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1 Introduction 

The Empirical Mode Decomposition (EMD) technique, an original technique first introduced by Huang et 

al. [1], adaptively decomposes a signal into the simplest intrinsic oscillatory modes (components).  The 

method is able to visualize signal energy spread between available frequencies locally in time, thus 

resembling the wavelet transform. Hence, it was immediately applied in diverse areas of signal processing. 

In the field of mechanical sound systems and vibration, the EMD method has also been applied widely for 

diagnostics and structural health monitoring, as well as in analysis and identification of nonlinear vibration, 

mainly in rotating systems with typical elements such as bearings and gears.  

In parallel, sophisticated studies devoted to analyzing the essential shortcomings of the EMD and its 

restrictions in comparison with other decomposition methods began to appear. One of the first limitations 

found was the method’s rather low frequency resolution ‎[2]  meaning that the EMD can resolve only distant 

spectral components differing by more than octave. Another weak point of the method was that it receives 

false artificial components not present in the initial composition. However, the newest Ensemble Empirical 

Mode Decomposition (EEMD) method  [3] largely overcomes the false mode mixing problem of the original 

EMD and provides physically unique decompositions.  

All earlier publications agree that the EMD is defined only empirically by its algorithm, and does not for the 

moment set out an analytical formulation that would allow for theoretical analysis and analytical 

performance evaluation ‎[4] . An exception is the typical case of a composition of a harmonics and a slow 

varying aperiodic (like DC) trend. The Hilbert Transform projection of such a composition looks even 

simpler than the initial signal because the HT of the constant is equal to zero. Therefore, it is simple to show 

analytically how the EMD removed the slow trend from the composition.  

These questions are considered in depth in the work by G. Rilling and P. Flandrin  [5] , which considers the 

case of decomposing two harmonics. The work provides theoretical and experimental proofs for the 

existence of three domains of amplitude-frequency harmonics relations: 1) the components are well 

separated and correctly identified; 2) the harmonics are considered as a single waveform, and 3) the EMD 
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does something else. Nevertheless, this work is theoretically constructed based upon rather complicated 

Fourier transform models ‎[5] .   

The notion of such two-tone signal by itself appears to be rather fruitful. A most realistic vibration or sound 

signal can be thought of as consisting of a linear combination of two or more sinusoids. In the present study 

we consider the theoretical foundation of the EMD decomposition in the simplest way through direct 

analysis of the harmonics separation. For the sum of two harmonics, we demonstrate why the low frequency 

harmonics remains while the high frequency harmonics is sifted out first in the EMD procedure. We also 

show a theoretical limiting frequency resolution achieved by the method.  

2 Analytic signal 

2.1 Signal envelope 

The interpretation of an envelope, defined as the absolute value (modulus or magnitude) of a complex 

(typically analytic) representation of a signal, has been the subject of investigation for some time. For 

general modulated signals, it is often convenient to define the analytic signal ( ) ( ) ( ),  X t x t ix t   where ( )x t  

is related to ( )x t  by the Hilbert Transform (HT). According to analytic signal theory, a real vibration 

process ( )x t  measured by a transducer, for example, is only one of the possible projections (the real part) of 

some analytic signal ( )X t . Then, the second or quadrature projection of the same signal (the imaginary part

( )x t ) will be conjugated according to the HT. The analytic signal is represented geometrically in the form of 

a phasor rotating in a complex plane. The traditional representation of the analytic signal in its trigonometric 

or exponential form,  

  ( )( ) ( ) ( ) ( ) cos ( ) sin ( ) ( ) i tX t x t ix t X t t i t A t e       ,    (1) 

 can be used to determine its instantaneous amplitude (envelope, magnitude, absolute value)  

 Re ln ( )2 2( ) ( ) ( ) ( )
X t

A t X t x t x t e          (2) 

and its instantaneous phase  

 
( )

( ) arctan Im ln ( )
( )

x t
t X t

x t
  


 ,                                                   

  

(3) 

where ( )x t  is the Hilbert transform of ( )x t  that can be written as the convolution integral of ( )x t  with 1 t  

as ( ) ( ) 1x t x t t  . The plus sign of the root square (Eq.(2)) corresponds to the upper envelope and the 

minus sign corresponds to the opposite sign lower envelope, so they are always in antiphase relation.  

2.2 Instantaneous frequency 

The first derivative of the instantaneous phase (Eq.(3)) as a function of time ( ) ( )t t   , called the 

instantaneous angular frequency, plays an important role. The angular frequency ( ) 2 ( )t f t   has the 



3 

 

radian-per-second dimension and the cycle frequency ( )f t  has the Hertz dimension. The whole phase-

unwrapping problem can be avoided simply when finding the instantaneous frequency (IF) by differentiation 

of the signal itself  

2

( ) ( ) ( ) ( ) ( )
( ) Im

( ) ( )

x t x t x t x t X t
t

A t X t


 
   

 

   
     (4) 

2.3 First derivative of the signal 

The first derivative (differentiating the function once) yields the slope of the tangent to that function, and the 

analytic signal notion (Eq.(1)) allows us to describe a relationship between an initial complex signal and its 

first derivative as  

( )
A

X X i
A

 


 .       (5) 

Every maximum (top extremum) and minimum (bottom extremum) point of the function, known 

collectively as a set of the local extrema points
extrx , is uniquely defined by the first derivative when the 

slope of the tangent is equal to zero. The initial signal and its envelope have common tangents at points of 

contact, but the signal never crosses the envelope. The common points of the contact between the signal and 

its envelope do not always correspond to the local extrema of a multi-component signal. The local extrema 

always have a zero tangent slope, but the common points of the contact can have nonzero value of the 

tangent slope. The distance between the common points of contact and the extrema points of the signal plays 

a dominant role in explaining the EMD mechanism. In effect, without such a difference between the 

envelope and the local extrema, the sum of maxima and minima curves desired by the EMD would be 

always equal to zero, just like the zero sum of the upper and the lower envelopes.  

3 Distance between envelope and extrema   

3.1 Points of contact between envelope and signal  

Both the envelope ( )A t  and the initial function ( )x t  can be functions that vary over time. Their relation has 

a known and simple form:  ( ) ( )cos ( )x t A t t . During variation, the initial function and its envelope will 

have common contact points in time where these functions touch each other. The function and the envelope 

have common tangents at these points of contact. The condition of their contact takes the form:  

 
0

( ) ( ), cos ( ) 1, ( )x t A t t t 



     


,      (6)   

indicating that the common contact points are always located on the envelope.  
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3.2 Local extrema points 

Unlike the common contact points, the local extrema depend on the zero slope of the first derivative. The 

signal’s derivative can be expressed as  

            

2 2 2 ( ) ( )
( ) ( ) ( ) ( ) exp ( ) arctan

( )

A t t
X t A t A t t i t

A t


 

  
    

  


  .

      (7) 

The derivative (Eq.(7)) introduces a new varying velocity envelope and a new varying velocity phase 

function. Let us find points in time at which the slope of the tangent is zero and at which the function 

reaches its extrema. These points correspond to the zero value of the cosine function of the new varying 

velocity phase angle (Eq. (7)): 
( ) ( )

( ) arctan
( ) 2

A t t
t

A t

 
    , 

( ) ( )
( ) arctan

2 ( )

A t t
t

A t

 
     .      (8)  

Notice that in the case of a monoharmonic signal, the envelope is constant ( ( ) 0A t  ) and the conditions in 

Eq.(6) and Eq.(8) become identical: ( ) 0t   , or ( )t   . For the monoharmonics, the local extrema 

always lie on the envelope.  

3.3 Deviation of local extrema from envelope 

In the general case, the vertical position of the local extrema  ( ) ( )cos ( )extrx t A t t  are determined by the 

cosine projection of the new velocity phase (Eq.(8)):  

 
2

2 2

2

( ) ( )
( ) ( )cos ( )

( ) ( )
( ) 1

( )

extr

A t t
x t A t t

A t t
A t

A t





  




      (9) 

The obtained continuous vertical position of the local extrema differs from the envelope function. Generally, 

the cosine projection can assume values from 1 through 0 up to -1.  Therefore the corresponding local 

maxima can be equal to the envelope value, be as small as zero, or even take negative values. The cosine 

projection is controlled by the variable 
( ) ( )

( )

A t t

A t


  whose shape, level, and frequencies depend on the initial 

signal ( )x t . In turn, the variable 
( ) ( )

( )

A t t

A t


  is determined by the relation between the nominator and the 

denominator.  

For small envelope variations when  max max
A A   , the cosine projection  cos ( )t  practically does not 

differ from 1. This condition always forces the local maxima to be on the envelope itself.  That is, the 

connected local maxima and the connected local minima curves just repeat the corresponding and opposite 

signed upper and lower envelopes. For larger envelope variations, the cosine projection during oscillation 
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can decrease to zero or even to negative values. It will produce zero and negative local maxima below zero 

up to the opposite signed lower envelope.  

3.4 Local extrema sampling  

Connected together, the local maxima give shape to the maxima curve, and the correspondingly connected 

local minima give shape to the minima curve. As shown in Eq.(9), the vertical values of both the top and the 

bottom extrema curves are generated by the continuous function of multiplying the envelope by the cosine 

projection. However, the discrete extrema points themselves are formed by digitizing the continuous cosine 

projection (Eq.(9)) at distinct moments of time. These sampling moments completely depend on the 

instantaneous frequency ( )t  of the initial signal. Thus, from the continuous function of the cosine 

projection ( )extrx t (Eq.(9)) we have a set of the extrema sampled with the instantaneous frequency ( )t . The 

series of the sampled extrema interpolated by spline generate two continuous profiles (extrema curves) 

required by the EMD method ‎[1] .  

The obtained discrete set of samples does not repeat the original continuous function ( )extrx t . If the 

frequency of the continuous function (Eq.(9)) exceeds (overlaps) the Nyquist frequency 0.5 ( )t , the 

sampled extrema line undergoes aliasing with a new folding frequency of around half the sampling 

frequency: ( ) ( ) ( )
extrfold xt t t    . But if the frequency of the continuous function (Eq.(9)) lies below the 

Nyquist frequency 0.5 ( )t , no aliasing occurs, and the sampled extrema curves will follow the the signal 

envelope. 

4 Decomposition of two harmonics  

4.1 Envelope of two harmonics 

A case of combination of two harmonics is the rather obvious and interesting case of signal composition ‎[5] 

. This case enables us to discover and prove some important features of the EMD. If a signal composition is 

a sum of two harmonics: 1 1 2 2( ) cos cosx t A t A t   , the envelope ( )A t  of the double-component signal 

composition can be written as Eq.(2):  

 
1

2 2 2

1 2 1 2 2 1( ) 2 cosA t A A A A t       .                   (10) 

The signal envelope ( )A t  consists of two different parts, that is, a slowly varying part including the sum of 

the component amplitudes squared and a rapidly varying part, oscillating with a new frequency equal to the 

difference between the component frequencies.   



6 

 

4.2 Instantaneous frequency of two harmonics 

The IF ( )t  of the double-component composition according to Eq. (4) (for definiteness
1 2A A ; 

2 1  ) 

is:  

 2

2 1 2 1 2 2 1

1 2

( ) cos
( )

( )

A A A t
t

A t

   
 

           (11) 

The IF of the two tones considered in Eq.(11) is generally time-varying and exhibits asymmetrical 

deviations about the frequency
1  of the largest harmonics. Not only does the IF for two tones have time-

varying deviations, but these deviations always force the IF beyond the frequency range of the signal 

components. The IF in principle consists of two different parts, that is, a frequency of the first largest 

component 
1  and a rapidly varying asymmetrical oscillating part. For large amplitude of the second 

harmonics when  

12 1
2 2 1 1

1 2

, or  when 1, 1
A

A A
A


 



    ,     (12) 

the IF of the composition becomes negative. 

Appearance of a negative IF corresponds to the arrival of the local negative maximum or local positive 

minimum of the signal. The upper tangent to the negative maximum touches the signal lower envelope, and, 

vice versa, the lower tangent to the positive minimum touches the signal upper envelope. The appearance of 

these extrema with opposite signs increases the local extrema deviation from the envelope.  

4.3 Average instantaneous frequency 

Thus, Eq.(11) shows that the IF consists of two different parts, that is, a slow varying frequency of the first 

component
1  and a rapidly varying asymmetrical oscillating part. However, the rapidly varying 

asymmetrical oscillating part of the IF has an important feature. If we now integrate the oscillating part with 

the integration limits corresponding to the full period of the difference frequency 
2 1

2
0 T



 

 
 

 
,  

 2

2 1 2 1 2 2 1

2

0

( ) cos ( )
0

( )

T a a a dt
dt

a t

      
 




 ,    (13) 

we get the definite integral equal to zero ‎[6] . This means that the average value or the first moment of the IF 

(Eq.(11)) is just equal to the frequency of the largest harmonics 1 1

0

( ) ( ) ( ) ( ) 0

T

t t t t       . This 

important property of the IF offers the simplest and most direct way of estimating the mean frequency of an 

a priori unknown composition with the largest signal component. 
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4.4 Distance between envelope and extrema  

The vertical position of the local extrema according to Eq.(9) depends on the variable 
( ) ( )

( )

A t t

A t


 , which in 

the case of two harmonics has the same period  as the period of the envelope variation  2 12   : 

1 1 2 22 1 2 1
2 1

2 1 2 1 2 1

( ) ( )
cot( )

( ) ( )sin( )

A A A AA t t
t t

A t t t

   
 

     

 
   

   . Multiplying the envelope and the cosine 

projection (Eq. (9)) generates the vertical position as a periodic function with the same period  2 12   : 

2 2

2

( ) ( )
( ) ( )

( ) ( )
( ) 1

( )

extr

A t t
x t A t

A t t
A t

A t









.      (14) 

This vertical position of the local maxima during a single period varies from its highest to the lowest 

position, thus specifying a band with all possible local extrema.  

When the instantaneous frequency of the composition becomes negative 2 1

1 2

A

A




 , the vertical position is a 

monotonic function with a top maximum always equal to the sum of amplitudes of both harmonics: 

max(top) 1 2(0)x A A   and with a bottom maximum position equal to the difference of amplitude that has the 

negative value (Figure 1, a):  max(botto 1m) 2Ax A  .  

 
Figure 1. 

The vertical position of the local maxima (­-), the initial signal (), the upper envelope (--) and the top maxima (∆): 

(a) the negative instantaneous frequency ( 1 1 2 21, 1, 0.6, 1.8A A     ), (b) the positive instantaneous frequency  

( 1 1 2 21, 1, 0.25, 3.9A A     ). 
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For an instantaneous frequency that is always positive, when 2 1

1 2

A

A




  , the top vertical position of maxima 

is again equal to the sum of amplitudes: max(top) 1 2(0)x A A  . But now the vertical position decreases 

monotonically only until the intermediate bottom position   2 2 2 2 2 2 2 2

1 2 1 1 2 2 2

1

2
max(bottom(1) 1)x A A A A       

(Figure 1, b). During the remainder of the period, the resultant vertical position jumps down to the negative 

symmetric value max(bottom(1))x , specifying a second isolated band with the negative local maxima. The 

vertical position for the second band at the end of the period monotonically continues to the negative 

extreme bottom position max(botto 1m) 2Ax A   (Figure 1, b). Theoretically, the values of the extrema 

deviation from the envelope depend on two ratios: the envelope, and the frequency of the harmonics. For a 

very small amplitude of the second harmonics 
2 1 1 20.3A A  , this intermediate bottom position 

practically does not differ from the smallest envelope value 
1 2A A . This means that the positive maxima 

points of the first band always will lie on the envelope. For the other ratio of the harmonics parameters 

1 1 2 2 1 1 20.3A A A     , the local maxima will wander vertically more and more from the envelope. 

4.5 Mean value between the local maxima and minima curves  

In general, the initial signal composition as a sum of two harmonics can be written as  

 1 1 2 2( ) cos cosx t A t A t                                                     (15) 

where  is the initial phase shift angle. The corresponding first derivative of the signal is  

 1 1 1 2 2 2( ) sin sinx t A t A t            (16) 

Every zero-crossing of the first derivative corresponds to the existence of a local extremum of the initial 

function. At a certain moment 
it , as the first derivative is equal to zero a single local extremum, for 

example, maximum 
max ( )ix t  occurs. The closest single local minimum min ( )jx t  occurs at another certain 

moment jt , so every closest maximum and minimum exist at different moments ( i jt t ).  However, the 

EMD method requires that both the top and the bottom extremum curves be constructed of synchronous 

moments  [1] . For every top maximum we need to construct its virtual synchronous bottom pair, and 

correspondingly for every bottom minimum its virtual synchronous top pair. Let us analyze two closest 

neighbor extrema. The original EMD method as known uses interpolation with cubic spline to build the 

synchronous top and bottom line [1].  

To simplify, for each maximum we find the closest minimum from the left and the closest minimum point 

from the right. Then we estimate the mean (median) value of these two neighboring minimum points before 

and after the maximum, thus yielding the desired virtual synchronous bottom pair of each maximum. By 

ending up with all virtual synchronous pairs, we obtain the bottom extremum line required by the EMD. The 
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proposed simplest short straight line length fitting makes it possible to analyze and understand the main 

properties of the EMD.  

By analogy, the mean value of two neighboring maximum points before and after the minimum will produce 

the desired virtual synchronous top pair of the minimum. As a result, for the initial signal composition with 

two sets of maxima and minima we will get two corresponding synchronous top and bottom lines 

constructed from short straight line lengths  [7] . 

Next, the EMD requires computing the arithmetic mean value of the obtained top and bottom lines [1]. As 

shown, the extrema wander throughout the signal values, so the mean value will depend on the current 

position of the local extrema (Eq.(9)). Let us describe two different extreme cases: a) the highest current 

position of the local maximum when 0, 0it   , and b) the lowest current position of the local maximum 

when ,it     .  All other middle positions of the local maximum between these two extreme cases will 

exhibit only intermediate behavior.  

4.5.1 The case of 0, 0it    

The initial maximum value is 
max 1 2(0)x A A 

 
and the initial value of the first derivative is (0) 0x  . The 

closest minimum value corresponds to the next zero value of the first derivative

 1 1 1 2 2 2( ) sin sin 0x t A t A t         . The last nonlinear equation can be solve analytically by 

 1 2 2
1 2 1 1 2 2

1 1

arcsin sin , if 
A

t t A A
A


   



  
    

 
, or  1 1 1

2 1 1 1 2 2

2 2

arcsin sin , if 
A

t t A A
A


   



  
     

 
. The 

obtained solution of the time moment for the closest minimum value t  depends only on the amplitude and 

frequency ratios of the harmonics 2 1 2 1 and A A   .  

This obtained solution makes it possible to generate the closest minimum values from the left and from the 

right, and since the cosine is the even function ( min min( ) ( )x t x t   ), the virtual synchronous minimum 

value will be:  min 1 1 2 2(0) cos cosx A t A t     . The arithmetic average of the initial maximum and the 

obtained synchronous minimum can be written in the form 

   1 max min 1 2 1 1 2 2F 0.5 (0) (0) 0.5 cos cosx x A A A t A t           .   

The obtained solution is convenient to divide and analyze separately for two parts, with the first showing 

only the first harmonics modification (Figure 2, a) 

  1,1 1 1F 0.5 1 cosA t           (17) 

and the second part showing the second harmonics modification (Figure 2, b) 

  1,2 2 2F 0.5 1 cosA t     .          (18) 

 Each of these parts describes value of the arithmetic mean between the top and bottom extrema in the 

highest current position of the local maximum when 0, 0it   . 
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Figure 2.  

Theoretical mean value between the local maxima and minima at the highest maximum position: (a) the envelope of 

the first harmonics, (b) the envelope of the second harmonics. 

 

 

 
Figure 3.  

Theoretical mean value between the local maxima and minima at the lowest maximum position: (a) the envelope of 

the first harmonics, (b) the envelope of the second harmonics. 

 

4.5.2 The case of ,it      

The initial maximum value is max 1 2( )x A A   
 
and the initial value of the first derivative is ( ) 0x   . The 

closest minimum value corresponds to the next zero value of the first derivative

 1 1 1 2 2 2( ) sin sin 0x t A t A t         . The solution of the last nonlinear equation determines the time 

moment for the closest minimum value t , which depends only on the amplitude and the frequency ratios 

of the harmonics 2 1 2 1 and A A   .  

The obtained solution allow generation of the closest minimum values from the left and from the right, and 

since the cosine is the even function ( min min( ) ( )x t x t   ), the virtual synchronous minimum value will be: 

 min 1 1 2 2( ) cos cosx A t A t      . The arithmetic average of the initial maximum and the obtained 
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synchronous minimum takes the form 

   2 max min 1 2 1 1 2 2F 0.5 ( ) ( ) 0.5 cos cosx x A A A t A t              .  

Again the obtained solution is convenient to divide and analyze separately in two parts, with the first 

showing only modification of the amplitude of the first harmonics (Figure 3, a) 

  2,1 1 1F 0.5 1 cosA t          (19) 

and the second showing only modification of the amplitude of the second harmonics (Figure 3,b) 

 2,2 2 2F 0.5 1 cosA t     .      (20) 

Each part describes the value of the arithmetic mean between the top and bottom extrema in the lowest 

current position of the local maximum when ,it     . 

4.6 EMD as a nonstationary and nonlinear filter 

The final step of the EMD algorithm subtracts the obtained arithmetic mean from the initial signal ‎[1] . Such 

subtraction gives rise to the “intrinsic mode function” (IMF). Therefore, the subtraction specifies a digital 

filtering operation where the input is the initial signal composition; the output is the IMF, and the filter 

characteristics (Eq.(17)-(19)) are represented in Figure 2 and Figure 3. 

In order to understand how the IMF is extracted from the initial signal, let us analyze the obtained filter 

characteristics. This analytical three-dimensional filter is defined as a 3D function with two arguments: the 

relative harmonics amplitude ratio 
2 1A A and the relative harmonics frequency ratio 2 1  . The vertical 

gain value of the surface presents a portion of the magnitude passing through the filter. Vertical gain values 

that are close to 1 indicate that the output signal passes through the filter, while those that are close to 0 

indicate rejection of the output signal. The obtained analytical solutions demonstrate that the EMD is 

nonstationary and nonlinear at the final step of estimating the IMF. Being nonstationary means that the 

filter’s characteristics are varied, with the extremum roaming from the top to the bottom position. The 

nonlinearity is embedded in the filter magnitude’s dependency on the harmonics amplitude and frequency 

ratio.     

The main common property of the obtained analytical filters for both the top and the bottom extrema 

positions is their high gain magnitude values for the first harmonics when 2   and 2 1A  . This is a 

tendency of the high pass frequency to pass the unmodified first harmonics with larger frequency and 

amplitude ratio.  
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Figure 4.  

Theoretical boundary of the first harmonics filtering:  (a) the highest maximum position, the approximation:  

 
1.75

2 1 2 12.4A A  


  (­-), the approximation 
2 1 1 2A A   ();  (b) the lowest maximum position, the 

approximation  
2

2 1 2 1A A  


  (­-). 

 

Another common property of the analytical filters is their high pass magnitude values for the first harmonics 

and small (practically rejection) magnitude values for the second harmonics. As a result, the first harmonics 

with low frequency 1 1cosA t  can fully pass through the filter, while the second harmonics with high 

frequency will be stopped. Then, after being subtracted from the initial composition, the low frequency 

harmonics will disappeared, and the final IMF will consist only of the second high frequency harmonics 

2 2cosA t . One more important common property of the analytical filters is the existence of a separation 

boundary surface  2 1 2 1B , A A    dividing the space of parameters for two ranges and thus allowing the 

low frequency harmonics through or not (Figure 4.).  

4.7 Frequency resolution of the EMD 

The revealed separation boundaries are related directly to the frequency resolution characteristics of the 

EMD.  For more precise analysis, let us plot the 2D projection of the same nonlinear filters with the axes 

2 1 2 1 and A A    as pseudocolor graphs (Figure 4). Changes in such 2D graph intensities are usually 

defined much more clearly. Depending on the amplitude and frequency ratio, the limiting boundary 

determines the region to the right where the EMD is able to separate harmonics and the region to the left 

where the EMD cannot separate two tones. 
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The top extrema position filter (Figure 4, a) has a soft slope and a cutoff boundary that runs in the direction 

of higher frequency from the right side. A good power approximation of the boundary (Figure 4, a, dashed 

line) shows that the filter blocks the first harmonics when    
1.75

2 1 2 1boundary(top)
2.4A A  


 , and it passes 

the first harmonics without modification for higher relations  2 1 2 1 boundary(top)
A A A A . In the same figure 

(Figure 4, a, thick line) we plotted the curve corresponding to the inversely related amplitude and frequency 

ratio 
2 1 1 2A A    for the case of negative instantaneous frequency (Eq.(12)). This inversely related 

amplitude and frequency ratio is rather close to the theoretical boundary curve.  

The bottom extrema position filter (Figure 4, b) has a hard slope. Its cutoff boundary is shifted to the left, 

and the filter blocks the first harmonics exactly when    
2

2 1 2 1boundary(bottom)
A A  


 . The harmonics ratios 

located from the left to the boundary of the hard bottom filter does not allow the EMD to extract the 

harmonics at all despite any large number of sifting iterations See an attempt of the EMD decomposition of 

very frequency close harmonics in Figure 5. It is evident that the harmonics ratios located from the right to 

the boundary of the soft top filter let the EMD extract the harmonics completely and at once during the first 

iteration. An example of the complete decomposition of the distant harmonics is presented in Figure 6.  

 
Figure 5.  

Composition of two very close harmonics ( 1 1 2 21, 1, 0.6, 1.1A A     ): (a) the initial signal (▬), the upper (-∙-) 

and the lower (∙∙∙) envelope, the top (∆) and the bottom maxima points ( ); (b) the initial signal (▬), the top () and 

the bottom () maxima curves, the mean value between the top and the bottom maxima curves (­-); (c) the first 

harmonics (), the second harmonics (-∙-),  the mean value between the top and the bottom maxima curves (­-). 
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Figure 6.  

Complete decomposition of two distant harmonics (
1 1 2 21, 1, 0.4, 2.9A A     ): (a) the initial signal (▬), the 

upper (-∙-) and the lower (∙∙∙) envelope, the top (∆) and the bottom maxima points ( ); (b) the initial signal (▬), the 

top () and the bottom () maxima curves, the mean value between the top and the bottom maxima curves (­-); (c) the 

first harmonics (), the second harmonics (-∙-), the mean value between the top and the bottom maxima curves (­-). 

 

In the case when the frequency of the harmonics intervenes between these boundaries (Figure 4), the first 

harmonics at every sifting iteration will pass the filter partially, with the attenuation coefficient depending 

on the filter gain (see Figure 7.). To approach the full value of the envelope, the first harmonics should be 

passed through the filter several times. In other words, harmonics whose frequency ratio is located between 

these theoretical boundaries might be separated during several sifting iterations.  

 
Figure 7.  

Partial decomposition of two close harmonics ( 1 1 2 21, 1, 0.9, 1.8A A     ): (a) the initial signal (▬),  the upper 

(-∙-) and the lower (∙∙∙) envelope,       the top (∆) and the bottom maxima points ( ); (b) the initial signal (▬), the top 

() and the bottom () maxima curves, the mean value between the top and the bottom maxima curves (­-); (c) the 

first harmonics (), the second harmonics (-∙-), the mean value between the top and the bottom maxima curves (­-). 
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Logically the presented analytical nonstationary and nonlinear filters describe the EMD separation capacity 

only in the extreme positions. In reality, the current positions of the extrema change constantly and the 

filters are continuously being transformed from one to another, producing a kind of mid-position filtering. 

The spline fitting used in the real EMD program also can have some impact on the filter’s slope, but both 

obtained extreme analytical boundaries will remain unchanged. 

Thus, the more frequencies are spaced apart, the smaller amplitude ratio of two harmonics is suitable for 

EMD separation. For example, a second harmonics with a tripled or lower frequency 
2 13   and a small 

amplitude less than 
2 10.3A A  can be extracted with some iterations. Nevertheless, a smaller amplitude that 

is less than
 2 10.11A A  absolutely cannot be separated by the EMD. For example, if frequencies lie within 

an octave of each other 
2 12f f  and their amplitudes differ less than 

2 10.25A A , the EMD method 

practically is unable to separate such two components. This means that the EMD does not perform well for 

smaller amplitudes of the second harmonics and cannot distinguish frequencies that are close to each other. 

For these close frequencies is more suitable the Hilbert Vibration Decomposing (HVD) method which has 

much better frequency resolution for adaptive decomposition of nonstationary and AM modulated signals 

[6-7].  

 

Figure 8 

Summary of the EMD ranges for harmonics separation: (1) impossible decomposition for very close frequency 

harmonics and small amplitude ratio; (2) decomposition requires several sifting iterations for close frequency 

harmonics; (3) single iteration separation for distant frequency harmonics and large amplitude ratio. 

 

The logical result of the provided theoretical analysis is that the frequency and amplitude ratios of the 

harmonics can be separated into three different groups (Figure 8): (1) harmonics  with very close frequencies 

and small amplitude  
2

2 1 1 2A A   unsuitable for EMD decomposition, (2) close frequency harmonics 
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   
2 1.75

1 2 2 1 1 22.4A A     requiring several sifting iterations, and (3) distant frequencies and large 

amplitude harmonics  
1.75

2 1 1 22.4A A   that are well separated for a single iteration.  

 

4.8 The EMD frequency limit undependable of the amplitude ratio 

According to Eq.(14), the continuous function of the cosine projection ( )extrx t   oscillates with the frequency 

2 1   posed by the envelope oscillation.
 
This function is sampled with a sampling frequency equal to the 

instantaneous frequency ( )t to form the extrema points. If the frequency of the oscillation is larger than the 

Nyquist frequency 
2 1 0.5 ( )t    , the sampled extrema curves undergo nonlinear filtering, as described 

in the previous sections. If the frequency of the oscillation is less than the Nyquist frequency 

 
2 1 0.5 ( )t    ,      (21) 

no aliasing or folding occurs and the resultant sampled extrema curve will oscillate with the same initial 

envelope frequency 
2 1  . Such retention of the frequency means that the top extrema will repeat the 

upper envelope and correspondingly the bottom extrema curve will repeat the lower envelope. As a result, 

an averaging of theses extrema curves always will produce zero and the EMD will not be able to decompose 

harmonics. 

The simple formula in Eq.(21) provides a strong limit of operationability for the EMD method undependable 

of the amplitude harmonics ratio. As shown in Eq.(13), the average value of the instantaneous frequency of 

the composition is equal to the frequency of the largest harmonics. In our notations the average frequency of 

two harmonics always is 
1( )t  . Substituting this value in Eq. (21) yields 2 1 10.5     or 

2 1 10.5   
 
and finally 

2 1

3

2
        (22) 

Eq. (22) yields the smallest value of second harmonics frequency that the EMD is able to distinguish. If the 

value of 2 is any lower, the EMD is unable to distinguish the components. The obtained smallest value of 

2 1 1.5   , shown in Figure 8, is an absolute strong limit that does not depend on the amplitude relations 

between harmonics. This theoretical limit value completely coincides with the experimental critical 

frequency ratio 1 2 0.67    found in ‎[5] . Above this value, it is impossible to separate the two 

components no matter what the amplitude ratio. This is the case when the local extrema do not differ from 

the corresponding envelope curves. 
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Conclusion 

Using the first derivative of the signal in the signal analytic form, we devised an expression for the local 

extremum points, including their vertical locations and distribution in time. As shown above, the obtained 

vertical position of the local extrema can deviate from the envelope, thus explaining, for instance, why and 

when the maximum points can become negative.  

The revealed extrema deviation from the envelope forms the basis for a theoretical explanation of the EMD 

sifting procedure. It was shown that the vertical distance between the envelope and the local extrema 

depends on the relation between the first derivative of the envelope from one side and the multiplication of 

the envelope by the instantaneous frequency from the other. 

To build the simplest synchronous extrema, we suggested connecting the opposite closest neighboring left 

and right extrema, thus yielding a theoretical median function between the top and bottom extrema of two 

harmonics.  

This theoretical median function represents a kind of signal nonlinear filter whose input is an initial two-tone 

composition and whose output can be the harmonics with the lowest frequency. Depending on the harmonics 

amplitude and frequency ratios, the filter passes through some portion of the magnitude of the lowest 

frequency. The filter is nonstationary because its characteristics vary, while the extrema roam from the 

highest to the lowest position. At these extreme positions, the filter characteristics differ: at the highest 

position, the filter has a soft slope, but at the lowest position it has a hard slope.  

The obtained boundaries between the filter pass and the stop characteristics determine the theoretical 

frequency resolution of the EMD. When the amplitude of the smaller harmonics is less than the boundary of 

the hard slope, the EMD does not separate the harmonics. When the amplitude of the smaller harmonics is 

larger than the boundary of the soft slope, the EMD separates the harmonics according to its first single 

sifting iteration.  Middle amplitudes between the boundaries require several iterations, depending on the 

filter attenuation pass characteristics. In such a manner the initial composition after extraction of the median 

function will contain a high frequency harmonics such as the intrinsic mode function. This explains how the 

EMD used sifting to decompose the first high frequency components.  

For two-tone models, the critical frequency limit of distinguishing the closest harmonics was found 

theoretically. The harmonics with a frequency below the critical frequency cannot be extracted by the EMD 

from the decomposition, no matter how large its amplitude.  

Like any other signal processing procedure, the EMD operates with an input signal only. The EMD 

decomposes the signal exclusively by means of its inherent geometric transformation function. For a 

composition of harmonics it extracts at first the highest frequency of the composition. Like any other signal 

analysis instrument, it merely reflects and represents real physical and natural processes and phenomena. It 
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is not feasible to try to understand or explain the EMD tool through nonlinear structural dynamics or through 

any other physics-based foundation.  
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