Schemes

3.3 An Approach Based on the Nonlinear Ja-

cobi Methods

In this section, first–order algorithms with an adaptive learning rate for each

weight are analysed as composite nonlinear Jacobi methods applied to the gra-

dient of the error function. The class of nonlinear Jacobi methods is widely used

for the solution of a system of nonlinear equations:

F (x1, x2, . . . , xn) = Θn ≡ (0, 0, . . . , 0), (3.2)

where F = (f1, f2, . . . , fn) : D ⊂ Rn → Rn.

Along this line, in a function minimisation problem all local minima x∗ =

(x∗1, x
∗
2, . . . , x

∗
n) of a continuous differentiable function f should satisfy the nec-

essary conditions:

∇f(x∗) = Θn. (3.3)

Eq. (3.3) represents a set of n nonlinear equations, which must be solved to

obtain x∗. Therefore, one approach to the minimisation of the function f is

to seek the solutions of the set of Eq. (3.3) by including a provision to ensure

that the solution found does, indeed, correspond to a local minimiser. Solving

Eq. (3.3) is equivalent to solving the following system of equations:

∂1f(x1, x2, . . . , xn) = 0,

∂2f(x1, x2, . . . , xn) = 0,
...

∂nf(x1, x2, . . . , xn) = 0,

(3.4)

where ∂if(x1, . . . , xi, . . . , xn) denotes the partial derivative of f with respect to

the ith coordinate.

27

Chapter 3. Gradient Descent based Training Schemes

3.3.1 The Composite nonlinear Jacobi

The nonlinear Jacobi process applies a parallel update of the variables [79]. Start-

ing from an arbitrary initial vector x0 ∈ D, one can subminimise at the kth

iteration the function:

f(xk
1, . . . , x

k
i−1, xi, x

k
i+1, . . . , x

k
n), (3.5)

along the ith direction and obtain the corresponding subminimiser x̂i. Obviously

for the subminimiser x̂i

∂if(xk
1, . . . , x

k
i−1, x̂i, x

k
i+1, . . . , x

k
n) = 0. (3.6)

This is a one–dimensional subminimisation because all the components of the

vector xk, except from the ith component, are kept constant. Then the ith

component is updated according to the equation:

xk+1
i = xk

i + τk(x̂i − xk
i), (3.7)

for some relaxation factor τk. The objective function in (3.5) is subminimised

in parallel for all i. When exact one–dimensional submimisation is applied and

τk = 1 for all k the following result is available for strictly convex functions.

Theorem 1 [19]: Suppose that the objective function f : D ⊂ Rn → R is twice

continuously differentiable on a convex domain D and that f is a strictly convex

function. Assume that there exists γ ∈ R such that Sγ = {x ∈ D : f(x) 6 γ}
is nonempty and compact and that ∂2

iif(y) 6= 0 for i = 1, 2, . . . , n and y ∈ Sγ,

unless y is the point at which f attains its minimum, where ∂2
ijf(y) denotes the

hij element of the Hessian matrix of f at y, H = [hij]. Suppose further, that

from any point x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ Sγ a sequence {xk}∞k=0 is generated:

xk+1
j = xk

j , j 6= ik and

xk+1
ik

is the solution of

∂ikf(xk
1, . . . , x

k
ik−1, xik , x

k
ik+1, . . . , x

k
n) = 0,

28

Chapter 3. Gradient Descent based Training Schemes

where ik is any one of the integers 1, 2, . . . , n. Such a sequence {xk}∞k=0 is uniquely

defined and converges to x∗, the unique global minimiser of f , provided that in the

above iterative process every coordinate direction i is chosen an infinite number

of times.

Various composite nonlinear Jacobi training algorithms can be obtained depend-

ing on the one–dimensional minimisation method applied [141]. In case an in-

exact one–dimensional subminimisation is applied, the number of the iterations

or steps of the subminimisation method is related to the requested accuracy in

obtaining the subminimiser approximations. Thus, significant computational ef-

fort is needed in order to find accurate approximations of the subminimiser along

each variable direction at each iteration.

Moreover, this computational effort is increased for problems with a high number

of variables, as for example when training neural networks with several hundred

weights. Taking into account that training neural networks involves minimising

non convex functions, it is a computationally expensive process without guaran-

teeing the convergence to a global minimiser. Similar situations can also occur

in the iterative solution of nonlinear equations [79].

3.3.2 The Jacobi–bisection method

In this section, we synthesize a composite Jacobi method that is inspired by the

Rprop algorithm. The method, named JRprop, combines “individual” informa-

tion about the error surface, i.e. the sign of the partial derivative of the error

function with respect to each one of the weights, with more “global” information,

i.e. the magnitude of the network’s learning error at each epoch t, in order to

decide for each weight individually whether or not to revert/reduce a step.

Following the nonlinear Jacobi prescription, one–dimensional subminimisation is

29

Chapter 3. Gradient Descent based Training Schemes

applied along each weight direction. Let us assume that along a weight’s direction

an interval is known which brackets a local minimum ŵij. When the gradient

of the error function is available at the endpoints of the interval of uncertainty

along this weight direction, it is necessary to evaluate function information at an

interior point in order to reduce this interval. This is because it is possible to

decide if between two successive epochs (t) and (t−1) the corresponding interval

brackets a local minimum simply by looking the function values E(t−1), E(t) and

gradient values ∂E(t − 1)/∂wij, ∂E(t)/∂wij at the endpoints of the considered

interval (see [101] for a general discussion on the problem).

The conditions that have to be satisfied, [101], are:

∂E(V 1)
∂wij

< 0 and
∂E(V 2)

∂wij
> 0,

∂E(V 1)
∂wij

< 0 and E(V 1) < E(V 2), (3.8)

∂E(V 1)
∂wij

> 0 and
∂E(V 2)

∂wij
> 0 and E(V 1) > E(V 2),

where V 1 and V 2 determine the sets of weights for which the coordinate that

corresponds to the weight wij is replaced by ai = min{w(t−1)
ij , w

(t)
ij }, and bi =

max{w(t−1)
ij , w

(t)
ij } correspondingly. Notice that, at this instance, between two

successive epochs (t−1) and (t) all the other coordinates remain the same (this is

because we follow the nonlinear Jacobi prescription). The above three conditions

lead to the conclusion that the interval [ai, bi] includes a local subminimiser along

the direction of weight wij. A robust method of interval reduction, such as the

bisection could now be used. By computing the midpoint mi =
1

2
(ai + bi) of the

interval [ai, bi] we take as the next interval whichever of [ai,mi] and [mi, bi] that

still brackets a minimiser according to the criteria mentioned above.

For the case of the first condition of (3.8) we will consider here the bisection

method, which has been modified to the following version described in [137, 138]:

wp+1
ij = wp

ij + hi sign ∂iE(wp) /2p+1, (3.9)

30

Chapter 3. Gradient Descent based Training Schemes

where p = 0, 1, . . . is the number of subminimisation steps and w0
i = ai; hi =

sign ∂iE(w0) (bi−ai); w0 determines the set of weights at the (t− 1) epoch while

wp is obtained by replacing the coordinate of w0 that corresponds to the weight

wij by wp
i . Of course, the iterations (3.9) converge to ŵi ∈ (ai, bi) if for some

wp
i , p = 1, 2, . . . , the first one of the conditions (3.8) holds. In this case, the

bisection method always converges with certainty within the given interval [ai, bi].

Also, the number of steps of the bisection method that are required for the

attainment of an approximate minimiser ŵi of (3.7) within the interval [ai, bi] to

a predetermined accuracy ε is known beforehand and is given by

ν =
⌈
log2[(bi − ai)ε

−1]
⌉
. (3.10)

Moreover, it has a great advantage since it is worst–case optimal, i.e. it possesses

asymptotically the best possible rate of convergence in the worst–case [110, 111].

This means that it is guaranteed to converge within the predefined number of

iterations, a property no other method has. Therefore, using the Relation (3.10)

it is easy to pre-determine the number of iterations needed. Finally, it requires

the algebraic signs of the values of the gradient to be computed.

Theoretical approach of the JRprop

Next, a theoretical result is given that ensures that the composite Jacobi method

that uses a multi–step bisection method for reducing the intervals of uncertainty

converges to a solution. In particular, this result shows that there is a neigh-

borhood of a minimiser of the objective function for which convergence to the

local minimiser can be guaranteed. Notice that this result does not require ex-

act one–dimensional subminimisation, but only an approximation of the local

minimiser.

Corollary 1. Let E : D ⊂ Rn → R be twice continuously differentiable in an

open neighborhood S0 ⊂ D of a point w∗ ∈ D for which ∇E(w∗) = Θn and the

31

Chapter 3. Gradient Descent based Training Schemes

Hessian, H(w∗) is positive definite with the property Aπ. Then there exists an

open ball S = S(w∗, r) in S0 (where S(w∗, r) denotes the open ball centered at

w∗ with radius r), such that any sequence {wk}∞k=0 generated by the nonlinear

Jacobi process converges to w∗ which minimises E.

The proof of the corollary originates from the application of Theorem 1, derived

in [141], on the error function. As mentioned above, Corollary 1 guarantees only

local convergence, and naturally imposes some conditions on the Hessian matrix.

Clearly, the necessary and sufficient conditions for the point w∗ to be a local

minimiser of the function E are satisfied by the hypothesis ∇E(w∗) = Θn and

the assumption of positive definitiveness of the Hessian at w∗. Finding such a

point is equivalent to minimising the nonlinear function (3.5) by applying the

nonlinear Jacobi process and employing the multi-step bisection of Relation (3.9).

Proof. Consider the decomposition of H(w∗) into its diagonal, strictly lower–

triangular and strictly upper–triangular parts:

H(w∗) = D(w∗)− L(w∗)− L>(w∗). (3.11)

Since, H(w∗) is symmetric and positive definite, then D(w∗) is positive defi-

nite [132]. Moreover, since H(w∗) has the property Aπ, the eigenvalues of

Φ(w∗) = D(w∗)−1
[
L(w∗) + L>(w∗)

]
, (3.12)

are real and ρ(Φ(w∗)) < 1 [11] (where ρ(A) indicates the spectral radius of the

matrix A); then there exists an open ball S = S(w∗, r) in S0, such that, for

any initial vector w0 ∈ S, there is a sequence {wk}∞k=0 ⊂ S which satisfies the

nonlinear Jacobi process such that lim
k→∞

wk = w∗ [79].

Remark 1. The Property A: Young [147] has discovered a class of matrices de-

scribed as having property A that can be partitioned into block tridiagonal form,

possibly after a suitable permutation [11]. An algorithmic procedure for trans-

forming a symmetric matrix to a tridiagonal form is presented in [112].

32

Chapter 3. Gradient Descent based Training Schemes

Implementation of the JRprop

Based on the above theoretical discussion we will below consider obtaining ŵi

by minimising the function (3.5) with one-step of a subminimisation method. In

particular, an Rprop-based heuristic scheme is proposed that uses one-step of

the bisection method to locate an approximation of the subminimiser ŵij along

each weight direction. The one step of the subminimisation method helps to

reduce the computational effort for high dimensional non convex functions when

far from a minimiser, as it usually happens in neural network training [141].

Next, a high level description is presented of the proposed algorithm that im-

plements a heuristic version of the JRprop. It is based on the idea of function

comparison methods, [101], taking into account E(t−1) < E(t), and exploits the

signs of the gradient values. The parameter q is a reduction factor that is used

to update the midpoint of the considered interval; choice of q has an influence on

the number of error function evaluations required to obtain an acceptable weight

vector [66].

JRprop algorithm:

repeat

compute the gradient vector ∇E(t)

if E(t) 6 E(t− 1) then

for all weights and biases

if
∂E(t− 1)

∂wij

· ∂E(t)

∂wij

> 0 then

∆ij(t) = min{∆ij(t− 1) · η+, ∆max}
∆wij(t) = −sign

∂E(t)

∂wij

·∆ij(t)

wij(t + 1) = wij(t) + ∆wij(t)

∂E(t− 1)

∂wij

=
∂E(t)

∂wij

∆wij(t− 1) = ∆wij(t)

33

Chapter 3. Gradient Descent based Training Schemes

else if
∂E(t− 1)

∂wij

· ∂E(t)

∂wij

< 0 then

∆ij(t) = max{∆ij(t− 1) · η−, ∆min}
∂E(t− 1)

∂wij

= 0

else if
∂E(t− 1)

∂wij

· ∂E(t)

∂wij

= 0 then

∆wij(t) = −sign
∂E(t)

∂wij

·∆ij(t)

wij(t + 1) = wij(t) + ∆wij(t)

∂E(t− 1)

∂wij

=
∂E(t)

∂wij

∆wij(t− 1) = ∆wij(t)

end if

q = 1

end if

if E(t) > E(t− 1) then

wij(t + 1) = wij(t) +
1

mq
∆wij(t− 1)

q = q + 1

end if

until termination criterion is met

The particular implementation of the JRprop does not take a special consider-

ation for the third condition of (3.8). This condition requires special treatment

as it may lead the algorithm to converge to an undesired extremum. As shown

in the pseudocode description, in JRprop this is handled by the standard Rprop.

Moreover when the bisection is applied, we introduce the parameter m, which

takes values m > 1. In our experiments we fixed m at the value of five (m = 5).

Finally, for all the learning parameters are set at the same values as suggested

by Riedmiller and Braun for the Rprop algorithm [91, 92].

Various termination criteria can be used in the weight update procedure, e.g.

34

Chapter 3. Gradient Descent based Training Schemes

meeting a predefined training error goal E(t), reaching the maximum number of

epochs t, or having the norm of the gradient vector close to zero.

In case the initial weights are far from the neighbourhood of a local minimiser,

then it is possible to equip the algorithm with a strategy for adapting the direc-

tion of search to a descent one. In this way, a decrease of the function value can

be ensured at each iteration and convergence to a local minimiser of the objective

function from remote initial points can be achieved as shown in [68]. This case

will be considered in another chapter.

3.4 Experimental study using biological datasets

IRprop is a recently proposed algorithm that claims improved performance over

the Rprop algorithm and achieves similar results compared to well known second

order techniques [49]. Comparative study shows that Rprop outperforms other

well known training schemes, such as Silva-Almeida, Quickprop and the Super-

SAB [93]. Also, this experimental survey contains two well known second order

training algorithms, namely the Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-

gorithm [37], and the Scaled conjugate gradient backpropagation (SCG) proposed

by Moller [71]. Both are tested in four benchmark classification problems.

The BFGS and SCG algorithms have been applied in an attempt to use second

derivative related information to accelerate the learning process as suggested

in [13, 71]. The BFGS quasi-Newton method is an alternative to the direct

application of the second order Newton’s method, which is considered of limited

applicability in neural network training, particularly when the networks have a

large number of weights [71]. In the experimental study the standard BFGS

method is applied following the guidelines of Matlab 6.5 neural network toolbox.

The tested BFGS algorithm trains any network as long as its weight, net input,

and transfer functions have derivative functions. For a more detailed discussion

35

Chapter 3. Gradient Descent based Training Schemes

of the BFGS quasi-Newton method, which is applied in the experiments see [37,

p.119].

Another reliable approach that performs well is the SCG method. This method

has superlinear convergence rate [71]. It is a variation of the well known conjugate

gradient method, which is based on conjugate directions. This algorithm does

not perform a line search at each iteration. See [71, p.525-533] for a more detailed

discussion of the scaled conjugate gradient algorithm.

Below, results from 1000 independent trials are reported for six neural net-

work classification problems, namely cancer1, diabetes1, thyroid1, genes2, E.coli,

Yeast [88]. These 1000 random weight initialisations are the same for all the

learning algorithms. In all cases, except genes, we have used Feed-forward neu-

ral networks (FNN) with sigmoid hidden and output nodes. A FNN with tansig

hidden nodes was used in the genes2 problem. The notation I-H-O is adopted to

denote a network architecture with I inputs, H hidden layer nodes and O out-

puts nodes. Finally the symbol ±, which is presented in the comparative tables,

denotes the corresponding value of standard deviation.

The data sets for the cancer1, diabetes1, thyroid1, and genes2 problems were

used as supplied on the PROBEN1 website. PROBEN1 provides explicit instruc-

tions for creating training and testing sets and choosing network architectures

for many problems [88]. These well-studied problems from the UCI Repository

of Machine Learning Databases [72] were used in an attempt to reduce as much

as possible biases introduced by the size of the weights space. We decided not

to enhance the algorithms tested with add-on techniques to improve the clas-

sification success in the testing phase (i.e. generalisation ability of the trained

neural network), as this would require introducing, and fine tuning or optimising

additional heuristics depending on the learning task. The data sets for the E.coli

and Yeast problems were used as supplied on the UCI repository and the sets for

training and testing were created following guidelines published by Horton [47].

36

Chapter 3. Gradient Descent based Training Schemes

There are no standard neural architectures for these two problems so we have

conducted our own preliminary experiments as will be described in the problem

subsections.

In all experiments the parameters have been set as follows: η+ = 1.2; η− = 0.5;

∆0
ij = η0 = 0.1; ∆max = 50 [91]. We remark that the selection of m, q is not

critical for successful learning, however it influences the number of error function

evaluations to meet the error target. In all experiments a value of m = 5 is

applied.

Next, the performance of the new method is evaluated in these benchmarks and

compared to the original Rprop [91] and the IRprop [49]. The implementation

of the algorithms has been done in Matlab 6.5.

Learning speed or equivalent training speed or convergence speed is represented

in our tables by the “Epochs” and “Time”. It is a critical factor when deciding

which algorithm to use. Classification success in testing (representing in tables by

“Generalisation”) is another crucial factor. Experimental results are presented

below for both factors. The results for these pattern classification problems are

summarised in the following tables (a “+” indicates statistical significance of the

results of JRprop over the other methods). The Wilcoxon Rank Test [114], which

is given in Appendix A, justifies the statistical significance of the experimental

results.

The Cancer1 problem

This is a breast cancer diagnosis problem, which is described analytically in Ap-

pendix A. A feed-forward neural network is used with 9-4-2-2 nodes as suggested

in the PROBEN1 benchmark collection and in [49]. The error goal in training

was E < 0.02 to harmonise with the training errors obtained in [49]. The other

termination criterion was set at 2000 epochs. The parameter m of the JRprop is

37

Chapter 3. Gradient Descent based Training Schemes

set at a value of five (m = 5).

The results for this pattern classification problem are summarised in Table 3.1.

The average time (“Time”, measured in secs) is represented, the number of

epochs that are needed to meet the error target (“Epochs”), the classification

success with the testing set (“Generalisation”, measured by the percentage of

testing patterns that were classified correctly), and the convergence success in the

training phase (“Convergence”, measured by the percentage of simulation runs

that converged to the error goal) for an algorithm. The new algorithm performs

significantly better than the other two methods. The differences between IRprop

and Rprop do not seem to be important. For each comparison we apply the

Wilcoxon rank test to calculate the significance of the results of the JRprop with

respect to the other methods. Statistically significant cases are marked with (+).

The percentage of improvement that the new algorithm achieved over Rprop and

IRprop in terms of learning speed (Time) is 12.1% and 15.2% respectively. The

results of JRprop show slightly less classification success compared to Rprop and

IRprop and significant improvement over the BFGS and SCG algorithms.

Table 3.2 presents the number of times each algorithm outperforms the other

methods in terms of training speed and generalisation within 1000 independent

runs. It yields that the new learning scheme is frequently faster and achieves

better generalisation than the other two members of the Rprop family.

Table 3.1: Comparison of algorithms performance in the Cancer problem for the
runs which converged

Cancer
Algorithm Epochs Time Generalisation Convergence
Rprop 280 (+) 1.85 ± 1.30 (+) 97.0 (−) 94 (+)
IRprop 285 (+) 1.90 ± 1.35 (+) 97.0 (−) 94 (+)
BFGS 632 (+) 10.7 ± 6.5 (+) 94.00 (+) 72 (+)
SCG 258 (−) 2.20 ± 1.5 (+) 95.99 (+) 88 (+)
JRprop 255 1.65 ± 0.70 96.9 97

38

Chapter 3. Gradient Descent based Training Schemes

Table 3.2 shows that the second order algorithms BFGS and SCG meet the error

goal 720 and 880 times out of the 1000 runs respectively. The SCG algorithm

converges faster than the Rprop and IRprop in epochs but needs more time as it

requires on average more time in each iteration for the computations. Moreover,

the BFGS algorithm has the worst performance, as many times during training

the Hessian matrix is close to singular or is badly scaled. Finally, Table 3.3 gives

in more details the performance of the BFGS and SCG compared to the new

proposed scheme JRprop.

It yields that the new learning scheme is frequently faster and achieves better

generalisation more times than the other tested algorithms. The Jacobi Rprop

training scheme converges faster more than 500 times compared to Rprop, IR-

prop, SCG and more than 900 times than BFGS. Although the generalisation

of the JRprop is slightly less than the other first order algorithms, it achieves

better generalisation in more runs.

Table 3.2: Number of times, out of 1000 runs, each algorithm performs better
than the other methods in the Cancer problem with respect to training speed
and generalisation.

Cancer Times faster Times better
algorithm Generalisation

Algorithm Rprop IRprop JRprop Time Rprop IRprop JRprop
Rprop – 198 366 2.2 ± 2.51 – 10 231
IRprop 504 – 371 2.1 ± 2.50 7 – 228
BFGS 2 2 0 15.7± 12.5 2 3 2
SCG 450 454 370 2.50 ± 2.6 57 55 22
JRprop 506 511 – 1.5 ± 0.90 241 241 –

The Diabetes1 problem

The aim of this real-world classification task is to decide when a Pima Indian

individual is diabetes positive or not. More details are given in AppendixA. The

39

Chapter 3. Gradient Descent based Training Schemes

Table 3.3: Number of times, out of 1000 runs, each algorithm performs better
than the other methods in the Cancer problem with respect to training speed
and generalisation.
Cancer Times faster Times better

algorithm Generalisation
Algorithm BFGS SCG JRprop Time BFGS SCG JRprop
BFGS – 20 0 15.7± 12.5 – 90 12
SCG 860 – 372 2.50 ± 2.6 107 – 42
JRprop 970 598 – 1.6 ± 0.85 541 470 –

PROBEN1 collection proposes several architectures for this problem, including

one with 8-2-2-2 nodes. This architecture was decided to be used, as it was also

suggested by others [49]. The error goal in this case was set at 0.14 to conform to

the training error obtained in [49]. The other termination criterion is the reach

of 2000 epochs. The experimental results of the JRprop for this problem are

taken by setting m = 5.

Table 3.4 summarises the performance of the tested algorithms. The algorithm

exhibits increased training speed (Time, in secs) and generalisation performance.

In the diabetes classification problem both Rprop and IRprop behave similarly.

Table 3.4 gives the average convergence speed and success of the tested algo-

rithms. The table also includes the results of the Wilcoxon Rank test. It is

worth noting that the standard deviation value of the JRprop is significantly less

than the corresponding Rprop and IRprop values, which means JRprop perfor-

mance is closer to the average value.

Table 3.5 gives an analytic view of the comparative results in the 1000 trials.

There is an increase in the training time of the Rprop and IRprop as both con-

verge less times than the JRprop algorithms. The convergence success of the

JRprop is 94%. It is also important to highlight the number of runs that the

JRprop is faster than the other tested algorithms (725 and 644 times better learn-

ing speed than IRprop and Rprop). Finally, Table 3.6 shows the performance of

40

Chapter 3. Gradient Descent based Training Schemes

Table 3.4: Comparison of algorithms performance in the Diabetes problem for
the runs which converged

Diabetes
Algorithm Epochs Time Generalisation Convergence
Rprop 455 (+) 2.40 ± 2.1 (+) 75.8 (+) 86 (+)
IRprop 460 (+) 2.50 ± 2.2 (+) 75.8 (+) 85 (+)
BFGS 462 (+) 5.2± 4.2 (+) 74.68 (+) 64 (+)
SCG 475 (+) 4.3± 3.2 (+) 74.64 (+) 76 (+)
JRprop 410 2.15 ± 1.5 76.1 94

the second order training algorithms compared to JRprop. The new proposed

scheme outperforms BFGS and SCG algorithms in terms of learning speed and

generalisation in most of the 1000 runs.

Table 3.5: Number of times, out of 1000 runs, each algorithm performs better
than the other methods in the Diabetes problem with respect to training speed
and generalisation.

Diabetes Times faster Times better
algorithm Generalisation

Algorithm Rprop IRprop JRprop Time Rprop IRprop JRprop
Rprop – 477 190 3.5 ± 3.4 – 107 108
IRprop 401 – 144 3.7 ± 3.8 99 – 77
BFGS 144 125 14 7.7 ± 5.1 30 29 20
SCG 201 130 20 6.7 ± 4.8 49 49 24
JRprop 644 725 – 2.7 ± 2.1 600 590 –

The Thyroid problem

This dataset consists of patient query data and patient examination data. Ap-

pendix A describes in details this interesting problem. An architecture with

21-4-3 nodes is used, as suggested by Treadgold and Gedeon [124]. The termi-

nation criterion is E < 0.0036 within 2000 epochs as suggested in [124], and we

set the parameter m = 5.

41

Chapter 3. Gradient Descent based Training Schemes

Table 3.6: Number of times, out of 1000 runs, each algorithm performs better
than the other methods in the Diabetes problem with respect to training speed
and generalisation.
Diabetes Times faster Times better

algorithm Generalisation
Algorithm BFGS SCG JRprop Time BFGS SCG JRprop
BFGS – 205 14 7.7 ± 5.1 – 179 39
SCG 301 – 20 6.7 ± 4.8 169 – 34
JRprop 926 920 – 2.7 ± 2.1 700 690 –

Results are given in Table 3.7. The JRprop outperforms the other algorithms,

particularly in training speed. The results in Table 3.8 show that average training

time and the corresponding standard deviation of the Rprop and IRprop increase

when the results of all the runs (1000 cases) are taken into account. This hap-

pens because the two algorithms converge only 870 and 910 times out of the

1000 runs (see Table 3.7). Nevertheless, the performance of the JRprop appears

significantly better: JRprop converges faster in 525 and 538 runs compared to

the Rprop and the IRprop, respectively. Moreover, the value of the deviation of

the new algorithm is significantly lower than the standard deviation of the other

two methods (see Table 3.8). Rprop and IRprop achieve better generalisation

than JRprop in 350 and 340 runs, while JRprop outperforms in 423 and 431 runs

respectively.

It is important in this stage to discuss the experimental results of the BFGS

and SCG. In these tests, the SCG didn’t converge in any of the 1000 runs;

this is indicated with a D in the Table 3.7. Generally the training in the SCG

stops when any of these conditions occur: (i) The maximum number of epochs

(repetitions) is reached, (ii) The maximum amount of time has been exceeded,

(iii) Performance has been minimised to the goal, (iv) The performance gradient

falls below a predefined value. In these experiments we change the value of the

gradient in order to stop the training only in the case the error goal was met

or the number of the maximum epochs is reached. When the error goal is very

42

Chapter 3. Gradient Descent based Training Schemes

small (e.g. 0.0036) the SCG cannot converge. If we increase the error to 0.01

then the SCG has a 90% convergence success and an average about 500 epochs

to meet the error target, while the Rprop and JRprop need 80 and 70 epochs

respectively.

The BFGS outperforms in terms of learning speed and classification success the

Rprop and IRprop but exhibits a small percentage of convergence (only 360 out

the 1000 runs); this is because the approximations of the Hessian matrix were

close to singular. JRprop outperforms other algorithms both in learning speed

and classification success.

Table 3.7: Comparison of algorithms performance in the Thyroid problem for
the runs which converged

Thyroid
Algorithm Epochs Time Generalisation Convergence
Rprop 770 (+) 24.20 ± 12.1 (+) 97.9 (+) 80 (+)
IRprop 760 (+) 23.50 ± 12.4 (+) 97.9 (+) 80 (+)
BFGS 586 (−) 21.2± 10.4 (−) 98.12 (−) 36 (+)
SCG D D D 0
JRprop 700 22.00 ± 9.5 98.0 88

Table 3.8: Number of times, out of 1000 runs, each algorithm performs better
than the other methods in the Thyroid problem with respect to training speed
and generalisation.
Thyroid Times faster Times better

algorithm Generalisation
Algorithm Rprop IRprop BFGS JRprop Time Rprop IRprop BFGS JRprop
Rprop – 181 340 171 28.7 ± 17.9 – 20 12 35
IRprop 185 – 300 161 29.5 ± 18.6 13 – 10 34
BFGS 325 338 – 310 43.7 ± 30.5 123 131 – 100
SCG D D D D D D D D D
JRprop 479 538 400 – 23.7 ± 10.5 129 121 80 –

The Genes2 problem

This benchmark is known as the genes2 problem Appendix A. A FNN with

hyperbolic tan activation function (tansig symbolised in Matlab)(120-4-2-3 nodes

43

Chapter 3. Gradient Descent based Training Schemes

network) is used, and the testing and training data were created as suggested

in PROBEN1 [88]. The error goal was set at 10−5 in an attempt to explore

the effectiveness of the algorithms in reaching minimisers with high degree of

accuracy. The parameter m was set at a value of five for this difficult problem

(m = 5).

Table 3.9 shows the performance of each algorithm in terms of: average number

of epochs (Epochs), average training time (Time, in secs) to reach the error

goal ± the corresponding value of standard deviation, average generalisation

(Generalisation, percentage of correctly classified test patterns) and convergence

success out of the 1000 runs (Convergence, percentage). The improvement of

JRprop is statistically significant when compared to Rprop and IRprop with

respect to both learning speed and classification success. Furthermore, it is

important to note that the testing classification success of JRprop is 100% in

this binary problem. This is particularly important as the Wilcoxon Rank Test is

satisfied. However it is clear that the second order algorithms achieve significantly

improved learning speed in this problem with respect to the first order methods

with the SCG outperforming all the other algorithms.

Table 3.9: Comparison of algorithms performance in the Genes2 problem for the
runs which converged

Genes
Algorithm Epochs Time Generalisation Convergence
Rprop 4860 (+) 73.5 ± 36.4 (+) 97.1 (+) 85 (+)
IRprop 4900 (+) 73.8 ± 36.9 (+) 97.0 (+) 85 (+)
BFGS 3790 (−) 54.6 ± 26.9 (−) 96.70 (+) 82 (+)
SCG 2170 (−) 47.6 ± 24.9 (−) 96.20 (+) 80 (+)
JRprop 4800 71.8 ± 34.0 100 92

Table 3.10 presents comparative results in terms of training speed (in secs) and

generalisation for all of the 1000 runs. Table 3.10 highlights the number of runs

an algorithm is better than the other methods. It also shows the average training

time and the corresponding standard deviation for each algorithm calculated over

44

Chapter 3. Gradient Descent based Training Schemes

the 1000 runs. The JRprop algorithm achieves the best performance compared to

other tested first order training algorithms Rprop and IRprop. Nevertheless, both

of the BFGS and SCG display better learning speed than JRprop. Therefore,

Table 3.11 contains a detailed description of the JRprop, BFGS and SCG within

1000 runs.

Table 3.10: Number of times, out of 1000 runs, each algorithm performs better
than the other methods in the Genes2 problem with respect to training speed
and generalisation.

Genes Times faster Times better
algorithm Generalisation

Algorithm Rprop IRprop JRprop Time Rprop IRprop JRprop
Rprop – 40 426 84.3 ± 44.6 – 2 34
IRprop 39 – 390 84.9 ±45.0 0 – 33
BFGS 674 650 600 77.0 ±44.0 4 5 0
SCG 700 690 650 74.9 ±42.0 10 12 0
JRprop 574 590 – 78.0 ± 40.0 44 45 –

Table 3.11: Number of times, out of 1000 runs, each algorithm performs better
than the other methods in the Genes2 problem with respect to training speed
and generalisation.
Genes Times faster Times better

algorithm Generalisation
Algorithm BFGS SCG JRprop Time BFGS SCG JRprop
BFGS – 150 600 77.0 ±44.0 – 55 0
SCG 200 – 650 74.9 ±42.0 40 – 0
JRprop 274 190 – 78.0 ± 40.0 920 920 –

3.4.1 Classification of protein Localisations sites

In this section the new learning scheme, the JRprop, is applied in two bioin-

formatics datasets. A comparative study with Rprop and IRprop is presented.

Preliminary results (200 runs) of BFGS and SCG show that these two algo-

rithms cannot meet the target error in almost all tested runs. Therefore, the

45

Chapter 3. Gradient Descent based Training Schemes

experimental results with solely the JRprop, Rprop and IRprop algorithms will

follow.

The Ecoli problem

This problem concerns the classification of protein localisation patterns into eight

classes. The Escherichia dataset consists of 336 different proteins. It is a dras-

tically imbalanced data set of 336 patterns, which means that there are classes

with 140 patterns and other ones with only 2 and 5 patterns. For this problem we

have used seven different attributes as in [46, 47, 73, 74]. Finally, the parameter

m is set at value of five, m = 5.

Literature suggests no standard architecture for the E.coli problem. To get an un-

derstanding of the requirements of this problem a set of preliminary experiments

is conducted to find the most suitable FNN architecture in terms of training

speed. In these experiments the neural networks were tested using 4–fold cross

validation, as this approach has been used before in the literature for training

probabilistic and nearest neighbor classifiers in this problem [47]. Several net-

works are trained with one and two hidden layers using the Rprop algorithm.

In particular, various combinations of hidden nodes were tried, i.e. 8, 12, 14,

16, 24, 32, 64, 120 hidden nodes. Each FNN architecture was trained 10 times

with different initial weights. The best available architectures found was a 7-16-

8 FNN. Rprop–trained FNNs of this architecture achieved better generalisation

than the best results reported in the literature [47], when the training error goal

was E < 0.02 [6].

Results from 1000 runs for three algorithms using the same architecture are given

in Table 3.12. A detailed account of the algorithms’ performance is exhibited in

Table 3.13. The new learning scheme is faster than Rprop and IRprop 561 and

577 times respectively. It is clear that there are no significant differences in the

generalisation performance of the three algorithms.

46

Chapter 3. Gradient Descent based Training Schemes

Table 3.12: Comparison of algorithms performance in the Ecoli problem for the
runs which converged

Ecoli
Algorithm Epochs Time Generalisation Convergence
Rprop 157 (+) 1.36 ± 0.35 (+) 90.4 (−) 99 (−)
IRprop 158 (+) 1.37 ± 0.40 (+) 90.4 (−) 99 (−)
JRprop 144 1.24 ± 0.22 90.6 100

Table 3.13 presents comparative results in terms of time (in secs) and generali-

sation for the 1000 runs. Table 3.13 highlights the number of runs an algorithm

is better than the other methods. It also shows the average training time and

the corresponding standard deviation for each algorithm calculated over the 1000

runs;

Table 3.13: Number of times, out of 1000 runs, each algorithm performs better
than the other methods in the Ecoli problem with respect to training speed and
generalisation.

Ecoli Times faster Times better
algorithm Generalisation

Algorithm Rprop IRprop JRprop Time Rprop IRprop JRprop
Rprop – 493 419 1.45 ± 2.7 – 0 390
IRprop 414 – 398 1.50 ± 2.9 0 – 390
JRprop 561 577 – 1.24 ± 0.22 381 381 –

The Yeast problem

In the Yeast problem a pattern consists of 8 attributes [47, 73, 74]. The data set

is drastically imbalanced like the Ecoli data. We worked in a similar way to the

E.coli problem to find a suitable architecture, as there is no specific advice in the

literature. A set of preliminary experiments are conducted training several net-

works with one and two hidden layers using the Rprop algorithm. Combinations

of 8, 12, 14, 16, 24, 32, 64, 120 hidden nodes were tried. Each FNN architecture

47

Chapter 3. Gradient Descent based Training Schemes

was trained 10 times with different initial weights. The best available architecture

found was an 8-16-10 FNN, and this was used in the rest of the experiments. In

these experiments 10–fold cross validation was applied, as this approach has been

reported to produce higher generalisation performance [47, 133]. Rprop–trained

FNNs that reached training errors E < 0.05 produced better generalisation on

the average, [6], than the best available classifier [47]. For this problem the tun-

ing of the parameter m does not play a significant role in the performance of

the JRprop. Similar results can be achieved with values of m greater than one.

Specifically, in the following tables, results are presented with the value of m = 5.

Comparative performance results are presented in Table 3.14. Table 3.15 shows

the results in detail.

Table 3.14: Comparison of algorithms performance in the Yeast problem for the
runs which converged

Yeast
Algorithm Epochs Time Generalisation Convergence
Rprop 926 (+) 32.0 ± 7.9 (+) 63.7 (−) 99 (−)
IRprop 930 (+) 33.0 ± 8.5 (+) 63.7 (−) 99 (−)
JRprop 870 30.5 ± 5.7 63.7 100

Table 3.15: Number of times, out of 1000 runs, each algorithm performs better
than the other methods in the Yeast problem with respect to training speed and
generalisation.

Yeast Times faster Times better
algorithm Generalisation

Algorithm Rprop IRprop JRprop Time Rprop IRprop JRprop
Rprop – 451 440 1.45 ± 2.7 – 0 480
IRprop 559 – 423 1.50 ± 2.9 0 – 480
JRprop 547 576 – 1.20 ± 0.2 476 476 –

48

Chapter 3. Gradient Descent based Training Schemes

3.5 Discussion

JRprop is a heuristic scheme that is based on the idea of function comparison

methods, [101]. It takes into account the evolution of the error and the signs of

the gradient values;
1

mq
is a reduction factor that is used to update the midpoint

of the considered interval. The choice of m, q has an influence on the number of

error function evaluations required to obtain an acceptable weight vector [66].

The new learning scheme achieves better performance than the other tested al-

gorithms. In all tested cases the JRprop’s learning speed is significantly faster

than the Rprop and IRprop. However, the second order training schemes con-

verge faster in the genes problem and the BFGS algorithm also in the thyroid

problem. Nevertheless, in most cases the new adaptive learning scheme, the

JRprop, generalises better and has an increased convergence success. The influ-

ence of the reduction factor
1

mq
plays an important role in the learning speed

of the JRprop. In these experiments, in all cases, JRprop is applied by setting

m = 5. The increase of the value of m usually increases the convergence success

but there is no guarantee that the learning speed subsequently increases (i.e in

cancer, E.coli and Yeast problem by applying m = 2 we can improve slightly the

learning speed of JRprop).

3.6 Summary and Contribution of the chapter

It is widely accepted that the Rprop algorithm is one of the best performing sign–

based learning algorithms for neural networks with arbitrary topology. This

chapter introduced a new class of sign–based schemes that are based on the

composite nonlinear Jacobi process. An algorithm of this class that applies the

bisection method to locate subminimiser approximations along each weight di-

rection was derived, and a simplified version was proposed. This new algorithm

49

Chapter 3. Gradient Descent based Training Schemes

constitutes an efficient improvement of the Rprop algorithm that is built on a

theoretical basis. By fine tuning the extra parameter m of the Jacobi-Rprop

algorithm, significant improvement in the learning speed can be achieved in all

cases without affecting the classification success. Finally, by taking into account

the evolution of the error in order to perform the weights update, the JRprop

avoids converging in local minima, which are far away from a desired minimiser.

Results were presented on the behavior of the new algorithm in pattern clas-

sification problems from the PROBEN1 repository to compare its performance

to the Rprop, and the IRprop (a recently introduced modification of the Rprop

algorithm).

The JRprop exhibited significantly better convergence speed than the Rprop and

IRprop in most cases. 1000 different runs were conducted for each problem in

order to obtain a better view of the tested algorithms’ performance. Finally, the

Wilcoxon test was implemented and comparison tables with the details of the

1000 different runs were given. JRprop still has problems to converge in local

minima in some cases, but there is a significant improvement in its convergence

ability. The next chapter discusses how the Rprop and the Jacobi-Rprop methods

can be equipped with the global convergence property, i.e. convergence to a local

minimiser from any initial starting point, so as to overcome the problem of local

minima. Also, ideas based on global search methods are investigated in chapter

five, in order to improve the convergence success and overcome the problem of

the local minima.

50

Chapter 4

Globally Convergent Training

Algorithms

4.1 Introduction

In the previous chapter a modification of the Rprop was presented based on the

Jacobi procedure. Despite the fact that improved learning speed was achieved,

convergence was not ensured for all initial conditions. This chapter proposes new

Rprop based learning schemes that are equipped with the global convergence

property. i.e. starting from almost any initial weight vector the sequence of the

weights generated by the learning scheme will converge to a local minimiser of

the error function.

At this point, it is important to clarify that in our context, the term global

convergence is used in the same sense as in Dennis and Schnabel [25], where

the authors use it “to denote a method that is designed to converge to a local

minimiser of a nonlinear function, from almost any starting point” [25, p.5].

Dennis and Schnabel also note that “ it might be appropriate to call such methods

local or locally convergent, but these descriptions are already reserved by tradition

51

Chapter 4. Globally Convergent Training Algorithms

for another usage”. Moreover, Nocedal, [75, p.200], defines a globally convergent

algorithm as an algorithm with iterates that converge from a remote starting

point. Thus, in this context, global convergence is totally different from global

optimisation [124].

In this chapter, results of the experimental evaluation of the new globally conver-

gent algorithms as well as comparisons with the original Rprop and the IRprop

are reported. The chapter ends with a short discussion, concluding remarks and

the contribution of the proposed algorithms. In order to illustrate the effec-

tiveness of this approach, two globally convergent algorithms are comparatively

evaluated.

4.2 The Notion of Global Convergence

As it has already been mentioned, the globally convergent algorithms are differ-

ent from the global optimisation methods [75, p.200]. In a strict mathematical

sense, global optimisation means to find the complete set of the globally optimal

solutions (global minimisers) x∗ of the objective function f , and the associated

global optimum value f ∗ = f(x∗). In this section, finding global minimisers

of the error function E is not the main target, but emphasis is given on the

development of algorithms that will converge to a local minimiser with certainty.

The globally convergent schemes are built on the following assumptions from

unconstrained minimisation theory: (i) f : D ⊂ Rn → R is the function to be

minimised and f is bounded below in Rn; (ii) f is continuously differentiable in

a neighborhood N of the level set L = {x : f(x) 6 f(x0)}, (iii) the gradient of

f denoted by g is Lipschitz continuous on Rn that is for any two points x and

y ∈ Rn, g satisfies the Lipschitz condition ‖g(x)−g(y)‖ 6 L‖x−y‖, ∀x, y,∈ N ,

where L > 0 denotes the Lipschitz constant, and x0 is the starting point of the

52

Chapter 4. Globally Convergent Training Algorithms

following iterative scheme

xk+1 = xk + τ kdk, k = 0, 1, . . . (4.1)

Convergence of the general iterative scheme (4.1), in which dk is the search

direction and τ k > 0 is a step–length, requires that the adopted search direction

dk satisfies the condition g(xk)
>
dk < 0, which guarantees that dk is a descent

direction of f(x) at xk. The step–length in (4.1) can be defined by means of a

number of rules, such as the Armijo’s rule [25, 140], the Goldstein’s rule [25], or

the Wolfe’s rule [144, 145], and guarantees the convergence in certain cases. For

example, when the step–length is obtained through Wolfe’s rule [144, 145]

f(xk + τ kdk)− f(xk) 6 σ1τ
kg(xk)>dk, (4.2)

g(xk + τ kdk)>dk > σ2g(xk)>dk, (4.3)

where g(x) is the gradient of f at x, and 0 < σ1 < σ2 < 1, then a theorem by

Wolfe [144, 145] is used to obtain convergence results. Moreover, the Wolfe’s

Theorem [25, 75] suggests that if the cosine of the angle between the search

direction dk and −g(xk) is positive then lim
k→∞

‖ g(wk) ‖= 0, which means that

the sequence of gradients converges to zero. For an iterative scheme (4.1), lim
k→∞

‖
g(wk) ‖= 0 is the best type of global convergence result that can be obtained

(see [75] for a detailed discussion). Evidently, no guarantee is provided that (4.1)

will converge to a global minimiser, x∗, but only that it possesses the global

convergence property, [25, 75], to a local minimiser.

In general, any batch–type BP training algorithm of the form (4.1) can be made

globally convergent if

(i) the adopted search direction dk is a descent direction and it does not tend

to be orthogonal to the gradient direction

(ii) the learning rate τ k satisfies the two Wolfe conditions (4.2)–(4.3). Notice

that, since dk is a descent direction and E is continuously differentiable

53

Chapter 4. Globally Convergent Training Algorithms

and bounded below along the radius {wk + τdk | τ > 0}, then there always

exist τ k satisfying the Wolfe’s conditions (4.2) and (4.3) [25, 75].

Next, the Globally Resilient Backpropagation (GRprop) is proposed and its per-

formance is investigated.

4.3 The Globally Resilient Backpropagation Al-

gorithm

In our approach Rprop’s convergence to a local minimiser is treated with prin-

ciples from unconstrained minimisation theory. In batch training, the condi-

tions (i)-(iii) of section 4.2 are fulfilled because E is bounded from below, since

E(w) > 0. For a given training set and network architecture, if w∗ exists such

that E(w∗) = 0, then w∗ is a global minimiser; otherwise, w with the smallest

E(w) value is considered a global minimiser. Also, when using smooth enough

activations (the derivatives of at least order p are available and continuous), such

as the well known hyperbolic tangent, the logistic activation function etc., the

error E is also smooth enough.

Theorem 1. Suppose that the assumptions (i)–(iii) are fulfilled, then for any

w0 ∈ Rn and any sequence {wk}∞k=0 generated by the Rprop scheme

wk+1 = wk − τ k diag{ηk
1 , . . . , η

k
i , . . . , η

k
n} sign

(
g(wk)

)
, k = 0, 1, . . . (4.4)

where sign
(
g(wk)

)
denotes the column vector of the signs of the components of

g(wk) =
(
g1(w

k), g2(w
k), . . . , gn(wk)

)
, τ k > 0, ηk

m (m = 1, 2, . . . , i−1, i+1, . . . , n)

are small positive real numbers generated by Rprop’s learning rates schedule:

if
(
gm(wk−1) · gm(wk) > 0

)
then ηk

m = min
(
ηk−1

m · η+, ∆max

)
, (4.5)

if
(
gm(wk−1) · gm(wk) < 0

)
then ηk

m = max
(
ηk−1

m · η−, ∆min

)
,(4.6)

if
(
gm(wk−1) · gm(wk) = 0

)
then ηk

m = ηk−1
m , (4.7)

54

Chapter 4. Globally Convergent Training Algorithms

where 0 < η− < 1 < η+, ∆max is the learning rate upper bound, ∆min is the

learning rate lower bound and

ηk
i = −

∑n
j=1
j 6=i

ηk
j gj(w

k) + δ

gi(wk)
, 0 < δ ¿∞, gi(w

k) 6= 0, (4.8)

it holds that lim
k→∞

‖ g(wk) ‖= 0.

Proof: Evidently, E is bounded below on Rn. The sequence {wk}∞k=0 generated

by the iterative scheme (4.4) follows the direction

dk = −diag{ηk
1 , . . . , η

k
i , . . . , η

k
n} sign

(
g(wk)

)
,

which is a descent direction if ηk
m, m = 1, 2, . . . , i−1, i+1, . . . , n are positive real

numbers derived from Relations (4.5)–(4.7), and ηk
i is given by Relation (4.8),

since g(wk)>dk < 0. Following the proof of [141, Theorem 6], since dk is a

descent direction and E is continuously differentiable and bounded below along

the radius {wk + τdk | τ > 0}, then there always exist τ k satisfying (4.2)–

(4.3) [25, 75]. Moreover, the Wolfe’s Theorem [25, 75] suggests that if the cosine

of the angle between the descent direction dk and the −g(wk) is positive then

lim
k→∞

‖ g(wk) ‖= 0. In our case, indeed cos θk =
−g(wk)>dk

‖g(wk)‖ ‖dk‖ > 0. Thus the

theorem is proved. ¤

The modified Rprop, named GRprop, is implemented through Relations (4.4)-

(4.8). It is worth mentioning that Relation (4.8) can be applied cyclically over

the local learning rates, or randomly. In all experiments reported it is replaced

each time the smallest learning rate value that yields from the Rprop’s schedule

with an ηk
i value calculated from relation (4.8).

The role of δ in relation (4.8) is to alleviate problems with limited precision

that may occur in simulations, and should take a small value proportional to

the square root of the relative machine precision. In our tests we set δ = 10−6

in an attempt to test the convergence accuracy of the proposed strategy. Also

τ k = 1 for all k allows the minimisation step along the resultant search direction

55

Chapter 4. Globally Convergent Training Algorithms

to be explicitly defined by the values of the local learning rates. The length

of the minimisation step can be regulated through τ k tuning to satisfy (4.2)–

(4.3). Checking (4.3) at each iteration requires additional gradient evaluations;

thus, in practice (4.3) can be enforced simply by placing the lower bound on the

acceptable values of the learning rates [66, p.1772], i.e. ∆min.

-3 -2 -1 0 1 2 3

-5

-4

-3

-2

-1

0

1

2

3

4

5

W1

W
2

-3 -2 -1 0 1 2 3

-5

-4

-3

-2

-1

0

1

2

3

4

5

W1

W
2

3 2 1 0 1 2 3

-5

-4

-3

-2

-1

0

1

2

3

4

5

W1

W
2

3 2 1 0 1 2 3

-5

-4

-3

-2

-1

0

1

2

3

4

5

W1

W
2

Figure 4.1: Weight trajectories of GRprop (left) and Rprop (right).

A simple problem is used to visualise the behavior of the GRprop and compare

it with the original method. It is a single node with two weights and logistic ac-

tivation function. Figure 4.1 (top row) shows that under the same initial weights

and heuristic values, [91], GRprop locates the feasible minimum at the center

of the contour plot successfully (Figure 4.1, left), while Rprop oscillates around

the neighborhood of the minimiser (Figure 4.1, right). Figure 4.1 (second row)

shows how GRprop locates the minimiser successfully, whilst Rprop’s trajectory

leads to a point with error value higher than the minimiser.

56

Chapter 4. Globally Convergent Training Algorithms

4.3.1 Experimental study using biological data sets

Next, we evaluate the performance of the new method in some benchmarks and

compare it with the original Rprop [91]. The recently proposed modification of

Rprop, namely IRprop [49], achieves similar results with the Rprop algorithm,

so we present only the comparison results with the Rprop. We have used well-

studied problems from the UCI Repository of Machine Learning Databases [72],

as well as problems studied extensively by other researchers in an attempt to

reduce as much as possible biases introduced by the size of the weights space.

Below, we report results from 1000 independent trials for neural network clas-

sification problems. These 1000 random weight initialisations are the same for

all the learning algorithms. In all cases we have used networks with sigmoid

hidden and output nodes, and adopted the notation I-H-O to denote a network

architecture with I inputs, H hidden layer nodes and O outputs nodes.

The data sets for the cancer1, diabetes1, thyroid1, and genes2 problems were used

as supplied on the PROBEN1 website. PROBEN1 provides explicit instructions

for creating training and testing sets and choosing network architectures for

many problems [88]. The data sets for the E.coli problem was used as supplied

on the UCI repository and the sets for training and testing were created following

guidelines published by Horton [47]. There are no standard neural architectures

for these two problems so we have done our own preliminary experiments as will

be described in the problem subsections. Full description of the tested problems

is given in AppendixA.

In all experiments the parameters have been set as follows: η+ = 1.2; η− = 0.5;

∆0
ij = η0 = 0.1; ∆max = 50 [91]. Finally we have set δ = 10−6 in an attempt to

test the convergence accuracy of the proposed strategy and also τ k = 1 for all k.

57

Chapter 4. Globally Convergent Training Algorithms

The Cancer problem

In this problem a feed-forward neural network with 9–4–2–2 nodes is used as

suggested in the PROBEN1 benchmark collection and in [8]. The error goal in

training is E < 0.02 [8, 49].

Tables 4.1, 4.2 presents the comparative results and highlight the performance

of the GRprop compared to Rprop. There is significant improvement in terms

of learning speed and convergence success.

Table 4.1: Comparison of algorithms performance in the Cancer problem for the
converged runs
Cancer
Algorithm Epochs Time (secs) Generalisation (%) Convergence (%)
Rprop 280 (+) 1.85 ± 1.30 (+) 97.0 (+) 94 (+)
GRprop 246 1.44 ± 0.48 97.3 97

Table 4.2: Number of times, out of 1000 runs, each algorithm performs better
than the other methods in the Cancer problem with respect to training speed
and generalisation.

Cancer Times faster Times better
algorithm Generalisation

Algorithm Rprop GRprop Time Rprop GRprop
Rprop – 440 2.20 ± 2.51 – 372
GRprop 552 – 1.52 ± 0.85 477 –

The Diabetes problem

The applied architecture for this problem is the one suggested by others [49]. The

error goal in this case was set at 0.14 to conform to the training error obtained

in [49]. The next Tables 4.3, 4.4 correspond to 1000 different runs. The new

globally resilient backpropagation algorithm achieves in the most runs to meet

58

Chapter 4. Globally Convergent Training Algorithms

the error target (Convergence success = 95%) as well as reduced the training

time. Finally the Table 4.4 shows how many times the GRprop outperforms

Rprop in terms of speed and classification success.

Table 4.3: Comparison of algorithms performance in the Diabetes problem for
the converged runs

Diabetes
Algorithm Epochs Time (secs) Generalisation (%) Convergence (%)
Rprop 455 (+) 2.40 ± 2.1 (+) 75.8 (+) 86 (+)
GRprop 430 2.30 ± 1.9 76.0 95

Table 4.4: Number of times, out of 1000 runs, each algorithm performs better
than the other methods in the Diabetes problem with respect to training speed
and generalisation.

Diabetes Times faster Times better
algorithm Generalisation

Algorithm Rprop GRprop Time Rprop GRprop
Rprop – 298 3.5 ± 3.4 – 90
GRprop 371 – 2.8 ± 2.6 155 –

The Genes2 problem

This benchmark is known as the genes problem, a binary problem. The error

goal was set at 10−5 in an attempt to explore the effectiveness of the algorithms

in reaching minimisers with high degree of accuracy.

Table 4.5 shows the performance of each algorithm in terms of: average number

of epochs (Epochs), average training time (Time, in secs) to reach the error

goal ± the corresponding value of standard deviation, average generalisation

(Generalisation, percentage of correctly classified test patterns) and convergence

success out of the 1000 runs (Convergence, percentage). For example, GRprop-

trained networks always generalise slightly better than other networks: GRprop

achieved 100% average generalisation in the runs which converged, while Rprop

59

Chapter 4. Globally Convergent Training Algorithms

achieved an average 99.1% generalisation in the 850 runs that they converged.

Figure 4.2 (leftside), shows how GRprop converges to a feasible solution (E <

10−5), while Rprop to a minimiser with higher error value. That’s highlights the

improved convergence rate that GRprop achieves compared to Rprop algorithm.

Table 4.5: Comparison of algorithms performance in the Genes problem for the
runs which converged

Genes
Algorithm Epochs Time Generalisation Convergence
Rprop 4860 (+) 73.5 ± 36.4 (+) 99.1 (+) 85 (+)
GRprop 4830 73.1 ± 34.8 100 94

Table 4.6 presents comparative results in terms of training speed (in secs) and

generalisation for the 1000 runs. Table 4.6 highlights the number of runs an

algorithm is better than the other methods. It also shows the average training

time and the corresponding standard deviation for each algorithm calculated

over the 1000 runs; it is clear that the Rprop’s values show an increase compared

to the corresponding values of Table 4.5, since all runs count. The GRprop

outperforms Rprop in 536 times, while Rprop is faster than GRprop in 460 runs.

Finally, this table shows how many times an algorithm of the first column gen-

eralises better than the other algorithms: the GRprop achieves better generali-

sation than Rprop 27 times, while Rprop has equal or lower generalisation than

GRprop in most runs.

Table 4.6: Number of times, out of 1000 runs, each algorithm performs better
than the other methods in the Genes problem with respect to training speed and
generalisation.

Genes Times faster Times better
algorithm Generalisation

Algorithm Rprop GRprop Time Rprop GRprop
Rprop – 460 84.3 ± 44.6 – 7
GRprop 536 – 79.4 ± 38.1 27 –

60

Chapter 4. Globally Convergent Training Algorithms

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1000010-7

10 �-6

10 �-5

10 �-4

10 �-3

10 �-2

10 �-1

10 0

Number of epochs

Er
ro

r f
un

ct
io

n
va

lu
e

GRprop
Rprop

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

102

Number of epochs

Er
ro

r f
un

ct
io

n
va

lu
e

GRprop
Rprop

10-6

10-4

10-2

100

Figure 4.2: GRprop and Rprop learning curves: genes (left) and thyroid (right).

The E.coli problem

This problem concerns the classification of protein localisation patterns into eight

classes. A drastically imbalanced data set of 336 patterns is used, where there

are classes with 140 patterns and others with only 2 and 5 patterns. More details

for this dataset is given in Appendix A.

Literature suggests no standard architecture for the E.coli problem. To get an

understanding of the requirements of this problem we conducted a set of prelimi-

nary experiments to find the most suitable FNN architecture in terms of training

speed. In these experiments the neural networks were tested using 4–fold cross

validation, as this approach has been used before in the literature for training

probabilistic and nearest neighbour classifiers in this problem [47]. We trained

several networks with one and two hidden layers using the Rprop algorithm. In

particular, we tried various combinations of hidden nodes, i.e. 8, 12, 14, 16, 24,

32, 64, 120 hidden nodes. Each FNN architecture was trained 10 times with dif-

ferent initial weights. The best available architecture found was a 7-16-8 FNN.

Rprop–trained FNNs of this architecture achieved better generalisation than the

best results reported in the literature [47], when the training error goal was

61

Chapter 4. Globally Convergent Training Algorithms

E < 0.02 [6].

Results from 1000 runs for three algorithms using the same architecture are given

in Table 4.7. A detailed account of the algorithms’ performance is exhibited in

Table 4.8. The new learning scheme is faster than Rprop 497 times. It is clear

that there are no significant differences in the generalisation performance of the

three algorithms.

Table 4.7: Comparison of algorithms performance in the Ecoli problem for the
runs which converged

Ecoli
Algorithm Epochs Time Generalisation Convergence
Rprop 157 (+) 1.36 ± 0.35 (+) 90.4 (−) 99 (−)
GRprop 150 1.30 ± 0.29 90.6 100

Table 4.8: Number of times, out of 1000 runs, each algorithm performs better
than the other methods in the Ecoli problem with respect to training speed and
generalisation.

Ecoli Times faster Times better
algorithm Generalisation

Algorithm Rprop GRprop Time Rprop GRprop
Rprop – 478 1.45 ± 2.7 – 370
GRprop 497 – 1.30 ± 0.29 388 –

The Thyroid problem

In this problem, we have applied a network with 21-4-3 nodes, and the error goal

was set at 0.0036, as suggested in [124].

Results are given in Table 4.9. GRprop outperforms the other algorithms par-

ticularly in training speed. Figure 2 (rightside) illustrates a case where GRprop

converges to a minimiser while Rprop gets stuck at a local minimiser with higher

error value.

62

Chapter 4. Globally Convergent Training Algorithms

The results in Table 4.10 show that the average training speed and the corre-

sponding standard deviation of the Rprop and IRprop increase when the results

of all the runs (1000 cases) are taken into account. This happens because the

two algorithms converge only 87 times out of the 1000 runs (see Table 4.9).

Nevertheless, the performance of the GRprop appears significantly better: GR-

prop converges faster in 79 and 78 runs compared to the Rprop and the IRprop,

respectively. Moreover, the value of the deviation of the new algorithm is signifi-

cantly lower than the standard deviation of the other two methods (Table 4.10).

In 27 runs, Rprop and IRprop achieve better generalisation than GRprop, which

outperforms in 58 runs.

Table 4.9: Comparison of algorithms performance in the Thyroid problem for
the runs which converged

Thyroid
Algorithm Epochs Time Generalisation Convergence
Rprop 770 (+) 24.20 ± 12.1 (+) 97.9 (+) 80 (+)
GRprop 740 23.10 ± 13.0 98.1 92

Table 4.10: Number of times, out of 1000 runs, each algorithm performs better
than the other methods in the Thyroid problem with respect to training speed
and generalisation.

Thyroid Times faster Times better
algorithm Generalisation

Algorithm Rprop JRprop Time Rprop JRprop
Rprop – 447 28.7 ± 17.9 – 366
GRprop 501 – 25.7 ± 14.5 459 –

4.3.2 Discussion

The new globally convergent batch training algorithm constitutes an efficient

improvement of the Rprop algorithm that is built on a theoretical basis. GRprop

has exhibited better convergence speed than Rprop, in all cases tested. Table 4.11

63

Chapter 4. Globally Convergent Training Algorithms

gives the summary of the results in terms of GRprop’s percentage of improvement

in training speed (in secs) over Rprop results.

Table 4.11 shows that the dimensionality of the search space might influence

the performance of the tested methods. The GRprop achieves improved results

either when the dimensionality of the search space is not high (e.g. Cancer and

Diabetes problems) or when the dimensionality ranges from medium to high (as

in the Ecoli and Genes problem where the number of the weights is significantly

larger than in other problems). Moreover, the results of Table 4.11 acquire

additional value when we take into account that the GRprop has also exhibited

better convergence success in the majority of the 1000 runs for all problems.

It is worth mentioning the high generalisation performance of the Rprop–family

in the E.coli problem. The two members of the family produced, on average,

results which are better than the ones reported in the literature [47]. Finally, the

standard deviation values in Tables 4.8, 4.10 and 4.5 point out that GRprop

produces more consistent behaviour than the other algorithms.

Table 4.11: Summary of GRprop results in terms of learning speed improvement
over Rprop.

Problem Dimensionality Rprop
Diabetes 30 +5.50 %
Cancer 56 +12.14 %
Genes2 503 +5.40 %
Thyroid 103 +4.80%
E.coli 264 +4.60%

64

Chapter 4. Globally Convergent Training Algorithms

4.4 The Globally Convergent Jacobi-Rprop

Method

Based on the previous discussion about the globally convergent algorithms, we

proceed with the following convergence result of the JRprop’s scheme.

Theorem 2: Suppose that for the error function E conditions (i)-(iii) are ful-

filled. Then, for any w0 ∈ Rn and any sequence {wk}∞k=0 generated by the

JRprop’s scheme

wk+1 = wk − τ k diag{ηk
1 , . . . , η

k
i , . . . , η

k
n} sign

(∇E(wk)
)
, (4.9)

where sign(∇E(wk)) denotes the column vector of the signs of the components

of ∇E(wk) ≡ (∂1E(wk), ∂2E(wk), . . . , ∂nE(wk)), τ k > 0 satisfies the Wolfe’s

conditions (4.2)–(4.3), ηk
m (m = 1, 2, . . . , i−1, i+1, . . . , n) are small positive real

numbers generated by the JRprop learning rates’ schedule:

if E(wk) 6 E(wk−1) {
if

(
∂mE(wk−1) · ∂mE(wk) > 0

)
then ηk

m = min
{
ηk−1

m · η+, ∆max

}
(4.10)

if
(
∂mE(wk−1) · ∂mE(wk) < 0

)
then ηk

m = max
{
ηk−1

m · η−, ∆min

}
(4.11)

if
(
∂mE(wk−1) · ∂mE(wk) = 0

)
then ηk

m = ηk−1
m , (4.12)

}

where 0 < η− < 1 < η+, ∆max is the learning rate upper bound, ∆min is the

learning rate lower bound, and

ηk
i = −

∑n
j=1
j 6=i

ηk
j ∂jE(wk) + δ

∂iE(wk)
, 0 < δ ¿∞, ∂iE(wk) 6= 0, (4.13)

holds that lim
k→∞

‖∇E(wk)‖ = 0.

Proof: Evidently, E is bounded below on Rn. The sequence {wk}∞k=0 generated

by the iterative scheme (4.9) follows the direction

dk = −diag{ηk
1 , . . . , η

k
i , . . . , η

k
n} sign

(∇f(wk)
)
,

65

Chapter 4. Globally Convergent Training Algorithms

which is a descent direction if ηk
m, where m = 1, 2, . . . , i − 1, i + 1, . . . , n, are

positive real numbers derived from Relations (4.10)–(4.12), and ηk
i is given by

Relation (4.13), since ∇f(wk)>dk < 0. Following the proof of [141, Theo-

rem 6], since dk is a descent direction and E is continuously differentiable and

bounded below along the radius {wk + τdk | τ > 0}, then there always ex-

ist τ k satisfying Relations (4.2)–(4.3) [25, 75]. Moreover, the Wolfe’s Theo-

rem [25, 75] suggests that if the cosine of the angle between the descent direction

dk and the −∇f(wk) is positive then lim
k→∞

‖∇f(wk)‖ = 0. In our case, indeed

cos θk =
−∇f(wk)>dk

‖∇f(wk)‖ ‖dk‖ > 0. ¤

The Globally convergent modification of the JRprop, named GJRprop, is im-

plemented through Relations (4.9)–(4.13). It is also important to mention that

in case of an error increase then the corresponding weight update procedure of

JRprop, descibed in [8], is adopted.

Like in the GRprop, we have set the training parameters of GJRprop in the same

way (δ = 10−6, τ k = 1 for all k). The length of the minimisation step can be

regulated through τ k tuning to satisfy Wolfe’s Conditions (4.2)–(4.3).

4.4.1 Experimental Study using biological datasets

In this section, we evaluate the performance of the GJRprop (Globally-Jacobi-

Rprop), and compare it with the JRprop (Jacobi-Rprop). We have used well–

studied problems from the UCI Repository of Machine Learning Databases of

the University of California [72]. In all cases we have used networks with classic

logistic activations. Below, we report results from 1000 independent trials. These

1000 random weight initialisations are the same for all the learning algorithms.

In all cases we have used networks with sigmoid hidden and output nodes, and

adopted the same notation as in the GRprop experimental section.

66

Chapter 4. Globally Convergent Training Algorithms

100 200 300 400 500 600 700 800 900 1000

10
-1

Number of Epochs

E
rr

o
r

fu
n
c
ti
o
n
 v

a
lu

e

**GJRprop

 JRprop

Rprop

10
- 2

500 1000 1500 2000 2500 3000 3500 4000

10
 - 1

�

�

�

�

10
0�

Number of Epochs

E
rr

o
r

fu
n
c
ti
o
n
 v

a
lu

e

GJRprop
JRprop

Rprop

**

(a) (b)

Figure 4.3: GJRprop, JRprop and Rprop learning curves for (a) the cancer
problem and (b) the diabetes problem

For the UCI problems, cancer1, diabetes1, genes, thyroid1, and Ecoli, we have

used the data sets as supplied on the PROBEN1 website [88]. PROBEN1 pro-

vides explicit instructions for generating training and test sets, and choosing

network architectures [88]. The results reported below present the average num-

ber of iterations (Epochs), the average training time to reach the error goal ±
the corresponding value of standard deviation, the average generalisation (gener-

alisation is measured as the percentage of correctly classified test patterns), and

the percentage of convergence success (this percentage is calculated out of 1000

runs).

In all experiments the parameters have been set as follows: η+ = 1.2; η− = 0.5;

∆0
ij = η0 = 0.1; ∆max = 50 [91]. Finally we have set δ = 10−6 in an attempt to

test the convergence accuracy of the proposed strategy and also τ k = 1 for all k.

67

Chapter 4. Globally Convergent Training Algorithms

The Cancer1 problem

In this problem I have used a feed-forward neural network with 9–4–2–2 nodes as

suggested in the PROBEN1 benchmark collection and in [8]. The error goal in

training was E < 0.02 to harmonise with the training errors obtained in [8, 49].

The results for this pattern classification problem are summarised in Table 4.12.

The new algorithm performs significantly better than the other two methods.

Table 4.13 presents the number of times each algorithm outperforms the other

methods in terms of training speed and generalisation within 1000 independent

runs. It yields that the new learning scheme is frequently faster and achieves

better generalisation than the other two members of the Rprop family. Fig-

Table 4.12: Comparison of algorithms performance in the Cancer problem for
the converged runs
Cancer
Algorithm Epochs Time (secs) Generalisation (%) Convergence (%)
Rprop 280 (+) 1.85 ± 1.30 (+) 97.0 (−) 94 (+)
JRprop 249 (+) 1.45 ± 0.80 (+) 96.9 (+) 97 (−)
GJRprop 240 1.40 ± 0.38 97.1 98

Table 4.13: Number of times, out of 1000 runs, each algorithm performs better
than the other methods in the Cancer problem with respect to training speed
and generalisation.

Cancer Times faster Times better
algorithm Generalisation

Algorithm Rprop JRprop GJRprop Time Rprop JRprop GJRprop
Rprop – 366 270 2.2 ± 2.51 – 231 200
JRprop 526 – 400 1.5 ± 0.90 241 – 172
GJRprop 550 453 – 1.49 ± 0.78 300 209 –

ure 4.3(a) presents an example of convergence behaviour starting from the same

initial conditions: the Rprop converges to a local minimiser, whilst both JR-

prop and GJRprop converge to a feasible solution (E ≤ 10−2) with GJRprop

outperforming all other methods.

68

Chapter 4. Globally Convergent Training Algorithms

The Diabetes1 problem

The PROBEN1 collection proposes several architectures for this problem, includ-

ing one with 8–2–2–2 nodes. We decided to use this architecture as it was also

suggested by others [8, 49]. The error goal in this case was set at 0.14 to conform

to the training error obtained in [8, 49].

Table 4.14 summarises the performance of the tested algorithms. Table 4.15 gives

an analytic view of the comparative results in the 1000 trials.

Table 4.14: Comparison of algorithms performance in the Diabetes problem for
the converged runs

Diabetes
Algorithm Epochs Time (secs) Generalisation (%) Convergence (%)
Rprop 455 (+) 2.40 ± 2.1 (+) 75.8 (+) 86 (+)
JRprop 410 (−) 2.15 ± 1.5 (−) 76.1 (−) 94 (+)
GJRprop 400 2.10 ± 2.0 76.2 97

Table 4.15: Number of times, out of 1000 runs, each algorithm performs better
than the other methods in the Diabetes problem with respect to training speed
and generalisation.

Diabetes Times faster Times better
algorithm Generalisation

Algorithm Rprop JRprop GJRprop Time Rprop JRprop GJRprop
Rprop – 190 198 3.5 ± 3.4 – 108 80
JRprop 644 – 725 2.7 ± 2.1 600 – 590
GJRprop 401 210 – 2.5 ± 2.2 255 180 –

Figure 4.3(b) illustrates a training instance where all the methods start under

the same initial conditions: the Rprop converges to a local minimiser, whilst

both JRprop and GJRprop converge to a solution with E ≤ 10−1.

69

Chapter 4. Globally Convergent Training Algorithms

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
-1

GJRprop
JRprop
Rprop

E
rr

o
r

fu
n

c
ti
o

n
 v

a
lu

e

Number of Epochs

10
-2

200 400 600 800 1000 1200 1400 1600 1800 2000

10
-2

10
�
-1

GJRprop
JRprop
Rprop

Number of Epochs

E
rr

o
r

fu
n
c
ti
o
n
 v

a
lu

e
(a) (b)

Figure 4.4: GJRprop, JRprop and Rprop learning curves for (a) the E.coli prob-
lem and (b) the thyroid problem.

The Thyroid problem

Comparative results are given in Table 4.16. GJRprop outperforms the other

algorithms. Moreover, the value of the deviation of the new algorithm is sig-

nificantly lower than the standard deviation of the other two methods (see Ta-

ble 4.16). Finally it is worth mentioning that the GJRprop exhibits significantly

improved convergence success compared to the other tested algorithms. This can

be attributed to the ability of the new globally convergent algorithm to follow

descent directions.

A detailed account of the algorithms’ performance is exhibited in Table 4.17.

The new learning scheme is faster than Rprop. In terms of generalisation success,

GJRprop outperforms Rprop and JRprop.

Figure 4.4(b) illustrates a case where GJRprop converges to a minimiser while

Rprop and JRprop get stuck at a local minimiser with higher error value. As

70

Chapter 4. Globally Convergent Training Algorithms

Table 4.16: Comparison of algorithms performance in the Thyroid problem for
the converged runs

Thyroid
Algorithm Epochs Time (secs) Generalisation (%) Convergence (%)
Rprop 770 (+) 24.20 ± 12.1 (+) 97.9 (+) 80 (+)
JRprop 700 (−) 22.00 ± 9.5 (−) 98.0 (+) 88 (+)
GJRprop 720 22.50 ± 7.5 98.23 92

Table 4.17: Number of times, out of 1000 runs, each algorithm performs better
than the other methods in the Thyroid problem with respect to training speed
and generalisation.

Thyroid Times faster Times better
algorithm Generalisation

Algorithm Rprop JRprop GJRprop Time Rprop JRprop GRprop
Rprop – 171 184 28.7 ± 17.9 – 66 57
JRprop 479 – 466 23.7 ± 10.5 169 – 60
GJRprop 386 184 – 23.50 ± 10.5 278 176 –

shown in Figure 4.4(b) Rprop’s and JRprop’s learning curves exhibit nonmono-

tone behaviour denoted by two hard peaks: one around time point 100 for the

Rprop, and the other around point 200 for the JRprop. The GJRprop decreases

monotonically the error function as it always follows a descent direction.

The Ecoli problem

This is a drastically imbalanced data set of 336 patterns, which means that there

are classes with 140 patterns and other ones with only 2 and 5 patterns. In these

experiments the neural networks were tested using 4–fold cross validation, as this

approach has been used before [46, 47].

Results from 1000 runs for three algorithms using the same architecture are given

in Table 4.18. A detailed account of the algorithms’ performance is exhibited in

Table 4.19.

71

Chapter 4. Globally Convergent Training Algorithms

500 1000 1500 2000 2500 3000 3500 4000

10
 - 0.8

10 �
- 0.7

10 �
- 0.6

10 �
- 0.5

10 �
- 0.4

10 �

- 0.3

Number of Epochs

E
rr

o
r

fu
n

c
ti
o

n
 v

a
lu

e

100 200 300 400 500 600 700 800 900 1000

10
-1

Number of Epochs

E
rr

o
r

fu
n

c
ti
o

n
 v

a
lu

e

GJRprop
JRprop
Rprop

10
- 2

GJRprop
JRprop
Rprop

*** ***

Figure 4.5: GJRprop, JRProp and Rprop learning curves: diabetes (left) and
cancer (right).

Table 4.18: Comparison of algorithms’ performance in the E.coli problem for the
converged runs

E.coli
Algorithm Epochs Time (secs) Generalisation (%) Convergence (%)
Rprop 157 (+) 1.36 ± 0.35 (+) 90.4 (−) 99 (−)
JRprop 140 (+) 1.20 ± 0.20 (+) 90.6 (−) 100 (−)
GJRprop 135 1.18 ± 0.18 90.5 100

Table 4.19: Number of times, out of 1000 runs, each algorithm performs better
than the other methods in the E.coli problem with respect to training speed and
generalisation.

E.coli Times faster Times better
algorithm Generalisation

Algorithm Rprop JRprop GJRprop Rprop JRprop GJRprop
Rprop – 419 409 – 0 0
JRprop 561 – 460 381 – 87
GJRprop 586 470 – 407 70 –

72

Chapter 4. Globally Convergent Training Algorithms

4.4.2 Boolean function approximation problems

Another set of experiments has been conducted to empirically evaluate the per-

formance of the globally convergent method in a well–studied class of boolean

function approximation problems that exhibit strong local minima [17, 38]. These

problems include the XOR problem (whose local minina and saddle points have

been analysed in detail) and the various parity–N problems, which are consid-

ered as classic benchmarks [63, 86, 135]. The error target was set to E ≤ 10−7

within 2000 iterations in all cases (this is considered low enough to guarantee

convergence to a “global” solution), and the adopted architectures were 2–2–1 for

the XOR, 3–3–1 for the parity–3, 4–4–1 for the parity–4, 5–5–1 for the partiy–5.

XOR problem

Table 4.20 shows the performance of each algorithm in terms of: average number

of iterations, average training time to reach the error goal ± the corresponding

value of standard deviation, average generalisation (generalisation is measured

as the percentage of correctly classified test patterns), and percentage of con-

vergence success (this percentage is calculated out of 1000 runs). For example,

GJRprop exhibits better convergence success than other methods: GJRprop

achieved 70% average convergence success, while Rprop and JRprop achieved

on average 55% and 60%. The GJRprop outperforms the Rprop significantly in

terms of convergence speed and achieves similar learning speed to the JRprop.

Table 4.20: Comparison of algorithms performance in the XOR problem for the
converged runs

XOR
Algorithm Epochs Time (secs) Convergence (%)
Rprop 190 (+) 1.77 ± 1.4 (+) 55 (+)
JRprop 125 (+) 1.42 ± 0.8 (+) 60 (+)
GJRprop 132 1.46 ± 0.7 70

73

Chapter 4. Globally Convergent Training Algorithms

Number of Epochs

E
rr

o
r

F
u
n
c
ti
o
n
 v

a
lu

e

GJRprop
Rprop
JRprop

100 200 300 400 500 600 700 800 900 1000

10
-3

10
-2

10
-1

10
-4

Figure 4.6: Learning error curves for the XOR problem

Figure 4.6 gives an example of the algorithms’ convergence. Starting from the

same initial conditions, the Rprop and the JRprop converge to a local minimiser,

whilst GJRprop reaches a lower value.

Parity–3 problem

Table 4.21 presents comparative results in terms of training speed (in secs) and

convergence success for the 1000 runs. It presents the average training time

and the corresponding standard deviation for each algorithm calculated over the

converged runs. GJRprop shows an increase in the percentage of convergence

success. The globally convergent scheme manages to escape from some local

minima and finds acceptable solutions with higher possibility than the other two

tested methods.

Parity–4 problem

Comparative results for the parity–4 problem are given in Table 4.22. GJRprop

outperforms the other algorithms particularly in convergence success. It achieves

74

Chapter 4. Globally Convergent Training Algorithms

Table 4.21: Comparison of algorithms performance in the parity–3 problem for
the converged runs

Parity–3
Algorithm Epochs Time (secs) Convergence (%)
Rprop 1105 (+) 4.8 ± 2.9 (+) 22 (+)
JRprop 1000 (+) 4.5 ± 2.6 (+) 57 (+)
GJRprop 940 4.1 ± 2.3 67

the error goal with 89% success whilst Rprop and JRprop have approximately

70% convergence success. Figure 4.7(a) illustrates a case where GJRprop con-

verges to a minimiser while Rprop and JRprop get stuck at a local minimiser

with higher error value.

Table 4.22: Comparison of algorithms performance in the parity–4 problem for
the converged runs

Parity–4
Algorithm Epochs Time (secs) Convergence (%)
Rprop 1010 (+) 6.7 ± 4.4 (+) 69 (+)
JRprop 820 (+) 5.8 ± 3.5 (+) 72 (+)
GJRprop 715 5.2 ± 2.7 89

Parity–5 problem

Comparative results for the parity–5 problem are presented in Table 4.23. The

JRprop algorithm achieves the best training speed, while GJRprop exhibits com-

parable performance. Both of them outperform the Rprop algorithm. Further-

more the GJRprop is more stable and shows an important convergence improve-

ment over the other tested methods. Figure 4.7(b) illustrates a case where GJR-

prop converges to an acceptable minimiser while the other methods converge to

local minima with higher function values.

75

Chapter 4. Globally Convergent Training Algorithms

10 -4

10 �-3

10 �-2

10 �-1

10 0

Number of Epochs

E
rr

o
r

fu
n

c
ti
o

n
 v

a
lu

e

GJRprop
Rprop
JRprop

100 200 300 400 500 600 700 800 900 1000 200 400 600 800 1000 1200 1400 1600 1800 2000

10
-4

10
- 3

10
�- 2

10
�-1

10
0

Number of Epochs

E
rr

o
r

fu
n
c
ti
o
n
 v

a
lu

e

GJRprop
Rprop
JRprop

(a) (b)

Figure 4.7: Typical learning error curves for (a) the parity–4 problem and (b)
the parity–5 problem.

Table 4.23: Comparison of algorithms performance in the parity–5 problem for
the converged runs

Parity–5
Algorithm Epochs Time (secs) Convergence (%)
Rprop 1050 (+) 7.5 ± 3.9 (+) 55 (+)
JRprop 830 (+) 5.1 ± 2.2 (+) 60 (+)
GJRprop 855 5.5 ± 2.5 72

76

Chapter 4. Globally Convergent Training Algorithms

4.5 Summary and Contribution of the Chapter

In this chapter globally convergent modifications of the Rprop and JRprop algo-

rithms were introduced, named GRprop and GJRprop respectively. A theoretical

justification for their development was provided, and comparative results in well

studied benchmark problems were reported. In the tests, both GRprop and

GJRprop exhibited better convergence speed and stability than Rprop. It is also

important to highlight the fact that GRprop and GJRprop algorithms constitute

an efficient improvement of the original Rprop that builds on a theoretical ba-

sis. This makes GRprop and GJRprop potentially useful components of global

optimisation algorithms. Even though the convergence success rate of the two

proposed algorithms with the global convergence property has been improved,

there are still cases that converge to saddle points. A possible solution for this

occasional problem is to make these algorithms more stochastic or determinis-

tic depending on the tested problem each time. A class of such algorithms is

proposed, described and examined in the next chapter.

77

Chapter 5

Nonextensive Hybrid Learning

Schemes

5.1 Introduction

In the previous chapters some new proposed first order training schemes were

investigated in depth. An inherent difficulty with these learning schemes is con-

vergence to local minima. Sometimes the local minima can provide acceptable

solutions, but they often result in poor network performance. The new algo-

rithms described in the previous chapters, improve the learning speed and the

convergence success. However, in some cases the problem with convergence to

local minima still exists. In order to overcome this problem, hybrid algorithms

which combine the benefits of the gradient descent and global optimisation are

addressed in this chapter.

The present chapter introduces the basic notation necessary to study learning

problems within the framework of statistical mechanics. A brief introduction

to statistical mechanics and neural networks is also given followed by a presen-

tation of the properties of nonextensive statistical mechanics [125]. Based on

78

Chapter 5. Nonextensive Hybrid Learning Schemes

this theory, a new hybrid gradient based learning scheme is proposed, namely

HLS, that combines the benefits of the gradient descent algorithms and Tsallis

Statistics. HLS applies a sign–based weight adjustment, inspired by the previous

algorithms, on a perturbed version of the original error function. The HLS algo-

rithm is examined, tested, and its performance is compared in many benchmarks

problems with other known algorithms. Experimental results are very promising

showing that the new learning scheme has many desirable properties.

5.2 Statistical Mechanics

“A theory is the more impressive the greater the simplicity of its premises, the

more different kinds of things it relates, and the more extended its area of ap-

plicability. Therefore the deep impression that classical thermodynamics made

upon me. It is the only physical theory of universal content which I am con-

vinced will never be overthrown, within the framework of applicability of its

basic concepts.” A. Einstein

Statistical mechanics was the first foundational physical theory in which prob-

abilistic concepts and probabilistic explanations played a fundamental role. It

provides a framework for relating the microscopic properties of individual atoms

and molecules to the macroscopic properties of materials that can be observed

in every day life. Statistical mechanics is the application of statistics, which

includes mathematical tools for dealing with the macroscopic equilibrium prop-

erties of large systems of elements that are subject to the microscopic laws of

mechanics [60, 28, 130].

It is useful, at this stage, to briefly discuss some concepts that are used in sta-

tistical mechanics. A system is called microscopic if it is roughly of atomic

dimensions, or smaller. On the other hand, a system is macroscopic when it

is large enough to be visible in the ordinary sense. This is a rather inaccurate

79

Chapter 5. Nonextensive Hybrid Learning Schemes

definition. The exact definition depends on the number of particles in the sys-

tem, which we shall call N . Typically, a system is macroscopic if
1√
N

¿ 1,

which means that statistical arguments can be applied with reasonable accuracy.

For instance, if we wish to keep the statistical error below one percent, then a

macroscopic system would have to contain more than about ten thousand par-

ticles. Any system containing sensibly less than this number of particles would

be regarded as essentially microscopic. Hence, statistical arguments could not

be applied to such a system without unacceptable error.

In many cases of interest, the physical systems being simulated are believed to

be ergodic. A system is ergodic if, for almost all initial conditions, the long-time

average is equal to the state-space average [118]. For the physicist, ergodicity

is a property that is usually postulated for a system in order to make many

analytical and computational tasks tractable. The postulate is seldom justified

from first principles. Instead, calculations for a system are performed assum-

ing ergodicity. Then if theoretical predictions agree with experiments (actual

or numerical), this is taken as evidence that the assumption is valid. Over the

years, physicists have accumulated extensive experience about which systems at

which energies are well modeled by the assumption of ergodicity [122]. However,

it is nowadays clear that many interesting systems are in fact nonergodic! Such

complex systems can, in many cases, be handled within the so called Nonex-

tensive Statistical Mechanics [125, 36], a current generalisation of the standard

statistical mechanics.

Statistical mechanics deals with the macroscopic equilibrium properties of large

systems of elements that are subject to the microscopic laws of mechanics [56].

A standard assumption of statistical mechanics is that quantities like energy are

“extensive” variables, meaning that the total energy of the system is propor-

tional to the system size; similarly the entropy also supposed to be extensive.

Generally, at least for the energy, this is justified by appealing to the short-range

nature of the interactions which hold matter together, form chemical bonds, etc.

80

Chapter 5. Nonextensive Hybrid Learning Schemes

On the other hand, suppose one deals with long-range interactions, most promi-

nently gravity; one can then find that energy is not extensive. This might makes

necessary a generalisation of the standard theory.

Another important key concept in statistical mechanics is the ensemble. An

ensemble is a collection of microstates of system of molecules, all having one

or more extensive properties in common. Additionally, an ensemble is asso-

ciated with a probability distribution according to a weight for each element

(microstate) of the ensemble. The more important ensembles are “Microcanon-

ical ensemble”,“Canonical ensemble”, “Isothermal-isobaric ensemble”, “Grand-

canonical ensemble” [34].

Statistical mechanics is clearly mechanics plus theory of probabilities. Applica-

tions of the techniques of statistical mechanics are widespread, and include ap-

plications to physical, chemical, biological systems, and other interdisciplinary

applications such as optimisation techniques [32, 69, 136, 146].

The statistical mechanical framework allows the description of complex systems

with relatively simple models. A class of complex systems is neural networks.

As they may have thousands of degrees of freedom (e.g. weights) it is possible

to get inspiration from the theory of statistical mechanics.

5.2.1 Boltzmann’s Statistical Mechanics

Statistical mechanics began as an effort to explain the macroscopic laws of ther-

modynamics by considering the microscopic application of Newton’s laws to the

particles that a material is made of. Newtonian mechanics is considered by many

physicists as eternal, but by no means consider it as universal [128].

81

Chapter 5. Nonextensive Hybrid Learning Schemes

A diffuse belief exists that Boltzmann-Gibbs (BG) statistical mechanics and stan-

dard thermodynamics are eternal and universal. Indeed, for more than one cen-

tury highly successful applications of the magnificent Boltzmann’s connection of

Clausius macroscopic entropy to the theory of probabilities are applied to the

microscopic world. BG thermal statistics can easily be considered as one of the

pillars of modern science. However, it is unavoidable to think that, like all other

products of human mind, this formalism must have physical restrictions, i.e.,

domains of applicability, out of which it can at best be an approximation [128].

We will come back onto this point later.

Entropies play a crucial role in statistical mechanics [48]. In the last decades

much attention has been devoted to this subject [27]. The concept of entropy

is fundamental in the foundation of statistical physics. It first appeared in ther-

modynamics through the second law of thermodynamics. Both Boltzmann and

Gibbs entropies are, in fact, the pillars of statistical mechanics and are the basis

of all the entropy concepts in modern physics. Mathematical analysis and prac-

tical applications of both Boltzmann and Gibbs entropies have been used [142].

Boltzmann’s Statistical Mechanics is particularly famous for Boltzmann’s statis-

tical interpolation of the second law of thermodynamics. The celebrated Boltz-

mann principle is S = k ln(W), where k is a thermodynamic unit of measurement

of entropy and is known as Boltzmann constant (k = 1.33 · 10−23 J

K
), and W ,

called thermodynamic probability or statistical weight, or “degree of disorder’,

which is the total number of microscopic complexions compatible with the macro-

scopic state of the system. We avoid the name thermodynamic probability for

the term W as it leads to many confusions [23].

Boltzmann’s Statistical Mechanics is based on the Boltzmann–Gibbs entropy,

which has also been defined fruitfully by Shannon as follows: SBG = −k

W∑
i=1

piln(pi),

with
W∑
i=1

pi = 1, that provides exponential laws for describing stationary states

82

Chapter 5. Nonextensive Hybrid Learning Schemes

and basic time–dependent phenomena, where {pi} are the probabilities of the

microscopic configurations, and k > 0. This form is known to be the correct

entropic form for ergodic systems [36].

Boltzmann entropy plays a basic role in the connection of the nonmechanical

science of thermodynamics with mechanics through statistics. In thermodynam-

ics, two fundamental properties of Boltzmann entropy are (i) its nondecrease: if

no heat enters or leaves a system, its entropy cannot decrease; i.e the entropy

S of the system is a monotonic increasing function of “degree of disorder’ W,

that is, S(W) 6 S(W + 1). (ii) its additivity: the entropy of two independent

systems, taken together, is the sum of their separate entropies, i.e the entropy S

is assumed to be an additive function for two statistically independent systems

with degrees of disorder W1 and W2, respectively. The entropy of the composite

system is given by S(W1 ·W2) = S(W1) + S(W2).

Boltzmann entropy plays an important role not only in the foundation of statis-

tical mechanics, but also in the other branches of science, which will be described

briefly in next sections.

5.3 Statistical Mechanics and Neural Networks

Statistical mechanics sets out to explain the behaviour of macroscopic systems by

studying the statistical properties of their microscopic constituents. A macro-

scopic phenomenon of the image of a face of a person can be a smile. The

microscopic phenomenon is reflected in the correlation between the pixels in the

image. Macroscopic phenomena are related to form. Clouds are another example

of how microscopic or molecular forces have a macroscopic effect. The cloud is a

large scale structure and the water molecules in it are on a small scale. Much of

the research in neural networks is about explaining these properties.

83

Chapter 5. Nonextensive Hybrid Learning Schemes

One of major concepts in neural networks is the interaction between microscopic

and macroscopic phenomena. Neural Networks are widely used in many classifi-

cation applications such as pattern classification, speech recognition etc. Neural

Networks are often used to classify or categorise. Once a representation of a

group of persons is stored in the network, then the neural network can infer who

looks sad or happy. The macroscopic properties in this case include the number

of faces that the network can recognise, the speed with which this is done or the

number of classes into which it can split up the faces (smile).

Statistical mechanical methods have successfully been applied to the study of

neural network models of associative memory [3, 40, 54]. These models are bio-

logically plausible and can be trained very quickly in some cases, compared with

the popular neural networks proposed earlier (such as multi-layered perceptron),

which have been shown to work satisfactorily. One of the models that constructs

associative memories is the learning matrix proposed by Steinbuch in 1961 [116].

Some interesting properties of this model is that it can be able to store a number

of input/output associations in one matrix, and also to generalise by recognising

similar, but not identical, input patterns and producing the same output pat-

tern. It has therefore the ability to produce the correct output from incomplete

or corrupted input patterns. Some of learning matrices are described in [117].

Similar solutions are feedback networks that use a simple Hebbian learning and

the training is achieved with a single calculation.

One of the most widely used models of associative memory is the Hopfield net-

work [44]. In the Hopfield network, the weights are calculated using a matrix

method procedure. This neural network model overcome some of the drawbacks

that learning matrix has. However, this model of associative memory has still

the drawback to stuck at local minimum. These local minima correspond many

times to undesired stable states and therefore the outputs are incorrect. A pos-

sible cause of this fact is that these models use hard-limiters [100].

84

Chapter 5. Nonextensive Hybrid Learning Schemes

5.3.1 Annealing schedules in neural networks learning

Despite the fact that noise plays a influential role in the operation of real neurons,

e.g. neural cells’ responses to identical stimuli have been found to be stochastic

in nature, the effect of noise on the operation of artificial neural networks has

not been investigated in depth. One of the most famous neural networks model

operating with noise is the Boltzmann machine, [1, 10]. It is inspired by the

Boltzman–Gibbs entropy SBG = −k
∑

i

pilnpi that provides exponential laws for

describing stationary states and basic time–dependent phenomena, where {pi}
are the probabilities of the microscopic configurations, and k > 0. In addition,

attempts to explore the benefits of introducing noise during learning, such as in

[1, 21, 95], have been based on the use of Gaussian distributions.

In particular the use of Simulated Annealing has been explored for learning of

the Boltzmann machine [1, 10]. Simulated Annealing (SA) refers to the process

in which random noise in a system is systematically decreased so as to enhance

the response of the system [52]. In the numerical optimisation framework, SA is

a procedure that has the capability to move out of regions near local minima [24,

119]. SA is based on random evaluations of the objective function, in such a way

that transitions out of a local minimum are possible. First, it reaches an area in

the function domain space where a global minimiser should be present, following

the gross behavior irrespectively of small local minima found on the way. It then

develops finer details, finding a good, near–optimal local minimiser, if not the

global minimum itself [57].

In the context of neural networks learning the performance of the classical SA is

not the appropriate one: the method needs a greater number of function eval-

uations than usually required for a single run of first–order learning algorithms

and does not exploit derivative related information. Notice that the problem of

minimising a neural network’s error function is not the well defined local minima

but the broad regions that are nearly flat. In this case, the so–called Metropolis

85

Chapter 5. Nonextensive Hybrid Learning Schemes

move is not strong enough to move the algorithm out of these regions [143]. To

alleviate this situation, [21] has suggested to incorporate an annealing schedule

in the steepest descent algorithm:

wk+1 = wk − η∇E(wk) + ρ · c · 2−d·k, (5.1)

where k is the iteration number, η is a common fixed stepsize for all weights, ρ

is a constant controlling the initial intensity of the noise, c ∈ (−0.5, +0.5) is a

random number and d is the noise decay constant. This approach does not use

the notion of the acceptance probability, such as the Metropolis algorithm in the

classic SA [52], or the generalised acceptance probability in the generalised SA

[127]. Instead, it implements a form of Langevin noise that has been proved quite

effective in neural systems learning, [45, 95], and has motivated the development

of other methods, such as the Simulated Annealing Rprop–SARprop and the

SARprop with Restarts–ReSARprop [124].

5.3.2 Boltzmann’s Statistical Mechanics and Neural Net-

works

Neural networks is one important domain that Boltzmann’s Statistical Mechanics

is applied. The Boltzmann machine seems to be the first multilayered learning

machine inspired by statistical mechanics. It learns the statistical distribution

of a data set, and can use this for tasks like pattern completion. The Boltzmann

machine is a kind of neural network which behaves as a discrete time Hopfield

network or as a stochastic network in which the neuron state is binary and

decisions are taken probabilistically [1]. It can rigorously be established that the

Boltzmann machine will probabilistically converge to a global optimum point.

This neural model tries to overcome the Hopfield network’s problem to settle at

local energy minima rather than at the global minimum.

The Boltzmann machine [1, 10] is a probabilistic feedback network in which the

86

Chapter 5. Nonextensive Hybrid Learning Schemes

neurons are designed to mimic the particles in a thermodynamic system. In these

systems the particles or neurons can be in either of two states. The probability

of being in these states also obeys the Boltzmann distribution, hence the name

of the network. The Boltzmann distribution for two states Sa and Sb leads to

the next equation:
pa

pb

= exp−(Ea−Eb)/T (5.2)

where T is the temperature and E is the energy in each state. Generally, the

aim of the Boltzmann machine is to move in direction of decreasing energy.

Occasionally, it accepts a move that increases energy. This will be done with

high probability at first steps, but lower probability as annealing progresses is

occurred. This settles to a thermal equilibrium, and the global mimimum energy

is reached.

The Boltzmann machine has many problems. Difficulties in the weights adjust-

ments i.e how many weights are changed at time, calculation of the probabilities

and the way to adjust the temperature during the simulated annealing proce-

dure [99, 100]. However the main drawback of the Boltzmann machine is that

the training is extremely slow [43].

An effort to overcome the problem with the training time has been done by

introducing the Cauchy machine [119]. This model is based on the same idea with

the Boltzmann machine but it uses different distribution function. It is claimed

that this change in the probability function allows jumps to higher energy states

more often, so that faster annealing can take place. The Cauchy distribution is

defined as:
pa

pb

=
T

T 2 + (Ea − Eb)2
(5.3)

87

Chapter 5. Nonextensive Hybrid Learning Schemes

5.4 Nonextensive Statistical Mechanics

Boltzmann’s Statistical Mechanics have some limitations. Some kind of extension

appears to become necessary [128]. Indeed, an everyday increasing list of physical

anomalies are, here and there, being pointed out which defy (not to say that

plainly violates) the standard Boltzmann-Gibbs (BG) prescriptions.

At this point, it is worthy to mention some important efforts to generalise the

BG entropy. Renyi entropy is one of the important generalisations of the BG

entropy [90, 142]. It is an extensive entropy for independent systems and defined

as follows:

SR
q ≡ (ln

W∑
i

pq
i)/(1− q) (5.4)

where q is a continuous parameter.

Boltzmann’s Statistical Mechanics is widely used for systems that are in sta-

tionary states characterised by thermal equilibrium consistent with ergodicity.

Nonextensive Statistical Mechanics is an alternative which is proposed as a way

of dealing with anomalous systems through mathematical methods [125, 36]. A

Nonextensive thermostatistics, which recovers the extensive BG mechanics as a

particular case was proposed in 1988, by Tsallis, which might correctly cover at

least some of the known anomalies [125]. Some anomalous systems are consid-

ered to be nonergodic systems with stationary states that are metastable and

long-lived. Nonextensive Statistical Mechanics exhibits apparent success for cer-

tain closed systems as well as in many open systems in biology, economics and

other fields.

The Nonextensive Statistical Mechanics are based on the Tsallis entropy. In

particular, Tsallis has defined the generalised entropy [125]:

Sq ≡ k
1−∑W

i=1 pq
i

q − 1
(q ∈ R), (5.5)

where W is the total number of microscopic configurations, whose probabilities

88

Chapter 5. Nonextensive Hybrid Learning Schemes

are {pi}, and k is a conventional positive constant. When q = 1 it reproduces

the SBG entropic form.

The nonextensive entropy Sq achieves its extreme value at the equiprobability

pi = 1/W, ∀i and this value is equal to Sq =
W 1−q − 1

1− q
[125, 36]. Another

important property is the nonextensivity of this entropic form. For independent

systems, it is subextensive for q > 1, superextensive for q < 1 and while q = 1

recovers to BG entropy, which is extensive [36].

Recently another generalisation of the BG form is the normalised nonextensive

entropy independently introduced in [55, 89]. The form of this entropy is given

below:

SN
q ≡ (1− [

W∑
i

pq
i]
−1)/(1− q) (5.6)

In this stage it is necessary to briefly describe three remarkable properties. The

first one is the concavity, which is related to thermodynamic stability or ro-

bustness concerning the fluctuations of energy and other quantities. The second

property is the stability or continuity that is the experimental robustness, i.e

similar experiments should provide quantitatively similar results. Finally the

finiteness of the entropy that characterises the gradual exploration of the avail-

able phase space is the third property. It is important to remark that for q > 0

both of Sq and SBG entropy satisfy the three above important properties, while

the Renyi and SN
q entropy violates all three [36].

Next we give the relationship between the previously defined entropies and the

Tsallis entropy, which will be used in the rest of this chapter and in our appli-

cations. Renyi entropy is related through a monotonic function with the nonex-

tensive entropy Sq:

SR
q ≡ (ln

∑
i

pq
i)/(1− q) = ln[1 + (1− q)Sq]/(1− q) (5.7)

89

Chapter 5. Nonextensive Hybrid Learning Schemes

For q = 1 the SBG is represented by S1, or SR
1 , or finally by SN

1 . Finally the

Normalised entropy has a strong relationship with Sq by:

SN
q ≡ (Sq)/(

∑
i

pq
i) = Sq/[1 + (1− q)Sq] (5.8)

The Sq, S
R
q , SN

q entropies have in common the optimising distribution, under the

same conditions. All three entropies depend on
∑

i

pq
i , hence any of them could

be expressed as a function of the other two. All of them lead to the same q

exponential optimising distribution [36].

Nowadays the idea of nonextensivity has been used in many applications. Nonex-

tensive statistical mechanics has successfully been applied in physics (astro-

physics, astronomy, cosmology, nonlinear dynamics etc) [107, 120, 108], chem-

istry [103], biology [131], economics [129], computer sciences and other important

sciences [36]. Further discussion about the nonextensivity in Artificial Intelli-

gence domain is given in next section.

5.4.1 Nonextensive Statistical Mechanics and Neural Net-

works

The problem of finding the global minimum of a complex cost function, which

has a large number of local minima, is very difficult [43, 97]. A variety of global

optimisation algorithms have been introduced over the years to overcome this

problem. As already said, one of the most popular methods is the Simulated

annealing. It uses BG statistics at two different steps, namely at the visitation

step, which uses a Gaussian distribution, and at the acceptance step, that uses the

Boltzmann factor. Nonextensive Statistical Mechanics is applied in the Simulated

annealing by generalising both the Gaussian distribution and the Boltzmann

factor. Empirical results show an improvement in the speed, the precision and

90

Chapter 5. Nonextensive Hybrid Learning Schemes

in the success rate [127]. In what follows we discuss about nonextensive entropy

that have successful results in training feedforward neural networks.

The next section will introduce an adaptive search strategy that aims to allevi-

ate the problem of occasional convergence to local minima in supervised training.

Our approach adapts the weights using only information from the sign of a gradi-

ent vector, which is calculated on a perturbed error function, and uses adaptive

steps along each weight directions. The perturbations are generated from a noise

sources that replaces the usual Boltzmann–Gibbs factor used in annealing sched-

ules by the q–exponential function of the generalised entropy of nonextensive

statistical mechanics [125, 126].

5.4.2 Nonextensive Entropy and the Perturbed Error Func-

tion

In general, additive noise can be introduced in neural network learning by for-

mulating the perturbed energy function:

Ẽ(w, x) = E(wk) + ck ·
n∑

i=1

wk
i x

k
i , (5.9)

where k indicates iterations, E(w) is given by (2.2), x = (x1, . . . , xn)> defines

a vector of independent noise sources, and c is a parameter that regulates the

influence of the noise.

In this approach noise is generated by a noise source that is characterised by the

nonextensive entropic index q. The optimisation of the entropic form (5.5) under

appropriate constraints, [125], yields for the canonical ensemble

pi ∝ [1− (1− q)βEi]
1

(1−q) ≡ e−βEi
q , (5.10)

91

Chapter 5. Nonextensive Hybrid Learning Schemes

where β is a Lagrange parameter, {Ei} is the energy spectrum, and the q-

exponential function is defined as:

ex
q ≡ [1 + (1− q)x]

1
(1−q) =

1

[1− (q − 1)x]
1

(q−1)

(5.11)

Following the above discussion and inspired by [21, 127], in this method, noise

is generated according to a schedule that can be expressed as

e−T (ln 2)·k
q = [1− (1− q)T (ln 2) · k]

1
1−q , (5.12)

where T is the temperature; k indicates iterations. In this approach, noise is not

applied proportionally to the size of each weight; instead a form of weight decay

is used, which is considered beneficial for achieving a robust neural network that

generalises well [39, 124]. Thus, noise is introduced in neural network learning

by formulating the perturbed energy function:

Ẽ(wk) = E(wk) + µ ·
n∑

i=1

(wk
i)

2

[1 + (wk
i)

2
]
· [1− (1− q)T (ln 2) · k]

1
1−q , (5.13)

where k indicates iterations, E(w) is given by (2.2),
∑

i

w2
i /(1 + w2

i) is the weight

decay bias term which can decay small weights more rapidly than large weights,

and µ is a parameter that regulates the influence of the combined weight de-

cay/noise effect. This form of weight decay modifies the energy landscape so

that smaller weights are favored at the beginning of the training but as learning

progresses the magnitude of the weight decay is reduced to favor the growth of

large weights. Thus, as the energy landscape is modified during training the

search method is allowed to explore regions of the energy surface that were pre-

viously unavailable. Minimisation of (5.13) requires calculating the gradient of

the energy term with respect to each weight

92

Chapter 5. Nonextensive Hybrid Learning Schemes

g̃i(w
k) = gi(w

k) + µ́ · wk
i

[1 + (wk
i)

2
]
2 · [1− (1− q)T (ln 2) · k]

1
1−q , (5.14)

where µ́ > 0 (in our experiments, reported in the next section, a fixed value of

µ́ = 0.01 was used).

The Formulation of the New Method

The proposed hybrid strategy applies the sign–based weight adjustment of Rprop,

defined by Relation (4.4), on the perturbed energy function (5.13) using the

gradient term of Equation (5.14). Also the learning rates are adapted by means

of Conditions (4.10)–(4.12), where g̃i(w
k) is used instead of gi(w

k). Lastly, an

additional condition is introduced in order to avoid using relatively small weight

adjustments

if
(
ηk−1

i < ρ · [1− (1− q)T (ln 2) · k]
2

1−q

)

then ηk
i = max

(
ηk−1

i · η− + 2cρ · [1− (1− q)T (ln 2) · k]
2

1−q , ∆min

)
,(5.15)

where 0 < ρ < 1 and c ∈ (0, 1) is a random number.

Below, a simple problem is used to visualise the behavior of the Hybrid Learning

Scheme–(HLS) for different values of T keeping q fixed. It is a single node

with two weights and a logistic activation function. The error landscape of

Figures 5.2, 5.1 and Figure 5.3 has a global minimum and two local minima.

Figure 5.1 shows that under the same initial conditions, HLS escapes a saddle

point and a valley that leads to a local minimum, and converges to the global

minimiser located at the center of the contour plot (Figure 5.1, left), while Rprop

converges to the local minimiser (Figure 5.1, right). The top rows of Figures 5.2

and 5.3 show that Rprop converges to the local minimiser from two different

93

Chapter 5. Nonextensive Hybrid Learning Schemes

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5

−4

−3

−2

−1

0

1

2

3

4

5

W1

W
2

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5

−4

−3

−2

−1

0

1

2

3

4

5

W1

W
2

Figure 5.1: The weights trajectory of the Hybrid Learning Scheme converges to
the global minimum (left), whilst the trajectory of Rprop to a local minimiser
(right).

initial weights. We have applied the adaptive learning scheme with q = 1.2

for the following temperatures: T = 0.01 (Figures 5.2 and 5.3, second row),

T = 0.001 (Figures 5.2 and 5.3, third row), T = 0.0001 (Figures 5.2 and 5.3,

bottom). The HLS escapes the region around the local minimum, and converges

to the global minimiser located at the center of the contour plot in all cases.

The value of T influences the shape of the HLS trajectory. Small values generate

more stochastic paths, while larger values lead to more deterministic behavior.

Best results for this problem are achieved by setting T = 0.01.

5.5 Experimental Study

In this section, we evaluate the performance of the HLS and compare it with

the Rprop and the SARprop algorithms. SARprop introduced by Treadgold

and Gedeon[124], tries to solve the problem of poor local minima. It attempts to

address this problem by using the method of Simulated Annealing (SA) [57],[119].

We have used well–studied problems from the UCI Repository of Machine Learn-

ing Databases of the University of California [72], as well as problems studied

94

Chapter 5. Nonextensive Hybrid Learning Schemes

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5

−4

−3

−2

−1

0

1

2

3

4

5

W1

W
2

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5

−4

−3

−2

−1

0

1

2

3

4

5

W1

W
2

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5

−4

−3

−2

−1

0

1

2

3

4

5

W1

W
2

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5

−4

−3

−2

−1

0

1

2

3

4

5

W1

W
2

Figure 5.2: Starting from the same initial weights, the trajectory of the Rprop
converges to a local minimiser (top), whilst the trajectory of HLS converges to
the global minimum (3 different values for the Temperature are shown – see text
for details).

extensively by other researchers in an attempt to reduce as much as possible

biases introduced by the size of the weights space. In all cases we have used

networks with classic logistic activations. The guidelines of [91] and [124] were

adopted for setting the learning parameters of Rprop and SARprop respectively.

The parameters of the HLS were set to the same values for all experiments in an

attempt to test the robustness of the method in different types of problems: the

entropic index q = 1.2 and the temperature T = 0.1.

95

Chapter 5. Nonextensive Hybrid Learning Schemes

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5

−4

−3

−2

−1

0

1

2

3

4

5

W1

W
2

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5

−4

−3

−2

−1

0

1

2

3

4

5

W1

W
2

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5

−4

−3

−2

−1

0

1

2

3

4

5

W1

W
2

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5

−4

−3

−2

−1

0

1

2

3

4

5

W1

W
2

Figure 5.3: Starting from the same initial weights, the trajectory of the Rprop
converges to a local minimiser (top) , whilst the trajectory of HLS converges to
the global minimum (3 different values for the Temperature are shown – see text
for details).

5.5.1 Fisher’s Iris data, a benchmark problem

The first benchmark is known as the Fisher’s Iris problem [72, 88]. The data

set consists of 120 examples and the test set of 30 examples. Following [124], an

4–2–3 FNN (4 input–2 hidden–3 output nodes; 19 weights overall) was used, and

the maximum number of iterations to find a “near–optimal” weight configuration

(defined as a weight set w∗ that results to an error function value E(w∗) ≤ 0.01)

was set to 2000. Table 5.1 shows the average performance in terms of: iter-

ations to converge to the error target (Epochs), success of convergence to the

96

Chapter 5. Nonextensive Hybrid Learning Schemes

target, within 2000 epochs (Convergence, out of the 1000 runs), and generali-

sation (Generalisation, percentage of correctly classified test examples); a “+”

indicates statistical significance of the HLS results over another method).

Table 5.1: Comparison of algorithms performance in the Iris problem for the
converged runs
Iris
Algorithm Epochs Time (secs) Generalisation (%) Convergence (%)
Rprop 2556 (+) 7.8 ± 5.0 (+) 97.2 (+) 74 (+)
SARprop 1591 (+) 4.9 ± 4.0 (+) 99.0 (+) 96 (+)
HLS 1175 3.9 ± 1.8 99.7 99

Table 5.2 presents the number of 1000 runs in which each algorithm performs

better than the other methods with respect to training speed and generalisation.

Both SARprop and HLS outperform comparing to Rprop algorithm in terms of

speed and success. However the new learning stochastic scheme achieves the best

performance.

Table 5.2: Number of times, out of 1000 runs, each algorithm performs better
than the other methods in the Iris problem with respect to training speed and
generalisation.

Iris Times faster Times better
algorithm Generalisation

Algorithm Rprop SARprop HLS Rprop SARprop HLS
Rprop – 192 106 – 95 107
SARprop 800 – 437 161 – 97
HLS 894 562 – 166 120 –

5.5.2 Application to biological data

Below, we report results from 1000 independent trials for four UCI problems.

These 1000 random weight initialisations are the same for the three learning algo-

rithms, and the training and testing sets were created according to Proben1 [88].

97

Chapter 5. Nonextensive Hybrid Learning Schemes

It is also investigated the performance of the tested algorithms in some well

known Boolean function approximation problems, which characterised of the ex-

istence of many local minima. In this class of problems 1000 independent runs

are applied. Next comparative results are given.

The statistical significance of the results has been analysed using the Wilcoxon

test [114]. This is a nonparametric method that is considered an alternative

to the paired t–test. It assumes there is information in the magnitudes of the

differences between paired observations, as well as the signs. All statements in

the tables reported below refer to a significance level of 0.05.

Cancer problem

The second benchmark is the breast cancer diagnosis problem which classifies a

tumor as benign or malignant based on 9 features [72, 88]. We have used an FNN

with 9–4–2–2 nodes (a total of 56 weights) as suggested in [88]. The comparative

results are shown in Table 5.3. The new proposed scheme affects positive to meet

fast the error goal. The SARprop algorithm improves the convergence success

compared to Rprop but the application of the nonextensive term in the learning

procedure increase significantly the convergence success.

Table 5.3: Comparison of algorithms performance in the Cancer problem for the
converged runs
Cancer
Algorithm Epochs Time (secs) Generalisation (%) Convergence (%)
Rprop 280 (+) 1.85 ± 1.30 (+) 97.0 (+) 94 (+)
SARprop 250 (+) 1.60 ± 1.70 (+) 97.6 (−) 98 (−)
HLS 141 0.95 ±0.26 97.5 100

Table 5.4 shows more analytically the performance of the tested algorithms within

1000 runs. The 790 out of 1000 runs that HLS is faster than Rprop and 740 times

better than SARprop highlights the increased learning speed of the new training

98

Chapter 5. Nonextensive Hybrid Learning Schemes

algorithm.

Table 5.4: Number of times, out of 1000 runs, each algorithm performs better
than the other methods in the Cancer problem with respect to training speed
and generalisation.

Cancer Times faster Times better
algorithm Generalisation

Algorithm Rprop SARprop HLS Rprop SARprop HLS
Rprop – 394 208 – 411 500
SARprop 598 – 249 594 – 584
HLS 790 740 – 511 431 –

Diabetes problem

The diabetes1 benchmark is a real-world classification task which concerns de-

ciding when a Pima Indian individual is diabetes positive or not [72, 88]. There

are 8 features representing personal data and results from a medical examina-

tion. The Proben1 collection suggests a 8–2–2–2 FNN (34 weights overall). The

termination criterion is E ≤ 0.1 within 2000 iterations.

Judging from the table 5.5 is obvious that the Rprop algorithm converges many

times in local minima. The new stochastic learning algorithm overcomes this

problem in the most cases. Its convergence success is 97% while SARprop has

92% and Rprop 86%. Furthermore the HLS is the fastest algorithm and improves

significantly the Generalisation success compared to Rprop. Table 5.6 shows

analytically view of the algorithms’ performance.

99

Chapter 5. Nonextensive Hybrid Learning Schemes

Table 5.5: Comparison of algorithms performance in the Diabetes problem for
the converged runs
Diabetes
Algorithm Epochs Time (secs) Generalisation (%) Convergence (%)
Rprop 455 (+) 2.40 ± 2.1 (+) 75.8 (+) 86 (+)
SARprop 410 (+) 2.25 ± 1.8 (+) 76.2 (−) 92 (+)
HLS 276 1.50 ± 1.1 76.4 97

Table 5.6: Number of times, out of 1000 runs, each algorithm performs better
than the other methods in the Diabetes problem with respect to training speed
and generalisation.

Diabetes Times faster Times better
algorithm Generalisation

Algorithm Rprop SARprop HLS Rprop SARprop HLS
Rprop – 301 301 – 508 530
SARprop 696 – 478 600 – 590
HLS 692 518 – 580 520 –

Thyroid problem

Lastly, the thyroid1 problem, [72, 88], uses a 21–4–3 nodes FNN, suggested

by [124], to decide whether the patient’s thyroid has over function, normal func-

tion, or under function. A data set with 3600 examples is used and the tar-

get is to find within a maximum of 2000 iterations a weight set that produces

E ≤ 0.0036. Table 5.7 gives the average performance of the three algorithms

in the two problems. The new method outperforms the other methods in the

number of iterations required to reach a suitable solution, and converges in all

cases.

It is important to highlight in table 5.8 the number of times that HLS is faster

than Rprop and SARprop (660 and 1000 times respectively). However the HLS

is still better in terms of Generalisation and Convergence success than Rprop

and SARprop.

100

Chapter 5. Nonextensive Hybrid Learning Schemes

Table 5.7: Comparison of algorithms performance in the Thyroid problem for
the converged runs

Thyroid
Algorithm Epochs Time (secs) Generalisation (%) Convergence (%)
Rprop 770 (+) 24.20 ± 12.1 (+) 97.9 (+) 80 (+)
SARprop 810 (+) 29.75 ± 13.1 (+) 98.1 (−) 90 (+)
HLS 276 18.10 ± 4.1 98.2 97

Table 5.8: Number of times, out of 1000 runs, each algorithm performs better
than the other methods in the Thyroid problem with respect to training speed
and generalisation.

Thyroid Times faster Times better
algorithm Generalisation

Algorithm Rprop SARprop HLS Rprop SARprop HLS
Rprop – 770 340 – 85 75
SARprop 230 – 0 101 – 97
HLS 660 1000 – 121 110 –

5.5.3 Boolean function approximation problems

Another set of experiments has been conducted to empirically evaluate the per-

formance of the new method in a well–studied class of boolean function approx-

imation problems that exhibit strong local minima [17, 38]. This class includes

the XOR problem (whose local minima and saddle points have been analysed

in detail) and the various parity–N problems, which are considered as classic

benchmarks [63, 86, 124, 135]. The error target was set to E ≤ 10−7 within 2000

iterations in all cases (this is considered low enough to guarantee convergence to

a “global” solution, especially for the XOR problem), and the adopted architec-

tures were 2–4–1 for the XOR, 3–3–1 for the parity–3, 4–6–1 for the parity–4,

5–7–1 for the parity–5, following the recommendations of [124]. The results are

presented in Table 5.9 and Table 5.10. Figure 5.5 gives a typical example of

algorithms’ convergence. Starting from the same initial conditions, the Rprop

101

Chapter 5. Nonextensive Hybrid Learning Schemes

converges to a local minimiser, whilst both SARprop and HLS escape from the

local minimum. However, HLS converges to a feasible solution much faster than

SARprop.

Table 5.9: Average performance in the XOR and Parity–4 problems
XOR Parity4

Algorithm Epochs Convergence Epochs Convergence
Rprop 1110 (+) 23 (+) 1360 (+) 42 (+)
SARprop 150 (+) 75 (+) 1378 (+) 48 (+)
HLS 69 88 1270 80

Table 5.10: Average algorithm performance in the Parity–3 and Parity–5 prob-
lems

Parity3 Parity5
Algorithm Epochs Convergence Epochs Convergence
Rprop 1105 (+) 22 (+) 416 (+) 67 (+)
SARprop 882 (+) 58 (+) 394 (+) 80 (+)
HLS 640 78 20 90

Additional experiments have been performed to explore the influence of the en-

tropic index q on the convergence speed of the HLS. According to our experi-

ments, large values of q cause an increase to the average number of iterations

required to achieve the error target but seems not to affect the convergence

success. In the XOR problem, for example, the HLS requires on average 378

iterations to converge when using q = 1.7 and T = 0.1 (cf. with Table 5.9, where

69 iterations are required with q = 1.2 and T = 0.1). The HLS exhibits similar

behavior in the parity–5 problem, where an average of 440 iterations is required

when q = 1.7 and T = 0.1 (cf. with Table 5.10 where q = 1.2 and T = 0.1). In

all tables the results are based on q = 1.2 and the temperature T = 0.1.

A typical run for the XOR problem, for the Rprop method, SARprop and the HLS

is shown in Figure 5.4. As we can notice from Figure 5.4, starting with the same

initial weights and learning parameters in the XOR problem, Rprop got stuck

102

Chapter 5. Nonextensive Hybrid Learning Schemes

in a local minimum with higher error function value while the Hybrid Learning

Scheme (HLS) successfully converges to a feasible solution (E(w) 6 10−16) after

200 iterations and the SARprop approximately in 400 iterations.

�

�

�

�

�

�

200 400 600 800 1000 1200 1400 1600 1800 2000
Number of epochs

HLS
Rprop
SARprop

�

�

Er
ro

r f
un

cti
on

 va
lue

10-14

10-10

10-4

100

�

�

10-12

10-8

10-6

10-2

Figure 5.4: Typical learning error curve for the XOR function

200 400 600 800 1000 1200 1400 1600 1800 2000

�

�

Number of epochs

Er
ror

 fu
nc

tio
n v

alu
e

10-4

10-3

10-2

10-1

100

HLS
Rprop
SARprop

Figure 5.5: Typical learning error curve for the Parity–3 problem

Finally, Figure 5.5 highlights the performance of the HLS, which converges fast

to the target point while the other tested algorithms never meet the optimal

solution.

103

Chapter 5. Nonextensive Hybrid Learning Schemes

5.6 Summary and Contribution of the Chapter

The proposed hybrid learning scheme builds on ideas from global search methods.

In general, global search methods are expected to lead to “optimal” or “near-

optimal” weight configurations by allowing the network to escape local minima

during training. It is worth noting that global search algorithms possess strong

convergence properties, and, at least in principle, are straightforward to imple-

ment and apply. Issues related to their numerical efficiency are considered by

equipping global optimisation algorithms with a “traditional” local minimisation

phase.

Global convergence, however, needs to be guaranteed by the global–scope algo-

rithm component which, theoretically, should be used in a complete, “exhaus-

tive” fashion. These remarks indicate the inherent computational demands of

the global optimisation algorithms, which increases non–polynomially, as a func-

tion of problem–size, even in the simplest cases [102]. To alleviate this situation

hybrid schemes for neural networks learning have been developed in an attempt

to achieve improved convergence rates compared to the standard global optimi-

sation, and in some cases even maintains the guarantee of convergence to a global

minimiser [12, 21, 115].

The proposed approach belongs to the special class of adaptive training algo-

rithms that employ a different adaptive stepsize for each weight. Algorithms

of this class avoid slow convergence in the flat directions and oscillations in

the steep directions, and exploit the parallelism inherent in the evaluation of

learning error E(w) and gradient ∇E(w) by the Back-Propagation (BP) algo-

rithm [97]. Various algorithms of this class have been suggested in the literature,

such as [66, 81, 82, 91]. Among them the Resilient Propagation (Rprop) algo-

rithm is one of the most popular methods [91].

In this chapter a new hybrid learning scheme that combines deterministic and

104

Chapter 5. Nonextensive Hybrid Learning Schemes

stochastic search by employing a different adaptive stepsize for each weight, and

a form of noise that is characterised by the nonextensive entropic index q that is

regulated by a weight decay term were discussed. This allows to modify the error

surface during training so that exploration of new regions of the error landscape

is achieved. It is important to mention that the behavior of the learning scheme

can be more stochastic or deterministic depending on the trade off between T

and q.

Experiments with the hybrid scheme, and comparisons with two other popular

learning methods, namely the Rprop and the SARprop, were very encouraging:

accelerated and reliable neural learning was achieved in all cases tested. In next

chapter, the performance of the HLS in two bioinformatics problems is presented.

Finally, an investigation of the FNNs and Ensemble FNNs performance trained

with the HLS algorithm has been done.

105

Chapter 6

Training Neural Network

Ensembles in Bioinformatics

problems

6.1 Introduction

Scientists, involved in the area of proteomics, are currently seeking integrated,

customised and validated research solutions to better expedite their work in pro-

teomics analyses and drug discoveries. Some drugs and most of their cell targets

are proteins, because proteins dictate biological phenotype. In this context, the

automated analysis of protein localisation is more complex than the automated

analysis of DNA sequences; nevertheless the benefits to be derived are of same

or greater importance. In order to accomplish this target, the right choice of

the kind of the methods for these applications, especially when the data set is

drastically imbalanced, is very important and crucial.

In this chapter, the performance of some commonly used classifiers was inves-

tigated, such as the K nearest neighbours, and a feed-forward neural network

106

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

with and without applying cross validation, in a class of imbalanced problems

from the bioinformatics domain. Furthermore, ensemble-based schemes were

constructed using the notion of diversity, and empirically their performance was

tested on the same problems. The experimental results favour the generation

of neural network ensembles as these are able to produce good generalisation

ability and significant improvement compared to other existing single classifier

methods. Finally, a recently proposed training algorithm is applied in Feed-

forward Neural Networks and in ensemble diversity neural networks. The new

hybrid learning scheme HLS described in the previous chapter shows an increased

generalisation and convergence success compared to the other recently proposed

algorithms such as GRprop,JRprop and GJRprop. In this specific class of the

problems tested in this chapter, I am interested in improving the generalisation

of the FNNs and ensembles neural networks. The stochastic nature of the HLS

is important and helpful to create efficient ensembles. Therefore, a section based

on this idea is further investigated in this chapter and comparative results are

given. In this chapter investigation of several supervised learning schemes is also

done [98, 91, 92], in order to improve the classification success of neural networks.

Furthermore the methods that were used to predict the protein localisation sites

are described. Lastly, the experimental results and comparisons are presented.

6.2 Description of the Problem and Related Works

The ability to identify known proteins with similar sequence and similar localisa-

tion is becoming increasingly important, as structural, functional and localisation

information is needed to accompany the raw sequences. In particular, the study

of protein localisation (in order to function properly, proteins must be trans-

ported to various locations within a particular cell) is considered very useful in

the post-genomics and proteomics era, as it provides information about each

protein that is complementary to the protein sequence and structure data [15].

107

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

Two of the most thoroughly studied single-cell organisms are the bacterium Es-

cherichia coli and the eukaryote Saccharomyces cerevisiae, also called Yeast. Both

organisms use mainstream metabolic pathways that are recognisably similar to

the corresponding metabolic functions in all life forms including higher eukary-

otes. The entire genome sequence has been determined for both organisms. The

relations between genetics and biochemistry that constitute the fundamental

processes of life in these single-cell organisms, serve as a foundation for ongoing

investigations on the processes that operate in the more complex, higher forms

of life [58]. E.coli and Yeast are the last characterised organisms as they can

be very easily manipulated. They have rapid growth rate and very simple nu-

tritional requirements. Many applications have been done to analyse the gene

expression of these proteins. Recently a neuro-fuzzy approach for functional ge-

nomics has been proposed. More precicely the objective of this approach was to

learn and predict the fuctional classes of the E.coli genes [76]. In this study, I

am interested in a different problem, which is the prediction of the localisation

sites of proteins, such as the E.coli and the Yeast (S. cerevisiae).

The first approach for predicting the localisation sites of proteins from their

amino acid sequences was an expert system developed by Nakai and Kane-

hisa [73, 74]. Later, expert identified features were combined with a probabilistic

model, which could learn its parameters from a set of training data [46]. Better

prediction accuracy has been achieved by using standard classification algorithms

such as K nearest neighbours (KNN), binary decision trees, and nave Bayesian

classifiers. The KNN achieved the best classification accuracy compared to these

methods [47]. E.coli proteins were classified into 8 classes with an average ac-

curacy of 86%, while Yeast proteins were classified into 10 classes with an av-

erage accuracy of 60% by applying cross validation. More recently, attempts to

improve the classification success have been made using back-propagation neu-

ral networks, genetic algorithms, growing cell structures, and expanding range

rules, but no significant improvements over the KNN algorithm were reported

108

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

[22]. A data selection method for Probabilistic Neural Networks (PNN) was

also applied to E.coli dataset achieving better performance than the KNN (90%

accuracy) [20]. Lastly, an empirical study showed that combined methods can

achieve better performance than individual ones [2].

6.2.1 The Horton-Nakai Model

The first method, which has been specifically designed for the protein localisa-

tion problem [46], is a probabilistic model, referred to as the Horton-Nakai (HN)

model. The HN model is consisted of a rooted binary tree of classification vari-

ables. Each non-leaf node of the binary tree is a feature variable. The leaves of

the tree are the possible classes that a new pattern is going to be classified. A

non-leaf node n represents all the classes that belong to leaves that are descen-

dants of n. Each node has a probability associated with it. The probability of n

being true represents the probability that an object belongs to n class. In these

experiments, it used the version of the HN model that employs sigmoid condi-

tional probability functions, as those exhibited gave the best results in previously

published studies [46].

6.2.2 The K Nearest Neighbours Algorithm

The K Nearest Neighbours is a simple and effective classification algorithm. It is

widely used in machine learning and has numerous variants. Given a test sample

of unknown labels, it finds the K nearest neighbors in the training set and assigns

the label of the test sample according to the labels of these neighbors. The vote

from each neighbor is weighted by its rank in terms of the distance to the test

sample.

In a more formal way, the function of the KNN algorithm can be expressed as

109

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

follows: let X = xi = (xi
1, . . . , x

i
d), i = 1, . . . , N be a collection of d-dimensional

training samples and C = C1,...,CM
is a set of M classes. Each sample xi will first

be assumed to possess a class label Li ∈ 1, . . . ,M indicating with certainty its

membership to a class in C. Assume also that xs is the incoming sample to be

classified. Classifying xs corresponds to assigning it to one of the classes in C,

i.e. deciding among a set of M hypotheses: xs ∈ Cq, q = 1, . . . , M . Let Φs be

the set of the K nearest neighbours of xs in X. For any xi ∈ Φs, the knowledge

that Li = q can be regarded as evidence that increases our belief that xs also

belongs to one of the classes of C. However, this piece of evidence does not

provide certainty by itself .

The KNN method requires selecting a distance metric and choosing a value for

parameter K. The KNN, as suggested by Duda and Hart [26], stores the training

data, denoted as a pair (X, L), and classifies new sample to the majority class

among the K closest examples in the training data. This is usually done by

calculating the Euclidean distance measure. The Euclidean distance D, between

the point x and the prototype pi of the d-dimensional training samples, is given

by the following equation:

Di =‖ x− pi ‖, (6.1)

where ‖‖ denotes the euclidean norm.

One of the drawbacks of KNN algorithm is that it needs to compare a test sam-

ple with all samples in the training set. In addition, the performance of this

algorithm greatly depends on the appropriate choice for the parameter K. The

K Nearest Neighbor (KNN) based classification techniques are very popular in

the biological domain because of their simplicity and their ability to capture se-

quential constraints present in the sequences. In order to classify a test sequence,

the KNN first locates K training sequences, which are most similar to the test

sequence. It then assigns the class label that most frequently occurs among those

K sequences (majority function) to the test sequence. The key component of the

KNN classifier is the method used for computing the similarity between the two

110

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

sequences.

6.2.3 The PSORT System

The PSORT system (http://psort.ims.u-tokyo.ac.jp/) is a tool for the prediction

of protein subcellular localisation in a sense that it can deal with proteins lo-

calised at almost all the subcellular compartments. The last version of PSORT

is a widely used computational method to predict the subcellular localisation

sites of proteins from their amino acid sequences. The reasoning algorithm is the

K Nearest Neighbors classifier. It is used to assess the probability of localising

at each candidate sites (Horton and Nakai, 1997) [47]. For each query protein,

such as the Gram-positive or Gram-negative or eukaryotic proteins, the output

values of the subprograms for these proteins are normalised and simple Euclidean

distances to all of the data points contained in the training data are calculated.

Then, the prediction is performed using the K Nearest neighbor, where K is a

predefined integer parameter. For example if these K Nearest neighbor contain

50% nuclear proteins then the query is predicted to be localised to the nucleus

class with a probability of 50%.

6.3 Ensemble-based Methods

Ensemble based methods enable an increase in generalisation performance by

combining several individual neural networks trained on the same task. The en-

semble approach has been justified both theoretically [42, 53] and empirically [78].

The creation of an ensemble is often divided into two steps [104]; the first is to

generate individual ensemble members and the second to appropriately combine

individual members outputs to produce the output of the ensemble. The simplest

method for creating ensemble members is to train each member network using

111

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

randomly initialised weights. A more advanced approach is to train the different

networks on different subsets of the training set as Bagging [18] does, where each

training set is created by resampling and replacement of the original one with

uniform probability. Boosting [33] also uses resampling of the training set, but

the data points previously poorly classified, receive a higher probability.

Finally, there is a class of methods for creating ensembles that focuses on creat-

ing classifiers that disagree partially on their decisions. In general terms, these

methods alter the training process in an attempt to produce classifiers that will

generate different classifications. In the neural networks context, these methods

include techniques for training with different network topologies, different initial

weights, different learning parameters, and/or learning different portions of the

training set (see [105] for a review and comparisons).

6.3.1 The Notion of Diversity and its Levels

Networks belonging to an ensemble are thought to be diverse with respect to a

test set if they make different generalisation errors on that test set. Different

patterns of generalisations can be produced when networks are trained either

on different training sets, or from different initial conditions, or with different

numbers or hidden nodes, or using different algorithms [105].

In 1997, Sharkey and Sharkey, [105], introduced the term levels of the diversity.

They proposed four levels of diversity ranging from the best cases of Level 1 and

Level 2 Diversity to the minimum diversity of Level 4. Level 1 Diversity requires

more than two members in an ensemble and considers that for every test input

there is always a member that produces the correct output. Level 2 Diversity

corresponds to at least five members in an ensemble. It is possible diversity

of Level 2 to lead to Level 1 Diversity by removing some of the members. An

ensemble of Level 2 Diversity is also known as upwardly mobile and eliminates

112

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

coincident failures. However, in ensembles that belong to this level, the majority

is always correct. The Level 3 Diversity may contain subsets of classifiers with

either Level 1 or 2 Diversity and can be upwardly mobile. In this case, the correct

output for each input pattern from a test set is always produced by at least one

member. Finally, the Level 4 Diversity is equivalent to the minimal diversity

that can be used to improve generalisation. This level can never be reliable since

the ensemble members exhbit similar failures (see [105] for details).

6.3.2 Measuring Ensemble Diversity.

As it has already mentioned the measure of the diversity is an important factor

to create ensembles that can achieve good generalisation performance. There are

many ways to quantify the ensemble diversity, which usually associated with the

particular error measure.

In the context of regression problems, Krogh and Vedelsby suggest to calculate

the diversity as [53]:

di(pk) = [Ai(pk)− A∗(pk)]
2, (6.2)

where di is the diversity of the ith classifier on pattern pk, Ai(p) is the ith classifier

prediction and A∗(p) is the ensemble prediction. Then in this case, we obtain for

the mean squared ensemble error the following equation:

Eens = Ē − D̄, (6.3)

where D̄ is the average ensemble’s diversity and Ē is the mean single classifier’s

errors.

Another measure of the diversity is related to the conditional entropy error mea-

sure. In the experiments, emphasis is given on determining the contribution of

the individual ensemble member to diversity. In this case, an entropy based mea-

sure would not have been useful because it does not allow determining individual

113

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

contributions [148].

Thus, for the classification problems the most widely used diversity measure is

a simple 0/1 loss function. More precisely, if Ai(p) is the prediction accuracy of

the i-th classifier for the label of p and assuming that the ensemble’s accuracy is

A∗(p) then the diversity of the i-th classifier on our tested example p is given by

the following procedure:

di(p) =

0, if Ai(p) = A∗(p)

1, if otherwise

(6.4)

The equation for the ensemble error is the same as in the regression problems,

provided that the loss function used is the squared error function, and that the

ensemble prediction is still given as the weighted average of the single classifier

predictions.

To compute the diversity of an ensemble of size n, on a training set of size m,

the average of the above term is:

Dij =
1

nm

n∑
i=1

m∑
j=1

di(pj), (6.5)

This expression estimates the probability that disagree with the prediction of

the ensemble as a whole. The proposed approach is to build ensembles that are

consistent with the training data and that attempt to maximise this diversity

term. The average diversity is an interesting factor for the operation of the

learning scheme. Taking into account small values for the mean squared ensemble

error (Eens = Ē−D̄, Eens < 0.1), corresponds to simple ensemble. For this work,

it is used the disagreement of an ensemble member from the ensemble’s prediction

as a measure of diversity. Thus, the mean squared ensemble error is equal to the

average squared error of the individual networks minus the average diversity.

Generally, in order to obtain small ensemble error, we want the diversity to be

large and the individual errors to be small [148].

114

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

Below an example is given to identify the diversity measure that will help to

determine the contribution of an individual ensemble member to diversity. An

ensemble of three different individual members (FNNs in these experiments) try

to improve the accuracy for the Yeast data and specifically for the class me2 using

a 10-fold cross validation. Each neural net of our ensemble has an output vector

with 8 nodes, which are combined giving the ensemble’s output. In Table 6.1,

the indication of the winner node is taken into account, using five patterns and

three members in the ensemble.

Table 6.1: Example with 3 classifiers and 5 data patterns of Yeast for me2 class
Target Output p1 p2 p3 p4 p5 Classification
Values 1 1 1 1 1 Errors
FNN1 : A1(x) 0 1 0 1 0 E1 = 0.6
FNN1 : A2(x) 1 0 1 1 0 E2 = 0.4
FNN1 : A3(x) 1 1 1 0 1 E3 = 0.2
Ensemble : An(x) 1 1 1 1 0 E1 = 0.2

By applying the values in the equation for the Diversity Term we take D̄ = 0.33.

The mean squared ensemble error (Eens = Ē − D̄) is shown in 6.2.

Table 6.2: The mean squared ensemble error for our example
Average Mean Mean squared
Error Diversity ensemble error
(Ē) D̄ Eens = Ē − D̄

0.4 0.33 0.07

Figure 6.1 illustrates how FNNs are combined to produce the ensemble. The

major aim is to create an ensemble of networks with good predictive performance.

Therefore, we consider a population of neural networks (100 FNNs). First, we

consider the properties of each individual FNN and then we combine FNNs that

achieve better performance for the desired application.

The implementation of the ensemble-based method consists of the following steps:

115

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

input pattern

network 1

O1

network 2 network n

O2 On

combine member outputs using majority vote

ensemble output On

Figure 6.1: Ensemble Scheme

• Step1: Create n FNNs where each one uses the same training set and differs

only in its random initial weights.

• Step2: Select the k Neural Networks (k¡n), which when they do fail to

classify the data, they fail on different inputs patterns so that failures on

one FNN can be compensated by successes of others.

• Step3: Combine the ensemble members’ outputs using majority voting to

get ensemble’s output.

In the present work, two different approaches were investigated for creating en-

sembles. The first approach consisted of creating a simple neural network ensem-

ble by combining FNNs that use the full training set but differs in their random

weight initialisations. The second approach was based on the notion of diversity

that was mentioned above and used three different FNNs. Training and test-

ing sets were generated by applying cross validation. Similar approaches often

produce results as good as bagging [78]. In these experiments, the behaviour of

neural ensembles was also investigated, which belong to Level 4 Diversity, [105],

when the cross validation method is applied and Level 3 Diversity [105] when

the test set contains all proteins.

116

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

6.4 Experimental Study

In the experiments with the KNN, K=7 was set for the E.coli proteins and

K=21 for the Yeast dataset; these values have been found empirically to give the

best performance [47]. It has been investigated by Horton and Nakai, that the

KNN algorithm achieves better performance than the Horton-Nakai model [46,

47]. Thus, in this experimental study only the KNN results are presented, and

compared with the FNN and the neural networks ensemble’s performance.

6.4.1 Description of Datasets

The datasets that used in this study have been submitted to the UCI Machine

Learning Data Repository by Murphy and Aha [72] and are described in [74,

46, 47]. They include the Escherichia dataset with 336 different proteins labeled

according to 8 localisation sites and the Yeast data set with 1484 proteins labeled

according to 10 sites. More details and fully description of these datasets is given

in Appendix A.

6.4.2 Classifying E.coli Proteins Using a Feed-forward Neu-

ral Network

A set of preliminary experiments conducted to find the most suitable FNN archi-

tecture in terms of training speed. The Rprop algorithm was used to train several

networks with one hidden layer with various combinations of hidden nodes, i.e.

8, 12, 14, 16, 24, 32, 64, 120 hidden nodes. Each FNN architecture was trained

10 times with different initial weights. The best available architecture found was

a 7-16-8 FNN and this architecture was used throughout the experiments. In

order to explore the effect of the network error on the accuracy of the classifi-

cations one hundred (100) independent trials were performed with two different

117

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

termination criteria, which are based on the Mean Squared Error of the Error

function, EMSE < 0.05 and EMSE < 0.015. Following previous work in this

area [73, 74, 46, 47, 22], I conducted experiments using all the data for testing,

as well as data sets produced by 4-fold cross validation. Also, additional experi-

ments were done by applying leave-one-out cross validation to further investigate

the performance of the methods.

Classification of E.coli proteins on the entire dataset

The particular nature of the problem makes important for biologists to know

exactly the performance of a method on each individual protein that is included

in the dataset. Thus, this experiment trained and tested FNNs using the entire

dataset. Table 6.3 presents the classification success for each class.

Table 6.3: The accuracy of classification of E.coli proteins for each class
patterns Class KNN FNN(%) FNN(%)

(%) EMSE < 0.05 EMSE < 0.015
77 im 75.3 82.5 89.0
143 cp 98.6 98.1 99.0
2 imL 0.0 85.0 91.8
5 omL 80.0 100.0 100
35 imU 65.7 68.0 88.3
2 imS 0.0 6.5 49.0
20 om 90.0 86.6 93.2
52 pp 90.3 88.7 93.6
Mean 62.5 76.9 88.0
Stdv 39.8 30.1 16.3

The results of the FNN for each class exhibit average performance over 100

trials. It is evident that the FNNs outperforms KNN in almost every class. It

is very important to highlight the neural network classification success in inner

membrane with cleavable signal sequence (imS) and in inner membrane with

lipoprotein (imL) classes. In the first case, FNNs trained with EMSE < 0.05

exhibit a 6.5% success and the FNNs with EMSE < 0.015 have 49% success,

118

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

Table 6.4: Confusion matrix for E.coli proteins with KNN.
No of Patterns Class cp imL imS imU im omL om pp

143 cp 141 0 0 0 0 0 0 2
2 imL 0 0 0 0 1 1 0 0
2 imS 0 0 0 1 0 0 0 0
35 imU 0 0 0 23 11 0 0 0
77 im 3 0 0 14 58 0 0 2
5 omL 0 0 0 0 0 4 1 0
20 om 0 0 0 0 0 0 18 2
52 pp 4 0 0 0 1 0 0 47

while the KNN method has 0.0% in imS class. In the second case, the FNNs

with EMSE < 0.05 and the FNNs with EMSE < 0.015 exhibits 85% and 91.8%

success respectively. The KNN method fails in both cases to produce correct

classifications.

It is worth noticing that results for FNNs become even better when an EMSE <

0.015 was used for training. This obviously caused an increase to the average

number of epochs required to converge (approximately 2000 epochs were needed

on average), but at the same time led to considerable improvements: the average

classification accuracy over 100 runs was 93% with a standard deviation of 0.33.

This behaviour provides evidence that a small variation in the value of the error

goal might affect the classification success. This might provide explanation for

the unsatisfactory FNNs performance reported in [22], where no details on the

error goals used in the training phase were provided.

In order to identify common misclassifications, the confusion matrix was cal-

culated for the KNN and FNN that exhibited the best training speed for an

EMSE < 0.015. These results are shown in Tables 6.4 and 6.5. The afore men-

tioned neural network achieved high percentage of classification compared to

other methods [47]. These results also show that fast convergence achieved by

the FNN by no means affect its classification success.

119

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

Table 6.5: Confusion matrix for E.coli proteins with FNN.
No of Patterns Class cp imL imS imU im omL om pp

143 cp 142 0 0 0 0 0 0 1
2 imL 0 2 0 0 0 0 0 0
2 imS 0 0 1 1 0 0 0 0
35 imU 0 0 0 31 4 0 0 0
77 im 2 0 0 6 69 0 0 0
5 omL 0 0 0 0 0 5 0 0
20 om 0 0 0 0 0 0 19 0
52 pp 3 0 0 0 0 0 0 49

Classification of E.coli proteins using 4-fold cross validation

In the second experiment, a 4-fold cross validation test performed by randomly

partitioning the dataset into 4 equally sized subsets, as suggested in [46, 47].

Three subsets are used for training, while the remaining one is used for testing.

Table 6.6 presents the best KNN and FNN classification accuracy for each class

in the second partition. The overall classification success is also given in Table

6.7, where results are in terms of percentage of sucess for each partition. Lastly,

it is important to mention that the performance of KNN algorithm is consider-

ably improved when 4-fold cross validation is used but still lacks in performance

compared to the best FNN.

Classification of E.coli proteins using leave one out cross validation

In this experiment, E. coli proteins were classified using a FNN by applying a

leave one out cross validation. Table 6.8 gives the best results for each method

using leave one out cross validation. As shown in the table, the KNN exhib-

ited better performance than the FNN in this case. Nevertheless, it still lacks

compared to KNN with 4-fold cross validation.

The overall pattern classification success for all classes using FNNs with EMSE <

120

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

Table 6.6: Best classification success for each method with 4 fold cross-validation
for E.coli proteins(2nd partition).

patterns Class KNN FNN(%)
(%) EMSE < 0.015

77 im 84.0 79.5
143 cp 100 97.2
2 imL 0.0 0.0
5 omL 100.0 100
35 imU 62.2 87.5
2 imS 0.0 0.0
20 om 80.0 80.0
52 pp 92.2 100
Mean 64.8 68.1
Stdv 41.8 42.7

Table 6.7: Best overall performance for each method with 4-fold cross validation
for each partition.

Cross Validation Partition KNN (%) FNN EMSE < 0.015 (%)

0 89.3 91.7
1 95.2 88.1
2 84.5 84.5
3 76.2 88.1

Mean 86.3 88.1
Mean 8.04 2.92

0.015 was 85.42%, which can be considered slightly worst compared to the 86%

of the KNN. Table 8 exhibits the average classification success for each class.

The differences in mean performance of the two methods in Table 6.8 reflect the

fact that the KNN classified correctly the five patterns of the class omL while the

FNN misclassified one of these patterns. In order to identify the misclassifications

in the E. coli dataset we created the confusion matrix for the KNN and FNN,

which are shown in 6.9, 6.10 respectively.

121

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

Table 6.8: The accuracy of classification of E.coli proteins for each class using
leave one out cross validation.

patterns Class KNN FNN(%)
patterns Class (%) EMSE < 0.015
77 im 76.6 79.3
143 cp 97.9 97.2
2 imL 0.0 0.0
5 omL 100.0 80.0
35 imU 57.1 65.7
2 imS 0.0 0.0
20 om 80.0 80.0
52 pp 88.5 84.6
Mean 62.5 60.8
Stdv 40.8 38.5

Table 6.9: Confusion matrix for E.coli proteins with KNN with leave one out
cross validation.

No of Patterns Class cp imL imS imU im omL om pp

143 cp 140 0 0 0 0 0 0 3
2 imL 0 0 0 0 1 1 0 0
2 imS 0 0 0 1 0 0 0 1
35 imU 1 0 0 20 14 0 0 0
77 im 4 0 0 10 59 0 0 4
5 omL 0 0 0 0 0 5 0 0
20 om 0 0 0 0 0 1 16 3
52 pp 5 0 0 0 1 0 0 46

6.4.3 Classifying Yeast Patterns Using a Feed-forward

Neural Network

A set of preliminary experiments was conducted, as with the E.coli dataset, in

order to find the most suitable architecture. An 8-16-10 FNN architecture ex-

hibited the best performance. 100 FNNs were trained with the Rprop algorithm

using different initial weights. As previously we conducted two experiments fol-

lowing the guidelines of [46, 47].

122

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

Table 6.10: Confusion matrix for E.coli proteins with FNN with leave one out
cross validation.

No of Patterns Class cp imL imS imU im omL om pp

143 cp 139 0 0 0 0 0 0 4
2 imL 0 0 0 0 1 1 0 0
2 imS 0 0 0 1 0 0 0 1
35 imU 0 0 0 23 11 0 0 1
77 im 3 0 0 11 61 0 1 1
5 omL 0 0 0 0 0 4 1 0
20 om 0 0 0 0 0 2 16 2
52 pp 4 0 0 0 3 0 1 44

Classification of Yeast proteins on the entire dataset

The first experiment concerns testing using the whole dataset. The FNN out-

performs significantly the other methods. The average classification accuracy of

the FNN’s is 67%; the worst-case performance was 64% (which is still an im-

provement over other methods) and the best one 69%. The result of the KNN

is 59.5%. We have trained the FNNs for 10000 epochs or until achieving an

EMSE < 0.005 .On the average, approximately 3500 epochs are needed in order

to reach convergence.

Table 6.11 shows the classification success achieved for each class. The results

of the FNN represent the average of 100 trials. The neural network outperforms

the other methods in almost every class. It is very important to highlight the

neural network classification success in the POX and ERL classes.

To identify the misclassifications in the Yeast dataset we have created the con-

fusion matrix for the FNN that exhibited the fastest convergence to an EMSE <

0.005. The results are shown in Table 6.12. It is important to highlight the

significant improvement to classify the localisation sites in each class compared

with the other previous attempts as shown in Table 13 [47].

123

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

Table 6.11: The accuracy of classification of Yeast proteins for each class.
No of Patterns Class KNN (%) FNN EMSE <0.05 (%)

463 cyt 70.7 66.7
5 erl 0.0 99.6
35 exc 62.9 62.7
44 me1 75.0 82.9
51 me2 21.6 47.8
163 me3 74.9 85.6
244 mit 57.8 61.3
429 nuc 50.7 57.7
20 pox 55.0 54.6
30 vac 0.0 4.1
Mean 46.8 62.3
Stdv 29.1 25.9

Classification of Yeast proteins using 10-fold cross validation

The second experiment involves the use of 10 fold cross validation method with

10 equally sized partitions. The results are shown in Table 6.14. The KNN algo-

rithm improves its generalisation success achieving an overall success of 59.5%.

The performance of the FNNs is also improved, achieving average classification

success of 64.9%. In these experiments, an EMSE < 0.05 used to train the neural

networks. The results of the Wilcoxon test for the Table 14, gives T = 7, which

satisfies the condition T < 14. This proves that the improved mean perfor-

mance achieved by the FNNs is statistically significant when compared against

the results of the KNN algorithm.

Classification of Yeast proteins using leave one out cross validation

In the third experiment a leave one cross validation is implemented to classify

the Yeast Patterns. The leave one out validation helps to explore further the

performance of the tested methods. The best overall classification success for

all the patterns in the Yeast dataset using a FNN with leave one out cross

124

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

Table 6.12: The confusion matrix of Yeast proteins for each class using a neural
network.

No of Patterns Class cyt erl exc me1 me2 me3 mit nuc pox vac

463 cyt 309 0 0 3 0 12 30 109 0 0
5 erl 0 5 0 0 1 1 0 0 0 0
35 exc 4 0 23 2 2 0 2 2 0 0
44 me1 3 0 1 37 0 2 1 0 0 0
51 me2 6 0 2 3 25 5 8 2 0 0
163 me3 9 0 0 0 0 140 2 10 0 2
244 mit 50 0 0 2 4 10 150 28 0 0
429 nuc 110 0 0 0 42 10 20 247 0 0
20 pox 6 0 0 0 0 0 2 1 11 0
30 vac 11 0 2 0 1 6 2 7 0 1

validation is 59.9%, while the KNN algorithm exhibits approximately 58%. Both

of their performance still lacks comparing to 10 fold cross validation performance.

Table 6.15 shows the comparative results for the tested methods using leave one

out cross validation and presents the classification success for each class. The

statistics reveal that FNN outperforms significantly to KNN algorithm exhibiting

a more balanced performance.

6.4.4 Classifying Protein Patterns Using Ensemble-based

Techniques

In this section, ensembles were created focusing on classifiers that disagree on

their decisions so when they do fail to classify the data, fail on different inputs

so that failures on one FNN can be compensated by successes on others. These

Diversity Network Ensembles (DNE) allow to weight the outputs of the network

in such a way that either the correct answer is obtained or at least that the

correct output is obtained often enough so that the generalisation is improved.

In order to get a small ensemble error we try the diversity to be large and the

125

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

Table 6.13: The confusion matrix of Yeast proteins for each class using the KNN
algorithm.

No of Patterns Class cyt erl exc me1 me2 me3 mit nuc pox vac

463 cyt 314 0 1 0 2 3 32 91 1 0
5 erl 0 0 3 1 1 0 0 0 0 0
35 exc 4 0 22 4 2 0 2 1 0 0
44 me1 0 0 8 33 0 1 2 0 0 0
51 me2 9 0 7 10 11 3 7 4 0 0
163 me3 18 0 0 0 1 122 6 16 0 2
244 mit 62 0 4 2 5 8 141 19 3 0
429 nuc 171 0 0 0 2 10 27 216 0 0
20 pox 4 0 1 1 0 0 1 2 11 0
30 vac 13 0 3 1 1 6 1 5 0 0

number of individual errors to be small.

Experiments using the full datasets

In this study, the reported results based on using a Simple Network Ensemble

(SNE) and a Diverse Neural Networks (DNN). I performed two different exper-

iments. The implementation of the ensemble, in the first experiment consisted

of five networks and belongs to the so called level 3 diversity. Table 6.16 shows

the results of the two ensemble-based methods on the E.coli dataset. The overall

classification success of the SNE method was 93.5%, while the overall classifica-

tion success of the DNN method was 96.8% using all the data as suggested by

Horton and Nakai [46, 47]. I decided to concentrate on the DNN method and

created an ensemble for the Yeast dataset. The results are shown in Table 6.16.

The DNE significantly outperforms all other methods used so far in the literature

(cf. with the results reported in [46, 47, 22]).

126

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

Table 6.14: Best performance for each method using 10 fold cross-validation for
Yeast proteins.

Cross Validation Partition KNN (%) FNN EMSE < 0.05 (%)

0 55.8 65.1
1 59.2 66.4
2 61.0 63.3
3 65.8 65.8
4 48.6 66.4
5 62.3 68.5
6 68.5 61.8
7 58.9 59.8
8 56.9 66.4
9 58.2 65.6

Mean 59.5 64.9
Std. Dev 5.49 2.57

Experiments using leave one out cross validation.

In this case it is difficult to build an ensemble with feedforward neural nets to do

different errors in different patterns. By applying a leave one out cross validation

most of the neural nets fail in the same patterns so the classification ability of the

ensemble is not significant improving comparing to the neural networks. Based on

these experimental results the strategy of building neural network ensembles has

to do with the tested problem. Therefore for the E.coli and Yeast datasets a 4-fold

and 10-fold cross validation method respectively is suggested to be applied [47].

The performance of the FNNs and the diverse neural networks ensemble, using

the leave one out cross validation, are shown in the tables below (6.18, 6.19).

Classifying E.coli Patterns Using Ensemble methods with 4-fold cross

validation.

In these experiments an ensemble of three Neural Networks is investigated. The

FNNs failures for predicting the imS class, are shared by all the networks. This

127

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

Table 6.15: Best performance for each method using one fold cross-validation for
Yeast proteins for each class.

No of Patterns Class KNN (%) FNN EMSE <0.05 (%)

463 cyt 55.4 66.7
5 erl 0.0 99.6
35 exc 61.7 62.7
44 me1 65.1 82.9
51 me2 26.0 47.8
163 me3 75.8 85.6
244 mit 58.4 61.3
429 nuc 50.3 57.7
20 pox 57.8 54.6
30 vac 0.0 4.1
Mean 46.0 62.3
Stdv 26.9 25.9

type of ensemble corresponds to level 4 diversity. It can never be reliable but it

can still be used to improve the generalisation. By applying the cross validation,

the training and testing data are changed. So in order to train properly the FNN

we set smaller error target EMSE < 0.01. In this case we focus to find Neural

Networks that can classify the class with the few patterns such the imL class.

The divesrity measure in these experiments is D = 0.33. The ensemble is based

on predicting correctly the patterns from the imL class.

Table 6.20 presents the number of mistakes for each members of the ensemble and

for different combinations. Ensemble members FNN1, FNN2, and FNN3 fail to

classify 15, 16, and 11 mistakes respectively. Combining different FNNs produces

various numbers of common mistakes (failures) depending on the diversity of the

members which are combined. For example, as shown in Table 6.20, although

FNN1 and FNN2 make 15 and 16 mistakes, a combination of the two produces

significantly smaller number of common failures, i.e. only two common mistakes.

In our experiments we used a combination of the three FNNs using majority

voting. This ensemble also produces two common failures but the overall success

is imporoved. Detailed results are shown in Table 6.21.

128

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

Table 6.16: Accuracy of classification for E.coli proteins using ensemble-based
techniques.

No of Patterns Class SNE EMSE <0.015 (%) DNN EMSE < 0.015 (%)

77 im 87.0 92.22
143 cp 98.0 100
2 imL 100 100
5 omL 100 100
35 imU 77.2 94.3
2 imS 50.0 50
20 om 80.0 100
52 pp 91.4 96.15
Mean 85.45 91.7
Stdv 16.8 17.1

Table 6.17: Accuracy of classification for Yeast proteins using diverse neural
networks

No of Patterns Class DNN EMSE <0.05 (%)

463 cyt 69.2
5 erl 100
35 exc 64.3
44 me1 84.9
51 me2 54.9
163 me3 88.4
244 mit 61.7
429 nuc 57.7
20 pox 55.0
30 vac 10.0
Mean 64.6
Stdv 24.6

129

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

Table 6.18: Best performance for each method using one fold cross-validation for
E.coli proteins by ensemble-based techniques.

No of Patterns Class FNN EMSE <0.015 (%) DNN EMSE < 0.015 (%)

77 im 79.3 80.6
143 cp 97.2 97.2
2 imL 0.0 0.0
5 omL 80.0 80.0
35 imU 65.7 65.7
2 imS 0.0 0.0
20 om 80.0 80.0
52 pp 84.6 86.6
Mean 60.8 61.3
Stdv 38.5 38.8

It is important to mention that using a DNE allows to classify correctly the imL

class, which has only two patterns. This can increase the average class accuracy

for E. coli proteins, as shown in Table 6.21.

Various combinations of diverse FNNs can be produced focusing on improving

the classification for particular class labels. For example, if predicting correctly

classes with a few patterns (e.g. imS) is not a priority then it is possible to im-

prove the overall classification success by focusing on classifying correctly classes

with many patterns (e.g. cp). In this case the ensemble would combine diverse

Neural Networks that achieve better performance in classes with many patterns,

such as the cp class.

Classifying Yeast Patterns Using Ensemble methods with 10-fold cross

validation.

In this case, it created an ensemble of three Neural Networks, which corresponds

to Level 3 diversity [105]. However, a simple majority vote will not always

produce the correct answer, but at least one member in the ensemble will produce

the correct output for each input pattern in the test set. Table 6.22 shows

130

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

Table 6.19: Best performance for each method using one fold cross-validation for
Yeast proteins for each class.

No of Patterns Class FNN EMSE <0.05 (%) FNN EMSE <0.05 (%)

463 cyt 66.7 66.7
5 erl 80.0 100
35 exc 62.7 62.7
44 me1 82.9 80.0
51 me2 47.8 47.8
163 me3 85.6 91.7
244 mit 61.3 61.3
429 nuc 57.7 57.7
20 pox 54.6 54.6
30 vac 4.1 4.1
Mean 60.3 62.6
Stdv 23.4 26.4

classification success for an FNN and two ensembles (DNE1 and DNE2) using

10-fold cross validation. The FNN performance is the best available from a set

of 100 trials, while the diversity value for DNN1, which focuses on predicting cyt

patterns, is D=0.36 giving Eens = 0.023, and for DNN2, which is built based on

vac patterns, is D=0.33 and Eens = 0.022.

It is important to mention that DNEs, achieved better performance compared

to other classification methods. The KNN overall success was 59.3% and the

FNN success was 63.4% when EMSE < 0.05 was used in training. DNN1 shows

significant improvement in overall pattern classification success, reaching 67.6%

but it cannot classify correctly any vac pattern; it focuses on cyt patterns instead.

The overall classification success for DNN2 was 62.75% with predictions for all

classes of the S. cerevisiae proteins, and an average success per class of 66.2%,

as shown in Table 6.22.

131

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

Table 6.20: Number of patterns each neural network fails to classify correctly
(FNN1, FNN2, FNN3), and common number of patterns neural networks fail
to classify correctly (FNN12, FNN13,FNN23,FNN123) for the Ecoli protein
problem using 4 fold cross validation and diverse neural networks.

Neural Networks Failures

FNN1 15
FNN2 16
FNN3 11
FNN12 2
FNN13 5
FNN23 3
FNN123 2

Table 6.21: Accuracy of classification for Ecoli proteins using 4 fold cross valida-
tion and diverse neural networks.

No of Patterns Class FNN EMSE <0.01 (%) DNN EMSE < 0.01 (%)

77 im 89.0 88.8
143 cp 97.2 97.2
2 imL 0.0 100.0
5 omL 100.0 100.0
35 imU 75.0 87.5
2 imS 0.0 0.0
20 om 80.0 80.0
52 pp 100.0 92.3
Mean 67.6 80.7
Stdv 42.7 33.3

132

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

Table 6.22: The accuracy of classification of Yeast proteins for each class using
10 fold cross validation.

patterns Class KNN FNN1(%) DNN1(%) DNN2(%)
(%) EMSE < 0.05 EMSE < 0.05 EMSE < 0.05

463 cyt 70.7 71.7 76.1 59.0
5 erl 0.0 100.0 100.0 100.0
35 exc 62.9 25.0 75.0 50.0
44 me1 75.0 80.0 60.0 80.0
51 me2 21.6 60.0 40.0 60.0
163 me3 74.9 87.5 100.0 100.0
244 mit 57.8 75.0 91.7 58.3
429 nuc 50.7 42.9 52.5 54.8
20 pox 55.0 66.7 33.3 66.7
30 vac 0.0 0.0 0.0 33.3
Mean 46.8 60.9 62.9 66.2
Stdv 29.1 30.3 32.2 21.3

6.4.5 Classifying Ecoli and Yeast Patterns Using the Hy-

brid Learning Scheme to Train Neural Networks.

The complexity of Ecoli and Yeast classification problems makes Neural Network

training important and crucial factor. Well studied learning algorithms, such as

the Backpropagation Algorithm and the Resilient Propagation algorithm, failed

to classify correctly classes with few patterns. The recently proposed algorithms

JRprop, GJRprop and GRprop showed classification improvements but still mis-

classified protein classes with few patterns.

The new adaptive gradient–based learning scheme (HLS) inspired from the Rprop

algorithm, and based on the theory of nonextensive statistical mechanics [125]

gives better results. The specific characteristics of this algorithm make it at-

tractive to be used in wide range of bioinformatics applications, such as is the

classification of the proteins into localisation sites and protein folding. Next ex-

perimental results are presented and comparisons are made. The training of the

FNNs was done by using the HLS algorithm in all runs.

133

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

Table 6.23 shows the accuracy of classification of E.coli proteins for each class

using the HLS to train the neural networks, which is slightly better than these

neural networks trained with the Rprop algorithm. It is important to highlight

the increased classification success that the FNN with the HLS algorithm achieve

in classes with few patterns such as imL and imS.

Table 6.23: The accuracy of classification of E.coli proteins for each class Using
the HLS algorithm to train the Neural Networks

patterns Class FNN Rprop(%) FNN HLS(%)
EMSE < 0.015 EMSE < 0.015

77 im 89.0 89.3
143 cp 99.0 99.3
2 imL 91.8 95.0
5 omL 100.0 100
35 imU 88.3 85.3
2 imS 49.0 50.0
20 om 93.2 93.3
52 pp 93.6 93.5
Mean 88.0 88.2
Stdv 16.3 16.1

Table 6.24 presents the best overall performance for the FNN’s trained with

different algorithms.

Table 6.24: Best overall performance for each method with 4-fold cross validation
for each partition.

Cross Validation Partition FNN Rprop FNN HLS
EMSE < 0.015 (%) EMSE < 0.015 (%)

0 91.7 92.0
1 88.1 88.3
2 84.5 84.3
3 88.1 88.5

Mean 88.1 88.3
Stdv 2.92 3.1

The next table 6.25 gives the average performance for Neural networks trained

with the Rprop and HLS algorithms. As shown in Table 6.25 the FNN’s trained

134

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

with the HLS outperforms the FNN’s with Rprop in the number of epochs re-

quired to reach a suitable solution, classification success and converges in all

partitions.

Table 6.25: Mean behaviour in terms of speed, convergence and testing classifi-
cation success for each method with 4 fold cross-validation for E.coli proteins.

Cross Validation FNN Rprop FNN HLS

Partition EMSE < 0.015 EMSE < 0.015
Success Epochs Convergence Success Epochs Convergence

0 82.9 6837 58.0 84.8 4998 80.0
1 83.4 4634 97.0 84.9 2832 100.0
2 79.0 3784 98.0 80.6 2100 100.0
3 80.2 5395 74.0 82.7 3679 90.0
Mean 81.3 5162 81.7 83.3 3402 92.5

Judging from the previous tables, it can be drawn that the nonextensive training

algorithm (HLS) improves the performance of the neural networks and gener-

ates different classifications. Therefore it is very possible the Ensemble Neural

Nets trained with the HLS (DFNN HLS) achieve better classification success.

Table 6.26 confirms this improvement performance. Our tested ensemble is be-

long to ‘Level 4’ diversity. This ensemble (DFNN HLS) is consisted of 3 FNN

trained with the HLS algorithm, which two of these are from the first partition

and the third from the second partition. In this stage, it is important to clarify

that the classification success is the testing classification success for all the pat-

terns that consist the testing data, and it is not the class classification success.

Table 6.26: The Ensemble performance using 4 fold cross-validation for E.coli
proteins for 50 runs using the new training algorithm.

Cross Validation FNN Rprop(%) FNN HLS (%) DFNN HLS (%)
Ecoli Proteins EMSE < 0.015 EMSE < 0.015 EMSE < 0.015

Classification 81.3 83.3 88.8
Success

135

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

The problem of the Yeast proteins is more complicated. The effect of HLS algo-

rithm in training of the FNN’s is presented in Table 6.27. The mean performance

of the Neural nets trained with the HLS is significantly better compared with

the Rprop-FNN’s in terms of speed and testing classification success.

Table 6.27: Mean behaviour in terms of speed, convergence and testing classifi-
cation success for each method with 10 fold cross-validation for Yeast proteins.

Cross Validation FNN Rprop FNN HLS

Partition EMSE < 0.05 EMSE < 0.05
Success Epochs Convergence Success Epochs Convergence

0 61.6 983 100.0 63.2 486 100.0
1 61.0 1052 100.0 64.0 632 100.0
2 58.6 934 100.0 61.0 513 100.0
3 61.9 970 100.0 64.2 582 100.0
4 60.4 973 100.0 62.1 580 100.0
5 62.2 1370 100.0 65.5 749 100.0
6 56.3 705 100.0 58.9 446 100.0
7 52.8 534 100.0 54.9 339 100.0
8 60.9 920 100.0 63.1 569 100.0
9 60.7 667 100.0 63.3 447 100.0
Mean 59.6 911 100.0 62.1 544 100.0

Finally an ensemble consisted of 3 FNN’s trained with the HLS (Level4 diver-

sity)is tested. The ensemble has one FNN from the first partition, one from the

second and the last one from the 6 th partition. The Ensemble performance

using 10 fold cross-validation for 50 runs is given in table 6.28. As shown in this

table, there is significant improvement for the Ensemble as the new stochastic

learning scheme creates different classifications that can be intelligent combined

to generate better classification performance.

Table 6.28: The Ensemble performance using 10 fold cross-validation for Yeast
proteins for 50 runs using the new training algorithm.

Cross Validation FNN Rprop(%) FNN HLS (%) DFNN HLS (%)
Ecoli Proteins EMSE < 0.015 EMSE < 0.015) EMSE < 0.015)

Classification 59.6 62.1 70.5
Success

136

Chapter 6. Training Neural Network Ensembles in Bioinformatics problems

6.5 Summary and Contribution of the Chapter

In this chapter, it was explored the use of a neural network approach in predicting

the localisation sites of proteins in the organisms. The performance of Neural

Networks in a single mode and in an ensemble formulation was investigated.

The use of diverse network ensembles exhibiting Level 3 and 4 diversity with and

without cross validation was also explored. Numerical results using supervised

learning schemes with and without the use of cross validation, are better than

the best previous attempts.

Ensemble for neural networks is a subject of active research. It enables an in-

crease in generalisation performance, by combining several individual neural net-

works trained on the same task. Using the notion of the diversity in building our

ensembles, helps to improve the classification success. Furthermore, the genera-

tion of ensemble with diversity FNNs showed a significant improvement compared

to all other approaches in the literature for the two organisms. Training with

the recently proposed hybrid algorithm appears to have a positive effect on their

performance. The nonextensive concept in this algorithm generates different

classifications, which is important characteristic to create efficient ensembles of

neural nets.

To sum up, the proposed algorithms are applied for training feed-forward neural

networks and diverse neural ensembles in biological and bioinformatics datasets.

Finally building a neural ensemble with neural networks which are trained by

different training algorithms and in different training sets are on going research.

137

Chapter 7

Conclusions and Future work

’I am neither Athenian nor Greek but a citizen of the world.’ Socrates 500bc.

7.1 Discussion

Neural Networks are widely used in many classification applications such as pat-

tern classification, speech recognition etc. Neural Networks are often used to

classify or categorise. The goal of Feedforward Neural Network (FNN) learning

is to iteratively adjust the weights, in order to globally minimise a measure of

the difference between the actual output of the network and the desired output,

as specified by a teacher, for all examples in a training set [43].

Finding this global minimum of a complex cost function, which has a large num-

ber of local minima, is a very intricate task [43, 97]. Many existing supervised

learning algorithms based on the technique of gradient descent try to find the

optimal solution. A variety of approaches, inspired from unconstrained optimi-

sation theory, have also been applied, in order to use second derivative related

information to accelerate the learning process. A problem with these algorithms

138

Chapter 7. Conclusions and Future work

is that they occasionally converge to undesired local minima. While some local

minima can provide acceptable solutions, they often result in poor network per-

formance. This problem can be overcome through the use of global optimisation.

The drawback of these algorithms is that they are computationally expensive.

The applications and problems studied in my PhD work are devoted to complex

phenomena, drawing input from a wide variety of fields, including biology, ge-

nomics, bioinformatics and pattern recognition. Among the various applications

developed in my PhD, is the classification of protein localisation patterns into

known categories, which is considered particularly useful in the post-genomics

era. The E.coli and Yeast proteins are characterised by the drastically imbalanced

nature of their dataset. The new proposed schemes applied in these problems,

show a significant improvement in terms of learning speed and classification suc-

cess, when compared to well known existing training neural networks algorithms.

In my PhD work, also emphasis is given on the development of well-performing

supervised learning schemes to apply to classification problems and especially

using biological data. It proposed algorithms to improve the learning speed and

the convergence success compared to well known existing training algorithms.

More specific this PhD proposes a new class of sign–based schemes with adap-

tive learning rates that are based on the composite nonlinear Jacobi process. It

develops adaptation strategy that ensures the search direction is a descent one

and guarantees the decrease of the batch error. It also equips the new algorithms

with the global convergence property; i.e. it proves convergence to a local min-

imiser from any remote starting point. However, in some cases the problem with

the convergence to local minima continues to exist.

To improve Neural Networks’ ability to correctly predict complex phenomena,

ideas based on the statistical physics have also been applied to accomplish this

target. Nonextensive statistical mechanics, proposed by Tsallis, exhibits appar-

ent success for certain systems in biology, economics, linguistics, the physics of

139

Chapter 7. Conclusions and Future work

turbulence, and other fields. Therefore in my PhD, the difficult problem of oc-

casional convergence to local minima is dealt by proposing a hybrid adaptive

learning scheme that combines deterministic and stochastic search. Stochastic

search is explored in the context of Nonextensive Statistical Mechanics, by mod-

ifying the error surface during training using the q-nonextensive entropic index.

Finally, the Neural Networks’ performance was investigated in an ensemble for-

mulation. I have explored the use of network ensembles in Bioinformatics prob-

lems, and the proposed algorithms were applied for training feed-forward neural

networks and diverse neural ensembles in biological and bioinformatics datasets.

This phenomenon effects their performance positively.

7.2 Future work

My research work contributes to the theory of learning algorithms. The new

algorithms provided improved learning speed, and better convergence behaviour

compared to well known training algorithms. However, these algorithms have

some limitations. It is still not guaranteed that the new schemes converge to

global minima. Further research into the performance of JRprop, GJRprop and

GRprop, has to be done. Experimental results provide evidence that the syn-

ergy of techniques from nonextensive statistics provides neural learning schemes

significant benefits. It is likely this idea, if it is suitably adopted in the new

proposed schemes, can improve the convergence and classification success. Thus,

one direction for future work is to conduct experiments exploring the influence

of the entropic index q in the new algorithms’s performance.

Moreover, the Hybrid Learning Scheme HLS that was built on the Tsallis theory,

had the temperature T and the entropic index q a priori constantly fixed during

the training. On-line adaptation of these two crucial parameters can help to

improve its performance. Furthermore, a pre-training of these two algorithms,

140

Chapter 7. Conclusions and Future work

or an adaptive scheme between the T and q could possibly give better results.

Also, the behavior of the learning scheme can be more stochastic or deterministic,

by applying a trade-off formula between T and q. Thus, through this formula,

we can achieve better control of the training, as we can make the algorithm more

deterministic or stochastic, depending on the application. Finally, when the HLS

cannot find the optimal solution or for many iterations cannot reduce the error,

then we can investigate the performance of HLS in a restarting mode, i.e to reset

the Temperature. All these ideas are likely to improve the convergence speed

and stability of the method.

An additional challenge is to properly train large complex dynamics networks.

Random neural networks and spiking neural networks are both stochastic dy-

namic neural models. Training of these models is a difficult task. Ideas based

on the statistical physics could accomplish this goal. In particular, implementa-

tion of methods based on nonextensive statistics and global optimisation theory

should be very promising.

The development and use of computational methods for the acquisition, analysis

and interpretation of biological information is also an interesting open problem.

Particularly, I am interested in clustering biomolecular data, complex biological

structures, integration of biological sequence, structure and function data.

Moreover, much of the on-going statistical analysis of DNA sequences is focused

on the estimation of characteristics of coding and non-coding regions that would

possibly allow discrimination of these regions. To estimate the level and type

of correlation in these regions we can apply various statistical methods. Deter-

ministic and stochastic models are promising tools. Methods based on statistical

mechanics and Tsallis statistics can help the statistical methods to find whether

the correlations do exist in the DNA sequence. It is possible to find a range for

the q entropic index that can describe these correlations in detail.

Furthermore, characterising the complexity of networks is a nontrivial task, and is

141

Chapter 7. Conclusions and Future work

still an unresolved problem. Some known complexity measures themselves have

a high computational complexity, therefore an alternative complexity measure

can be useful in some cases. It is difficult to determine whether we can find a

measure that reliably qualifies a system’s structure as complex when we know

that the dynamics used to generate it are complex. It is apparent that the term

complexity is not well defined. Future work will involve the development and

analysis of certain measures that will give an insight as to what complexity is.

An entropic measure, inspired from nonextensive statistics as proposed by Tsallis,

could provide evidence for the complexity of dynamical networks.

Finally, we are going to explore further the properties of Tsallis entropy into

Optimisation methods in Artificial Intelligence applications. Probabilistic mod-

els for global exploration of a space of potential solutions are usually based on

the Boltzmann Gibbs entropy and employ Gaussian distributions. They have

been used in various computational intelligence applications such as training of

Boltzmann machines and multilayer neural networks with noise, model reduc-

tion of control systems using evolutionary computing, and designing of gaussian

mutations in swarm intelligence. An alternative model that will be based on the

nonextensive entropy, can be beneficial by incorporating this model with compu-

tational intelligence methods. Investigation of the Tsallis entropy or Statistical

mechanics in the context of neural networks learning and swarm intelligence is

another future target.

These ideas certainly deserve further investigation. Hopefully, the implementa-

tion of my PhD will prove a powerful tool to accomplish these future targets.

142

Appendix A

Problems

Description–Datasets–Evaluation

Methods

A.1 Problems description

Classification problems from the UCI repository of machine learning database

have been used. In all cases,except of the bioinformatics problems which are

Ecoli and Yeast problems, we follow the guidelines of PROBEN1. For the pro-

tein classification problems, I apply the guidelines which suggested by other

researchers, Horton and Nakai [46], [47] who studied extensively these problems.

Description of the datasets and the basic features of the tested problems follow.

143

Appendix A. Problems Description–Datasets–Evaluation Methods

A.1.1 The Cancer1 problem.

This is the breast cancer diagnosis problem which classifies a tumor as benign

or malignant based on 9 features [72, 88]. A FNN with 9–4–2–2 nodes (a to-

tal of 56 weights) is used, as suggested in [88]. The link for this problem is:

http://www.ics.uci.edu/ mlearn/databases/breast-cancer-wisconsin/

A.1.2 The Diabetes1 problem.

The aim of this real-world classification task is to decide when a Pima Indian

individual is diabetes positive or not. There are 8 inputs, which represents per-

sonal data and results from a medical examination. The data set consists of 384

patterns[72, 88], and the link is: http://www.ics.uci.edu/ mlearn/databases/pima-

indians-diabetes/

A.1.3 The Genes2 problem.

It is a binary problem. The goal of this classification task is to decide, from a

window of 60 DNA sequence elements (nucleotides), whether the middle is either

an intron/exon boundary (a donor), or an exon/intron boundary (an acceptor),

or none of these. The data set consists of 1588 patterns. This data set was

created based on the ’splice junction’ problem dataset from the UCI repository

of machine learning database [72, 88].

A.1.4 The Thyroid problem.

This problem is based on patient query data and patient examination data.

The task is to decide whether the patient’s thyroid has over function, nor-

mal function, or under function. The data set consists of 3600 patterns. I

144

Appendix A. Problems Description–Datasets–Evaluation Methods

used the thyroid1 dataset, which is not a permutation of the original data, but

retains the original order instead [72, 88]. The url to download the data is:

http://www.ics.uci.edu/ mlearn/databases/thyroid-disease/

A.1.5 Fisher’s Iris problem

This benchmark is known as the Fisher’s Iris problem [72, 88]. The data set

consists of 120 examples and the test set of 30 examples. The url of this problem

is http://www.ics.uci.edu/ mlearn/databases/iris/

A.1.6 The Ecoli problem.

The dataset used has been submitted to the UCI Machine Learning Data Repos-

itory by Murphy and Aha [72] and is described in [74, 46, 47]. Escherichia

dataset with 336 different proteins labelled according to 8 localisation sites

Ecoli, being a prokaryotic gram-negative bacterium, is an important component

of the biosphere. It colonises the lower gut of animals and survives, as it is a

facultive anaerobe, when realise to the natural environment, allowing widespread

to new hosts [16, 61]. Three major and distinctive types of proteins are char-

acterised in E.Coli: enzymes, transporters and regulators. The largest number

of genes encodes enzymes (34%) (this should include all the cytoplasm proteins)

followed by the genes for transport functions and the genes for regulatory possess

(11.5%) [58].

For this problem, seven different attributes were used as in [47, 73, 74]. The

first attribute is generated by applying McGeoch’s method for signal sequence

recognition. The second one is a result of the von Heijne’s method for signal

sequence recognition, and the third one is the von Heijne’s Signal Peptidase II

consensus sequence score. The fourth attribute represents the presence of charge

145

Appendix A. Problems Description–Datasets–Evaluation Methods

on N-terminus of predicted lipoproteins. The fifth attribute is the score of dis-

criminant analysis of the amino acid content of outer membrane and periplasmic

proteins, and the sixth one is the score of the ALOM membrane spanning region

prediction program. The last attribute gives the score of ALOM program after

excluding putative cleavable signal regions from the sequence.

In particular, protein patterns in the E.coli data set are organised as follows: 143

patterns of cytoplasm (cp), 77 of inner membrane without signal sequence (im),

52 of periplasm (pp), 35 of inner membrane with uncleavable signal sequence

(imU), 20 of outer membrane without lipoprotein (om), 5 of outer membrane with

lipoprotein (omL), 2 of inner membrane with lipoprotein (imL) and 2 patterns

of inner membrane with cleavable signal sequence (imS). The corresponding url

is: http://www.imcb.osaka-u.ac.jp/nakai/psort.html

A.1.7 The Yeast problem.

Saccharomyces cerevisiae (Yeast) is the simplest Eukaryotic organism. Yeast as

more complicated form of life than E.coli possesses different types of proteins re-

lated to the cytoskeletal structure of the cell, the nucleus organisation, membrane

transporters and metabolic related proteins (as mitochondrial proteins). Of ma-

jor importance are the yeast membrane transporter proteins as they are respon-

sible for nutrient uptake, drug resistance, salt tolerance, control of cell volume,

efflux of undesirable metabolites and sensing of extracellular nutrients [16, 61].

The Yeast data set with 1484 proteins labelled according to 10 sites. This is an-

other drastically imbalanced pattern classification problem. Yeast proteins are

organised as follows: there are 463 patterns of cytoplasm (cyt), 429 of nucleus

(nuc), 244 of mitochondria (mit), 163 of membrane protein without N-terminal

signal (me3), 51 of membrane protein with uncleavable signal (me2), 44 of mem-

brane protein with cleavable signal (me1), 35 of extracellular (exc), 30 of vacuole

146

Appendix A. Problems Description–Datasets–Evaluation Methods

(vac), 20 of peroxisome (pox) and 5 patterns of endoplasmic reticulum (erl)[72].

The corresponding link is http://www.imcb.osaka-u.ac.jp/nakai/psort.html

A.2 Evaluation Methods

A.2.1 Cross Validation

In k-fold cross validation a dataset D is randomly split into k mutually exclusive

subsets Di,...,Dk
of approximately equal size. The classifier is trained and tested k

times; each time t ∈ 1, 2, . . . , k it is trained on all Di, i = 1, . . . , k, with i 6= t, and

tested on Dt. The cross validation estimate of accuracy is the overall number

of correct classifications divided by the number of instances in the dataset. The

proportion of the number of the patterns for all the classes, is equal in each

partition as this procedure provides more accurate results than a plain cross

validation does [51].

A.2.2 The Wilcoxon Test of Statistical Significance

The Wilcoxon signed rank test is a nonparametric method [114]. It is an alter-

native to the paired t-test. It has been introduced by Wilcoxon in 1945, and it

is designed to test whether a particular sample comes from a population with a

specific median. It can also be used in paired difference experiments. This test

assumes that there is information in the magnitudes of the differences between

paired observations, as well as the signs. It is a very popular statistical test used

by researchers to prove the significance of the reported results [77, 49]. Next, I

briefly describe the implementation of this method.

Firstly, the paired observations are taken, I calculate the differences and then we

rank them from smallest to largest by their absolute value. Adding all the ranks

147

Appendix A. Problems Description–Datasets–Evaluation Methods

associated with positive and negative differences gives the so called T+ and T−

statistics respectively. Finally, the probability value associated with this statistic

is found from the appropriate table.

More precisely the data consists of n∗ observations on the respective bivariate

random variables. Assume that the sample of differences, DFi, is randomly

selected from the population of differences. The DFi’s are mutually independent

and the probability distribution for the sampled paired differences is continuous.

Let |DFi| = |Xi − Yi| be the absolute differences for i = 1, 2, . . . , n∗, where

Xi = (x1, . . . , x
∗
n) is the population A, and Yi = (y1, . . . , y

∗
n) is the population

B. Let n be the number of non zero differences. Assume that T+ is the sum of

signed rank of positive DFi, T− is the sum of signed rank of negative DFi and

T = min(T+, T−). I assigned ranks to these n absolute differences according to

the relative size of the absolute differences. I implemented the Right-tailed Test.

In this application the population A is shifted to the right of B. The Hypothesis

in this case is: H0 : DFi = 0, and Ha : DFi > 0, and the rejection region is

T ≤ T0 for small sample sizes, where T0 is given by a standard table and it is the

critical value of T [114]. When the sample sizes are greater than 25, the large

sample approximation procedure is used, which is: Zc > Za, where Zc is equal

to:

Zc =
T+ − n(n+1)

4√
n(n+1)(2n+1)

24

(A.1)

and Za takes a standard value Za = 1.96, and n is the number of the paired

differences, which are not zero.

In the experiments, i analysed the statistical significance by implementing the

Wilcoxon rank sum test as proposed in [114]. The implementation of the

Wilcoxon Signed Rank algorithm consists of the following steps:

148

Appendix A. Problems Description–Datasets–Evaluation Methods

• Step 1: Take the absolute difference |DFi| = |Xi − Yi| for each pair;

• Step 2: Omit from consideration those cases where |Xi − Yi| = 0 ;

• Step 3: Rank the remaining absolute differences, from smallest to largest,

employing tied ranks where appropriate;

• Step 4: Assign to each such rank a ’+’ sign when the difference of Xi−Yi > 0

and a ’-’ sign when the difference of Xi − Yi < 0. T+ is the sum of signed

rank of positive and T− is the sum of signed rank of negative;

• Step 5: Calculate the value of Zc for the Wilcoxon test if the sample sizes

are greater than 25, or calculate the value of T for small samples, which is

equal to the minimum of the sum of the signed ranks T = min(T+, T−).

All statements refer to a significance level of 5% [49].

149

References

[1] Ackley, D., Hinton, G., and Sejnowski, T., “A learning algorithm for Boltz-

mann machines”, Cognitive Science, 9, 147–169, 1985.

[2] Aik Choon Tan and David Gilbert., “An empirical comparison of supervised

machine learning techniques in bioinformatics”, In the Proceedings of the

First Asia Pacific Bioinformatics Conference (APBC 2003), Adelaide, Aus-

tralia. Sydney: Australian Computer Society. P. Chen (editor) Conferences

in Research and Practice in Information Technology, 19: 219-222, 2003.

[3] Amit, D.J., Geutfreund, H., and Sompolinsky, H.,“Storing Infinite Numbers

of Patterns in a Spin-Glass Model of Neural Networks”, Phys. Rev. Lett.,

55, 1530–1533, 1985.

[4] Anastasiadis A.D., Magoulas G.D., “Nonextensive statistical mechanics for

hybrid learning of neural networks”, Physica A: Statistical Mechanics and

its Applications, vol.344, 372-382, 2004.

[5] Anastasiadis A.D., Magoulas G.D., “Nonextensive Entropy and Regular-

ization for Adaptive Learning”, in Proceedings of the International Joint

Conference on Neural Networks (IJCNN-04), Budapest, Hungary, vol. 2,

1067-1072, 2004.

[6] Anastasiadis A.D., Magoulas G.D., “Analysing the Localisation Sites of Pro-

teins through Neural Networks Ensembles”, Neural Computing and Appli-

cations, in press, 2006.

150

References

[7] Anastasiadis A.D., Magoulas G.D., Vrahatis M.N., “An efficient improve-

ment of the Rprop algorithm.” in Proceedings of the 1st International Work-

shop on Artificial Neural Networks in Pattern Recognition, Florence, Italy,

IAPR2003, 197-201, 2003.

[8] Anastasiadis A.D., Magoulas G.D., Vrahatis M.N., “Sign-based Learning

Schemes for Pattern Classification”, Pattern recognition Letters, vol. 26,

1926-1936, 2005.

[9] Anastasiadis A.D., Magoulas G.D., “Neural Network-based Prediction of

Proteins Localisation Sites”, in Proceedings of the European Symposium

on Intelligent Technologies, Hybrid and Adaptive Systems (EUNITE 2003),

Oulu, Finland, July 2003.

[10] Arts E. H. L., and Korst, J., Simulated Annealing and Boltzmann Machines.

New York: Wiley, 1989.

[11] Axelsson, O., Iterative Solution Methods, Cambridge Univ. Press, New

York, 1996.

[12] Baba, N., Mogami, Y., Kohzaki, M., Shiraishi, Y., and Yoshida, Y., “A

hybrid algorithm for finding the global minimum of error function of neural

networks and its applications”, Neural Networks, 7, 1253-1265, 1994.

[13] Battiti R., “First– and second–order methods for learning: between steepest

descent and Newton’s method”, Neural Computation, 4, 141–166, 1992.

[14] Bishop, C.M. , Neural Networks for Pattern Recognition, Oxford: Oxford

University Press, 1995.

[15] Boland M.V. and Murphy R.F., “After sequencing: quantitative analy-

sis of protein localization”, IEEE Engineering in Medicine and Biology,

Sept/Oct., 115-119, 1999.

151

References

[16] Blattner F.R, Plunkett G, Bloch C.A, Perna N.T, Burland V, Riley

M, Collado-Vides J, Glasner J.D, Rode C.K, Mayhew G.F, Gregor J,

Davis N.W, Kirkpatrick H.A, Goeden M.A, Rose D.J, Mau B, Shao Y.,

(1997), “The complete genome sequence of Escherichia coli K-12”, Science,

277(5331): 1453-1474, 1997.

[17] Blum, E.K., “Approximation of Boolean functions by sigmoidal networks:

Part I: XOR and other two variable functions”, Neural Computation, 1,

532–540, 1989.

[18] Breiman L., “Bagging predictors”, Machine Learning, vol. 24: 123-140,

1996.

[19] Brewster, M. E. and Kannan, R., “Nonlinear successive over-relaxation”,

Numer. Math., 44, 309–315, 1984.

[20] Blent Bolat and Tlay Yildirim., “A data selection method for Probabilis-

tic Neural Networks” , International XII. Turkish Symposium on Artificial

Intelligence and Neural Networks, TAINN, 2003.

[21] Burton R.M., and Mpitsos G.J., “Event dependent control of noise enhances

learning in neural networks”, Neural Networks, 5, 627-637, 1992.

[22] Cairns, P. Huyck, C. Mitchell, I. Wu, W., A “Comparison of Categorisa-

tion Algorithms for Predicting the Cellular Localization Sites of Proteins”,

Proceedings IEEE International Workshop on Database and Expert Systems

Applications, 296-300, 2001.

[23] Chakrabarti C.G., and Kajal De, “Boltzmann-Gibbs Entropy: Axiomatic

Characterization and Application”, International Journal of Mathematics

and Mathematical Sciences, Vol. 23, No. 4, 243251, 2000.

[24] Corana A., Marchesi, M., Martini, C., and Ridella, S., “Minimizing multi-

modal functions of continuous variables with the Simulated Annealing algo-

rithm”, ACM Trans. Math. Soft., 13, 262–280, 1987.

152

References

[25] Dennis J.E., and Schnabel, R.B., Numerical Methods for Unconstrained Op-

timization and nonlinear equations, SIAM, Philadelphia, 1996. Originally

published: Prentice Hall, Inc., New Jersey, 1983.

[26] Duda, R.O. and Hart.: Pattern Classification and Scene Analysis. John

Wiley and Sons, 1973.

[27] Dugdale, J.S., Entropy and its Physical Meaning, Taylor and Francis Inc.,

Philadelphia, 1996.

[28] Engel, E., and C. Van den Broeck, “Statistical Mechanics of Learning”,

Cambridge University Press, 2001.

[29] Fahlman. S. E., “Faster-learning variations on backpropagation: an em-

pirical study”, In D.S. Touretzky, G.E. Hinton, and T.J. Sejnowski, edi-

tors, Proceedings of the 1988 Connectionist Models Summer School. Morgan

Kaufmann, San Mateo, CA, 38–51, 1988.

[30] Fang, L and Li, T, “A globally optimal annealing learning algorithm for

multilayer perceptrons with applications”, in proc. AI’90: Austrtalian Joint

Conf. Artificial Intell., Perth Australia: World Scientific, 201-206, 1990.

[31] Fletcher, R., Practical Methods of Optimization, John Wiley & Sons, 1975.

[32] Fondecave R., and Brochard-Wyart, F., “Application of statistical mechan-

ics to the wetting of complex liquids”, Physica A: Statistical Mechanics and

its Applications, Vol. 274, Issues 1-2, 19-29, 1999.

[33] Freund Y. and Schapire R. E.,(1996), “Experiments with a new boosting al-

gorithm”, in Machine Learning: Proceedings of the Thirteenth International

Conference, 148-156, 1996.

[34] Gibbs, J. Willard., “Elementary Principles in Statistical Mechanics”, 1902.

153

References

[35] Gilbert, J.C., and Nocedal,J., “Global convergence properties of conjugate

gradient methods for optimization”, SIAM J. Optimization, Vol. 2, 2142,

1992.

[36] Gell-Mann, M., and Tsallis, C., eds., Nonextensive Entropy–

Interdisciplinary Applications, Oxford University Press, New York,

2004.

[37] Gill, P. E., Murray, W., and Wright, M. H, Practical Optimization, Aca-

demic Press, NY, 1981.

[38] Gori M. and Tesi A., “On the problem of local minima in backpropagation”,

IEEE Trans. Pattern Analysis and Machine Intelligence, 14, 76–85, 1992.

[39] Gupta A., and Lam, S.M., “Weight decay backpropagation for noisy data”,

Neural Networks, 11, 1127–1137, 1998.

[40] Gyorgyi, G., “Techniques of replica symmetry breaking and the storage

problem of a McCulloch-Pitts neuron”, Physics Reports, Vol. 342, issue 4-5,

263-392, 2001.

[41] Hagan M.T., and Menhaj, M.B., “Training feedforward networks with the

Marquardt algorithm”, IEEE Transactions on Neural Networks, 5, 989-993,

1994.

[42] Hansen L. K and Salamon P., “Neural network ensembles”, IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 12: 993-1001,

1990.

[43] Haykin, S., Neural Networks: A Comprehensive Foundation, Macmillan Col-

lege Publishing Company, 1994.

[44] Hopfield, J.J., “Neural Networks and physical systems with emergent col-

lective computational abilities”, Proc. of the National Academy of Science,

Biophysics, 81, 3088-3092, 1982.

154

References

[45] Hoptroff R., and Hall, T., “Learning by diffusion for multilayer perceptron”,

Electronic Letters, 25, 531–533, 1989.

[46] Horton, P., and Nakai, K., “A probabilistic classification system for pre-

dicting the cellular localization sites of proteins”, Proceedings of the Fourth

International Conference on Intelligent Systems for Molecular Biology, 109-

115, 1996.

[47] Horton, P., and Nakai, K., “Better Prediction of Protein Cellular Localiza-

tion Sites with the k Nearest Neighbors Classifier”, Proceedings of Intelligent

Systems in Molecular Biology, 368-383, 1997.

[48] Huang, K., Statistical Mechanics, Wiley, New York, 1987.

[49] Igel, C. and Husken, M., “Empirical evaluation of the improved Rprop learn-

ing algorithms”, Neurocomputing, 50, 105-123, 2003.

[50] Jacobs, R., “Increased rates of convergence through learning rate adapta-

tion”, Neural Networks, 1 (4), 295–307, 1988.

[51] Kohavi, R., “A study of cross-validation and bootstrap for accuracy esti-

mation and model selection”, International Joint Conference on Artificial

Intelligence, 223-228, AAAI Press and MIT Press, 1995.

[52] Kirkpatrick, S., C.D. Gelatt Jr., and Vecchi, M.P., “Optimization by simu-

lated annealing”, Science, 220, 671–680, 1983.

[53] Krogh A. and Vedelsby J., “Neural network ensembles, cross validation, and

active learning”, in Advances in Neural Information Processing Systems, G.

Tesauro, D. Touretzky, and T. Leen, Eds., vol. 2: 650-659, 1995.

[54] Kuhn, R., Bos, J., “Statistical mechanics for neural networks with

continuous-time dynamics”, J. Phys. Math.Gen. A, 26, 831-857, 1993.

155

References

[55] Landsberg, Peter T., and Vlatko Vedral,“Distributions and channel capac-

ities in generalized statistical mechanics”, Physics Letters A 247, 211-217,

1998.

[56] Lavis, D.A., “Is equilibrium a useful concept in statistical mechanics?”

Conference on Philosophical and Foundational Issues in Statistical Physics,

Utrecht, November 2003.

[57] Laarhoven P.J.M.Vanand., Arts, E.H.L., Simulated Annealing: Theory and

Applications. Dordrecht, The Netherlands: D. Reidel, 1988.

[58] Liang, P., B. Labedan, and M. Riley, “Physiological genomics of Escherichia

coli protein families. Physiol Genomics, 9(1): 15-26, 2002.

[59] Liu R., Dong G., and Ling X., A convergence analysis for neural networks

with constant learning ra tes and non-stationary inputs., In Proceedings of

the 34th Conference on Decision and Control, New Orleans, 1278–1283, 1995

[60] Lebowitz, Joel L., “Statistical mechanics:A selective review of two central

issues”, Reviews of Modern Physics, Vol. 71, No. 2, 346-357, 1999.

[61] Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D. and

James Darnell, J., Molecular Cell Biology , Freeman, 5th edn, 2003.

[62] Looney, C. G., “Pattern Recognition Using Neural Networks: Theory and

Algorithms for Engineers and Scientists”, Oxford University Press, 171-172,

1997.

[63] Magoulas G.D., Vrahatis M.N., and Androulakis G.S., “On the alleviation

of the problem of local minima in back–propagation”, Nonlinear Analysis:

Theory, Methods and Applications, 30, 4545–4550, 1997.

[64] Magoulas G.D., Vrahatis M.N., and Androulakis G.S., “Effective back-

ptopagation with variables stepsize”, Neural Networks, vol 10, 69–82, 1997.

156

References

[65] Magoulas G.D., Vrahatis M.N., Grapsa, T.N., and Androulakis, G.S., “Neu-

ral network supervised training based on a dimension reducing method”, In:

S.W. Ellacot, J.C. Mason, and I.J. Anderson (eds.), Mathematics of Neural

Networks: Models, Algorithms and Applications, 245–249, Kluwer, 1997.

[66] Magoulas G.D., Vrahatis M.N., and Androulakis G.S., “Improving the Con-

vergence of the Backpropagation Algorithm Using Learning Rate Adapta-

tion Methods”, Neural Computation, 11, 1769–1796, 1999.

[67] Magoulas G.D. and Vrahatis M.N., “A Class of Adaptive Learning Rate Al-

gorithms Derived by One-Dimensional Subminimization Methods”, Neural,

Parallel and Scientific Computations, 8, 147-168, 2000.

[68] Magoulas G.D., Plagianakos V.P., and Vrahatis M.N., “Globally convergent

algorithms with local learning rates”, IEEE Tr. Neural Networks, vol. 13,

no. 3, 774-779, 2002.

[69] Mantegna, Rosario N., Palgyi Zoltn, and Stanley, H.Eugene., “Applications

of statistical mechanics to finance”, Physica A: Statistical Mechanics and its

Applications, Vol. 274, Issues 1-2, 216-221, 1999.

[70] McCulloch, W.S. and Pitts, W. (1943). “A logical calculus of the ideas

imminent in nervous activity”, Bulletin of Mathematical Biophysics, 5, 115-

133, 1943.

[71] Møller, M.F., “A scaled conjugate gradient algorithm for fast supervised

learning”, Neural Networks, 6, 525–533, 1993.

[72] Murphy, P. M. and Aha, D. W., UCI Repository of ma-

chine learning databases, Irvine, CA: University of Califor-

nia, Department of Information and Computer Science, 1994,

http://www.ics.uci.edu/ mlearn/MLRepository.html.

[73] Nakai, K. and Kanehisa, M., “Expert system for predicting protein local-

ization sites in gram-negative bacteria”, PROTEINS: Structure, Function,

157

References

and Genetics, 11: 95-110, 1991.

[74] Nakai, K. and Kanehisa, M., “A knowledge base for predicting protein lo-

calization sites in eukaryotic cells”, Genomics, 14: 897-911, 1992.

[75] Nocedal J., “Theory of algorithms for unconstrained optimization”, Acta

Numerica, 1, 199–242, 1992.

[76] Neagu, D. and Palade, V., “A neuro-fuzzy approach for fuctional genomics

data interpretation and analysis”, Neural Computing and Applications, 12:

153-159, 2003.

[77] Nugent C D., Lopez J A., Smith A E., and Norman D. Black, “Prediction

models in the design of neural network based ECG classifiers: A neural

network and genetic programming approach”, BMC Medical Informatics

and Decision Making , 2(1), 2002.

[78] Opitz D. and Maclin R., “Popular Ensemble Methods: An Empirical Study”,

Journal of Articial Intelligence Research, 11: 169-198, 1999.

[79] Ortega, J. M. and Rheinboldt, W. C., “Iterative Solution of Nonlinear Equa-

tions in Several Variables”, Academic Press, NY, 1970.

[80] Patnaik L.M., and Rajan, K., “Target detection through image processing

and resilient propagation algorithms”, Neurocomputing, 35, No. 1-4, 123–

135, 2000.

[81] Pfister M., and Rojas, R., “Speeding–up backpropagation– A comparison of

orthogonal techniques”, Proc. of the Joint Conference on Neural Networks,

Nagoya, Japan, 517–523, 1993.

[82] Pfister M., and Rojas, R., “Qrprop–a hybrid learning algorithm which adap-

tively includes second order information”, Proc. of the 4th Dortmund Fuzzy

Days, 55–62, 1994.

158

References

[83] Pfister M., and Rojas R., “Hybrid Learning Algorithms for Neural Networks-

The adaptive Inclusion of Second Order Information”, Thesis, 1995.

[84] Penrose, O., Foundations of Statistical Mechanics. A Deductive Treatment,

International Series of Monographs in Natural Philosophy, vol. 22, Pergamon

Press, Oxford, New York, Toronto, 1970.

[85] Picton, P., “Neural Networks”, Second Edition, Grassroots Series, 2000.

[86] Plagianakos, V.P., Magoulas G.D., and Vrahatis, M.N., “Learning in multi-

layer perceptrons using global optimization strategies”, Nonlinear Analysis:

Theory, Methods and Applications, 47, 3431–3436, 2001.

[87] Plagianakos, V.P., Magoulas G.D., and Vrahatis, M.N., “Supervised train-

ing using global search methods”, N. Hadjisavvas and P. Pardalos (eds.),

Advances in Convex Analysis and Global Optimization, vol. 54, Noncovex

Optimization and its Applications, Kluwer Academic Publishers, Dordrecht,

The Netherlands, 421-432, 2001.

[88] Prechelt, L, , PROBEN1-A set of benchmarks and benchmarking rules for

neural network training algorithms, Technical report 21/94, Fakultt fr In-

formatik, Universitt Karlsruhe, 1994.

[89] Rajagopal, A.K., Abe, S., Phys. Rev. Lett., 83, 1711, 1999.

[90] Renyi, A., Wahrscheinlichkeitsrechmung, Deutscher Verlag der Wis-

senschften, Berlin, 1966.

[91] Riedmiller M., and Braun, H., “A direct adaptive method for faster back-

propagation learning: The Rprop algorithm”, Proc. International Confer-

ence on Neural Networks, San Francisco, CA, 586-591, 1993.

[92] Riedmiller, M., “Rprop - Description and Implementation Details”, Techni-

cal Report, University of Karlsruhe, January, 1994.

159

References

[93] Riedmiller, M., “Supervised Learning in Multilayer Perceptrons - from Back-

propagation to Adaptive Learning Techniques”, Int. Journal of Computer

Standards and Interfaces, Special Issue on Neural Networks, 16(3), 265275,

1994.

[94] Ripley, B., “Statistical aspects of neural networks”, in: J. Bornndor -Nielsen,

J. Jensen, W. Kendal (Eds.), Networks on Chaos: Statistical and Probabilis-

tic Aspects, Chapman and Hall, 1993.

[95] Rögnvaldsson, T., “On Langevin updating in multilayer perceptrons”, Neu-

ral Computation, 6, 916–926, 1994.

[96] Rosenblatt, F. (1958). “The perceptron:a probabilistic model of information

storage and organisation in the brain”, Psychological Review, 65, 386-408.

[97] Rumelhart, D.E., Hinton, G.E., and Williams, R.J., “Learning internal rep-

resentations by error propagation”, D.E. Rumelhart, J.L. McClelland (eds.),

Parallel Distributed Processing:Explorations in the Microstructure of Cogni-

tion 1, MIT Press, 318–362, 1986.

[98] Rumelhart, D.E., Hinton, G.E, and Williams, R. J., “Learning internal rep-

resentations by error propagation”, In D. E Rumelhart and J. L. McClellend

(Eda.), Parallel distributed processing: Explorations in the microstructure

of cognition. 318-362, Cambridge, MIT Press, 1986.

[99] Rumelhart, D.E., and McClelland, J.L., “Parallel Distributed Processing”,

Cambridge, MIT press, 1986.

[100] Rumelhart, D.E., and McClelland, J.L., “Explorations in Parallel Dis-

tributed Processing”, Cambridge, MIT press, 1988.

[101] Scales L.E. Introduction to non-linear optimization, MacMillan Publishers

LTD, 34-35, 1985.

160

References

[102] Shang Y., and Wah, B., “Global optimization for neural network training”,

IEEE Computer, 45–54, 1996.

[103] Serra, P., Stanton, A.F., Kais, S., and Bleil, R. E., “Comparison study of

pivot methods for global optimization”, The Journal of Chemical Physics,

Vol. 106, Issue 17, 7170-7177, 1997.

[104] Sharkey A.J.C., “On combining artificial neural nets”, Connection Science,

vol. 8: 299-314, 1996.

[105] Sharkey A.J.C., and Sharkey N.E., “Combining diverse neural nets”, The

Knowledge Engineering Review, 12: 231-247, 1997.

[106] Shepherd, J. Andrian, “Second-Order Methods for Neural Networks”,

Springer, 1997.

[107] Shibata, Hiroshi., “Statistics of phase turbulence II”, Physica A: Statistical

Mechanics and its Applications, Vol. 317, Issues 3-4, 391-400, 2003.

[108] Siekman, Will H., “The entropic index of the planets of the solar-system”,

Chaos, Solitons and Fractals, Vol. 16, Issue 1, 119-124, 2003.

[109] Sima, J., “Back Propagation is Not Efficient”, Neural Networks, 6: 1017-

1023, 1996.

[110] Sikorski, K., “Bisection is optimal”, Numer. Math., 40, 111-117, 1982.

[111] Sikorski, K., Optimal Solution of Nonlinear Equations, Oxford University

Press, New York, 2001.

[112] Stewart G.W., Introduction to Matrix Computations, Academic Press,

New York, 1973.

[113] Silva, M.F., and Almeida, Luis B., “Speeding up backpropagation”, In R.

Eckmiller editor, Advanced Neural Computers, 151-158, 1990.

161

References

[114] Snedecor, G., and Cochran, W., Statistical Methods, Iowa State University

Press, 8th edition, 1989.

[115] Styblinski M.A., and Tang, T.S., “Experiments in nonconvex optimization:

Stochastic approximation with function smoothing and simulated anneal-

ing”, Neural Networks, 3, 467-483, 1990.

[116] Steinbuch, K., “Die lernmatrix”, Kybernetic, 1, pp 36-45, 1961.

[117] Steinbuch, K., and Piske, U., “Learning matrices and their application”,

IEEE Trans. on Neural Computing, EC-12, 846-862, 1963.

[118] Szasz, D., Boltzmann’s Ergodic Hypothesis, a Conjecture for Centuries?, in

D. Szasz, ed., Hard Ball Systems and the Lorentz Gas, Springer, 421-446,

2000.

[119] Szu, H., “Nonconvex optimization by fast simulated annealing”, Proceed-

ings of IEEE, 75, 1538–1540, 1987.

[120] Taruya Atsushi., and Masa-aki Sakagami., “Gravothermal catastrophe and

Tsallis generalized entropy of self-gravitating systems”, Physica A: Statisti-

cal Mechanics and its Applications, Vol. 307, Issues 1-2, 185-206, 2002.

[121] Thomas Udelhoven. and Brigitta Schutt., Capability of feed-forward neu-

ral networks for a chemical evaluation of sediments with diffuse reflectance

spectroscopy, Chemometrics and Intelligent Laboratory Systems, 51: 9-22,

2000.

[122] Tolman, R.C., The principles of statistical mechanics. Clarendon Press,

Oxford, 1938.

[123] Tollenaere T., “Supersab: Fast adaptive backpropagation with good scaling

properties”, Neural Networks, 3(5), 561 - 573, 1990.

162

References

[124] Treadgold N.K., and Gedeon T.D., “Simulated Annealing and Weight De-

cay in Adaptive Learning: The SARPROP Algorithm”, IEEE Tr. Neural

Networks, 9, 4, 662–668, 1998.

[125] Tsallis, C., “Possible Generalization of Boltzmann-Gibbs Statistics”, J.

Statistical Physics, 52(1–2),479–487, 1988.

[126] Tsallis, C., Mendes R.S., and Plastino, A.R., Physica A: Statistical Me-

chanics and its Applications, 261, 534-554, 1998.

[127] Tsallis, C., and Stariolo, D.A., “Generalized Simulated Annealing”, Phys-

ica A: Statistical Mechanics and its Applications, 233, 395–406, 1996.

[128] Tsallis, C., “Nonextensive Statistics: Theoretical, Experimental and Com-

putational Evidences and Connections”, Brazilian Journal of Physics, vol.

29, no. 1, 1999.

[129] Tsallis, C., Anteneodo, C., Borland, L., and Osorio, R., “Nonextensive

statistical mechanics and economics’, Physica A: Statistical Mechanics and

its Applications, vol. 324, Issues 1-2, 89-100, 2003.

[130] Tsallis, C., “What should a statistical mechanics satisfy to reflect nature”,

Physica D, 193, 3–34, 2004.

[131] Upadhyaya, A., Rieu, J., Glazier, J.A., and Sawada, Y., “Anomalous dif-

fusion and non-Gaussian velocity distribution of Hydra cells in cellular ag-

gregates”, Physica A: Statistical Mechanics and its Applications, Vol. 293,

Issues 3-4, 549-558, 2001.

[132] Varga, R., Matrix Iterative Analysis, Second Edition, Springer–Verlag,

Berlin, 2000.

[133] Van Belle D. and Andre B., “A genomic view of Yeast membrane trans-

porters”, Current Opinion in Cell Biology, 13, No. 4, 389-98, 2001.

163

References

[134] Vogl T. P., Mangis J. K., Rigler A. K., Zink W. T. and Alkon D. L.,

“Accelerating the convergence of the back-propagation method”, Biological

Cybernetics, 59, 257-263, 1988.

[135] Van der Smagt P.P., “Minimization Methods for training feedforward neu-

ral networks”, Neural Networks, 7, 1–11, 1994.

[136] Vicsek, T., Andrs Czirk, Ills J. Farkas and Dirk Helbing, “Application of

statistical mechanics to collective motion in biology”, Physica A: Statistical

Mechanics and its Applications, Vol. 274, Issues 1-2, 182-189, 1999.

[137] Vrahatis M.N., “Solving systems of nonlinear equations using the nonzero

value of the topological degree”, ACM Transactions Mathematical Software,

14, 312–329, 1988.

[138] Vrahatis M.N., “CHABIS : A mathematical software package for locating

and evaluating roots of systems of nonlinear equations”, ACM Transactions

Mathematical Software, 14, 330–336, 1988.

[139] Vrahatis M.N., Magoulas G.D. and Plagianakos V.P., “Globally convergent

modification of the Qprop method”, Neural Processing Letters, 12, 2, 159-

170, 2000.

[140] M.N. Vrahatis, G.S. Androulakis, J.N. Lambrinos and G.D. Magoulas, “A

class of gradient unconstrained minimization algorithms with adaptive step-

size”, Journal of Computational and Applied Mathematics, 114, No. 2, 367–

386, 2000.

[141] Vrahatis M.N., Magoulas G.D. and Plagianakos V.P., “From linear to non-

linear iterative methods”, Applied Numerical Mathematics, 45, 1, 59-77,

2003.

[142] Wehrl, A., “General properties of entropy”, Rev. Modern Phys. 50, no. 2,

221–260, 1978.

164

References

[143] Weslstead, S.T., Neural network and fuzzy logic applications in C/C++,

Wiley, 1994.

[144] Wolfe P., “Convergence conditions for ascent methods”, SIAM Review, 11,

226–235, 1969.

[145] Wolfe P., “Convergence conditions for ascent methods. II: Some correc-

tions”, SIAM Review, 13, 185–188, 1971.

[146] Wolf, M., “Applications of statistical mechanics in number theory”, Physica

A: Statistical Mechanics and its Applications, Vol. 274, Issues 1-2, pp 149-

157, 1999.

[147] Young D., “Iterative methods for solving partial difference equations of

elliptic type”, Trans. Amer. Math. Soc., 92-111, 1954.

[148] Zenobi, G., Cunningham, P., “Using diversity in preparing ensembles of

classifiers based on different feature subsets to minimize generalization er-

ror”, In Proceedings of the European Conference on Machine Learning, pp

576-587, 2001.

165

