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1 Introduction  
Spectrum analysis techniques have been used extensively to characterize heart rate data 

[1], [2]. Since the signal is nonuniformly sampled, most analysts use interpolation to 
resample the signal uniformly and then apply traditional spectrum analysis. Laguna et al. [2] 
reviewed the effects of the interpolation method and recommended the Lomb-Scargle 
transform [3, 4, 5] for spectral estimation. No resampling is necessary with the Lomb-Scargle 
transform.  

In spite of the fact that a fast Lomb transform [5] has been developed, the evaluation of the 
Lomb spectrum still consumes considerably more computational cycles than the combined 
operations of uniform resampling and nonparametric spectral estimation based on the fast 
Fourier transform (FFT). Like the periodogram, the Lomb periodogram is not a statistically 
consistent estimator. To obtain a spectral estimate that strikes a reasonable tradeoff between 
bias and variance, one may want to consider power averaging transforms of several, possibly 
overlapped, windowed segments of the observed signal. This is similar to the approaches 
used in averaged Bartlett (adjacent segments) and Welch (overlapped segments) 
periodograms. 

In order to be able to average Lomb periodograms, two problems need to be resolved 
1. The Lomb transform, as described in the literature, is variance normalized. Since each 

record is individually normalized, averaging across records is not meaningful. A de-
normalized transform is needed. 

2. Since the data are unevenly sampled, how should the long data record be split for 
averaging purpose? 

2 Methods 
De-normalization. 
The Lomb periodogram of a non-uniformly sampled real-valued data sequence {x(tn)} of 

length N is defined by [5] 
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where x  and σ2 are the mean and variance of the series {x(tn)}, τ(f) is a frequency dependent 
time delay, defined to make the periodogram insensitive to time shift [2], [5] as follows 

 
(2) 

To derive the de-normalization factor for line spectra, one considers the case of equally 
sampled data, i.e. tn =nT, and x(tn) = Acos (2πnK/N), where K is an integer. With this input, 
we have  x  = 0, σ2 = A2/2, τ(f) = 0. The numerator of the first term of Eqn. (1) at f=K/NT is 
(AN/2)2, the denominator is (N/2). The second term in the bracket is 0 due the orthogonality 
of the sine and cosine functions. Thus PX(K/NT) is N/2. Since we expect the peak power to 
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be σ2 (=A2/2), the line spectra de-normalization factor is 2σ2/N. Note that in his case 
PX(f≠K/NT)=0. 

It can be shown that if the input is a white noise of variance σ2, the expected values of the 
terms in the {}brackets in (1) is equal to 2σ2 (for arbitrary tn), assuming τ(f)=0. Thus  Px(f) = 
1. The noise power measured in an effective noise bandwidth of 2π/NT (with T= average 
(∆tn), variance (∆tn) small, NT=Σ∆tn ) is expected to be 2σ2/N (power of σ2 spread over N/2 
bins of width 1/NT (Hz) in the bandwidth [0, 1/2T]). Thus, the de-normalization factor for the 
power spectral density is 2σ2/N. This is the same as in the case of a sine wave input. Thus, (1) 
becomes 
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Averaging 
To split a long record for averaging, we have two choices: 

1. Use records with equal number of sample points, or 
2. Use records with the same duration. 

Due to the non-uniform sampling, in the first case we end up with records of different time 
duration. Since an implicit rectangular window is used, each output frequency in (3) is 
effectively convolved with a sinf/f function, the bandwidth of which is proportional to the 
observation window. Thus, each transform now has a different sinf/f window. When these 
terms are averaged, they yield inconsistent results due to the different bandwidths. 

By using records with the same time duration, even though each record has a different 
number of points, the underlying bandwidths are the same. As discussed in the de-
normalization argument leading to (3), if the signal is stationary, consistent powers are 
obtained. With both consistent power and bandwidth, averaging of the spectra can now be 
performed. 

Thus, the recommended segmentation for averaging purpose is to choose the segments to 
be of the same time duration D, i.e. such that { }{ }Dtttx nmn
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3 Results 

 
Fig. 1. Lomb (power) periodograms. Input: cosines at f1= 40/1.024, f2= 41.5/1.024 (middle 

of frequency bin), 4f1, 4f2 with amplitudes 1, and 3x 0.5; lowpass noise (σ2=1 white noise 
low-pass filtered to fc=50Hz). Inset at top right: zoom around f2. Sampling times: 
n+0.5sin(0.001πn) ms, n=0… 11000. Frequency resolution of all periodograms: 1/1.024 Hz. 
Averaging overlap: 50% of record. 

Welch periodogram of uniformly sampled signal 
Averaged periodogram of 1.024s segments 

Averaged periodogram 1024 points long 
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4 Discussion 

In Fig. 1, the peak powers at f1, 4f1, 4f2 are correct, namely ½, 1/8, 1/8. The peak power at f2, 
being at the mid-frequency between two bin centers, should come out to be 1/2π

2 ~ 0.051 
measured at the 2 adjacent bins. In the inset at the top right of Fig. 1, the two peaks of the 
uniformly sampled signal are almost equal 0.051. The average of the 2 peaks of the averaged 
periodogram of 1.024 s segments, appear to be correct. The error is caused by the de-
normalization being (incorrectly) set for a signal right at the center of the bin. With the 
implicit rectangular window used, the power estimate can be off by 20%. Reducing the 
amount of timing jitter, does reduce the error. A similar effect is also observed with the 
averaged of 1024 point periodogram.  

With regard to noise power, looking at the low frequency components below 50 Hz, the 
1.024s averaged periodograms exhibit comparable powers to those for the uniformly sampled 
periodograms. The averaged 1024 point periodograms, as expected, exhibit slightly higher 
powers due to inconsistent resolution bandwidths. 

Beyond 200 Hz, as the noise power drops below about 2x10-6(~ -57 dB below the peak), 
the power in the 1.024 s periodograms no longer decreases. Changing the amplitude of the 
sampling time jitter reduces this level, confirming that the timing jitter is the main contributor 
of this equivalent noise effect, limiting the noise floor. For biological signals, with a -60 dB 
noise floor in the case of a very large timing jitter of ±50%, this noise floor is not a limitation 
for the use of the Lomb periodogram. 

5 Conclusions 
 With the proposed de-normalization factor of 2σ2/N and using segments of equal time 

duration, averaged overlapped Lomb periodograms can be computed efficiently using short 
transforms. 
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