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Preface

The mission of the Australian Bureau of Statistics is to encourage informed decision making,
by providing a high quality statistical service. Time series analysis is a fundamental
component of this vision as seasonal adjustment techniques can be used to highlight
important characteristics that exist in data which can aid in the decision making process.

The course notes describe some of the issues that are relevant to time series analysis in the
Australian Bureau of Statistics. Included is an introduction to some of the theory underlying
time series analysis, a discussion of different seasonal adjustment philosophies and issues
relating to seasonal adjustment. The course notes concentrate on the filter based approach to
seasonal adjustment as this is the method most commonly applied in the ABS.

The course notes are intended for methodologists newly recruited to the Australian Bureau of
Statistics. Exercises and solutions are included at the end of the course notes. The purpose of
these course notes and exercises is to encourage understanding of time series analysis issues.
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Notation

ABS Australian Bureau of Statistics

SSB Statistical Services Branch

TSA Time Series Analysis

SEASABS  SEASonal analysis ABS standard software package

MA Moving average

HMA Henderson moving average

SMA Seasonal moving average

TMA Trend moving average

ARIMA AutoRegressive Integrated Moving Average method of modelling
X11 Filter based seasonal adjustment program which SEASABS is based on
ABSDB ABS Data Base

FAME Forecasting, Analysis and Modelling Environment

PAS Publishing Assembly System

TST Time Series Toolkit

TSU Time Series Update

STAMP Along with SABL and SEATS/TRAMO are other seasonal adjustment
software packages

ewp End weight parameter

t Time index

Vi Data point at time ¢ =k

Y, Time series

&k Error term at time =k

O; Original data

Y, Seasonal component

T, Trend component

fs(r) Symmetrically filtered value

I, Irregular/residual component

SA, Seasonally adjusted data

D) Asymmetrically filtered value

oM, Outlier modified original data

SI Seasonal x Irregular (S-I)

I/C I/C ratio: noise to trend ratio

P Prior factors

OP Original data prior corrected

oT Original data modified for trading day

SAM Modified seasonally adjusted series

M Modified irregular/residual series

L Length of month factors (trading day)

TD Trading day factors

SIM Modified SI values

TDL Trading day factors x length of month factors

D Daily factor weight

DI Daily factor weight x irregular/residual (D-1)

D Revision between two smoothed values for time ¢ using data up to times 7+
and r+k

w Frequency



Period

Backshift operator, B*y, = y;

Difference operator, Ay; = y; — v,

k™ difference operator,A*y, =y, —y,x = (1 — B¥)y,
Autocovariance at time t = k

Autocovariance generating function

Gain function

Phase function

Spectral function

Filter weight at time i for a symmetric filter
Filter weight at time i for an asymmetric filter
Number of terms to the left of centre in a filter
Number of terms to the right of centre in a filter
Seasonal x x y filter



1.1

1 An introductory look at time series

1.1 What is a time series?

A time series is a collection of observations of well-defined data items observed through
time. For example, a measure of the number of tonnes of wool produced each month of the
year would comprise a time series. This is because wool is well defined, it is easy to
determine what wool is, and the amount produced is measured at equally spaced intervals.
Data collected irregularly or only once are not time series. For example, the survey of
household usage of electrical appliances was only run once and so is not a time series.

Time series are of interest primarily for economic analysis because they help identify cycles,
such as business cycles, and turning points in those business cycles. A time series can be
decomposed into various components: regular or systematic variations, irregular influences
such as those associated with one-off events, and underlying movements. For example,
analysts are sometimes interested in long term cycles, which are indicators of growth
measures, and so it is helpful if shorter length cycles are removed.

Some of the economic time series collected by the Australian Bureau of Statistics (ABS) that
are of interest include:

¢ Current Account Deficit

* Balance of Payments

¢ Retail Turnover

*  Employment/Unemployment
* Motor Vehicle Registrations

Overall, the ABS analyses around 2600 different types of time series.

1.2 Stock and flow series

Time series can be classified into two different types: stock and flow. The ABS produces both
stock series and flow series.

Stock series are measures of activity at a point in time and can be thought of as “stocktakes”.
For example, the Monthly Labour Force Survey is a stock measure because it takes stock of
whether a person was employed in the reference week. Other examples of stock series include
Inventories and Average Weekly Earnings.

Flow series are series which are a measure of activity to a date, for example, the number of
bicycles produced this month. Manufacturing is also a flow measure because a certain amount
is produced each day, and then these amounts are summed to give a total value for production
for a given reporting period. Examples of flow series include Current Account Deficit,
Balance of Payments, Housing Finance, Capital Expenditure, and Manufacturing.

The main difference between a stock and a flow series is that flow series can contain effects

related to the calendar (trading day effects). Both types of series can still be adjusted using the
same seasonal adjustment process.

Copyright: Commonwealth of Australia Source: Australian Bureau of Statistics: Time Series Analysis
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1.3 What is seasonal adjustment?

Seasonal adjustment is an analysis technique that estimates and then removes from a series
influences that are systematic and calendar related. A seasonally adjusted series can be
formed by removing the systematic calendar related influences from the original series. A
trend series is then formed by removing the remaining irregular influences from the
seasonally adjusted series. Alternatively the trend can be estimated directly by removing both
the calendar related influences and the irregular influences from the original series.

Bell and Hillmer (1984) suggested that seasonal adjustment has three main purposes:

1. to aid in short term forecasting
2. to aid in relating time series to other series or extreme events
3. to allow series to be compared from month to month

Seasonal adjustment helps ABS clients to assess underlying patterns in a series without
significant loss of information.

Seasonal adjustment is a relatively simple analysis technique. However, there are a few
issues that can complicate the process and lead to a seasonally adjusted and/or a trend series
that is unusual. These issues will be covered in greater depth in Chapter 6. They are

1. Outliers (unusual estimates):
The focus is on unusual estimates, not unusual observations as in the sampling sense.
Outliers can cause blips in an original series, seasonally adjusted series and trend series
unless they are modified or corrected during the seasonal adjustment process.

2. Revisions:
The seasonal adjustment process leads to revisions to the seasonally adjusted and trend
series. Revisions are not desirable, either for the ABS or the users of the series. The
analysis technique chosen aims to strike a balance between revisions and quality of the
seasonally adjusted and trend series. This issue is commonly referred to as the End
Weight problem.

3. Aggregation and Disaggregation:

Regular and irregular influences are often estimated and removed from series at fine
levels of disaggregation, such as at the State by Industry level. Higher level seasonally
adjusted series, such as at the Australia level, can be constructed by adding up
component series to a higher level (to form an indirectly adjusted series) or by directly
seasonally adjusting the higher level series (to form a directly adjusted series). The
resulting series will not be identical. A common issue faced by time series analysts is
explaining why the two approaches do not result in the same series.

Seasonal adjustment techniques can be categorised into two main approaches or philosophies.

These are the model based approaches and filter based approaches to obtaining estimates of
the seasonal, irregular and trend components of a series.

Copyright: Commonwealth of Australia Source: Australian Bureau of Statistics: Time Series Analysis



1.3

1.4 How does Time Series Analysis fit into the ABS?

The seasonal adjustment process is performed at the end of the survey cycle. The survey has
been designed and tested; data has been collected, processed and edited; and estimates are
produced. These estimates are now referred to as original estimates.

The seasonal adjustment process starts once the original estimates are available. The original
estimates are then collected as a time series which forms an original series. Seasonally
adjusted series are derived by removing systematic calendar related effects from the original
series. A trend series is derived by removing irregular influences from the seasonally adjusted
series.

Figure 1.1 illustrates how this process works within the ABS.

Statistical Time Series
Support i
Section < Subject < Analysis
Matter Area
A
\ 4
. seasonal
Survey Design adjustment

Figure 1.1: The Statistical Support Branch (SSB) support cycle within the Australian Bureau of
Statistics

The Time Series Analysis (TSA) section is responsible for ensuring the methods used to
derive seasonally adjusted and trend estimates are appropriate and correctly implemented.
This has been achieved by using the ABS seasonal adjustment package, SEASABS.
SEASABS is used to reanalyse each time series to update estimates of the systematic calendar
related effects and irregular influences that are removed during the seasonal adjustment
process.

Many issues can affect a seasonally adjusted and trend series. These include outliers,
methodological changes, and real world events such as tax reform. A major responsibility of a
time series analyst is to help subject matter areas understand the behaviour of their seasonally
adjusted and trend series, and to inform ABS clients about the underlying patterns in the
series.

Copyright: Commonwealth of Australia Source: Australian Bureau of Statistics: Time Series Analysis
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2 Decomposition models

Decomposing a time series highlights important features of the data. This can help with the
monitoring of a series over time, especially with respect to the making of policy decisions.

A simple approach to decomposition is to assume that any time series can be decomposed
into three basic components:

e the trend, or the underlying level of the original series

* the seasonal, or the portion of the variation about the trend attributable to factors that
reoccur systematically one or more times a year

e the irregular, or the residual variation, remaining after the trend and seasonal
components have been removed from the original series

Decomposition of a time series into a model is not unique. The problem is to define and
estimate components that fit a reasonable theoretical framework as well as being useful for
interpretation and policy formulation. When choosing a decomposition model, the aim is to
choose a model that yields the most stable seasonal component, especially at the end of the
series. Decomposition models are typically multiplicative or additive, but on occasions can
take other forms such as pseudo-additive.

This chapter introduces the three key components in the decomposition of a time series.

2.1 What is a trend?

The trend component, as used by the ABS, is defined as the long term movement in a series.
The trend is a reflection of the underlying level of the series. This is typically due to
influences such as population growth, price inflation and general economic development. For
the purposes of seasonal adjustment, both the long term trend and the medium term cycles are
treated as 'the trend' component of a time series. For this reason, the trend component is
sometimes referred to as the trend cycle.

Problems arise when trying to estimate the trend at the end of a time series, as the problem
then becomes a forecasting, as well as smoothing, exercise. See Chapter 5 for more details.

Included below are some examples of time series which exhibit a strong, easily identifiable
trend.

Figure 2.1 shows the amount of currency in circulation. Over the last 40 years the level of
currency in circulation has been gradually and steadily increasing. The original data and the
trend series are both plotted. These lines are almost identical as there is little seasonality or
irregularity in the data. Overall the long term movement of the series has been to trend
upwards.

Copyright: Commonwealth of Australia Source: Australian Bureau of Statistics: Time Series Analysis
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Figure 2.1: Monthly Currency in Public Circulation - Original and Trend
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Trend

— Original

Figure 2.2: Quarterly Gross Domestic Product - Original and Trend
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2.3

Figure 2.2 shows a very seasonal series (seasonality is discussed further in Section 2.2) which
has also been trending steadily upwards over time. Both the original and the trend series have
been included. The trend shows the general long term movement of the series in the absence
of seasonal and irregular effects. In this case the trend of Australia’s GDP has generally been
increasing except for a slight dip during the recession of the early 1990’s.

Figure 2.3 shows the household gross fixed capital expenditure in original and trend terms. In
this case the trend experienced several turning points as it tracked the medium-term cycles in
the data. In comparison, visual inspection suggests that over the last 40 years the long term
trend of this series has been gradually upwards.
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1959 62 64 66 68 70 72 74 76 78 80 82 84 8 88 90 92 94 96 98 00
Trend

Original

Figure 2.3: Quarterly Household Gross Fixed Capital Expenditure - Original and Trend

Figure 2.4 shows monthly Pay As You Earn (PAYE) tax installments. Over the last 30 years
the level of monthly PAYE tax installments has been gradually and steadily increasing. In this
case the long term movement of the series has been to trend upwards. Notice also that the
irregularity in the series, which can be viewed as the level of random movement around the
trend, is also increasing over time. This suggests that the amount of irregular movement in the
series is related to the level of the trend and that it can best be modelled using a multiplicative
decomposition (see Section 2.4).

Copyright: Commonwealth of Australia Source: Australian Bureau of Statistics: Time Series Analysis



2.4

$m

8000 |

6000 |

1

4000

1

2000

1966 68 70 72 74 76 78 80 82 84 86 8 90 92 94 96 98 00
Original

Figure 2.4: Gross Pay As You Earn (PAYE) Monthly Tax Installments - Original
2.2 What is seasonality?

Seasonality can be thought of as factors that recur one or more times per year. A seasonal
effect is reasonably stable with respect to timing, direction and magnitude. The seasonal
component of a time series comprises three main types of systematic calendar related
influences: seasonal influences, trading day influences and moving holiday influences.

Seasonal influences represent intra-year flucuations in the series level, that are repeated more
or less regularly year after year. For example, seasonal influences may:

* be representative of the seasons such as warmth in Summer and cold in Winter.
Weather conditions that are out of character for a particular season, such as snow
in a summer month, would appear in irregular, not seasonal influences

* reflect traditional behaviour associated with the calendar and the various social
(Chinese New Year), business (quarterly provisional tax payments), administrative
procedures (tax returns) and effects of Christmas and the holiday season

Trading day influences refer to the impact on the series, of the number and type of days in a
particular month. A calendar month typically comprises four weeks (28 days) plus an extra
one, two or three days. The activity for the month overall will be influenced by those extra
days whenever the level of activity on the days of the week are different.

Moving holiday influences refer to the impact on the series level of holidays that occur once a
year but whose exact timing shifts systematically. Examples of moving holidays include
Easter and Chinese New Year where the exact date is determined by the cycles of the moon.

Trading day and moving holidays are considered in more detail in Chapter 6.

Copyright: Commonwealth of Australia Source: Australian Bureau of Statistics: Time Series Analysis
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Identifying seasonality

Seasonality can be identified as regularly spaced peaks and troughs (every 12 observations for
monthly data and every four observations for quarterly series) which have a consistent
direction and have approximately the same magnitude every year. The following examples
present some ‘typical’ time series which exhibit a strong seasonal component.

Estimates of seasonal and trading day influences in ABS time series can either remain fixed
or evolve over time. By allowing them to move, the combined seasonal and trading day
estimates, known as factors, reflect changes in the intra-year activity over the life of the time
series.

Figure 2.5 shows the number of job advertisements in the Australian Capital Territory (ACT).

In December of every year there is a seasonal low in the number of job advertisements due to
the holiday season. This seasonality can be seen as sharp regular dips in the series.

no.
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1991 92 93 94 95 96 97 98 99 00

Original
Figure 2.5: Monthly ANZ Job Advertisements, Australian Capital Territory (ACT) - Original
Figure 2.6 shows the monthly retail sales for New South Wales (NSW) retail department
stores. There is an obvious large seasonal increase in retail buying in December due to

Christmas purchasing and a much smaller seasonal increase during the middle of the year.
The seasonal highs can be seen as the regular sharp upward spikes in the series.

Copyright: Commonwealth of Australia Source: Australian Bureau of Statistics: Time Series Analysis
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Figure 2.6: Monthly New South Wales (NSW) Retail Department Stores - Original

Wine production (Figure 2.7) follows a seasonal pattern reflecting the grape harvesting cycle.
Despite some irregularity in the series seasonal highs can still be seen every December and
seasonal lows each January.
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Figure 2.7: Monthly Wine Production - Original
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Figure 2.8 shows a quarterly series of retail profits. In quarterly series the annual pattern is
often easier to see as it repeats every fourth observation. In this case there is a seasonal high
in profits in the December quarter every year.
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Figure 2.8: Quarterly Retail Profits Before Tax - Original

2.3 What is a residuall/irregular?

The residual/irregular component is the remaining component of the series after the seasonal
and trend components have been removed from the original data. It attempts to capture the
remaining short term fluctuations in the series which are neither systematic nor predictable.
The residual/irregular component of a time series may or may not be random. It can contain
both random effects (white noise) or artifacts of non-sampling error, which are not necessarily
random. Most time series contain some degree of volatility, causing original and seasonally
adjusted values to oscillate around the general trend level. However, on occasions when the
degree of irregularity is unusually large, the values can deviate from the trend by a large
margin, resulting in an extreme value. Some examples of residual/irregular variation are
natural events and industrial disputes.

Irregularity in a series appears as short-term movements around the trend that do not follow
any systematic or repeated pattern. In a highly irregular series the residuals can dominate
movements causing the seasonality and trend to be difficult to identify. An example of a very
irregular series is shown in Figure 2.9.

Copyright: Commonwealth of Australia Source: Australian Bureau of Statistics: Time Series Analysis
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Figure 2.9: Monthly Value of Building Approvals, ACT - Original

In the building approvals series for the ACT it is difficult to determine whether the short-term
movements are caused by seasonal or irregular influences. This distinction can be aided by
the use of a seasonal/irregular (S-I) chart. S-I charts plot the seasonal and the
seasonal-irregular factors of a series for specific months. The S-I chart for the ACT building
approvals series is shown in Figure 2.10. The points in the chart are the seasonal-irregular
factors while the solid line shows the seasonal factors calculated for the series. Large irregular
influences in the series will cause the seasonal and irregular factors to differ markedly from
the seasonal factors. From Figure 2.10 the seasonal-irregular factors can be observed to
fluctuate widely around the seasonal factors indicating a dominating irregular component to
the series.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Seasonal . Seasonal*Irregular

Figure 2.10: Seasonal/Irregular (S-I) Chart - Value of Building Approvals, ACT

Copyright: Commonwealth of Australia Source: Australian Bureau of Statistics: Time Series Analysis
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Figures 2.11-2.13 are of the original, seasonally adjusted, trend and seasonal-irregular series
for Arrivals in Tasmania by Air. In September, October and November 1989 there is a large
low irregular which was caused by a pilots’ dispute. In particular, Figure 2.13 shows the S-I
(seasonal-irregular) chart for this series and the extremes for September, October and
November are particularly noticeable.
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Figure 2.11: Monthly Arrivals by Air in Tasmania : Original and Seasonally Adjusted
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Figure 2.12: Monthly Arrivals by Air in Tasmania - Seasonally Adjusted and Trend
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17 o
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Seasonal . Seasonal*Irregular
Figure 2.13: S-1 Chart - Monthly Arrivals by Air in Tasmania

Graphs 2.14-2.16 show the original, seasonally adjusted, trend and seasonal-irregular series
for the Buildings Approval series. In June 1994, April 1995 and November 1996 an effect on
the series was caused by the approval to construct the Melbourne casino (1994), Sydney
casino (1995), and Olympic stadium (1996) respectively. These once off approvals caused
unusually high extremes in the series. In particular, Figure 2.16 shows the S-I
(seasonal-irregular) chart for this series and highlights the extremes in June, April and
November.
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Figure 2.14: Monthly Value of Building and Construction Approval - Original and
Seasonally Adjusted

Copyright: Commonwealth of Australia Source: Australian Bureau of Statistics: Time Series Analysis
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Figure 2.15: Monthly Value of Building and Construction Approval - Original and Trend
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Figure 2.16: S-1 Chart - Value of Building and Construction Approvals

In the first example (Arrivals to Tasmania by Air, Graphs 2.11-2.13), the extremes are clearly
visible in the original and adjusted, adjusted and trend, and SI charts. This is because the
series is comprised of a strong seasonal and trend component but not much volatility. Hence,
the adjusted series is fairly smooth, and as the irregular component is small the SI’s are

Copyright: Commonwealth of Australia Source: Australian Bureau of Statistics: Time Series Analysis
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relatively stable. This means that irregular values will stand out (ie. the SI points stay close to
the seasonal factor line).

In the second example, (Buildings Approvals, Graphs 2.14-2.16), the extremes are almost
impossible to detect in the original and adjusted, and SI charts. They are more visible in the
adjusted and trend figure. This is because the series is not particularly seasonal, so the
original and adjusted series are quite similar and quite irregular. Hence the adjusted series,
which contains both the irregular and trend components, is substantially different from the
trend. Being a volatile series also makes extremes difficult to detect in the SI charts because
there is a lot of variability in the seasonal and irregulars.

2.4 Models for decomposing a series
To choose an appropriate decomposition model, the time series analyst will

a) examine the figure of the original series
b) try a range of decomposition models and choose the one that yields the
more stable seasonal component, especially at the end of the series

In practice, the original series is run through a seasonal adjustment program and then the
seasonal component is checked for stable seasonality. The decomposition model which gives
the more stable seasonal component is the more appropriate one to fit to the series.

There are two decomposition models which are commonly used: additive and multiplicative.
The pseudo-additive model is occasionally used within the ABS.

Additive Decomposition Model

The additive decomposition model assumes that the components of the series behave
independently of each other. For example, an increase in the trend cycle will not cause an
increase in the seasonal component. This model is used if the irregular/residual and the
seasonal effects are independent of the trend behaviour, ie. if the seasonal effects are the same
from year to year. Figure 2.17 shows a typically additive series. The trend of the series
fluctuates yet the amplitude of the adjusted series (magnitude of the seasonal spikes) remain
approximately the same, implying an additive model.

Copyright: Commonwealth of Australia Source: Australian Bureau of Statistics: Time Series Analysis
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Figure 2.17: General Government and Other Current Transfers to Other Sectors - Original and
Seasonally Adjusted

Mathematically, the original time series O, at time ¢, is considered to be a sum of the three
components: the seasonal §;, the trend 7}, and the residual/irregular I;:

O,=8:+T:+1,
Therefore the seasonally adjusted data can be expressed by
SA,=0,-S,
=T,+1
The constraints for an additive model are:

* the seasonal and irregular components are assumed to be independent of the trend
component

e the seasonal component remains stable from year to year
* the seasonal fluctuation averages out to zero over the year:
Z S H = 0

summing from j = 1 to 12 (for monthly series) or 4 (for quarterly series).

Copyright: Commonwealth of Australia Source: Australian Bureau of Statistics: Time Series Analysis



2.14

Multiplicative Decomposition Model

The multiplicative decomposition model assumes that the amplitude of the seasonal
component is directly proportional to the level of the trend. As the trend increases, the
amplitude of the seasonal component increases. Similarly if the trend decreases, the
amplitude of the seasonal component decreases. It is assumed that the variance of the
irregular component is directly proportional to the combined seasonal and trend cycle.

Most of the series analysed by the ABS display the characteristics of the multiplicative time
series model. An example of a multiplicative time series is the NSW ANZ job advertisements
series and is shown in Figure 2.18. As the trend of the series increases, the magnitude of the
seasonal dips also increases, implying a multiplicative model.

no.

15000 -

10000

5000 —

1975 77 79 81 83 85 87 89 91 93 95 97 99
Original

Seasonally adjusted
Figure 2.18: Monthly NSW ANZ Job Advertisements - Original and Seasonally Adjusted

In this model, the original time series O,, at time, ¢, is considered to be a multiple of the
seasonal §;, the trend T, and the irregular /,

O,=8:xT;xI,
The seasonally adjusted data can be expressed as
SA; =048, =T x1,
The multiplicative model requires the constraint

ESHJ':I’Z
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where summing from j=1,...,n with n = 12 for monthly series or n =4 for quarterly series,
requires that the seasonal component is fixed in relation to the trend from one year to the
next.

The multiplicative model can also be written in an additive form by taking logarithms.
logO; =logS;+1logT;+logl,

Clearly the muliplicative or log additive models cannot be used when the original series
contains zero values. In this case a pseudo-additive decomposition model can be used.

Pseudo-additive Decomposition Model

This pseudo-additive decomposition model combines elements of both the additive and the
multiplicative relationships. It assumes that the seasonal pattern and the irregular element are
both dependent on the level of the trend 7, but independent of each other.

Removing the multiplicative link between the seasonal and irregular components is
particularly useful if the series contains one or more zero values. This is because the additive
relationship between the seasonal and irregular components allows either one of them to
absorb the zero values without disturbing the trend behaviour of the series. In this way the
method can accommodate one off zero values as well as regular zero values occurring as the
result of a consistent seasonal pattern.

Algebraically this means the original data can be expressed as:

0[:Tz+T[X(S[_l)+T[X(It_1)
:T[(S[+I[_l)

and the seasonally adjusted data is defined to be

SA[ZOI_T[X(S[_I)
:T[XII

One is subtracted from the multiplicative seasonal pattern and the irregular element because
each component is centered around one in the multiplicative case so that the level of the
original series is not modified when the components are multiplied together. In the
pseudo-additive relationship, the seasonal and irregular are both multiplicatively related to the
trend and added to the trend to form the original data. If the seasonal pattern and irregular
element were left centered around one, this would cause the level of the series to be grossly
inflated. Instead, each of these components is modified to be centered around zero before
being multiplied by the trend.

An example of a series that requires pseudo-additive adjustment is shown in Figure 2.19. This
decomposition is used as cereal crops are only produced during certain months with the cereal
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production being virtually zero for one quarter each year (See ABS (1999a) for a detailed
discussion of the Australian Crop series).

$m
6000

5000 -

4000

3000

2000

1000

T T T T T T T T T T T
1990 91 92 93 94 95 96 97 98 99 00

Original

Figure 2.19: Quarterly gross value for the production of cereal crops - Original
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Summary: Model comparisons

All three decomposition models are compared in Table 2.1. Column 2 illustrates the
decompositions assuming that there are only three components: trend, seasonal and irregular.
Column 3 assumes an additional component of trading day. Trading day is discussed in detail
in Section 6.2.

Three component model Four component model
Components O, = original O, = original
T; = trend T; = trend
S; = seasonal S = seasonal
I; = irregular I; = irregular
TD; = trading day
Multiplicative O0,=T, xS XI; O0:,=T:xS;XTD; X1,
SA,= 0,8, =T, x1, SA; = 0/(S; X TD,) =Ty x I,
SI, =0T, =S, x1, SI, = OM(T,XTD;) =S, X1,
DI, =TD; x I,
S, 1;, TD, are distributed around 1
Additive O, =T, +S,+1, O,=T,+S;+TD; +1,
SA;=0,-S,; SA;=0,-8,—-TD,
SI;=8:+1; Sl;=S8;+1,
DI, =TD;+1,
S, 1, TD; are distributed around 0
Pseudo-additive O/ =T x(S:+1;-1) O/=T;XTD;x(S;+1;—1)
SA,=0,—T:x(S;—1) SA; = (0JTD;)—T: X (S;— 1)
SIi=8,+1,—1 Sl =8;+1,—1

S, 1;, TD, are distributed around 1

Table 2.1: Comparison of the multiplicative, additive and pseudo-additive decomposition models

2.5 Example: Decomposition of a series

The Shiskin decomposition gives graphs of the original series, seasonally adjusted series,
trend series, residual (irregular) factors and the between month (seasonal) and within month
(trading day) factors that are combined to form the combined adjustment factors. The residual
(irregular) factors are found by dividing the seasonally adjusted series by the trend series.

Figure 2.20 shows a Shiskin decomposition for the number of ACT Building Approvals. This
series was adjusted using a multiplicative model.

Figure 2.21 shows a Shiskin decomposition for the Australian Retail series. Note that in
contrast with the Building Approvals series, the variation of the trading day factors, is greater
than for the Building Approvals series. This indicates that, for the retail series, activity is
more dependent on the number of different types of days of the week in any given month.
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Original Series - Value Between Month Factors
800 1
2.5 1
600 1 2.0 1
400 1 15 1
200 1 O
Seasonally Adjusted Series - Value Within Month Factors
800 1
25 1
600 1 2.0 1
400 | 15 1
200 1 o
0.5 1
Trend Series - Value Residual Factors
800 1
25 1
600 1 20 1
400 1 1.5 1
200 1 1.0 1
0.5
Figure 2.20: Shiskin decomposition for the Number of ACT Dwelling Approvals, April 1990 to
April 2000
Original Series - Value Between Month Factors
16000 1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 13 1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
14000 1 1.2 1
12000
1.1 1
10000 1
8000 - 1.0 17171
Seasonally Adjusted Series - Value Within Month Factors
16000 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 13 9 ‘ ‘ ‘ ‘ ‘ ‘ ‘
14000 1 1.2 1
12000
1.1 1
10000
8000 1.0
Trend Series - Value Residual Factors
16000 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 13 9 ‘ ‘ ‘ ‘ ‘ ‘ ‘
14000 1 1.2 1
12000
1.1 1
10000
8000 1 1.0 —M/WWMWWAJM

Figure 2.21: Shiskin decomposition for Australian Total Retail Turnover, May 1990 to May 2000
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3 Seasonal adjustment philosophies

The two main philosophies for seasonal adjustment are the model based method and the filter
based method.

In this section, an outline of the basis of the two philosophies is given. For more details see
Sutcliffe (1999). Chapters 4 and 5 describe in more depth the technical basis of the filter
based method commonly applied in the ABS. In general these notes concentrate on the filter
based method.

3.1 Model based methods

The model based approach requires the components of an original time series, such as the
trend, seasonal and irregular to be modelled separately. Alternatively, the original series could
be modelled and from that model, the trend, seasonal and irregular component models can be
derived.

Models for each of the components are usually estimated simultaneously using the Kalman
filter or related techniques (see Harvey (1990) for further discussion of these methods). Each
component is assigned its own model which determines the broad spectral characteristics (i.e.
the cycles which are present in the original series) of that component. Each component is
also assigned its own innovation variance which determines the relative strength of each
component. The contributions of the components to the overall model are usually estimated
using maximum likelihood methods.

Model based methods assume the irregular component is “white noise” i.e. the irregular has
no structure, zero mean and a constant variance.

Major computational differences between the various methods in the model based family are
usually due to model specification. In some cases, the components are modelled directly. In
other cases, the original time series is modelled and the component models are decomposed
from that model. The decomposition of the component series is not generally unique. STAMP
and TRAMO/SEATS are two software packages that use model based methods.

3.2 Filter based methods

This method applies filters (moving averages) to decompose the time series into a trend,
seasonal and irregular component. Typically, symmetric linear filters are applied to the
middle of the series, and asymmetric linear filters are applied to the ends of the series.

The general philosophy is to remove a range of cycles (i.e. band of spectral power) from the
original data. To produce a seasonally adjusted series, cycles around 12, 6, 4, 3, 2.4 and 2
cycles per year in a monthly time series, need to be removed. These cycles are referred to as
the seasonal harmonics. They correspond to 1 (monthly), 2, 3, 4 (quarterly), 5 and 6
(half-yearly) occurrences per year in a monthly time series. The trend is always required to be
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‘smooth’. This can be done by removing the shorter term cycles in the seasonally adjusted
series.

Filter based methods, because of the criteria for the seasonal harmonics and ‘smooth’ trend,
result in an irregular component that does not necessarily display white noise characteristics.
No explicit model of the components is required for filter based methods. Features of the
adjustment process derive directly from the properties of the filters used.

Filter based methods can be thought of as X11 style methods. Methods include X11,
X11ARIMASS, X12-ARIMA, STL, SABL and SEASABS.

X11 style methods are generally iterative. The trend, seasonal and irregular components are
estimated separately in a computation loop. For example, in X11 a preliminary estimate of
the trend is computed. The original data is then detrended to give an estimate of the
combined seasonal and irregular component. This is then smoothed month by month to yield
a separate estimate of the seasonal component. The computations continue through three
iterations.

Major computational differences between the various methods in the X11 family are usually
due to different techniques used at the ends of the time series. For example, some methods
use asymmetric filters at the ends while others extend the series using ARIMA models and
apply symmetric filters to the extended series.

3.3 Comparison of the two approaches

Model based approaches allow for the stochastic properties of the series under analysis. In
other words, model based approaches tailor the filter weights based on the stochastic nature of
the series. Checks for model identification are performed for the models capability for
describing the behaviour of the series. Statistical inferences are available for the estimates if
the assumption that the irregular component is white noise is true.

On the other hand, filter based approaches are less dependent on the stochastic properties of
the series under analysis. It is up to the analysts to select the most adequate filter given from a
limited collection for a particular series. No rigorous checks may be performed, and exact

measures of precision or statistical inference are not available. Therefore, the building of a

confidence interval around the estimate is not possible.

The following table contrasts the various elements of the two approaches to seasonal
adjustment.
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Model based

Filter (X11) based

Irregular component is defined as white
noise.

Model fitting and identification is done first
before decomposition. The correlation
structure of the components are well
described by the model. The noise is
re-partitioned to component noises
(innovations).

Irregular component is defined as residual
or what is left in the original once the trend
and seasonal components have been
removed. It is specified last after trend and
seasonal.

Trend component has a random walk look
(plus cycle can also be modeled with trend).

Trend component defined as cycles longer
than a certain length.

Seasonal component is a stochastic process
with its own noise element, and allows
evolution.

Seasonal component defined as the band
around the seasonal harmonics. The
‘smooth’ seasonal factors are a particular
characteristic of this method.

Theoretically, leaves some power at the
seasonal frequencies in the irregular
component and also in the trend. That is, as
white noise is left over, some of the cycles
of the seasonal and trend are still in the
irregular component.

Aims to remove all spectral power at the
seasonal frequencies

Structure of trend, seasonal and irregular for
a given model is defined by the variance of
the innovations for each component model.

Size of the bands around the seasonal
harmonics are determined by the seasonal
filter length, and the frequency cut off for
the trend is determined by the length of the
trend filter.

Simultaneous estimates are obtained for the
trend, seasonal and irregular components.

Computations are iterative to provide
estimates for the trend, seasonal and
irregular.

Table 3.1: Comparison of two different model philosophies

Copyright: Commonwealth of Australia

Source: Australian Bureau of Statistics: Time Series Analysisiv




4.1

4 Frequency domain analysis

Two common filter based approaches to analysing time series are time domain analysis and
frequency domain analysis. Time domain analysis uses parametric models to describe the
time series. Frequency domain analysis describes a time series using the cyclical behavior at
various frequencies.

The ABS uses a filter-based approach to analysing time series. This chapter concentrates on
frequency domain analysis which allows filters to be represented in terms of cycles. In
particular, the concepts of spectral analysis, gain functions and phase shifts are introduced.
Spectral analysis lets us investigate the cycles which are present in a series. Properties of
linear filters can then be investigated using gain and phase functions. The gain and phase
summarise what happens to particular cycles, such as business cycles, seasonal cycles and
noise, when linear filters are applied.

Some preliminary concepts are needed. The following sections briefly discuss the
autocovariance, fourier analysis and spectral analysis of a series. For more information on

these topics see, for example, Box and Jenkins (1970) and Wei (1993). The gain and phase
functions are then discussed.

4.1 Autocovariance
Consider a stationary process {Y;}. This has a constant mean E(Y;) = u, constant variance

Var(Y,) = E(Y,—u)? = %, and covariances Cov(Y;,Y) which are functions of the difference
|t — s|. The autocovariance function, vy, is defined as the covariance between Y; and Y

Vi =Cov(Y:, Yir)

= E(Y = p)(Y i — 1) 4.1)

For a given sequence of autocovariances y;,k=0,%1,£2,...,the autocovariance generating
function is defined as

y(B) =ZiL . kB (4.2)

Note the use here of the backshift operator B, which is defined as
B kx t = Xk

Consider Z;, which has a zero mean, Z;=Y,—u. Then Z, can be expressed as a linear
combination of random variables

Z[ = G(B)a[

= Z Hjat—j
=0 4.3)
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where 0; are coefficients and a, ~ N(0, 2). Then
Var(Z)) =62 X%, 607
and Pk = E(Z; = 0)(Zui— 0)
= E(Z/Z )

= E(Z (9]'61,_]' Z 0ia i)
=0 i=0

= 0'3 2 0j0j+k
0
So o
y(B) = k; 7iB*
=g 2 2 0,0:4B"
k=—o0 i=0
=g22 > 0,0,B
i=0 j=0
= O% Z Hij Z HiB_i
j=0 i=0
=a20(B)O(B™") 4.4)

where j =i+ kand 0; = 0 for j < 0. This can be applied to any linear combination of weights
of the form given in (4.3).

4.2 Fourier analysis

Fourier analysis is a form of frequency domain analysis which can be used to represent any
periodic function as a series of harmonically related sinusoids.

A fourier transform of a discrete time function Y,, such that ¥, = O for |¢| > M is defined as
fw) =27 Yie ™ where n<w<n (4.5)

The spectrum of a stationary process is the fourier transform of the absolutely summable
autocovariance function of the process.
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4.3 Spectral analysis

If Y, is a stationary process with an absolutely summable autocovariance sequence Yy, this
means that the sum of the process y; exists and is of finite duration. This means that the
fourier transform exists.

Substituting y; into (4.5) gives the spectrum of a series Y, with autocovariance )

flw)y= 2 yre*
k=—0

o0

= Y, yi(cos(—wk) + i sin(—wk))

—=—00

=70+2 kzl i cos(wk) (4.6)

where y; =7 and 0 < w < 7. Also sin(0) =0, sin(w(—k)) = —sin(wk), cos(w(—k)) = cos(wk)
and e " = cos(—wk) + i sin(—wk).

Recall that the autocovariance generating function is defined by (4.2) as
y(B) =ZiL ., kB

By equating (4.6) and (4.2) the spectra and the autocovariance generating function can be
shown to be related by

flw) = y(e=) 4.7)

This means that once the autocovariance generating function is known for a process the above
relationship can then be used to derive the spectrum for that process.

As an aside, the sequence ) can be recovered through the inverse Fourier transform defined
as

v =1" flw)e“*dw (4.8)

By setting k = 0 this gives the variance for the process Y, as

Var(Y,) =vyo
=|" fwydw

This shows that the spectrum f(w) can be interpreted as the decomposition of the variance
process. A peak in the spectrum indicates an important contribution to the variance from the
components at frequencies in the corresponding interval.
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4.4 Gain functions

Generally, economic data is made up of a wide range of cycles such as business cycles,
seasonal cycles and noise. Gain functions can be used to look at the effect of a linear filter at
a given frequency on the amplitude of a cycle in a given series. In other words, it shows what
happens to the amplitude of a given input cycle on the application of a moving average.

Theoretically, the properties of a linear filter can be studied by analysing the fourier transform
defined by (4.5) as

flo)= 3w

J=—mi

where w_,,, ..., w,, are the weights of the filter and w is the frequency with —7 < w < 7. The
frequency response function can be written in terms of the contribution of a sine and cosine
functions as follows

flw) = C(w) +iS(w)

where my
C(w)= 2 wjcos(w))

J=—my

S(w) = % w;j sin(wy)

J=—mi

The gain function of a filter with weights w_,, , ..., w,,, is then defined by
G() = (C(@)* +S@)H) ) (4.9)

For a symmetric moving average of length 2m+1 where m| = my =m and w_; = wy the gain
function simplifies to

G(w) =lwo +2 X, wi cos(wk)| (4.10)
The gain can be defined to be both positive and negative. If this is the case then a gain of -1
means that peaks have become troughs and troughs have become peaks. The size of the

magnitude from a trough to a peak is still the same. The gain is symmetric over the
frequencies —x to z. For this reason, the gain is typically plotted from O to 7.

If a process Y, has spectrum Sy(w) then the spectrum of the filtered data, Sr(w), is given by
St(w) = G*(w) X Sy(w) (4.11)
Note: Spectra are useful for analysing stationary time series only. Spectrum for non-stationary

time series may be better analysed by first transforming the data to obtain a stationary series
and then obtaining the spectrum.
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Examples of gain functions which have been defined to be all positive are shown in Figures
4.1-4.3. All of the gain functions have been plotted showing the periods along the x-axis. To
convert frequencies (w) to periods (p) the following relationship can be used:

w=2xn)lp

For example, the seasonal frequencies occur at 1, 2, 3, 4, 5 and 6 cycles per year, these
correspond to 12, 6, 4, 3, 2.4 and 2 period cycles. In frequencies these are given by
(2 x7m)/12 = 7/6 (12 period cycle), (2 X 7)/6 = /3 (6 period cycle), through to (2 x )2 =7 (2
period cycle). All spectral plots are labeled with periods along the x-axis. Figure 4.1 shows a
gain function for a simple three term moving average. This illustrates that the application of
this filter to an input series removes cycles of approximately length 3 periods from the input
series. Figure 4.2 shows a gain function for a simple seven term moving average. This filter
would remove cycles of approximate length 7, 3.5 and 2.3 periods.

1.0

0.6
!

0.4

0.2

\ \ \ \ \ \ \
inf 12 6 4 3 24 2

cycles

Figure 4.1: Moving average with weights (1/3,1/3,1/3)
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1.0

0.4

0.2

cycles

Figure 4.2 Moving average with weights (1/7,1/7,1/7,1/7,1/7, 1/7,1/7,1/7)

1.0

0.4

0.2
|

I 1 1 1 1 1 1
inf 12 6 4 3 2.4 2

cycles

Figure 4.3: Moving average weights (1/24,1/12, 1/12,1/12,1/12, 1/12,1/12, 1/12,1/12, 1/12,1/12,1/12,1/24)

Figure 4.3 illustrates an example of a filter which would remove constant seasonal cycles
from an input series. The seasonal frequencies occur at 12, 6, 4, 3, 2.4 and 2 months. This
filter would therefore be good to use for removing seasonal effects in an input series. Cycles
which are indicative of an irregular component (cycles less than 3 periods) would be
significantly reduced by the application of this filter.
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4.5 Phase shift

Phase shifting occurs when the timing of turning points is distorted. The turning points will
then occur either earlier or later than in the original series. Symmetric moving averages,
where the result is centrally placed, do not cause time phase shifting. An important property
of the trend moving averages is that the moving average retains the time phase and hence the
timing of any turning points.

If the result of the moving average were placed off-centre, such as on the last or first term of
the moving average, time phase shifting would occur. Indeed the off-centred simple 12 term
moving average is said to cause a shift in time phase of about 6 months. The ABS uses only
odd length trend moving averages in the middle of the series so that the result will be centred
on a value, rather than between values.

A phase shift is the time shift between the filtered cycle and the unfiltered cycle. In the case
of the definitions below a positive phase shift means that the filtered cycle is shifted
backwards and a negative phase shift it is shifted forwards. If the gain is defined to be strictly
positive then the phase shift, ®(w) can be calculated by the following set of equations:

C > 0 then ®(w) = arctan(S/C)

C<0and S >0 then ®(w) = arctan(S/C) +

C<0and S <0 then ®(w) = arctan(S/C) —

C=0and S > 0 then ®(w) = n/2

C=0and S <0 then ®(w) =—n/2

C =0 and § =0 then ®(w) is undefined (4.12)

If the moving average is symmetric the phase is O or +z. Generally, for filters designed for
smoothing (trend filter), a phase shift of +7 will be at frequencies where the amplitude has
been almost completely eliminated and will therefore not have a great impact on the series.

The phase is also given by the alternate set of equations:

C # 0 then ®(w) = arctan(S/C)

C=0and S > 0 then ®(w) = /2

C=0and S <0 then ®(w) =—-7/2

C =0 and S =0 then ®(w) is undefined. (4.13)

While most authors prefer the first definition of the phase function (4.12) there is support for
the second definition (4.13). For example Chatfield (1996) states:

"In fact there are physical reasons why engineers prefer to plot the phase
as a continuous unconstrained function allowing G(w) to be positive or negative..."

These two different definitions are possible since a half cycle phase shift is equivalent to

changing peaks into troughs and vice versa, this can also be achieved by a gain of minus one.
The phase can be computed in periods by using ®(w)/w.
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Gain Function Phase Function
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Figure 4.4: Gain for 2x12 symmetric moving average and a phase for 2x12 symmetric moving average

Some examples of the effects of cycles of different lengths for the 2x12 symmetric moving
average are shown in the graphs below labeled A,B,C and D. Remember that gain is the effect
on the amplitude and phase the effect on the timing. Graphs E-H show the same cycles with a
off-center 12-term asymmetric moving average.

(A) 24 Month Cycle
Amplitude = 63%

(B) 12 Month Cycle
Amplitude = 0%

(C) 8 Month Cycle
Amplitude = 20%

(D) 5 Month Cycle
Amplitude = 11%

Amplitude = 63%
Phase = -5.5 months

Amplitude = 0%
Phase = undefined

NV A
VY,

Amplitude = 22%
Phase = -1.5 months

Phase =0 Phase undefined Phase = -4 months Phase =0
(E) 24 Month Cycle | (F) 12 Month Cycle | (G) 8 Month Cycle (H) 5 Month Cycle

Amplitude = 13%
Phase = -0.5 months

Figure 4.5: Gain and phase for different length cycles after applying a 2x12 symmetric moving average
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5 Filtering - the empirical approach

In Chapter 4, the theory behind the filtering approach to seasonal adjustment was discussed.
The concept of linear filters, gain functions, phase functions and spectra was introduced. This
chapter, describes how this theory is put into practice within the ABS.

5.1 General framework

Moving averages or linear filters successively average a shifting time span of data and have
long been used to estimate the components of decomposition models. Depending on their
weighting structure they can also be used to eliminate cycles of certain length. Moving
averages work on the assumption that the trend and seasonal components are stochastic (the
future is only partly determined by past values) and not deterministic.

Moving averages are often applied to smooth out the irregularities in a series. This smoothed
series can be considered to have been derived by running an input series through a process
which filters out irregularities. Consequently, a moving average is often referred to as a filter.

As an example, a moving average of the original data can be used to smooth the data and
obtain an initial estimate of the trend. This estimate of the trend can then be removed from the
original data to get the combined seasonal and irregular components. These can then be
smoothed, a month or quarter at a time, with another moving average to obtain an estimate of
the seasonal pattern. This seasonal pattern can in turn be removed from the original data to
leave an estimate of the seasonally adjusted data which can be smoothed to get an improved
estimate of trend.

This is the basic process undertaken by Time Series Analysis to produce seasonally adjusted
and trend estimates. The moving averages used in this estimation process have been selected
for their properties, such as highlighting the appropriate frequencies and not changing the
level of the series or the timing of turning points. This chapter discusses both the trend and
the seasonal moving averages used within the seasonal adjustment process at the ABS.

A variety of other techniques can be applied to analysing time series. These include simple
averages, transformations, differencing, regression, spectral analysis, curve-fitting and
looking at year-apart and year-to-date movements. These techniques should be applied with
care as some of these techniques are deficient or have results that can be easily
misinterpreted.

Definition:

Define a set of weights of length m; +m, + 1 as:

Weomys We(my=1)s e W1, WO, W15 eeeeWiny—1, Wi, (5.1)

Note: a symmetric set of weights has m; =m; and w; =w_;
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Definition:

A filtered value at time ¢ can be calculated by

fo) =22, wi¥u (5.2)

5.2 Example: Application of a linear filter
An example of a first difference linear filter is given by

fo) =Y =Y, (5.3)
Then, in this case (5.1) and (5.2) would be

m=1,m;=0,wp=1and w1 =-1

To investigate the gain function properties of this filter consider the two components given in
4.9)

C(w) =1-cos(—w)=1-cos(w)
S(w) = —sin(—w) = sin(w)

Since C(w) > 0 for all w the gain function is defined to be

G(w) = /(1 - cos())? + (sin(w))?

and the phase function is

sin(w)
1—cos(w)

®(w) = arctan( )=(m—w)/2

Figure 5.1 below shows the gain and phase for the first difference operator.

Gain of first differencing Phase shift of first differencing
Gain Function Phase Function
o (N
o a
©
- ®
Q E‘ i
©
9 g
o
inf 12 6 4 3 2.4 2 inf 12 6 4 3 24 2
Cycles Cycles

Figure 5.1: Gain and phase for the first difference operator
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For example, for a 10 period cycle

w=2n)/p=mnl5,

G(n/5) = \/(1 — cos(7/5))? + (sin(n/5))* = 0.62,
O(n/S) = (m—n/5)/2

which is given in periods by

D(n/5)/(n/5) =2 periods

Results for a range of input cycles are shown in Figure 5.2.

53

and

then

(A) 24 Month Cycle
Amplitude = 26%
Phase = 5.5 months

(B) 12 Month Cycle
Amplitude = 52%
Phase 2.5 months

(C) 3 Month Cycle
Amplitude = 173%
Phase = 0.5 months

(D) 2 Month Cycle
Amplitude = 200%
Phase =0

Figure 5.2 The effect of applying a first difference on various cycles of an input series

It can be seen above that first differencing completely distorts the spectral characteristics of a
time series. For example the short term movements (i.e. those that follow a 2 month cycle) get
amplified by about 200%. Its only redeeming feature is that it removes “long term growth”.
Publishing such movements has been fundamental for about the last 100 years and, in
addition, sampling theory for time series is based on minimising the standard errors of the
movements in a time series. Of course even a “bad” measure can be improved by developing
a “memory map” of historical behaviour. For example, experience suggests that a percentage
movement in seasonally adjusted Australian Total Retail turnover of 1% is a moderate
movement while 4% would be considered to be a very large movement.

Copyright: Commonwealth of Australia Source: Australian Bureau of Statistics: Time Series Analysis



5.4

The relationship between the gain and phase function can be readily obtained and understood
by analysing the effect of the linear filter given in (5.2) on the process

Y,=cos(wt),m<w<n

The filtered data is given by

flcosy,) = . % wy cos(a(t+k))

=m

m2
= Y. wi(cos(wt) cos(wk) — sin(wf) sin(wk))

k=—m

m2 my
= ( > wi cos(a)k)J cos(wt) — [ > wi sin(a)k)J sin(wt)

k=—m k=—m

= G(w) cos(wt + D(w))

where G(w) and ®(w) are given in (4.9) and (4.12) respectively and the following result was
used

xcos(ew) — y sin(w) = sgn(x) X Jx +y? cos(w + arctan(¥)) (5.4)

An example of a negative gain follows. If C <0 then peaks become troughs and troughs
become peaks. If the gain is defined to be positive then a correction is required to the phase
shift which is given in (4.12). These effects are shown in the example below for a symmetric
moving average.

Consider the linear filter given by
f(yz) =0.5x% Yz+1 +0.5x%x Yz_l (55)

then

G(w) = Jcos(w)? = |cos(w)

d(w)=0for O<w< 7

®(w) =7 for 5 < w < 7 (cos(w) < 0)

For a 10 month cycle the original cycle and filtered cycle are shown in Figure 5.3 Graph A. It
can be seen that there is no phase shift. Figure 5.3 Graph B shows a 3 month cycle which has
a maximum phase shift of 1.5 months. It can also be noted here that for a 3 month cycle 1.5
months back and 1.5 months forward give the same cycle.
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(A) 10 Month Cycle (B) 3 Month Cycle
Amplitude = 81% Amplitude = 50%
Phase =0 Phase 1.5 months

Figure 5.3: Effect of the linear filter presented above on various cycles

5.3 Trend moving averages (trend filters)
Henderson trend moving averages

Henderson moving averages (derived by Henderson (1916) for use in actuarial applications)
are a filter commonly used to smooth data, and have the property that they are able to track a
cubic polynomial without distortion. To obtain the weights, a compromise was struck
between two of the characteristics that are generally expected of a trend series; i.e. that the
trend should be able to reproduce or represent a wide range of curvatures, and that it should
be as smooth as possible. They can be used, for example, to obtain estimates of trend by
smoothing a series containing trend and irregular components. Henderson moving averages
are used in preference to simpler moving averages as they can reproduce polynomials up to
degree three. This means that they are able to adequately capture trend turning points and
points of inflection.

The ABS uses Henderson trend moving averages to produce trend estimates from the
seasonally adjusted estimates. The ABS publishes trends derived using 13 term Henderson
filters for monthly series while 7 term Henderson filters are used for quarterly series. There
are two reasons for this: these filters have many desirable properties, and using a restricted set
of filters means that users can, theoretically, reproduce the ABS trend estimates. It is
important to note that the ABS uses other length Henderson filters, primarily 5, 9 and 23 term
during the seasonal adjustment analysis process (see Chapter 7 for more details).

Figures 5.4 to 5.6 shows ABS time series trended with the 7, 13 and 23 term Henderson
moving averages, respectively. In Figure 5.6, while the trend is derived using a 23 term
Henderson filter, the published ABS trend is obtained from applying a 13 term Henderson to
the published seasonally adjusted estimate.
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Figure 5.4: 7-Term Henderson filter : GDP (Chain Volume Measure)
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Figure 5.5: 13-Term Henderson filter - Number of Unemployed Persons
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Figure 5.6: 23-Term Henderson Filter - Value of Non-residential Building Approvals

The Henderson trend moving averages are non-simple, meaning not all the observations
necessarily have equal weight. The weights of a Henderson moving average are computed by

(1) Minimising the sum of squares of the third differences (smoothness criteria)
(i1) Allowing polynomials up to degree three to be exactly reproduced

Henderson moving averages can either be symmetric or asymmetric. Symmetric Henderson
moving averages can be used in regions sufficiently far away from the start or end of a series.
In this case a smoothed value for a given time series is calculated from equal numbers of
values from previous and subsequent times.

Using symmetric trend moving averages results in what is commonly known as the 'end point
problem'. This occurs because there will not be enough data available at the start or end of the
series to apply the symmetric moving average. To solve this, asymmetric weights can be
developed to carry out smoothing at the ends of the series. Asymmetric weights used for trend
analysis can be tailored to suit the characteristics of the series. The ABS uses asymmetric
weights which have similar filter properties to the symmetric Henderson trend moving
averages. These weights are used within the seasonal adjustment package, X11, and have
been derived from a formula developed by John Musgrave for the US Bureau of the Census.
This formula, which is independent of the series to which it is applied, results in asymmetric
trend moving averages which have similar dampening properties to the Henderson and
weights that sum to one (for more information see subsection on asymmetric Henderson).

The following sections show how the symmetric and asymmetric Henderson filters are

derived (see Kenny and Durbin (1982), Laniel (1985), Doherty (1992), Gray and Thomson
(1996a), Findley et. al (1998) or McLaren (1999) for more details).
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Symmetric Henderson moving averages

Consider a linear filter of length n=2r+1 and denote the coefficients of this filter by wy
where k=-r,...,r. Applying this filter to a time point sufficiently far away from the start of a
non-seasonal input series {y, : t=1,...,n} gives

,
A = Z WiV i

i=r

=W (5.6)

where A ., represents a smoothed series at time 7 given that there is information up to a time
sufficiently far away from time ¢ in the filter window, w, = (Ww_,...,w,)" is the vector of
unknown coefficients and y; = (y/—, ..., )" is a non-seasonal input series. The coefficients in
w, are subject to

> owi=1 and XL iw;=0 (5.7)

where j =0, 1,2 and 3 to ensure that the local cubic criteria is satisfied, and the first condition
ensures the coefficients w; are required to sum to one. The second condition is automatically
satisfied for symmetric weights w; = w_;.

Henderson assumed that y, consists of a trend can be represented by a locally cubic
polynomial, over the length of the filter window at time r=1,...,n and a residual term é&;.
That is

y[:T[+8[

Zﬁo +ﬁ1t+ﬁ2t2 +ﬁ3t3 + &
Pl ie, 68

where the f;’s are arbitrary coefficients and ¢, has the following properties

E(e) =0,
Var(e,) = Var(e—x)Vk,
Cov(es, e4) =0 (5.9)

Rewriting (5.8) in matrix form gives

Po+ L1t —r) + a2t -1+ 3t —1)° Er
Vi = : + :
Bo+Pi(t+7r)+ Pt +1)>+ B3t +71)’ Erir
=P; +¢ (5.10)

where P; and g, are vectors of length n centered at time . Substituting (5.10) into (5.6)
results in

Ango = W;(Pt3 +81)
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Then applying the difference operator gives

AAnoo :A(t+1)|oo _Atloo
— ! p3 ! I p3 !
= WrPt+l + W, Em1 _(wrPt +Wr8[)

= AWLPY,) + Alwle,)

The range of the first differential series now extends to include ¢+r+1. The difference
operator is applied again to obtain third differences as per the Henderson criteria

N3A 0 = AW PLy) + A3 (wre))

=a+A3(wle)

where a is a vector of constants since the third differences of a polynomial of order three is a
constant. The range of the second differenced series extends to #+r+3. To obtain values for
the coefficients w, the variance of the third differences of the smoothed series has to be
minimised

Var(A*A ) = Var(a) + Var(A*wie,)
= (A%w,)'Var(e)(A%w,) (5.11)
where A3w, = (A3w_,, ..., A*w,) is the vector of the third differences of length n.

By using the properties in (5.9), Var(e;) can be written as the identity matrix and (5.11) then
becomes equivalent to minimising

T (M)
subject to the constraint (5.7).

Using Lagrange multipliers the symmetric n =2r+ 1 term Henderson filter can be written in
the form

wi={(r+ 1?2 =2 Hr+2)? =2 H{r+3)?> = i?HPo + fri*} (5.12)

where

Bo=(282)3r2 + 12— 4)/(64r° + 1152r% + 85927 + 3427275 + 78204r°

+99288r4 + 5720373 — 430272 — 19323 — 5670)
Bi = (%] 1/(647° + 115278 + 859277 + 3427270 + 7820475 + 992884

+57203r3 — 4302r? — 19323r - 5670)
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The weighting pattern for a range of symmetric Henderson moving averages is given in Table
5.1.

Gain and Phase Functions of the Symmetric Henderson Moving Averages

It is useful to summarise the properties of a moving average through the use of the gain
function. Figures 5.7 to 5.11 consist of graphs of the gain and phase functions of the 5, 7, 9,
13 and 23 term symmetric Henderson moving averages. The gain functions show the strength
remaining at certain cycles. The cycle strength is shown on the y-axis, with 1 meaning cycle
strength is unchanged, greater than 1 meaning the strength of the cycle is increased and less
than 1 indicating the strength of the cycle is decreased. From the figures, the trend moving
averages dampen the short term cycles which can be considered to represent the irregular
component.

Weighting pattern for symmetric Henderson filters

5 Term Henderson (-0.073, 0.294, 0.558, 0.294, -0.073)

7 Term Henderson (-0.059, 0.059, 0.294, 0.412, 0.294, 0.059, -0.059)

9 Term Henderson (-0.041, -0.010, 0.119, 0.267, 0.330, 0.267, 0.119, -0.010,
-0.041)

13 Term Henderson (-0.019, -0.028, 0.0, 0.066, 0.147, 0.214, 0.240, 0.214, 0.147,
0.066, 0.0, -0.028, -0.019)

23 Term Henderson (-0.004, -0.011, -0.016, -0.015, -0.005, 0.013, 0.039, 0.068,
0.097, 0.122, 0.138, 0.148, 0.138, 0.122, 0.097, 0.068, 0.039,
0.013, -0.005, -0.015, -0.016, -0.011, -0.004)

Table 5.1: Weighting pattern for a range of symmetric Henderson filters

Gain Function Phase Function
o
—y a -
@ |
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© -«5‘
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a
A
o
inf 12 6 4 3 2.4 2 inf 12 6 4 3 2.4 2
Cycles Cycles

Figure 5.7: Gain and Phase Functions using Symmetric 5 Term Henderson filters
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Figure 5.8: Gain and Phase Functions using Symmetric 7 Term Henderson filters
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Figure 5.9: Gain and Phase Functions using Symmetric 9 Term Henderson filters
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Figure 5.10: Gain and Phase Functions using Symmetric 13 Term Henderson filters
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Figure 5.11: Gain and Phase Functions using Symmetric 23 Term Henderson filters
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Figure 5.10 shows that for monthly data the 13 term Henderson almost exactly reproduces
cycles in the range 18 months to infinity while in the range 8 months to 18 month the cycles
are reduced to various degrees.

In general the longer the trend moving average, the smoother the resulting trend, as evident
from Figure 5.11. When using a 5 or 7 term Henderson, cycles of about 8 periods or longer
are left with their original amplitude while the 23 term Henderson only leaves cycles of about
36 periods or longer with their original amplitude. The 5 term Henderson reduces cycles of
about 2.4 periods or less by at least 80% whereas the 23 term Henderson reduces cycles of
about 8 periods or less by at least 90%. When using a 23 term Henderson, cycles less than
about 4 periods are completely removed. In the range 2 to 8 months the amplitude of the
cycles is almost eliminated.

Note that the Henderson moving averages also dampen the seasonal cycles to varying
degrees, although not significantly enough, especially with respect to cycles of 12 periods, to
warrant applying them to an original series to obtain a measure of trend. This is why they
should only be applied to seasonally adjusted series where the calendar related effects have
been removed with specifically designed seasonal filters.

Asymmetric Henderson Moving Averages

The symmetric Henderson moving average can only be directly applied to the historical part
of the data. For example the standard 13 term Henderson can only be applied to monthly data
that is at least 6 observations from the start or end of the data. To provide trend estimates of
the most recent data points a modified or asymmetric moving average must be used.

Trend estimates at the end of the series allow the current direction of the series to be assessed.
Estimates of the current direction of the series are often very important to users of our data
and it is therefore important to provide ‘good’ asymmetric filters. Calculation of the
asymmetric Henderson filters can be generated by a number of different methods which
generate similar results. The four main methods are the Musgrave method, the Minimisation
of the Mean Square Revision method, the Best Linear Unbiased Estimates method, and the
Kenny and Durbin method. A brief description of the Musgrave method is given below. For a
more detailed discussion of asymmetric weights see Doherty (1992) and Findley et. al (1998).

Shiskin et. al (1967) derived the original asymmetric weights for the Henderson moving
average which are used within the X11 package. The weights have been chosen to minimise
the mean square of the revision between the initial and final trend estimate. No
documentation was kept of the original derivation of the weights and Wallis (1982 p.30)
stated

‘The technical manual for the X11 program gives a set of asymmetric filters, ...but
the source of these is somewhat mysterious. Certainly, no reference is given by the
authors of the technical manual.’

Laniel (1985) rediscovered the original criteria for the asymmetric filters used within X11.

The following is based on a mean square revision (MSR) criteria and reproduces the
Henderson Moving Averages as used within the X11 package.
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Similar to (5.6) the asymmetric weights can be calculated using
Az|z+k = Z{'Cz_r Uiyi+i

where r is an indicator determining the length of the asymmetric weights with 0 <r < (k—1),
u; are a set of asymmetric weights, and the data of the series y, is up to time point ¢ = 7 + k..

The revision between two smoothed values for time t using data up to times #+i and 74k,
0 <i< k< mis then defined as

ki) _ ¢ {
re = Anmi — Anek

It is assumed that the trend cycle of the original series follows a straight line and the random
noise component &, follows an independent distribution with variance 2. Thatis y, = at+¢,.
The revision between the final trend estimate calculated using the symmetric filter and an
initial trend estimate can then be expressed as

(k) _ £ A
r; =Apnr — Az|t+k’

r k
= Z Wiyi—j — Z UjYr-j

= =

r k
= 2 WilArten) = X uj(Any+ )

= =

where {w,;:i=-r,...r} are the symmetric Henderson weights and {u;:i=-r,...k} are the
asymmetric Henderson weights.

The mean square revision criteria is defined as
k, k, k,
E{r{*)2} = B2 () + V™)

Laniel (1985) showed that the mean square revision can be written
k r
E{()?} =a3e= 2 ue=)* + 0% 2 (w; - wy)? ©-13)
J=r J=r

where a; and o2 are unknown.

To solve (5.13) the unknown parameter a? can be written in terms of g2 using a noise to
trend ratio. This is typically denoted as I/C. The I/C ratio is defined as the absolute value of
the averages of the first difference of the irregulars divided by the absolute value of the
averages of the first difference of the trend-cycle. That is, under normality of the &,’s:

(&)

Different values for the I/C ratio result in different smoothness properties. For example, for
monthly series the recommended approach is to set I/C=3.5 which gives the standard 13 term

402
T

ne=(

Copyright: Commonwealth of Australia Source: Australian Bureau of Statistics: Time Series Analysis



5.14

Henderson Moving Average (HMA) trend filter and I/C=4.5 gives the standard 23 term HMA
trend filter (Dagum, 1988).

Substituting I/C into (5.13) gives

{042} LNk Y
( o J:(nwozjﬁiwi’) +,-=Z_,(Wi_”")2 (5.14)

Setting I/C and then minimising (5.14) gives the HMA asymmetric weights. The asymmetric
filters derived using this method are the standard Henderson moving averages.

An I/C parameter allows for a wide range of data to be smoothed with the same set of end
weights. However, data not sufficiently close to the global parameter such as very smooth
data, may have higher revision than chosing the optimal I/C parameter. In practice, the 1/C
ratio can be estimated directly from the data. The ABS currently calculates an "optimal" value
using the last few years of data. An alternative method could allow the I/C ratio to change
slowly over time.

The properties of the asymmetric moving averages at the end of the data are only
approximations to the final symmetric moving average. An example of asymmetric weights
for the 13 term Henderson filter are given in Table 5.2.

The asymmetric Henderson trend moving averages do not have all the properties of
symmetric Henderson filters, although their weights do sum to one. For example, while the
Henderson moving averages reproduce polynomials of degree three or less, the asymmetric
filters do not even reproduce straight lines, unless an end weight parameter I/C = 0 is used.

The different properties, in terms of the gain function, of the asymmetric 13 term Henderson

trend moving averages and the symmetric 13 term Henderson moving average can be seen in
Figure 5.12.
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N-12 N-11 N-10 N-9 N-8 N-7 [N-6 |N-5 N4 N3 N2 N-1 N
IN 0 0 0 0 +0.092 10.058 0.012 0.120 0.244 (0.353 0.421
IN-1 0 0 0 +0.043 +0.039 0.002 0.080 p.174 0.254 0.292 0.279
N-2 0 0 0 F0.016 +0.025 [0.003 0.068 [0.149 0.216 0.241 0.215 0.148
N-3 0 0 +0.008 +0.020 0.004 0.066 0.144 0.208 (0.230 0.201 0.130 [0.045
N-4 0 +0.011 +0.022 0.003 0.066 (.146 [0.210 (0.233 0.205 0.135 (0.051 (0.017
N-5 0 F0.016 +0.026 0.001 p.066 [0.147 0.213 0.238 0.211 (0.144 0.061 0.005 0.034
N-6  +0.019 }0.028 0.000 0.066 0.147 .214 0.240 0.214 0.147 0.066 0.000 +0.028 0.019

Table 5.2: Asymmetric weighting patterns (I/C=3.50) for a 13 term symmetric Henderson filter

Gain Function for 13 Term Henderson Surrogates
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Figure 5.12: Gain functions for the asymmetric Henderson trend moving averages for the 13 term
Henderson

In Figure 5.12, it is clear that the surrogates for estimating the trend for the third last to the
last observation of the input series do not dampen the same cycles as the 13 term Henderson.
Indeed the surrogate for the last observation even amplifies the strength of the 12 period
cycle. It can also be seen that the surrogates for the fourth to the sixth last observations are
very similar in their filter properties to the 13 term Henderson. The Henderson surrogates also
produce some time phase shifting, unlike the symmetric Henderson moving averages.

One solution to the end point problem, that may seem appropriate, is using shorter Henderson
trend moving averages towards the end of the series. This approach leads to two problems.
Firstly, smoothed estimates cannot be calculated for the second last or the last observation
because the weighting pattern of a 3 term Henderson is (0.0, 1.0, 0.0) (for the second last
observation) and there is no symmetric Henderson moving average to smooth one
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observation. Secondly, the gain functions above show that different length Henderson moving
averages have different filtering properties and so this approach would not be consistent in
smoothing the input series, particularly with respect to the current movements which are often
scrutinised the most. This could also lead to greater revisions in the trend estimate over time.

A summary of some of the advantages and disadvantages of fixed end weights (standard 1/C
ratio) against end weights designed to be optimal in terms of the I/C ratio (optimally
generated I/C ratio) are given in Table 5.3.

Fixed weights used on | Advantages Disadvantages

all time series Simple to understand and May exhibit noticeable bias in
apply smooth growing times
Comparable over different May not be optimal for a wide
time series range of criteria

Additive over components
Gives reasonable results for a
range of time series

Weights designed for Optimal for a given criteria Much more complicated to
individual time series apply
Bias can be minimised Potential to be affected by

large outliers
Not additive over components

Table 5.3: Advantages and disadvantages of fixed end weights

5.4 Seasonal moving averages (seasonal filters)

Almost all of the data investigated by the ABS have seasonal characteristics. Since the
Henderson moving averages used to trend the data do not eliminate seasonality, the data must
be seasonally adjusted first. The X11 approach to seasonal adjustment attempts to remove all
of the cyclical power near the seasonal harmonics. This can be achieved by using filters
designed to remove seasonal harmonics.

Typically ABS data is seasonally reanalysed every 12 months. Under this approach seasonal
adjustment is performed once a year and seasonal factors are calculated for the next year and
are kept fixed over a 12 month period. As with the trend at the ends of the data the seasonally
adjusted data changes from what is initially published to what is finally published. In most
cases it takes longer for the seasonally adjusted data to become final. An alternative to
seasonally adjusting the data every 12 months is seasonally adjusting the data every month.
This issue is further discussed in Section 6.6.

Symmetric seasonal moving averages

A seasonal filter has weights which are applied to the same month over time. An example of a
seasonal filter would be

(1/3,0,0,0,0,0,0,0,0,0,0,0,1/3,0,0,0,0,0,0,0,0,0,0,0, 1/3)
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where, for example, the weight 1/3 is applied to consecutive Januarys.

Within X11 a range of seasonal filters are available to choose from. These are a weighted
3-term moving average (ma) S3x;, weighted 5-term ma Ss3.3, weighted 7-term ma S3xs and a
weighted 11-term ma S3x9. The gain functions for the S3x3, S3xs, and S3x9 term symmetric
seasonal filters are produced in Figures 5.13, 5.14, and 5.15 respectively. The choice of the
seasonal filter will depend on how the seasonal terms change over time. For example, the
greater the movement in the seasonal component, the shorter the filter choice i.e. a S3x; or a
S3x3 .

Dagum et. al (1996) gives a general form for the symmetric seasonal filters as
S3(B) = (3k) "1 B~1PUHEDRI(] + B12 + B24)(1 + ... + B®D12)

fork=1,3,5,9.
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Figure 5.13: Gain Function for S3.3 Symmetric Seasonal Filter
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Figure 5.14: Gain Function for S3x5 Symmetric Seasonal Filter
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Figure 5.15: Gain Function for S3x9 Symmetric Seasonal Filter
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Asymmetric seasonal moving averages
Asymmetric weights used for the seasonal factors obtained from the seasonal-irregular (SI's)
factors have not been extensively documented. As with the asymmetric Henderson weights
the asymmetric seasonal weights depend on implicit forecasts of the Seasonal-Irregular
component.
3x1 Term Asymmetric Weights
The symmetric weights for a 3 X 1 term symmetric seasonal filter are
1 1
( 3% 3> )

The asymmetric weights used within X11 are given in Shiskin et. al (1967), and are included
below in Table 5.4.

L»Jl»—t

Factor for year Weight given S-I ratios in year

N-2 N-1 N
N 0 0.39 0.61
N-1 0.333 0.333 0.333

Table 5.4: Published X11 Asymmetric Weights for S3x|

These seem to have been generated using the same system (Musgrave) as used for the
Henderson weights with an I/C ratio of 1.5. Using this approach gives the weights in Table

5.5.
Factor for year Weight given S-I ratios in year
N-2 N-1 N
N 0 0.389 0.61
N-1 0.333 0.333 0.333

Table 5.5: Henderson Asymmetric Weights with I/C Ratio of 1.5

3x3 Term Asymmetric Weights

The symmetric weights for a 3 X 3 term symmetric seasonal filter are

9°92929>9

The published asymmetric weights are shown below in Table 5.6.

Factor for Weight given S-I ratios in year

year N-4 N-3 N-2 N-1 N

N 0 0 0.185 0.407 0.407
N-1 0 0.111 0.259 0.37 0.259
N-2 0.111 0.222 0.333 0.222 0.111

Table 5.6: Published Asymmetric Weights for 533
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The weights shown in Table 5.6 can be derived in the following way. Let the data be given by

Xn-3, Xn2, Xv-1, XN X nrt, Xveo

Then let
Xy = %(XN—Z +Xn-1+Xw)
Xn2 = XN

Then the N — 1 weights are

1 2

9

-3
~ 27

9
7

9
10

9

27 27

The N weights are

1 3

9 9

9
_5 11 11
=27 Xn2+ 7 XN+ 7 Xy

This gives the weights which are shown in Table 5.7.

o XNz + ;XN—Z + iXN—1 + o XN+ %(%

X3+ 55 Xvo+ 55 Xno +

XN

(Xn—2 + Xn-1 + Xn))

oXn-2 + ;XN—I + o XNt %(%(XN—z + X1 +Xy)) + %XN—I

Factor for Weight given S-I ratios in year

year N-4 N-3 N-2 N-1

N 0 0 0.185 0.407 0.407
N-1 0 0.111 0.259 0.370 0.259
N-2 0.111 0.222 0.333 0.222 0.111

Table 5.7: Derived Asymmetric Weights for S3x3

The gain function for the S3x3 asymmetric seasonal filter (row N in Table 5.7) is shown in

Figure 5.16.
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Figure 5.16: Gain Function for S3x3 Asymmetric Seasonal Filter (factor year N - row one in Table 5.7)

3 x5 Term Asymmetric Weights

The symmetric weights for a 3 X 5 term symmetric seasonal filter are

15> 15> 15> 15> 15> 15> 15

The 3 x 5 seasonal factors are the most commonly used. They have forecasts of one and two
steps ahead of the average of the last four SI’s and three steps ahead of the third last SI.

Factor Weight given S-I ratios in year
for year

N-6 N-5 N—-4 N-3 N-2 N-1
N 0 0 0 0.150 0.283 0.283 0.283
N-1 0 0 0.067 0.183 0.250 0.250 0.250
N-2 0 0.067 0.133 0.217 0.217 0.217 0.150
N-3 0.067 0.133 0.200 0.200 0.200 0.133 0.067

Table 5.8: Published Asymmetric Weights for S35
The weights in Table 5.8 can be derived as follows. Let the data be

Xn-5,Xn-4, Xn-3, Xn2, Xn-1, XN, Xni1, Xvi2, X3
Xy = %(XN—3 + Xn2 + Xn1 + Xw)

Xy = %(XN—3 + Xn2 + Xn1 + Xw)

Xy = %(XN—3 + Xn2 + Xn1 + Xw)

X3 = Xn-2
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Using similar algebra to the 3 x 3 case gives the following weights

4 8 13 13 13 9

N-2 60> 602 60° 60° 60° 60
4 11 15 15 15
N-1 60° 60° 60° 60° 60
9 17 17 17
N e—— c—— e—— e—

60> 60° 60> 60

The final weights are shown in Table 5.9.

Factor Weight given S-I ratios in year

foryear | N-6 N-5 N—-4 N-3 N-2 N-1

N 0 0 0 0.150 0.283 0.283 0.283
N-1 0 0 0.067 0.183 0.250 0.250 0.250
N-2 0 0.067 0.133 0.217 0.217 0.217 0.150
N-3 0.067 0.133 0.200 0.200 0.200 0.133 0.067

Table 5.9: Derived Asymmetric Weights for S 3xs

The gain function for the S3xs asymmetric seasonal filter (row N — 1 in Table 5.9) is shown in
Figure 5.17.
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Figure 5.17: Gain Function for S3xs Asymmetric Seasonal Filter (factor year N — 1 row two in Table 5.7)

Copyright: Commonwealth of Australia Source: Australian Bureau of Statistics: Time Series Analysis



3% 9 Term Asymmetric Weights

The symmetric weights for a 3 X9 term seasonal filter are

The published weights appear in Table 5.10.

5.23

Factor |Weight given S-I ratios in year

for

year N-10|N-9 |[N-8 |[N-7 |[N-6 |[N-5 |[N-4 |[N-3 |[N-2 |[N-1 |N

N 0 0 0 0 0 ]0.051[0.112]0.173]0.197 | 0.221 | 0.246
N-1 0 0 0 0 [0.028 0.092 |0.144 | 0.160 | 0.176 | 0.192 | 0.208
N-2 0 0 0 10.032(0.079[0.123 | 0.133 | 0.143 | 0.154 | 0.163 | 0.173
N-3 0 0 ]0.034]0.075]0.1130.117 | 0.123 | 0.128 | 0.132 | 0.137 | 0.141
N-4 0 ]0.034/0.0730.1110.113]0.114 | 0.116 | 0.117 | 0.118 | 0.120 | 0.084
N-5 0.03710.074 1 0.111 ] 0.111 | 0.111 | 0.111 | 0.111 ] 0.111 | 0.111 | 0.074 | 0.037

Table 5.10 Published Asymmetric Weights for S3x9

The computation of the asymmetric weights for the 3 X9 is a mystery. They do not appear to
allow for simple forecasting weights such as those used for the 3x3 and 3x5. A close
approximation can be made by using the formula for the Henderson weights with an 1/C ratio
of about 9.8. This gives the weights shown below in Table 5.11. They have been rounded to 3
decimal places but not scaled to sum to 1. The "fit" is good except at the smallest weights.

Factor |Weight given S-I ratios in year

for

year N-10|N-9 |[N-8 |[N-7 |[N-6 |[N-5 |[N-4 |[N-3 |[N-2 |[N-1 |N

N 0 0 0 0 0 10.050[0.112]0.173 | 0.197 | 0.222 | 0.246
N-1 0 0 0 0 ]0.035]0.089|0.142|0.159 [ 0.175 | 0.192 | 0.208
N-2 0 0 0 ]0.031[0.077 | 0.124 | 0.134 | 0.144 | 0.154 | 0.163 | 0.173
N-3 0 0 ]0.032]0.073]0.114{0.119 | 0.123 | 0.128 | 0.132 | 0.137 | 0.141
N-4 0 ]0.035[0.073]0.112]0.113 | 0.114 [ 0.115|0.117 | 0.118 | 0.119 | 0.084
N-5 0.037 10.074 | 0.111 | 0.111 | 0.111 | 0.111 | 0.111 | 0.111 | 0.111 | 0.074 | 0.037

Table 5.11: Henderson approximation to the Published Asymmetric Weights for S3x9

The gain function for the S3x9 asymmetric seasonal filter (row N —3 in Table 5.11) is shown
in Figure 5.18.
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Figure 5.18: Gain Function for S3y9 Term Asymmetric Seasonal Filter (for factor year N — 3)
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6 Issues with seasonal adjustment

The seasonal adjustment packages used by government statistical agencies around the world
vary. The Office of National Statistics (ONS), Statistics Canada, the US Bureau of the Census
(USBC) and the US Bureau of Labour Statistics (BLS) all use the X11ARIMA or
X12ARIMA software package, even though some of the methodological options they choose
are different. In the ABS, the standard X11 software has been enhanced with an expert system
to produce the SEASABS (SEASonal analysis ABS standard) program.

This chapter examines some of the issues faced by the time series analyst and how they are
generally approached within the ABS.

6.1 Moving holidays

Moving holidays are holidays that occur at seasonal frequencies but their exact timing shifts
systematically each year. Examples of moving holidays include Easter and Chinese New
Year. Both holidays follow the cycles of the moon and always occur exactly once a year.
Easter generally falls in April but can also fall in late March and affects series such as
Tourism because people frequently holiday in this period. Chinese New Year mostly occurs
in February but can also occur in January and affects the Overseas Arrivals and Departures
series from some Asian countries as people in these countries plan their travel to fit in with
holidays in their own country versus holidays in their destination country. Both of these
effects have a consistent magnitude and direction (see Figure 6.1).

No.

15000
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; % % % % % % % % % % %
1989 90 91 92 93 94 95 96 97 98 99 00
Seasonally adjusted

Figure 6.1: Hong Kong Short Term Arrivals - Chinese New Year Effect
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Unlike Chinese New Year, Easter may effect quarterly ABS series. The influence of these
moving holidays can include the loss of working days and changes in economic and social
behavior. Such effects are usually country specific, making it difficult to build them into
standard routines about the holiday. Each of these effects is estimated by regression
techniques and can be corrected for in X11 by using the associated prior correction factors.

A moving holiday effect may also affect a month or quarter other than the one in which the
holiday falls if the holiday occurs at either the very beginning or very end of the month or
quarter. This is called a proximity effect. Proximity charts can be used to check for the
existence, if any, of this effect.

An investigation into the likely magnitude of an Easter proximity effect in Australian Total
Retail Turnover was conducted by the Australian Bureau of Statistics in April 1999 (see
Leung, McLaren, Zhang (1999)). It was found that the magnitude of the Easter proximity
effect for March and April seasonally adjusted estimates was no greater than 1.5%. To
illustrate this a concurrent seasonal adjustment was performed using SEASABS on the
original Australia Total Retail Turnover series. The proximity chart in Figure 6.2 shows how
the irregulars from this concurrent seasonal adjustment for both March and April, from 1980
onwards, are distributed about one as the date of Easter Sunday changes. An Easter
proximity effect is observed as the March and April irregular values for 1983, 1988, 1994 and
1999 are not distributed around one. If there was no Easter proximity effect the values would
be evenly distributed about one. The labels indicate which year the irregular was observed.
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Figure 6.2: Easter Proximity chart for original Australia Total Retail Turnover - truncated span:
January 1980 to April 1999 inclusive.
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6.2 Trading day

Trading day is a calendar related effect often found in economic time series. This effect is
related to the number each day of the week occurs in any given month. As different days of
the week often have different levels of activity in economic populations, the recorded figure
for any month may include the effect of having certain extra days.

One way to think of the trading day effect is to consider each month of the year as a block of
four sets of each type of day plus one, two or three extra days. If the level of activity in each
type of day is constant through the years, the only difference between the same months in
different years will be due to the activity on the extra days. For example, the number of
working days in successive May’s is shown below.

May 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001
Working | 23 21 21 22 23 23 22 21 21 23 23
days

This effect is best seen in an example.

May 1993 had an extra Saturday, Sunday and Monday whilst May 1994 had an extra Sunday,
Monday and Tuesday. Suppose the level of activity in this particular population was: 10 units
produced on Mondays and Fridays, 20 units produced on Tuesday through Thursday and no
activity on weekends.

This means that in a week of seven days, activity would be 10 + 20 + 20 + 20 + 10 units = 80
units. In May 1993, the extra Saturday, Sunday and Monday would yield an extra 0+0+10
units =10 units of activity, giving a total for May 1993 of (80 units/week x 4 weeks) + 10
units = 330 units. In May 1994, the extra Sunday, Monday and Tuesday would yield an extra
0 + 10 + 20 units = 30 units of activity, giving a total for May 1994 of (80 units/week x 4
weeks) + 30 units = 350 units. The difference between the two years for the same month is
350 - 330 units = 20 units, which can be solely attributed to the type of extra days in that
month in those years.

There are 7 types of 31 day months, 7 types of 30 day months, 7 types of 29 day months and 1
type of 28 day months. There is a 28 year cycle for the types of months because a leap year
comes every four years and the extra day in February in each leap year is different. This
means that there are four years times seven different types of days which gives a cycle of 28
years. The existence and isolation of a trading day affect is difficult because the analyst needs
around seven years of data to have enough examples of the different types of months. Trading
day is usually not analysed in series with less than five years of data.

Trading day effects need to be accounted for because they lead to apparent changes in level of
activity when the underlying level is unchanged. In the example above, the actual level of
activity in May for 1993 and 1994 was the same, yet the recorded figures indicate increased
activity in 1994. The way to allow for this affect is to assign to each day of the week a weight,
relative to the level of activity of that day. For a population with equal levels of activity on the
five weekdays and no activity on weekends, assign weights of 1.4 to the weekdays and 0.0 to
the weekend days. If a multiplicative model is used, the daily weights sum to 7 and the
default weights are 1.0 for each day. If an additive model is used, the daily weights sum to O.
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The trading day weights sum to 7 (multiplicative) and O (additive) because trading day is, in
theory, a conceptually neutral process.

When daily weights have been assigned, each month in a time series is given a weight in
proportion to the value obtained by summing the daily weights for that month. These monthly
weights are divided by either 30.4735 (365.25/12), the average number of days in a month (if
a length of month correction is applied - see below) or by the number of days in each month,
i.e., 31, 30 or 29.

In practice, the appropriate daily weights are not obvious. In some cases the weights are
contrary to what anecdotal evidence would suggest. For example, in banking industry series,
one would expect weights for Saturday and Sunday to be 0.0 or low, as most banks are shut
on weekends. However, daily weights derived from regression may be significantly high on
Saturday because of the nature of the bank's reporting practices. It is always important to
remember that weights derived from a regression analysis use only the information in the data
itself, regardless of the population the data is supposed to represent. Often, the nature of this
information is heavily dependent on reporting and surveying practices exhibited by both the
ABS and the population being measured. It is therefore more accurate to use the statistically
derived weights than any derived from general knowledge.

Determining trading day

To determine if a trading day effect is present in a time series, a regression analysis can be
performed. This regression is done using the monthly irregular values calculated by X11 and
regressing these values against a calendar that contains the number of times each day of the
week occurs in each particular month.

The results of the regression analysis give trading day weights for each day of the week and
reflect the level of activity for that day.

See Section 7.2 for further details on the calculation of trading day within X11. Ladiray and
Quenneville (2001) also describe the calculation of trading day in greater detail.

Trading day for quarterly series

There are three types of quarters in a year. ABS naming conventions have the type of division
of months into quarters identified by the name of the last month in that quarter. Hence, March
Quarter refers to a year where the first quarter is January, February and March, February
Quarter refers to a year where the first quarter is December, January and February and
January Quarter refers to a year where the first quarter is November, December, January.

Quarters have different numbers of days. For example, years which have March Quarters and
February Quarters only have quarters with 90, 91 or 92 days. Years with January Quarters
have quarters with 89, 90 or 92 days. Hence, the maximum difference in the number of days
between quarters is 3 in a year with a January Quarter. If the activity on these three extra days
is significant, a trading day effect may be identified.
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Typically, March Quarter, June Quarter, September Quarter and December Quarter are used
most often in the ABS. These quarters have a maximum difference of 2 days. Because of this,
a trading day effect is rarely seen in quarterly ABS time series.

Length of month effect

The different months of the year have different lengths: 28, 29, 30 or 31 days. Hence, if June
and July have the same levels of activity on the respective days of the week, the total level of
activity for July may still be greater than that for June purely because July has an extra day.
This effect is called a length of month effect. If a series does not have a trading day
correction, then the length of month effect will be accounted for automatically in the seasonal
factors. If the series does have a trading day correction, the length of month can still be
accounted for in the seasonal factors or alternatively in the trading day factors.

If a length of month correction is included in the prior factors, then it is assumed that this
correction will be appropriate and hence the monthly weights obtained in the trading day
regression routine will be divided by the average number of days in a month (30.4735).
Alternatively, to allow for the length of month in the trading day correction, the monthly
weights are divided by the number of days in the respective month. The structure of the length
of month correction that appears in the prior factors is a weight for each month depending on
the number of days in that month (and hence the factor is one of four different choices).

There can be other systematic calendar related variations included in the seasonal component.
For example, Public Service paydays occur as a function of the calendar with most months
having exactly two paydays, but occasionally a month may have three paydays. These
systematic variations are not strictly seasonal events because they do not occur at the seasonal
frequencies but we do attempt to estimate them as part of this component. The occurrence of
payday variations can affect series such as finance data.

6.3 Extremes (outliers)

In the ABS, detection of extremes is conducted by both X11 during an adjustment and by the
time series analyst.

Extremes need to be detected and corrected because this process improves the estimation of
the three main time series components: seasonal, irregular and trend. In particular, extremes
are corrected such that they do not distort the trend path. This component is intended as a
measure of longer term growth, so it is not desirable for it to respond to a one-off irregular
movement.

During an adjustment, X11 runs algorithms to look for and correct extreme values in the
irregular component. These algorithms run independently of any prior extreme modifications
that the user may supply. The detection works by calculating the standard deviations of
moving five year periods of the irregular component. The irregular value at the centre of each
five year window is compared with a confidence band between 0.0 and 9.9 for these standard
deviations. The standard confidence band is 0.0 - 1.5 (indicating not an extreme), 1.5 - 2.5
(indicating near-extreme value) and 2.5 + (indicating extreme value). The confidence band
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can be modified by the user. Irregular values found in these confidence bands are given
weights of 0.0, between 0.0 and 100.0 and 100.0 respectively. X11 calculates a replacement
value if the weight is less than 100.0. Irregular values are automatically replaced by their
modified values.

Detecting Extremes

X11 is not always successful at detecting unusual values and because of this, the analyst
should always check for extremes after the adjustment is run. Doing this involves using charts
and numerical diagnostics, as well as any anecdotal information that may be available.

The SI chart for the extreme value in Figure 6.3 is shown in Figure 6.4. The extreme value is
at 4th quarter 1994. The extreme SI is clearly visible, as it is approximately 70% above the
trend seasonality as shown by the factor path. Note that the shoulder values for the extreme,
in the 1st and 3rd quarters, also appear extreme. This is because the trend has been distorted
upwards towards the 4th quarter value and hence the shoulder values appear to be unusually
low compared to the trend.
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Figure 6.3: Quarterly Imports of Industrial Transport Equipment - Seasonally Adjusted and
Trend
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Figure 6.4: SI chart for Figure 7.3 - 1st quarter 1986 to 1st quarter 1996

Note, however, that the seasonal factor path in Figure 6.4 does not seem to have been
particularly distorted by the 4th quarter extreme.

Figure 6.6 shows an SI chart where the factor path is distorted by a extreme value in April
1992 (the corresponding adjusted and trend series are shown in Figure 6.5).
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Figure 6.5: Receival of Taxable Wool by Brokers, Queensland - Seasonally Adjusted and Trend
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Figure 6.6: SI chart for Figure 7.5 - July 1978 to June 1996

What is apparent in adjusted and trend charts for both these examples above is that the trend
is being greatly distorted by the extreme. This is the main reason to correct an extreme. There
are several issues to consider before an extreme value can be corrected:

- 1s the extreme historical?

- 1s the extreme at the current end?

- do we have a reason for the extreme behaviour in terms of the population it is
measuring?

- how large is the extreme?

If the extreme is historical, i.e. occurring at the earlier part of the series, then the analyst may
not bother correcting it, especially if the data for that period and surrounding periods is not
being published. The reason why the surrounding data span must be considered is that as
moving averages are used to estimate the seasonal and trend components, the modification of
one value impacts on the estimates of the values around it. How long the impact lasts depends
on the length of moving average being used. For example, if a 7 term Henderson is used to
estimate the trend component, any trend value (not at either end of the series) is a function of
itself and the three values surrounding it on either side. For more information see Chapter 5.

If the extreme is at the current end, and in particular, if it occurs in the span of data that is
published, then special consideration needs to be applied to the decision to modify it. Also, as
current end estimates of the components of a time series use moving averages with surrogate
weights, these estimates are subject to revision, as are the original values themselves.
Correcting an extreme can have a large impact in this instance. Finally, a current end extreme
may in fact represent the start of a trend break. For this reason the analyst will usually wait
for at least two additional data points before correcting for an extreme. Usually, an analyst
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will not modify an extreme at the current end unless they have a substantial reason for the
behaviour.

Querying an extreme

The extremes in Figures 6.7 - 6.9 occurred for the following reasons:

- June 1986 - Census

- July 1986 - Census

- July 1987 - Federal Election
- September 1988 - Referendum

- August 1991 - Census

- March 1993 - Federal Election

They are suitable reasons because they detail the timing, nature and the behaviour that these
events would bring about, namely an increase in employment in the public sector around the
country. This matches the behaviour that is observed in the time series. Extremes are usually
only corrected if anecdotal evidence such as this is supplied (commonly by the subject matter
area).
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Figure 6.7: Monthly Number of wage and salary earners in Commonwealth Government sector -
Original and Seasonally Adjusted
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Figure 6.8: Monthly Number of wage and salary earners in Commonwealth Government sector -
Seasonally Adjusted and Trend
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Figure 6.9: Seasonal-Irregular (SI) Chart for Figure 6.8

There are instances where extremes are corrected without a reason being given. For example,
if a consistent moving holiday affect is observed, such as Easter. However, the analyst still
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needs to ensure that such a holiday having an affect makes sense. Chinese New Year effects
would be expected in overseas travel series because of increased movement due to
celebrations, but it would not make much sense in a series about milk production.

Extremes are sometimes also modified without a reason if they are historical or so large that
the quality of the adjustment would be greatly reduced if they were left uncorrected.
However, the analyst should always make every effort to determine if there is a reason behind
the observed behaviour, and think carefully before modifying an extreme for which no
evidence is available.

Calculation of a correction factor

If the extreme is modified, the analyst needs to work out a correction factor. Sometimes an
indication of this is supplied by the subject matter area. For example, in the case of Australian
Building Approvals (Figure 6.10), one of the extremes is caused by approval of the Olympic
Stadium and this value is available from the subject matter area. If this happens, the value
supplied is taken away from the current original value to have an idea of what the raw data
would have looked like without the irregular.

$m

3000 —

2500

2000 NN m “)

1500

1990 91 92 93 94 95 96 97 98 99 00
Trend

Original

Figure 6.10: Monthly Value of Building and Construction Approvals - Original and Trend

Usually no such figure is available and the analyst has to use personal judgement to calculate
a correction. The way this is usually done is as follows:

l. Make an estimate of the seasonally adjusted value at the time point of the
extreme in question (call this sa)

2. Make an estimate of the where the trend value should be at the time point of
the extreme in question (call this )

3. Derive the factor k, where k = sal/t.
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This method works because, in the multiplicative case, dividing the seasonally adjusted
component by the trend leaves the irregular component.

Applying the above method for the extreme shown in Figure 6.11, estimates for the
seasonally adjusted and trend values are 52,500 and 13,750 respectively. This gives k =3.82.
This factor was used to produce the modified extreme in Figure 6.12.
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Figure 6.11: Receival of Taxable Wool by Brokers,Victoria - Without an Extreme Correction
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Figure 6.12: Receival of Taxable Wool by Brokers,Victoria - With an Extreme Correction
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Another method is to estimate the seasonal (using SI charts) and desired trend components
and then remove these from the original series to obtain an estimate of the correction factor.

For an additive series, the method of calculating a factor is the same as described above,
except the trend value is subtracted from the adjusted value as opposed to divided from.

6.4 Designing a survey for trend or seasonally adjusted estimates
What do users really want?

Users of official statistics are often interested in the current direction of a time series. Most of
the repeated sample surveys currently in use have been designed to give good estimates of the
level and/or movements in the original and seasonally adjusted series. The month-to-month
movement of the original and seasonally adjusted series essentially gives a rough indication
of the current direction, or the trend, of the series. However, the current direction of the series
can be more appropriately assessed by specifically designing the repeated survey to detect the
trend. The ABS prefers users to focus on trend estimates rather than original or seasonally
adjusted estimates.

Repeated sample surveys are usually based on samples that have a degree of overlap from
period. This is done to reduce costs and the standard errors associated with the estimates of
change between two consecutive time periods. For example, Binder and Hidiroglou (1988) p.
187 state:

"The level of overlap between occasions will depend on the objectives of the survey, which
include measures of level and change, as well as operational constraints ..."

The issue of then designing a repeated sample survey for trend estimates is a natural question.

The sample design, in particular the rotation pattern, can be chosen by (at least) two different
criteria:

* minimising the sampling variance of an estimate (this could be the original/seasonally
adjusted/trend)

* reducing the revisions of an estimate (this could be the original/seasonally
adjusted/trend)

The issue of designing repeated surveys for seasonally adjusted and trend estimates has been

considered by Sutcliffe and Lee (1995), McLaren (1999), Bell (1999). A brief summary of
some of the main issues and results from McLaren (1999) are given below.
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Background: Rotation patterns

Rotation patterns vary in terms of the number of times a unit, for example a dwelling in the
case of a household survey, is included in the survey and the time interval between inclusions.

The sample overlap at different lags for a range of rotation patterns are as follows:

in-for-m: This pattern leads to an overlap of 1 —s/m between samples s months apart, for
s=1,...,m—1 and no overlap for months m or more apart. Unless m exceeds 12 there will be
no overlap for months a year apart. Australia uses m =8 and Canada uses m =6 for their
monthly population labour force survey

1-2-1(m): This pattern is repeated until dwellings are included for a total of m times. This
leads to no sample overlap between months one or two months apart, but an overlap of
1 —s/(3m) for s =3,6,...,3m. The overlap between months a year apart is 1 —4/m provided m
is 5 or more.

4-8-4(8): This leads to an overlap of 1 —s/4 for months s months apart, s =1,2,3. For s =12
the overlap factor is 4/8. In fact the overlap is 4/8 —Is—12I/8 for s=9,...,15. There is no
overlap for s =4, ...8.

2-10-2(4): This leads to an overlap of 1/2 for adjacent months. For s = 12 the overlap factor is
also 1/2.

These rotation patterns are special cases of a general class of rotation patterns in which
selected dwellings are included for a consecutive months, removed from the survey for b
months and then included again for a further a months. The pattern is repeated so that
dwellings are included for a total of m occasions. These rotation patterns can be denoted
a—b—a(m). Setting b = 0 gives an in-for-m rotation pattern.

Designing a survey for sampling variance

Consider y; = (V4-r, ..., y1+r) as a vector of length n =2r+ 1 centred at time ¢. Let y, be a time
series of survey estimates and Y, be the true unknown values.

Using sampling to obtain a time series means that the value obtained at each time period has a
component of variability attributed to the sampling error. That is,

=Y +e
For many series the sampling error will be a major source of variability. The use of rotation

patterns means that the sampling error component will have a complex structure and be
correlated over time.

The sampling variance of the original series is denoted by
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Vp(yt) =V(lYy)

It is the sampling variance that is affected by an alteration the sample design. This is because
the rotation pattern used in the survey will affect the structure of the sampling error, which
will then affect the sampling variance.

We can consider how the rotation patterns impact on filtered values, such as the seasonally
adjusted and trend estimates. Consider a linear filter which is used to obtain filtered values
from y; by applying a vector of weights w;, to give the filtered value at time ¢

S = w;yt

The sampling variance of the filtered value at time ¢ is

Vpo(fyo) = W;V()’t|Yz)Wz

which is conditional on the values of the true unknown series, Y;, and the filter w, depends on
the time period for which the value f(y,) refers. The filter w, could represent an original
estimate where w;=(0,...0,1,0,...,0), a seasonally adjusted estimate where w; is an
appropriate choice, or a trend estimate where w; is an appropriate choice. The filter w; could
represent an initial estimate or a final estimate of either the seasonally adjusted or trend.

To assess the impact of different rotation patterns and filters, consider filters designed for use
at the end of the series. A summary of the effect of different rotation patterns on the level of
seasonally adjusted and trend estimates and also the one month difference between seasonally
adjusted and trend estimates is shown in Figure 6.13 (reproduced from McLaren, 1999). The
different rotation patterns considered are: 4-8-4(8) (used in the United States for the Labour
Force Survey), 2-10-2(4) (used in Japan for the Labour Force Survey), 2-2-2(8), 1-2-1(5),
1-2-1(8), 1-1-1(6) and a range of in-for-m (m=1 to 30) rotation patterns.
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Figure 6.13: Ratio of the sampling variance to the variance of the original series at the end for chosen
rotation patterns for a standard X11 for the Australian Labor Force Series employment where
A=4-8-4(8), B=2-10-2(4), C=2-2-2(8), D=1-2-1(5), H=1-2-1(8), J=1-1-1(6). (reproduced from McLaren,
1999).

The key point from Figure 6.13 is that a low variance is good. Figure 6.13 shows that the
in-for-m rotation patterns (given by the solid line) are sensible if the one month change in
seasonally adjusted estimates are the key statistic to be analysed. If the trend is the key
statistic to be analysed, then quite different rotation patterns (1-2-1(m) type) should then be
used. Australia uses an in-for-8 rotation pattern for the Australian Monthly Labour Force
survey.

Designing a survey for revision of trend estimates

Given that users are interested in trend estimates, an alternative criteria which can be assessed
i1s minimising the revisions of trend estimates.

Revision of an estimate occurs when an initial estimate is made based on the current data
available. When additional information becomes available this leads to a new estimate for
each previous time period which is now based on this additional information. The difference
between the preliminary estimate and the new estimate for a given time period is the revision.
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Users of trend estimates observe and are concerned about the revision of trend estimates,
particularly as data up to the next three time points are added to the series. One approach to
reducing the revision of trend estimates at the end of a series is to use trend filters which
minimise the difference between trend estimates at two different time points. One example of
this approach is to use ARIMA models to predict values at the end of a series. An alternative
approach is to change the survey design through changing the rotation pattern and see what
effect this has on the revision of estimates of the trend.

The revision between a trend estimate made at time ¢ using information up to time ¢, Ty, and
a trend estimate made at time 7+ k using information up to time ¢, T4+« can be calculated as

Py N i !
Toe— Thrrk = Y1 — gy ik
!
= (a;t - at|t+k) Vi+k

= by ek (6.1)

where y.« is a vector of observed values ending k terms on from ¢, the filter a, is a trend
filter, aj, = (a},,0,...,0)' contains k zeros and by = aj, — am is the trend revision filter. In
practice, there will become a point where the degree of revision will be negligible and a
minimal difference will be observed. This usually occurs after the addition of three time
points ie. between a trend estimate f,m and trend estimates up to the historical trend, 7"ﬂoo.

Conditional on the Population: Sampling Variance

Consider the mean square error of the revision between two trend estimates at time ¢ with true
unknown values Y, as fixed. Conditioning on the vector Y, = (Y1, ..., Y1ix) gives the revision
mean square error

;z+k = Ep { (?tlt - /Tzlz+k)2 }
~ A ~ A~ 2
= V(T — Toewt) + {Ep(Ttll - Tl|t+k)}

2
= b;It+kVP(y k)b + {Ep(b kY t+k)}

= b Vo) + (D i Y ) (6.2)
where b = aj, — agymwith aj, = (ay,, 0, ...0)" having k zeros and assuming E,(y,) = Y.

The first term in (6.2) can be thought of as a design component as the sampling variance
Vp(yirk) = V(Y 1x). The sampling variance will depend on the correlation structure of the
series of sample estimates y, and hence can be affected by the rotation pattern used. The
second term in (6.2) can be thought of as a signal component and is dependent on the filters
chosen and the true underlying series. The second term does not depend on the sampling
variance and hence is independent of the rotation pattern and other features of the sample
design, such as sample size. The second term acts as a level shift and will reduce the impact
of using different rotation patterns.
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The magnitude of the signal component relative to the design component is important when
looking at the mean square error of the revision. The relative contribution of each term will
depend on the sample size. As sample size decreases the variance increases, so the
contribution of the variance component becomes more important.

Figure 6.14 (reproduced from McLaren, 1999) shows how the revision of trend estimates at
different lags, for different points in the series, is affected by the rotation pattern. The results
have been calculated for periods in the original series which are approximately level and also
periods in the original series which are changing rapidly, ie. A turning point. This is now
referred to as a “changing series”.
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Figure 6.14. Ratio of the mean square error of the revision for chosen rotation patterns divided by the
mean square error of the revision for an independent design under standard X11 for the variable
employment were A=4-8-4(8), B=2-10-2(4), C=2-2-2(8), D=1-1-1(5), H=1-2-1(8), J=1-2-1(5). (reproduced
from McLaren, 1999).

Figures 6.14-2a) and 6.14-2c) show that for the one month revision in either a level or a
changing series, the currently used rotation patterns perform well in reducing the variance of
the one month revision. In contrast, Figures 6.14-2b) and 6.14-2d) show that for a level series
the 1-2-1(m) type rotation patterns actually outperform the currently used rotation patterns for
reducing the variance of the three month revision. This is also true for a changing series
(Figure 6.14-2d)) but not to the same extent. Remember, Australia uses an in-for-8 rotation
pattern for the Australian Monthly Labour Force survey.
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See McLaren (1999) for results for the case where the variance is unconditional on the
population values.

Summary: The key points

Users needs should be considered when designing a repeated sample survey. The choice of
rotation pattern used in the repeated sample survey should depend on the estimates that the
users consider the most important.

There is a trade off between designing a repeated sample survey for seasonally adjusted and
trend estimates. A good rotation pattern for minimising the variance of trend estimates may
not be good for the variance of the seasonally adjusted.

6.5 Indirect (aggregate) versus Direct (disaggregate)

There are two ways to seasonally adjust time series that are related in an aggregative way. The
first method is called the indirect or aggregative method while the second method is the direct
or disaggregate method. That is

1. seasonally adjust all of the lower component series and sum up all of the
seasonally adjusted values and consider this the seasonally adjusted series
for the total (indirect (aggregate))

2. sum all of the original data from all the lower series to form a total and
seasonally adjust this total directly (direct (disaggregate))

For a detailed discussion on the issues of aggregation see Cannon (2000).

For example, consider a set of series for which there is original data for each state in Australia
and that all of the original data for a set of series sums to the Australian total. After each state
is adjusted directly (disaggregatively) in the normal way then the Australian total can be
seasonally adjusted either indirectly or directly. In this case a number of different variables
could be used to sum to an Australian total:

* by state

* Male/female

* age groups

* education levels

* type of good manufactured
¢ working full time/part time
* type of dwelling approved

It is also possible for the total to be defined as being the sum of only some of the components.
For example, the ANZ Job Advertisements are derived by counting the number of job
vacancy advertisements for a month in the major newspapers of each capital city in Australia
except Darwin. This yields an average number of job advertisements per week. An Australian
total for this series is published, by summing the values for the 7 capital cities in scope. While
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this is labelled Australian Job Advertisements, it does not cover all of Australia, as it omits
Darwin, non-capital cities, rural areas and smaller newspapers. In this instance, the Australia
total is adjusted aggregatively. A similar example is the Number of Chickens Slaughtered
series. The Australia level series is the sum of the series for New South Wales, Victoria,
Queensland, South Australia and Western Australia. The other states are not included because
their population is too small and their values are confidentialised. The Australian level series
is adjusted aggregatively as the sum of the adjusted series for the above states.

Intuitively, it may appear that seasonally adjusting series at a component level will lead to
improvements in the adjustment as more information about the data at hand is available. For
example, one or more components may be non-seasonal, while other components could have
reasonably significant seasonal patterns. In instances such as these, various problems may be
encountered in performing a direct analysis of the total level series and treatment of these
problems may be better handled at a component level. Empirical studies suggest this is not
necessarily so. In some cases, disaggregation of an aggregate series into component series
yields component series which are subject to substantially higher levels of irregularity than
the aggregate series. This could lead to a greater margin of error in the estimation of the
seasonal components.

If the behaviour of the various component series is significantly different a direct seasonal
adjustment of the total is not recommended. If the components have very similar behaviour,
then using the same method of analysis on the components and the total is appropriate. In
these instances, differences between indirect and direct adjustments are often negligible. By
chance, the aggregate series may exhibit similar abnormal movements in the same period of
consecutive years, suggesting a possible seasonal break. However, disaggregation may reveal
that these are irregular movements which affect different components. Similarly, component
series may exhibit extremes which cancel each other out in the aggregate series. Ideally,
corrections or specific options that are applied to one or more component series are applied to
their corresponding aggregate series.

Often it is desirable by users that the total seasonally adjusted series is equal to the sum of the
seasonally adjusted components. In this instance, the analyst has two possible approaches:
seasonally adjust the series aggregatively or adjust the series disaggregatively and apportion
any differences between the total and the sum of the components across those components.
This latter method is used for Australian Total Retail Turnover for which Australia level is
split by state and industry. The existence of differences between the aggregate series and the
components when using indirect adjustment highlights that seasonal adjustment is an
estimation process. One reason the sum of component adjusted series may not equal a direct
adjustment of the aggregate series is related to span. Finer level components often have
shorter spans than total series as particular levels of disaggregation may be requested as time
goes on. The longer the span of a series, the more information it contains, especially with
regard to features such as seasonal patterns and trading day. Hence we often get more
accurate estimates of behaviour for total series than components, leading to discrepancies in
aggregated totals.
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When to Use Aggregative/Disaggregative

There are several factors that need to be considered when deciding between an aggregative
and a disaggregative adjustment.

The first thing to check before using an indirect adjustment is that the original total series is
derived as the sum of the original series components. For example, if there are component
series for age groups 15-19 and 20-39 only, but the total series is for all age groups, then the
total must be adjusted directly. If data for a population was available for both males and
females, then since these components cover the population, the total series could be adjusted
indirectly. However, care should be taken in circumstances where the original components are
obtained in a different manner to the original totals.

Component series may not be available for many reasons. In some cases they are too volatile
or their population too small. For example, many series for the smaller states of Australia:
Tasmania, Northern Territory and ACT, contain very low levels of activity or even zero
values. Series with zero values would require additive or psuedo-additive adjustment and this
will not be compatible with other states which are adjusted multiplicatively. It may also be the
case that finer level data is not available at the same time as the aggregate series. The analyst
needs to determine whether the effort involved in producing disaggregate series is outweighed
by any gains in the estimation process.

Methods of aggregation

Aggregating series can be done using seasonally adjusted or trend series but not combined
seasonal factors. That is, it is not wise to sum the combined seasonal factors for each industry
series to produce a combined seasonal factor for total across all industries. The reason behind
this can be shown in a simplified algebraic manner. Suppose we have three time series: O, O,
O"which fit under the simple multiplicative model

O=SXTxI=0/S=TxI
O =8S'xT xI' =0'IS' =T xI
0"=0+0'

Then the method of calculating the seasonally adjusted series for the original series O" is

(§)+(5)-(*5")

( : ) ( ,)
S S/ S S/

which is using the sum of the seasonal factors to obtain the seasonally adjusted series for the
original series O". Hence, using this latter method is not robust, especially not in a world
where time series do not usually fit a simple model.
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6.6 Forward Factors versus Concurrent Adjustment

There are two approaches to deriving seasonal and trading day factors.

1. Forward factors rely on an annual analysis of the latest available data to determine
seasonal and trading day factors that will be applied in the forthcoming 4 or 12 months
(depending if the series is quarterly or monthly). For example for a monthly series under the
forward factor method, data up to the June 1999 reference month is used to calculate seasonal
and trading day factors which will be used to obtain seasonally adjusted estimates for the July
1999 to June 2000 period. Data up to June 2000 is used to calculate seasonal and trading day
factors for application to the July 2000 to June 2001 period, and so on. This method is known
as a forward factor adjustment.

2. Concurrent adjustment uses the data available at each reference period to re-estimate
seasonal and trading day factors. Under this method data for the current month are used in
estimating seasonal and trading day factors for the current and previous months. This method
continually fine tunes the estimates whenever new data becomes available. For example, data
up to the July 2000 reference month are used in calculating seasonal and trading day factors
which will be used to obtain seasonally adjusted estimates for the period up to July 2000, data
up to and including the August reference month will be used to obtain seasonally adjusted
estimates up to August 2000, and so on. This method is known as a concurrent adjustment.

The concurrent adjustment method is a relatively computationally intensive seasonal
adjustment method compared with the forward factor method. However technological
advances have now made it possible to apply the concurrent adjustment method with little
operational burden or cost and at considerable speed (ABS, 1999b). Under concurrent
adjustment, the seasonal factors will also be more responsive to underlying dynamic changes
than forward factors.

Using forward factors

For a monthly series, it is recommended by TSA in the ABS that a preliminary analysis is
performed when 11 months of data exists from the last analysis. This allows any problems
with the series which have arisen in the last 11 months to be corrected to aid the timeliness of
the results from the annual analysis. An annual analysis should then be performed when an
entire extra year of data is available. The factors calculated at this time are consistent with a
forward factor adjustment.

When analysing quarterly series using forward factor adjustment, a preliminary analysis is not
required since three months exists between publication dates for the analysis to take place.

Using concurrent adjustment

The reanalysis cycle for concurrent adjustment consists of an annual analysis and then
monthly adjustments where the seasonality and moving trading day are re-estimated by
including the most recent month's data. Following from this, a new set of forward factors is
calculated and the appropriate month's factor is applied.
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For example, consider a monthly series whose annual analysis is performed in June each year.
The first step is to perform the annual analysis, calculate a set of forward factors and apply
the June factor to the June data. When the July data becomes available, a new set of factors is
calculated on the data up to and including July. In this instance only the seasonal component
and the moving trading day are re-estimated, the remainder of the parameters remain as they
were calculated during the June analysis. This means that structural breaks and the length of
the moving averages are not examined between annual analyses. The July factor from the new
set of forward factors is applied. In August the process is repeated with a new set of
adjustment factors calculated and the appropriate one applied, only this time on the data up to
and including August. Therefore, this process causes the adjustment to be more closely
related to the available data.

For a quarterly series the cycle remains almost identical to that for a monthly series with an
annual analysis and then concurrent adjustments each quarter as the new data becomes
available.

Emergency seasonal adjustment procedures for concurrent adjustment

On the rare occasion when a set of concurrent adjustment factors are deemed to be
inappropriate for use because they have been distorted by some recent or current behavior in
the original series, it is sometimes necessary to perform a concurrent analysis which
automatically reassesses the parameters. A concurrent adjustment is then used using the
settings derived at the concurrent analysis.

Another option is to revert to a set of seasonal adjustment factors from an earlier period,
specified by the analyst. In SEASABS only the set of forward factors calculated during the
annual analysis are saved to the series knowledge for concurrent adjustment, the factors
applied at each TS Update are overwritten each month/quarter. Therefore, the analyst cannot
simply return to a saved version of the forward factors from an earlier period. Instead it is
necessary to alter the end date of the series so that the last month/quarter is that from which
the analyst wishes to use the factors. Next a concurrent adjustment must be performed and
forced to an annual analysis. Finally the analyst must change the Adjustment Type within the
TS Update Facility Build menu so that the series is updated using forward factor adjustment
rather than concurrent for the next TS Update. This set of previous forward factors can be
applied until it is considered suitable to revert to concurrent seasonal adjustment, or until an
annual analysis is performed, whichever occurs sooner.
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7 The mysterious X11

The ratio-to-moving average technique of seasonal adjustment was originally devised in the
1920s by Frederick R. Macaulay, at the National Bureau of Economic Research USA.
Refinements of this method, and completely new methods, have since been developed.
However, it was not until the advent of the electronic computer that relatively sophisticated
methods could be applied to large numbers of series. Since then there has been a steady
stream of seasonal adjustment techniques developed, including regression techniques, spectral
analysis, the Box-Jenkins (1970) approach and X11 (Shiskin et. al 1967). X11 was developed
by the US Bureau of the Census and began operation in the United States in 1965. It was soon
adopted by the ABS and has been used with improvements specific to the ABS, ever since.

The X11 method is based on the standard “ratio to moving average” seasonal adjustment
procedure of Macaulay (1931). This consists of the following steps:

1. Estimate the trend by a moving average
2. Remove the trend leaving a seasonal and irregular component
3. Estimate the seasonal component using moving averages.

Seasonality cannot be identified until the trend is known and an estimate of the trend cannot
be found until the series has been seasonally adjusted. Hence an iterative approach is needed.

The first version of X11 (Census I) was developed in 1954 on the first commercial computer
ever available. One of the first electronic seasonal adjustments was shown to the President of
the United States, the story told was:

“I have an appointment with President Eisenhower at 3 o’clock, and would like
to show him the seasonally adjusted series for female unemployment. You have
that wonderful machine, and can do it in a minute. How about delivering it in
time for my appointment?”

I said, “Okay, okay.”

But you know what’s involved. First, I had to gather the data, have them
punched, and, finally, we all had to pray that the machine would work. You
know, believe it or not, we were able to go through all those steps that morning.
It may be the only time in history that everything worked right. Murphy’s law in
reverse: Everything that could go wrong went right. The data was delivered
about 2 o’clock that afternoon. From there, President Eisenhower was
completely sold on the method and strongly supported it.

7.1 A simple seasonal adjustment approach

An example of a simple seasonally adjusted process is as follows. The series is first smoothed
by a moving average. If there are p seasons in a year (p = 12 monthly data, p = 4 for quarterly
data), and p is even, then the initial trend estimate is given by

~ pr2 _ _ _
7= % wo., t=(P/2)+1,n—(p/2) -1
J==p!
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where w; = 1/p for 0, %1, ..., £(1/(2p) — 1) and w_; = w; = 1/(2p) for j = £p/2. This is equivalent
to a 2 X p moving average. For example, setting p = 12 gives the 2 X 12 moving average

~ 6 —
Tt: .Z6Wjol—j t—7,...,l’l—6
=

where the weights w; are given by 1/24,1/12,...,1/12,1/24.

The residuals O, —T; are then averaged over each season for a number of years to give
seasonal factors S, for h=1,...,s. Subtracting these from the original series gives the
seasonally adjusted series SA;=0O;—S;. More elaborate procedures such as XI11 are
extensions of this basic procedure.

7.2 Outline of the steps involved within X11

A brief description of the X11 procedure follows. The standard model option used within
X11 is the multiplicative model. A multiplicative model is assumed, although options for an
additive model are given by addition/subtraction rather than division/multiplication. (For a
detailed description of all the steps within X11 and X11-ARIMA see Ladiray and
Quenneville, 2001).

While X11 is an adhoc procedure using local smoothing methods, it could be thought of as a
form of non-parametric smoothing. The advantage over the model based methods is that the
use of local filters ensure that data points sufficiently far from the end of the series are only
slightly adjusted, if at all, when new data points are added. One disadvantage is the high
variability of the most recent data points. Some people argue that the lack of a specific model
for the series is also disadvantageous, although some people may argue the opposite!

The basic steps are outlined below, these correspond to the “D” tables in Section 7.3.

Step One: Initial estimate of trend

Step one involves a first estimate of the trend component. This is done by computing ratios
between the original series O; and a centered 12-term moving average (2x 12 ma) of the
original series to give an estimate of the trend 7,. This gives first estimates of the seasonal
and irregular components (S, - ;). Six values at the end of the series are lost due to using

symmetric filters.
(9 [LeSet)as,
T, T,

A centered 12-term moving average is used for a preliminary estimate of the trend cycle. This
will remove the seasonal pattern (see Figure 4.4 and 4.5). The main limitation of this filter is
that it misses peaks and troughs of short cycles, i.e., two to three years. Irregular components
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are comprised of short cycles and some of these short cycles will still remain in the smoothed
data. Cycles with periods of five years or more will pass through this filter with a small
reduction in amplitude. It has been shown that most economic time series have long
trend-cycle variations of approximately 40 months or more. So this is a good filter for a
preliminary estimation of the trend cycle as it includes the longer term cycles.

Step Two: Preliminary estimate of the seasonal component

A preliminary estimate of the seasonal component is then found by applying a weighted seven
term average (3 X 5ma) to each month separately of the S, -1,’s from step 1. The application
of the 3 X 5ma is specific to SEASABS (see Chapter 8 for more information on SEASABS).
The default moving average used within X11 at this step is the 3 X 3ma. Figures 5.13 and 5.14
show the gain function for the symmetric 3 X3ma and 3 X 5ma. These type of moving
averages enable estimation of linearly moving seasonality and can approximate gradual
seasonal changes that follow non-linear patterns over the whole range of the series. The
seasonal components are adjusted to add to 12 approximately for a multiplicative model (0
for an additive model) over a 12 month period by dividing them by a centered moving
average (extended at the ends with the last known value). The missing values from the
seasonal component at each end are computed by repeating the value in the previous year.

Step Three: Preliminary estimate of the adjusted data

A preliminary seasonally adjusted series is found by dividing the second estimate of the
seasonal from the previous step into the original series

(%J=(MJ=T¢L
St St

Step Four: A better estimate of the trend

A 9,13 or 23 term Henderson moving average is applied to the seasonally adjusted values,
depending on the volatility of the series, to give an improved estimate of the trend cycle (see
Section 5.3). The resulting trend cycle series is divided into the original series to give a
second estimate of the seasonal and irregular components. At the end of the series asymmetric
moving averages are used, hence there are no missing values at the end as in step 1.

[%J _ [TA#J Sl
T; T;

Step Five: Final estimate of the seasonal component

A final estimate of the seasonal component is then found by applying a weighted seven term
average (3x5ma) to each month separately of the S,-I,’s from step 4. The seasonal
components are adjusted to add to 12 approximately for a multiplicative model (0 for an
additive model) over a 12 month period by dividing them by a centered moving average
(extended at the ends with the last known value).
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Step Six: Final estimate of the adjusted data

A final seasonally adjusted series is found by dividing the second estimate of the seasonal
from the previous step into the original series

[Q_J:[SA#}T !
S S,

Step Seven: Final estimate of the trend

A 9, 13 or 23 term Henderson moving average is applied to the seasonally adjusted series,
which has been modified for extreme values. This gives an improved estimate of the trend
cycle.

Step Eight: Final estimate of the irregular component

The irregulars can then be estimated by dividing the trend estimates into the seasonally
adjusted data.
(Tt/\. ItJ zlt
T,

The “B” tables and “C” tables in X11 follow a slightly different iteration to the “D” tables
and are designed to estimate outliers and other components such as easter and trading day.

Different computations are used for different models within X11. These are the
multiplicative, additive and pseudo-additive models. These differences are indicated in
Section 7.3. There are small differences in the steps in X11 between various versions.
Different versions include SAS proc x11, SEASABS, X11, X11ARIMA, X11ARIMA-88,
X12ARIMA, and various other commercial and academic packages.

There are three major outlier steps in X11.

Outlier step One: Weights used for outlier modification

Calculate a moving five year standard deviation, o, of the estimates of the irregular
components (/;). The standard deviation used for each of the 12 monthly values of I, for a
given year is found from a block of five years centered on that year. It is assumed that the
mean of the irregulars is 1 (0 for the additive model).

A test is then constructed to determine extreme values. A weight between 0 and 1 is assigned
to each irregular value using

|It—ﬂ| <150 w=l
1.50 <|I,—u| <2.50 w:Z.S—‘(L%ﬂ]‘
|[t—,u| >2.50 w=0

Copyright: Commonwealth of Australia Source: Australian Bureau of Statistics: Time Series Analysis



7.5

Any values beyond 2.5¢ are classed as extreme and are given a zero weight.
Outlier step Two: Modified SI values

Extreme values are then replaced as follows. For the first two years ¢ is set to ¢ for the third
year, and o for the last two years is set to ¢ for the third last year. To replace an extreme S; - I;
values, the weighted mean of five numbers is taken: the value multiplied by its weight and the
two nearest S, - I; values each side with corresponding months having w = 1. If there are not
enough S, - I, values each side and at the ends of the data special rules are used.

Qutlier step Three: Modified original values

The original data is modified for outliers using
OM[ = 0[(1 + W[(I[ — 1))/11

X11 has fairly robust outlier techniques. However, because X11 is an iterative procedure, if
an outlier is too outrageous X11 will break down.

Computation of trading day factors

Let
X:1 be the number of Mondays in month ¢
X:» be the number of Tuesdays in month ¢

X:7 be the number of Sundays in month ¢

Then a trading day factor (without a length of month correction) in month ¢ with daily
activity weights d, ..., d7 is given by

7
td[ = (21 d] 'XIJ)/lomt
J=

where lom;, is the length of the month. A daily weight greater than 1 signifies high activity,
less than 1 low activity and equal to 1 neutral activity.

Computation of the trading day factors is done by regression. The estimation of the regression
coefficients excludes D - I values identified as potential extremes.

Let D - I be the trading day times the irregular modified for outliers. These are transformed so
that the daily activity weights sum to zero. The transform is

D'I;:lomt'D'It_ZOm[

Set

A

Xj=X:j—X;7 for t=1,..,nandj=1,...,6

where 7 is the number of observations in the series. Let b; = d; — 1and then
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where e; is D - I'. Solving gives

b=

Then

[ DIV ] [ X Xioe Xis [ b1 ] [er ]
D-I’z X2,1 Xz,z. .. X2,6 b; ()
L D'I/n J X\vn,l Xn,z. .. X\vnﬁ Wbe 1 Le, |

7.6

[b1 by ... be]l' =X'X)'X'e

b7=—(b1+by+....+ bg)

To estimate the daily activity weights the rank of the design matrix X only needs to be greater
than or equal to six. If this occurs, the daily activity weights are computed as

dj =1 +bj fOI'j =1,...,7

The trading day factors are then computed as

7
td[ = (21 d] 'XIJ)/lomt
J=

7.3 Output from X11

Legend:

oP
oT
SA

M

D
TDL
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= Original series

= Prior factors

= Original series prior corrected

= Original series modified for trading day
= Adjusted

SAM =

Modified adjusted
Trend
Irregular (residual)

= Modified irregular

Length of month factors (trading day)

= Trading day factors
=TD-L

SI =
SIM =
= Seasonal factors

Seasonal - Irregular factors
Modified seasonal - irregular factors

Source: Australian Bureau of Statistics: Time Series Analysis



7.7

The X11 tables shown below are for a monthly X11 with moving trading day, 3 X 5 seasonal
filter and a 13 term Henderson filter. The standard monthly X11 refers to the use of a 3 x 3
seasonal filter.

The “A” tables include prior modifications to the original data such as very large outliers,

abrupt changes in the trend and/or seasonal pattern, and other special corrections.

Table | Multiplicative Additive Pseudo-additive
Al @] 0 0

A2 P P P

A3 O/P O-P

A4 not used not used not used

A4B L NA L

The “B” tables are designed to estimate outliers and trading day.

Table | Multiplicative Additive Pseudo-additive
B1 OP=0/(P-L) OP=0-P OP=0/(P-L)
B2 T=2x12)(OP) T=2x12)(OP) T=(12x12)(OP)
Note: 6 observations lost at each end Note: 6 observations lost at each end Note: 6 observations lost at each end
B3 SI=OPIT SI=0P-T SI=OPIT
B4 SI replacement values (*) | SI replacement values (*) | SI replacement values (*)
B5 S =3 x5)(SIM) S =3 x5)(SIM) S=3x5)(SIM)
Note: S is also level corrected. S is Note: S is also level corrected. S is Note: S is also level corrected. S is
also extended at the ends also extended at the ends also extended at the ends
B6 SA = OPIS SA=0P-S SA=0P-T-(S-1)
B7 T=(13H)(SA) T=(13H)(SA) T=(13H)(SA)
B8 SI=OPIT SI=0P-T SI=OPIT
B9 SI replacement values (*) | SI replacement values (*) | SI replacement values (*)
B10 S =3 x5)(SIM) S =3 x5)(SIM) S=3x5)(SIM)
Note: S is also level corrected. Note: S is also level corrected. Note: 3 is also level corrected.
Bl11 SA = OP/S SA=0P-S SA=0P-T-(S-1)
B12 not used not used not used
B13 I1=SA/T I=SA-T I1=SAIT
B14 I excluded from tday I excluded from tday I excluded from tday
B15 Daily trading day weights | Daily trading day weights | Daily trading day weights
B16 TD TD TD
B17 W (%) W (%) W (%)
B18 TDL=TD-L TDL=TD TDL=TD-L(?)
B19 OT =OP/TDL OT=0P-TDL OT =OP/TDL
Notes: (*) is the weighted average of the nearest two full weight S values on each side
plus the actual SI by its weight. Special rules are used if the program cannot
find two full weight values on one side.
(**)  refers to a double iteration of a 5 year moving sigma limit on the irregular.
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The “C” tables are designed to estimate outliers and trading day.

7.8

Table | Multiplicative Additive Pseudo-additive
Cl1 OM=0T-(W-(I-1)+ 1/l OM=0T+1-(W- 1) OM=0T+{I-1)-(W-1)-T
C2 T=2x12)(OM) T=2x12)(OM) T=02x12)(0OM)
Note: 6 observations lost at each end Note: 6 observations lost at each end Note: 6 observations lost at each end
C3 not used not used not used
C4 SI=O0MIT SI=OM-T S=0MIT
SI replacement values (*) | SI replacement values (*) | SI replacement values (*)
C5 S = (3 x 5)(SIM) S = (3 x 5)(SIM) S = (3 x 5)(SIM)
Note: S is also level corrected. S is Note: S is also level corrected. S is Note: S is also level corrected. S is
also extended at the ends also extended at the ends also extended at the ends
C6 SA = OM/S SA=0M-S SA=OM-T-(S-1)
C7 T=(13H)(SA) T=(13H)(SA) T=(13H)(SA)
C8 not used not used not used
C9 SI=O0MIT SI=0M-T S=0MIT
SI replacement values (*) | SI replacement values (*) | SI replacement values (*)
CI0 | S=(3x5)(SIM) S = (3 x 5)(SIM) S = (3 x 5)(SIM)
Note: S is also level corrected. Note: S is also level corrected. Note: S is also level corrected.
Cl1 SAM = OM/S SAM =O0OM - S SAM=0M-T-(S—-1)
Ci12 not used not used not used
C13 IM = SAMIT IM =SAM —-T IM = SAMIT
Cl4 I excluded from tday I excluded from tday I excluded from tday
C15 Daily trading day weights | Daily trading day weights | Daily trading day weights
Cl16B | TD TD TD
C17 W (%) W () W ()
C18 TDL=TD-L TDL =TD TDL=TD L (?)
C19 OT = OP/TDL OT=0P-TDL OT =OP/TDL
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The “D” tables provide final estimates of all components.

Table | Multiplicative Additive Pseudo-additive
D1 OM=0T-(W-(I-1)+1)/I OM = 0T+[.(W_ 1) OM=0T+{I-1)-(W-1)-T
D2 T=02x12)(OM) T=02x12)(OM) T=02x12)(OM)

Note: 6 observations lost at each end Note: 6 observations lost at each end Note: 6 observations lost at each end
D3 not used not used not used
D4 SI=O0OM|T SI=OM-T S=0M|T

SI replacement values SI replacement values SI replacement values
D5 S = (3 x 5)(SIM) S = (3 x 5)(SIM) S = (3 x 5)(SIM)

Note: S is also level corrected. S is Note: S is also level corrected. S is Note: S is also level corrected. S is

also extended at the ends also extended at the ends also extended at the ends
D6 SA = 0/S SA=0-S SA=0-T-(S-1)
D7 T=(13H)(SA) T=(13H)(SA) T=(13H)(SA)
D8 SI=0TI/T SI=0T-T SI=0T/T
D9 SI=O0M|IT SI=OM-T S=0MIT

SI replacement values SI replacement values SI replacement values
DI0O | S=(3x5)(SIM) S = (3 x 5)(SIM) S = (3 x 5)(SIM)

Note: S is also level corrected. Note: S is also level corrected. Note: S is also level corrected.
D11 SA = OP/S SA=0P-§ SA=0P-T-(S-1)
D12 | T=(13H)(OMJS) T=(13H)(OM - S) T=(13H(OM~T-(S— 1))
D13 1=SA/T I=SA-T I1=SAIT

7.4 Beyond X11?

Another method of time series analysis employed by some statistical agencies, such as the US
Bureau of the Census, is to use ARIMA modelling of the data (see Findley et. al (1998) for
more details). The use of ARIMA modelling on the original series helps reduce revisions in
the seasonally adjusted series by extending the original series so that the effect of the end
point problem is reduced. Kenny and Durbin (1982) discuss this issue in more detail.

Experience at the ABS has shown that generally ARIMA models do not seem to fit Australian
data very well. This may be related to the increased variability in Australian data that comes
with smaller sample sizes. Indeed Statistics Canada state that if a series does not fit one of the
models, it may be "so much contaminated by the irregulars that its systematic movement is
unidentifiable"! (see Dagum (1980), p8).

ARIMA models can also be used to prior adjusted an original series for effects such as trading
day, easter, additive outliers and level shifts. This approach is used within X12-ARIMA as
part of the reg-ARIMA framework.

Research into the use of ARIMA models with Australian data is an ongoing research topic at
the ABS.
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7.5 Using X11

A version of X11 exists in SAS which can be used to try X11. Simple SAS coding to do this
might be (it is assumed that an input text file exists of the form month year observation):

data 2;

infile "c:\test\last.dis";
input month year orig;
run;

data f1;

set f2;

date=mdy(month, 1,year);
tme=year+(2*month-1)/24;
output;

run;

proc x11 data=f1;
var orig;
monthly date=date printout=standard tdregr=adjust
trendma=13;
macurves JAN="3X5"' FEB="3X5' MAR="3X5"' APR="3X5' MAY="3X5"' JUN="3X5'
JUL="3X5"' AUG="3X5' SEP="3X5' OCT='3X5' NOV="3X5"' DEC="3X5";
output out=factors bl=orig d8=si d11=adj d12=trend d10=seas
cl7=weight dl3=irreg;
title 'dummy series';
run;

proc print data=factors;
run;

Other versions such as X12ARIMA by the United States Bureau of the Census could be used
at home by downloading it from their web site. The program is freeware, in fact, they
encourage people to use it.

The ABS' version of X11 is SEASABS. To use this you would need to obtain a stand alone
version that could be installed on your hard drive.
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8 SEASABS

8.1 Introduction

SEASABS (SEASonal Analysis, ABS standards) is a "knowledge-based" seasonal analysis
and adjustment system used by the ABS to seasonally adjusted time series data. SEASABS is
one part of the ABS time series processing system. Other components include the ABSDB
(ABS information warehouse), FAME (Forecasting, Analysis and Modelling Environment -
which is used to store and manipulate time series data) and PAS (Publishing Assembly
System).

8.2 SEASABS

SEASABS performs four major functions:

e Datareview

* Seasonal reanalysis of time series
* Investigation of time series

¢ Upholding ABS quality standards

SEASABS allows expert and client use of the X11 method (which has been enhanced
significantly by the ABS) of seasonal adjustment, i.e. a user does not need detailed knowledge
of the X11 package to arrive at an acceptable seasonal adjustment of a time series. An
intelligent interface guides the user through the seasonal analysis process, making appropriate
choices of parameters and adjustment methods. SEASABS keeps records of the previous
analysis of a series so it can compare X11 diagnostics over time and "knows" what
parameters and prior factors led to the acceptable adjustment at the last analysis.

SEASABS is a knowledge based system for analysis of time series. It is used mainly by Time

Series Analysis Section to undertake reanalysis of time series datasets compiled by the subject

matter areas of the ABS. SEASABS creates seasonal adjustment factors for the series and
gives the user an indication of the suitability of these factors. It identifies and corrects trend
and seasonal breaks as well as extreme values, inserts trading day factors if necessary,

chooses appropriate moving averages for the computation of trends and seasonal factors, and
allows for moving holiday corrections.

The history of changes to the parameters and prior factors can be viewed. They are contained
in the ‘series knowledge’ component of SEASABS and are stored in the ABSDB. Graphs of
original, seasonally adjusted, trend, seasonal/irregular, X11 outputs and toolset facilities are
available.

SEASABS is available in both an expert and client version. The main difference between the

two versions is that the client version does not allow you to change any parameters. This
means that apart from the start and end dates of the series and whether or not dialogue is
displayed, no feature of the series can be changed. Any corrections for structural breaks or
other problems must be calculated by SEASABS and can not be manually inputted. As a
result, in the client version, prior correction factors can be viewed, but not changed.
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The following systems are also used in conjunction with SEASABS.

8.3 Time Series Toolkit

The Time Series Toolkit (TST) provides a time series view of data held in ABSDB
macrodatasets. It allows time series functionality on the ABSDB, allowing users to tabulate,
graph and manipulate time series in their native format as opposed to a multidimensional
tabular format. The TST cannot alter data stored on the ABSDB. The results can be printed
or saved for use with other products.

8.4 Time Series Update

This system creates (updates) seasonally adjusted and trend data. It is used mainly by subject
matter areas in applying seasonal factors (estimated by Time Series Analysis section) to the
original data to derive seasonally adjusted and trend data. The updated data results in the
seasonally adjusted and trend data being available to the same end date as the original series.

This is done for both the forward factor adjustment and concurrent adjustment. This
functionality is performed within the TS Update facility which is separate from SEASABS.

The subject matter areas typically do not have user access to SEASABS.

If the series is adjusted using the forward factor adjustment approach, a set of factors for the
following year will have been calculated and stored. In this instance, a time series update is

performed when the next month/quarter of data becomes available which automatically

selects the stored factor corresponding to the new data and applies it (as well as the factors for
all preceding months/quarters) to calculate the new seasonally adjusted, trend series and
sensitivity analysis.

For example, consider a series which is adjusted using the forward factor method and has
been analysed to February 1999. When the March 1999 data becomes available, running Time
Series Update will cause the March factor derived at the February analysis to be applied to the
March original data. The factors from February 1999 back to the beginning of the series will
also be applied to their corresponding original data points to create a seasonally adjusted
series for the entire data span. This series is then trended.

If the series is adjusted using the concurrent adjustment approach only the first of the factors
calculated at the annual analysis is ever applied. Then, when the next month/quarter of data

becomes available and the Time Series Update is performed, the seasonal adjustment

procedure determined at the last analysis is reapplied. This will update the factors for

previous months/quarters to incorporate the information of the latest data point. Together
with these new factors, an updated seasonally adjusted series, trend and sensitivity analysis

are then calculated and saved to the ABSDB.
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8.5 Upholding ABS quality standards

Seasonally adjusted or trend data must be cleared by the Time Series Analysis area prior to
release. Clearance procedures ensure that data quality standards are observed as closely as
possible. Data may be considered as "cleared" when combined or seasonal adjustment factors
are provided to the client area and all necessary prior corrections have been created.

SEASABS forms a key part of the clearance process in that it will only allow combined
adjustment factors to be used in those circumstances where ABS quality standards have been
met.

In using SEASABS, the client area is responsible for:

e performing preliminary or concurrent reanalysis

* performing initial investigations into data not currently seasonally adjusted or trended
* reviewing data for release or client servicing purposes

* running the monthly or quarterly time series update

* releasing the trend and seasonally adjusted data

* handling routine client queries about the trend and seasonally adjusted data

In using SEASABS, the Time Series Analysis Section is responsible for:

* finalising all reanalyses

* finalising investigations into data not previously seasonally adjusted or trended

* quality assurance

* data clearance

* troubleshooting problems with the data

* handling more complex client queries about the trend and seasonally adjusted data or
methods of adjustment

8.6 The basic steps in running SEASABS

1. Open a group. A group is a set of series which may have some common
characteristics and which, for operational convenience, are handled as a block.

2. Open or insert a series, via the File menu.

3. Set the X11 options (only start, end date, file name and format are mandatory).

4. Select a Run option from the Seasonal Analysis menu.

SEASABS will execute X11 and diagnose the results, iterating until it cannot improve the
adjustment further.

The Seasonally adjusted series, the ABS trend series and the combined adjustment factors can
be saved via the File Menu.

Results can be viewed either graphically or in tabular form using Graphs or Analysis Output
respectively. Further information on the adjustment is available using Tools. If an analysis
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has been performed, information on the various hypotheses tested can be examined using the
Diagnosis menu.

There are various factors which need to be considered to help select the most appropriate
method of adjustment. It is necessary to decide if forward factors are required or if it is only
necessary to re-adjust the series every month/quarter. Further considerations are whether the
series can be best adjusted by a multiplicative, additive or pseudo-additive model and how the
series has been previously adjusted (if this is not the first adjustment).

SEASABS offers four analysis choices: Preliminary Analysis, Annual Analysis, Research
Analysis and Concurrent Adjustment.

(1) A preliminary analysis is recommended for examining a series prior to the entire new
year of data being available so that, any problems with the series can begin to be
identified before the annual analysis. This type of analysis does not result in a new set
of forward factors.

(i1) An annual analysis is recommended if a benchmark run for the series has already been
created and an extra year's data from this benchmark run exists. It is possible to
perform an annual analysis on a new series without a benchmark run in which case
SEASABS will perform two runs, one on a shorter span of data to create a benchmark
and one on the entire span of data for the annual analysis.

(i) A research analysis is recommended if the series is new or if the user wishes to
investigate any problems encountered with the analysis or experiment with methods of
handling these problems. The results of a research analysis are not recorded unless
the run is forced to annual or the series knowledge is updated.

(iv) A concurrent adjustment is also useful for investigating the behavior of a series. An
adjustment of this kind does not test the various hypotheses inherent in SEASABS
and so will not modify extremes or detect seasonal and trend breaks. Since these
hypotheses are not tested this run is relatively fast so that basic results can be viewed
almost immediately. Currently, this option must be employed if the series is to be
additively or pseudo-additively adjusted.

As well as choosing the analysis option most appropriate for the current needs of the user, it
is necessary for a processing procedure to be selected. SEASABS is equipped with two
adjustment options: Forward Factor adjustment and Concurrent adjustment. Both methods
begin with an annual analysis which is performed once per year. This annual analysis updates
the series knowledge on the ABSDB and these updates are then set for the following year. In
both cases a set of forward factors is calculated and stored on the ABSDB.

8.7 SEASABS Demo

Ask a friendly Time Series Analyst (email: timeseries @abs.gov.au) for an example of how
SEASABS works in practice.
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9 Exercises

Ql.

9.1

Is it better to apply a short term moving average or a longer term moving average if
we want to smooth an adjusted series? Why?

Q2.

For each of the three types of time series models (additive, multiplicative and
pseudo-additive) can you derive an expression for the vertical distance between the
trend and the seasonally adjusted series? Can you interpret this quantity in words?

The vertical distance between the trend and seasonally adjusted series can easily be
seen in a graph such as the one below

2000

0 T Y Y Y W A A O Y A A Y Y A N N

1996

1997

1998

1999 2000 2001

— SA — Trend

Q3.  Below are some hypothetical time series. Decide which series are either:

A)
B)
®)
D)
E)

additive
multiplicative
pseudo-additive
all of the above
no idea

Give reasons for your choice.
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Q4. Englebert worked at the Australian Bureau of Statistics and did not live very far away
from work. One day Englebert’s car broke down. It broke down very badly and had to be
totally rebuilt over a period of one month. He now had to walk to work. Being a keen and
enthusiastic time series person, he kept a record of the time it took him to walk to and from
work over a period of one month.

The two datasets are:

Walking to work:
Monday Tuesday Wednesday | Thursday Friday
Week 1 31.34 23.19 28.86 19.04 20.05
Week 2 30.49 25.33 26.20 23.10 25.59
Week 3 29.10 24.50 29.01 22.50 24.52
Week 4 32.07 29.43 30.20 21.22
Walking home from work:
Monday Tuesday Wednesday | Thursday Friday
Week 1 25.00 24.30 24.00 31.00 23.50
Week 2 23.20 22.50 22.10 33.40 22.30
Week 3 21.00 21.20 20.50 29.10 20.20
Week 4 20.00 19.10 19.40 45.50 19.20

From visual inspection of the data (unless you want to plot them!) describe what is
going on.

In particular, you should consider aspects like:

Q5.

fl@)=2% 3 pu(@)e ™
k=—c0

- are there any problems with either of the datasets?
- what factors would you consider if you were analysing the datasets?
- describe what the components of the series are doing.

Given a process Z; which is the sum of two independent stationary process X; and Y,

Zt:

X +Y,

Derive the spectra for Z; in terms of the spectra of X; and Y.
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The spectra of a stationary process X; with an absolutely summable autocovariance
sequence Yxx 1s given by
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Q6.

Compute and plot the gain for first differencing twice (1 — B)??
This has weights wo=1,w_1 =2, w =1

Simplify your answer using the identities
cos(2w) cos(w) + sin(2w) sin(w) = cos(w)
cos(2w) = 2 cos?(w) — 1

cos2(w) +sin’(w)) =1

For a monthly time series what does second differencing do to the amplitude of a 2 month
cycle?

Q7.

Show analytically (difficult) or numerically that the phase shift, in periods, for a 12
term uncentered moving average with equal weights is given by

D(w)/w =-5.5, for we(0, /6)

Given business cycles are usually defined in the range 18 months to 5 years, what
does the above result mean for detecting turning points with this moving average?

The following formulas may be of use

rg cos(—jx) = 0.5 % (1 — cos(x) — cos(nx) + cos((n — 1)x))/(1 — cos(x))

g sin(—jx) = —0.5 * (sin(x) — sin(nx) + sin((n — 1)x))/(1 — cos(x))

If you are using this uncentred 12 term moving average what does the above result
imply for detecting turning points in the data?

Q8.

X11 is a commonly used seasonal adjustment procedure. Referring to the attached
edited output and assuming the default model for X11 answer the following:

(1) What is the default model used for X117

(i1) [lustrate that the decomposition chosen in part (i) holds, by choosing a row
from the output below.

(iii)  Are there any “unusual values” in the original series?

(iv)  What should the sum of the seasonal components add up to over what period?
Show this using the output below.
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Date

JAN99
FEB99
MAR99
APR99
MAY99
JUN99
JUL99
AUG99
SEP99
OCT99
NOV99
DEC99
JANOO

Qo.

Q10.

Orig
441 .
448.
415.
408.
416.
409.
387.
394.
407.
378.
359.
435.
433.

OO U UTOYWOoO oYUl

(ii)
(iii)
(iv)

(V)

(vi)

(vii)

(1)

(ii)

9.5

Weight SI Seas Adj Trend Irreg

1.000 1.09842 1.08431 409.277 403.668 1.01389
0.950 1.06786 1.10775 391.195 405.267 0.96528
0.968 1.01975 1.04351 399.464 408.150 0.97872
1.000 0.99322 0.99717 410.421 411.528 0.99731
1.000 1.00751 0.99062 421.625 414.250 1.01780
1.000 0.97970 0.96899 419.992 415.303 1.01129
1.000 0.93964 0.94636 411.501 414.491 0.99279
1.000 0.95967 0.95952 412.143 412.183 0.99990
1.000 0.99087 0.99224 408.305 409.018 0.99826
1.000 0.92896 0.93328 403.856 406.082 0.99452
0.000 0.90155 0.90716 400.585 403.702 0.99228
1.000 1.08383 1.06958 405.678 401.095 1.01142
1.000 1.09570 1.08198 401.962 397.471 1.01130

Read some monthly data into SAS. See your friendly time series analyst
to be emailed a dataset!

Create a date and time variable

Use proc X11 to run X11 using the original series as the input series
What do the options tdregr, trendma and additive do within the monthly
command within X11.

To set up the data in printable form add the commands:

output out=factors bl=orig d8=si dl1=adj d12=trend d10=seas
cl7=weight d13=irreg;

title ‘x11 output’;

run;

proc print data=factors;
format

date MONYY. ;
run;

Given that we have used the additive option within X11 choose a 12 month
period (and write down which period you used!) and show that the sum of the
seasonals satisfy the appropriate condition for an additive model.

Choose three observations and show that by using the appropriate model for an
additive decomposition, that the values given for trend, seasonal and irregular
for that observation approximately equal the original value.

Seasonal adjustment is a complex procedure. Write half a page on some of the
issues surrounding seasonal adjustment, including, why should seasonal
adjustment be done? Also include any advantages and disadvantages of doing
seasonal adjustment.

Should seasonally adjusted estimates be smoothed. If so, why? If not, why?
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(iii)  Trend estimates are commonly calculated at the end of a series. Assuming a
filter based approach to trend estimation, briefly describe some of the issues
involved in calculating trend estimates at the end of a series.

Ql1.
(1) The choice of a surrogate based filter will be determined by what factor?
(1)  How many surrogate filters are needed to estimate the trend at the end of the
series, for a Henderson filter of length 2m + 1.
Ql12.
The following table contains a quarterly time series of gas production. Using the
original data, complete the corresponding columns, 2-5. Complete the seasonally
adjusted series (column 6) using the values obtained in the previous columns.
Quarterly Gas Production
(1] 2] (3] [4] [3] [6]
Fourth Qtr Seasonally
moving 2x4 moving Seasonal  Adjusted
Year Qtr Original average average S-1 Ratio  Factors Series
1981 1 52.8 - - - ? ?
2 71.3 - - - ? ?
3 78.9 ? ? ? ? ?
4 62.1 ? ? ? ? ?
1982 1 52.3 ? ? ? ? ?
2 70.0 ? ? ? ? ?
3 78.8 ? ? ? ? ?
4 59.4 ? ? ? ? ?
1983 1 53.9 ? ? ? ? ?
2 72.0 ? ? ? ? ?
3 80.5 ? ? ? ? ?
4 63.0 ? ? ? ? ?
1984 1 56.0 68.6 69.0 0.811 ? 69.6
2 74.7 69.5 69.6 1.073 ? 69.1
3 84.4 69.7 69.8 1.209 ? 704
4 63.7 69.9 70.2 0.908 ? 69.4
1985 1 56.7 70.5 70.5 0.804 ? 704
2 771 70.6 70.8 1.088 ? 71.3
3 84.9 711 71.2 1.192 ? 70.9
4 65.6 71.4 71.6 0.916 ? 714
1986 1 57.8 71.9 72.2 0.801 ? 71.8
2 79.4 72.4 724 1.097 ? 735
3 86.7 72.4 - - ? 724
4 65.7 . . 4 ? 715
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Ql13.

Ql14.

$'000

1100

1000

900

800

$'000
1100

1050

1000
950
900
850

800

9.7

Why does the ABS use only odd length moving averages? Justify your answer.

The following two graphs are seasonally adjusted series of NSW supermarkets and
grocery stores turnover. They are identical except that one has been adjusted for
trading day variation and other has not. Which graph has been adjusted for trading day
variation? Justify your answer.

Graph 1

T T T T T T
1995 96 97 98 99 00
Seasonally adjusted

Graph 2.

i i i i i i
1995 96 97 98 99 00
Seasonally adjusted
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Q15.
(1) What is the difference between a ‘stock’ and ‘flow’ series?
(i1) Which type of series is more likely to display calendar variation? Why?
Qle.
(1) What is the purpose of trading-day adjustment?
(i1) What is meant by the term ‘within-month variation’? Why is it a problem?
(iii)  Name the component of the time series model where trading day variation
Would most likely occur? Justify your answer.
Q17.
The following graph shows a producer’s different levels of output during the week.
Using the calendar below, show how the monthly output levels can vary despite the
underlying level of output staying the same. For this example show the output levels
for the months January through to May.
Production
20

Output

Maon Tue Wed Thu Fri Sat

gun
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January February
Sun | Mon | Tue | Wed | Thu | Fri Sat Sun | Mon | Tue | Wed | Thu | Fri Sat
1 2 3 4 5 6 1 2 3
7 8 9 10 11 12 13 4 5 6 7 8 9 10
14 15 16 17 18 19 20 11 12 13 14 15 16 17
21 22 23 24 25 26 27 18 19 20 21 22 23 24
28 29 30 31 25 26 27 28 29
March April
Sun | Mon | Tue | Wed | Thu | Fri Sat Sun | Mon | Tue | Wed | Thu | Fri Sat
31 8 2 1 2 3 4 5 6
3 4 5 6 7 9 7 8 9 10 11 12 13
10 11 12 13 14 15 16 14 15 16 17 18 19 20
17 18 19 20 21 22 23 21 22 23 24 25 26 27
24 25 26 27 28 29 30 28 29 30
May June
Sun | Mon | Tue | Wed | Thu | Fri Sat Sun | Mon | Tue | Wed | Thu | Fri Sat
1 2 3 4 30 1
5 6 7 8 9 10 11 2 3 4 5 6 7
12 13 14 15 16 17 18 9 10 11 12 13 14 15
19 20 21 22 23 24 25 16 17 18 19 20 21 22
26 27 28 29 30 31 23 24 25 26 27 28 29

Q18.

Show using Taylor Series expansion that the multiplicative model requires the
constraint

ng SH—]' =n
Hint: Use the fact that

gstﬁ' = 1
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10 Solutions

Ql.

Q2.

It depends on how volatile the adjusted series is. A more volatile series should be
smoothed using a longer term moving average.

In the additive case:

SAt_Tt :(OZ_St)_T[
=((T+S+1)-8)-T,

= (T[ + It) — Tt
=1,
In the multiplicative case:
(@)
SAt Tt = S_tt - Tt
T[Stlz
=5 T,
=Td,—-T;
=Tl —1)

The same result is achieved in the pseudo-additive case:

SAt_Tt = Ot_T[(S[_ 1)_Tt
:Tt+Tt(It_ 1)_Tt
= Tt(I[_ 1)

Therefore we can interpret the vertical distance between the trend and the seasonally
adjusted series seen in the graph above as follows:

In the additive case, the distance between the two lines is the irregular. In the
multiplicative and pseudo-additive case this distance is not proportional to the
irregular, though in periods of stable (flat) trend this may be a reasonable
approximation.
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Q3.

Q4.

Q5.

10.2

Figure 1: Additive. The seasonal pattern remains constant over time.

Figure 2: Additive. The seasonal pattern remains constant over time. There is an
increasing trend and the series dips below the zero value.

Figure 3: Multiplicative. The seasonal pattern increases as time increases. The series
does not dip below the zero value.

Figure 4: Additive. Series has a decreasing trend and a seasonal pattern. Pretty hard to
see with all the noise!

Figure 5: Random noise.

Figure 6: Not a multiplicative series. Note that it has zero and possibly some negative
values. A pseudo-additive model may be appropriate here.

Figure 7: True pseudo-additive model. Has the characteristics of a multiplicative
model but includes zero values.

Figure 8: Use an additive model, although a multiplicative model may also be
satisfactory here. Series appears to be just a decreasing trend with an irregular
component.

The answer would need to consider such issues as:

-Trading day?

-Missing values: what to do?

-Decreasing trend

-Rounding on the way home from work

-What are the units in?

-Appears to be a weekly effect on Thursday. Maybe this is the 4.51 social club?!

Let yz(B), yx(B) and yy(B) be autocovariance generating functions for Z;, X, and Y,
respectively.

Then
VZ(B) = ZI?;—oo yz(k)Bk
= X cov(zs, 2ik)BF
= X2, cov(X;+ Vi, Xk + Virk)BF
= X2 o fcov(x; + xumx) + cov(yy, yek) Y B
7:(B) = yx(B)+y,(B)
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Therefore
fo(w) = T, pPeiok
= L7 (%) +p)eik
= L7 L pe R+ I pe
= fx(®) +fy(®)
Q6.

10.3

—iwk

In this case the weights have been included so we don’t have to use the backshift
operator B to calculate the weights, however an example of this can be seen below.

fo)=(1-B)*xy,
=(1 —ZB+BZ)><yt
=y —2y1+ Vi

which implies the given weights of w, =1, w_; =2, and w
In this case we have
miy=2andm, =0

and we know that

G(w) = /C(w)? + S(w)?

and

C(w) =X, wjcos(wj)

j=m
=27, wjcos(w))
= cos(—2w) — 2 cos(—w) + cos(0)
=cos(2w)—2cos(w)+ 1
S(w) =212, wisin(w))
= 292 w; sin(wy)
= sin(—2w) — 2 sin(—w) + sin(0)

=2 sin(w) — sin(2w)
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Then we can express the gain function as

G(w) = /(1 =2 % cos(w) + cos(2w))? + (=2 * sin(w) + sin(2w))>

= 4/ 1 —4cos(w) +2 cos(2w) + 4 cos?(w) — 4 cos(w) cos(2w) + cos2(2w) + 4 sin*(w) — 4 sin(w) sin(2w) + sin*(2w)

= /6 —8cos(w)+2cos(2w)

= \/6 —8cos(w)+4cos?(w)—2

= J4—8cos(w) +4cos>(w)

= \/4 % (1 —cos(w))?
=2 % (1 —cos(w))
Or alternatively,
The gain of the differencing operator is given by

G(w)= /2 —2cos(w)

Hence the gain of the second difference operator is given by the square of the
Differencing operator, that is

Gw) =(J2—-2cos(w) )?=2—-2cos(w)

A plot of the gain is 2 —2 cos(w), w = 0, T over a suitable grid. This can be seen below,

Gain Function for (1-B)*2

5
a
3
[
‘©
o
2
1
0
0 w /8 Fid
Freq

A 2 month cycle is at frequency (27)/2=m, hence the gain at this frequency is
2 —2cos(r) = 4. Hence a 2 month cycle is amplified 4 times.
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Q7.
In this case the weights of the filter are as follows
Wy = 1_12 towq; = %
As we are dealing with a 12 term uncentered moving average with equal weights.
Then
Clw) =27, wjcos(w))

1 .
= Zo w; cos(wy)

= ﬁ{cos(O) +...+cos(12w)}

S(w) =212, wjsin(wj)

J=—my
11 . .
=2 Wjsin(e))

= <5 {sin(0) + ... +sin(120)}

Note that this expression can be simplified using the formula given in the question.
ie.

1
C(w) = ﬁ ];0 cos(—jw)

=6{1 —cos(w) —cos(12w) + cos(11w)}/{1 —cos(w)}
|
S() =15 J;o sin(—jw)
=—6{sin(w) — sin(12w) + sin(11w) }/{1 — cos(w)}

Now for any point in we(0, /6), C(w) > 0 and S(w) < 0. We can calculate the
phase function as

d(w) = arctan( g((?o)) )
~ ( sin(0) + ... + sin(12w) J
= arctan cos(0) + ... +cos(12w)
or
B ( —(sin(w) — sin(12w) + sin(11w)) J
= arctan 1 —cos(w) —cos(12w) + cos(11w)

and if we substitute in some values for « we find that ®(w)/w is a constant that can
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be calculated by substituting in any value for @ in the range we(0, n/6). Therefore
Dd(w)w=-5.5

So for the uncentered 12 term moving average with equal weights the phase shift is
-5.5 periods.

Some code to produce the phase is shown below. Note: if we don't allow for the
cosine terms going negative they won’t get the right answer. It is possible to show
analytically, but very messy.

pi = 3.1415926#
FOR deg =1TO 30
freq =deg * pi/ 180
c=1-COS(freq) - COS(12 * freq) + COS(11 * freq)
s = -(SIN(freq) - SIN(12 * freq) + SIN(11 * freq))
IF ¢ >0 THEN
PRINT deg; ATN(s / ¢) / freq
ELSE
PRINT deg; (ATN(s / c) - pie) / freq
END IF
NEXT deg

This means that a turning point for any cycles in the business cycle range will be
detected 5.5 months after the actual turning point, which effectively means 6 months

late.
Q8.
(1) X11 uses the multiplicative model as its default model.
Y[ = T[ X S[ X I[
(i1)
Use January 1980 = 1.08431 x 403.668 x 1.01389

=443.78
~441.7

Use January 1981 =1.08198 x497.471 x 1.01130
=434.91
~ 4438

(iii)  The unusual values are those with weights of zero

(iv)  For the multiplicative model the sum of the seasonal components should be
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twelve. The sum from January 1980 to December 1980 is 12.00049.

QO.

In SAS construct the following

data dataset;

infile “dataset.sas”;
input month $ year orig ;
run;

These four commands input the dataset.sas dataset and label it as dataset within SAS. The
three variables month, year and orig are the month represented as numbers (Jan=1, Feb=2,...),
and the year, and the estimates respectively.
The following commands setup the date in terms of months, days and years.

data dataset2;

set dataset;

date=mdy(month, 1,year);

tme=year+(2*month-1)/24;

if tme ge 1978 and tme It 1996.8 then output;

run,

The above commands create a new dataset within SAS called dataset2 which has the new
variables date and tme. To use X11 within SAS the following procedure needs to be used

proc x11 data=dataset2;

This tells the X11 procedure to use the dataset dataset2 which includes the date and tme
variables.

The next set of commands relate to options within the X11 procedure.

For more examples of the different types of options check out help within the modelling and
analysis tools and then to econometrics and time series and then to x/1.

Next add the following to your file
var orig;

This specifies the variables to be analysed by X11. We are only interested in the original
series from the dataset dataset2.

The following commands define the dataset as containing monthly data

Monthly date=date charts=none printout=none
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tdregr=adjust trendma=13 additive;

All charts and normal X11 output have been turned off. This usually comes out to
approximately 40 pages!

Q1o0.
(1)
*]t is a complex procedure to use, ie need X11
*Seasonal adjustment enables users to compare data from year to year more
easily
*Makes the data easier for users to interpret
*Various filter lengths can be used, and using X11 is bad at the ends of the
data
*Enables us to measure and/or eliminate seasonal effects
(i)
*Eliminates the irregular component, making the data easier to interpret
*Yes, smoothed
(iii)
* Asymmetric filters vs. symmetric filters
*Revision to the estimates

Ql1.
(1) The amount of revision that occurs between the surrogate based
estimates of trend and the main Henderson based estimates of trend. The
preferred surrogate filter will be the one that minimise the amount of revision.
(1)  m surrogate filters. So, although only one 13 term Henderson filter is
required for smoothing a monthly series, a set of six surrogate filters is
required for the end-point problem.

Q12.

The completed table appears below:
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Quarterly Gas Production

(1] (2] (3] [4] (5] (6]
Fourth Qtr
moving 2x4 moving Seasonal Seasonally
Year Qtr Original average average S-1 Ratio  Factors Adjusted Series
=col[1])/col[3] =col[1)/col[5]

1981 1 52.8 0.805 65.6
2 71.3 1.081 66.0

3 78.9 66.3 66.2 1.192 1.198 65.9

4 62.1 66.2 66.0 0.941 0.918 67.6

1982 1 52.3 65.8 65.8 0.795 0.805 65.0
2 70.0 65.8 65.5 1.069 1.081 64.8

3 78.8 65.1 65.3 1.206 1.198 65.8

4 59.4 65.5 65.8 0.903 0.918 64.7

1983 1 53.9 66.0 66.2 0.814 0.805 67.0
2 72.0 66.5 66.9 1.076 1.081 66.6

3 80.5 67.4 67.6 1.191 1.198 67.2

4 63.0 67.9 68.2 0.924 0.918 68.6

1984 1 56.0 68.6 69.0 0.811 0.805 69.6
2 74.7 69.5 69.6 1.073 1.081 69.1

3 84.4 69.7 69.8 1.209 1.198 70.4

4 63.7 69.9 70.2 0.908 0.918 69.4

1985 1 56.7 70.5 70.5 0.804 0.805 70.4
2 771 70.6 70.8 1.088 1.081 71.3

3 84.9 71.1 71.2 1.192 1.198 70.9

4 65.6 71.4 71.6 0.916 0.918 71.4

1986 1 57.8 71.9 72.2 0.801 0.805 71.8
2 79.4 72.4 72.4 1.097 1.081 73.5

3 86.7 72.4 1.198 72.4

4 65.7 0.918 71.5

Note: Columns 2 and 3 involve estimating the trend by a process of moving averages.
Column 2 is a 4-qtr moving average obtained by average the values, first of periods 1 to 4,
then of periods 2 to 5, etc.. The averages are taken to represent the ‘smoothed-out’ values
relating to the period in the middle of the span of the average. Thus the 4-qtr average of
periods 1 to 4 is centred between periods 2 and 3. A second averaging process must be
employed to centre the moving averages at periods rather than between periods. This is the
reason for Column 3. For example, in column 2 (1981, qtr 3),
66.3=(52.8+71.3+78.9+62.1)/4, and column 3, 66.2=(66.2+66.3)/2

Columns 4 and 5 involve estimating the seasonal component of the time series. Column 4
divides the trend values into the original values to obtain the ‘de-trended’ originals (this
assumes a multiplicative model, ie O=TxSxI;). For example, in column 4 (1981, qtr 3),
1.192=78.9/66.2. Column 5 is a moving average of the seasonal-irregulars for each quarter to
give estimates of the seasonal factors. For example, in column 5 (1981, qtr 3),
1.198=(1.192+1.206+1.191+1.209+1.192)/5. Column 6 divides the original by the seasonal
factors to obtain the seasonally adjusted estimate. For example, in column 6 (1981, qtr 3),
65.9=78.9/1.198.
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Ql13.

Ql14.

Ql5.

Qle.

10.10

To retain the time phase. Odd length seasonal and trend moving averages have the
averaged value on an observable and publishable observation point. However, an
even length averaging span centres the average value between the periods, introducing
a half month or half quarter time phase shift.

Graph 2, as it contains less volatility.

(1) A flow series can be regarded as the sum of daily (or weekly, etc) figures to
form a monthly (or quarterly) aggregate. A stock series relates to a particular point in
time, such as the last working day of the month or the last Wednesday in the month.

(i1) A flow series. Since flow series figures are more or less related to the daily
activity during a given period and the composition of a period may vary both from
period to period and year to year then there is a possibility that there will be a
non-seasonal variation in the series linked to the calendar.

(1) It reduces the month-to-month variation in the seasonally adjusted data so that
the trend cycle is revealed more clearly. In other words, the trading day effect leads to
apparent changes in the level of activity when the underlying level is unchanged.

(i1) The variation between months of equal length in the number of times a
particular day or days of the week occur in a calendar month, and the length-of-month
variation in the calendar. Trading day variation, like seasonality, can complicate
comparisons of values in a series from one month to the next, or those for a given
month from one year to the next.

(i)  The irregular component. Trading day variation frequently reverses direction,
over a period of months and years, while the trend is a smooth curve. Over a period
of years, within a month, trading day variation also frequently reverses direction,
while seasonal variation is constant or gradually increasing or decreasing curve.
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Ql17.

Monthly
Sun Mon Tue Wed Thu Fri Sat Total

Jan Days 4 5 5 5 4 4 4
Output 0 5 15 15 5 5 0

Total 0 25 75 75 20 20 0 215
Feb Days 4 4 4 4 5 4 4
Output 0 5 15 15 5 5 0

Total 0 20 60 60 25 20 0 185
Mar Days 5 4 4 4 4 5 5
Output 0 5 15 15 5 5 0

Total 0 20 60 60 20 25 0 185
Apr Days 4 5 5 4 4 4 4
Output 0 5 15 15 5 5 0

Total 0 25 75 60 20 20 0 200
May Days 4 4 4 5 5 5 4
Output 0 5 15 15 5 5 0

Total 0 20 60 75 25 25 0 205

Ql8.

St+1 : Sz+2 METTI Sl+n =1

Using Taylor Series expansion our function is

0= Set1°Sm2 o Sin

:f(St+1 5 eeey St+n)
‘Which has an estimate of

b\ :f(st+1, oo Sz+n)
:f(SzH =ASi1y ey Stin = ASz+n)

:f(SzH, ceey St+n) + As i1 aa (St+1, ...,Sz+n) +...+

S1+1

ASHna—a’L(Sm, s Sin)

Stin

Evaluating this expression gives
=
So

1+n_ZSt+J:l
j=1

n
Z St+j =n
=1
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