
 1

Using Artificial Neural Networks and Support Vector
Regression to Model the Lyapunov Exponent

Adam Maus*

April 13, 2009

Abstract:

 Finding the salient patterns in chaotic data has been the holy grail of Chaos
Theory. Examples of chaotic data include the fluctuations of the stock market, weather,
and many other natural systems. Real world data has proven to be extremely difficult to
predict due to it high dimensionality and the potential for noise. It has been shown that
artificial neural networks have been able to accurately calculate the Lyapunov Exponent,
a feature that determines the divergence of two initially close trajectories and thus chaos.
A variation of the support vector machine called support vector regression is used in
function approximation and applying this tool to chaotic data may yield another model
that can also be used in the prediction of the Lyapunov Exponent. Since support vector
machines have been found to arrive at a prediction much faster than the artificial neural
network, it may prove to be the model to use in time sensitive applications.

Introduction

Nonlinear prediction attempts to
describe the inherent qualities of a given
dynamical system using mathematical
models. Models can range in complexity
from a simple set of equations such as the
logistic equation used to model the carrying
capacity of a species in an ecosystem [1] to
the creation of artificial neural network
models with hundreds of parameters used in
forecasting exchange rates [2]. These
dynamical systems as well as the rise and
fall of populations, the stock market, and the
weather exhibit chaos where there is a
sensitive dependence on initial conditions.
Since two initially close conditions will
diverge exponentially fast, chaotic dynamics
pose a formidable challenge for long term
forecasting.

* University of Wisconsin – Madison

Contact Email: amaus@wisc.edu

Aside from long term forecasts, one
goal of nonlinear prediction is to create a
mathematical model that accurately
represents data take from a system. The
hope is that by creating an accurate model,
underlying features in the system will be
replicated as well. One such feature, the
largest Lyapunov exponent (LE) is valuable
in determining whether or not a given system
is chaotic. Its value describes the average
rate at which predictability is lost.

The largest Lyapunov exponent is
usually geometrically averaged along the
orbit and is always a real number. This
Lyapunov exponent is calculated
numerically using the procedure in [3].
When calculating the LE for a model, we run
fixed length forecasts using the models
created by the artificial neural network and
support vector regression model on training
data. These forecasts are fixed at 5000 time
steps, 5000 was chosen because it gives a
good approximation of the true LE and is

 1

quicker to calculate than one million time
steps to find the true LE of the models and
systems being studied.

The forecast from a model can
converge to a number of different attractors
that represent varying LEs. A forecast that
converges exponentially fast to a fixed point
will have an LE with a value of negative
infinity. The limit cycle is a case that is
often hard to distinguish without the
calculation of the LE because the data may
be following a strict path with a large
number of periods or steps before repeating.
The LE of a limit cycle ranges between
negative infinity and 0. An LE of zero
denotes a system such as

()nnn xxx −=+ 131 ,

requiring an infinite number of points to
converge to an attractor. Dynamical systems
such as the Hénon map [4] have a positive
LE and “converge” to what are called
strange attractors. These attractors appear to
follow an orbit but it never repeats. The
Hénon map whose form

1
2

1 3.04.11 −+ −−= nnn xxx ,

can be initialized with x = (.1, .1) and
produces a strange attractor plotted by nx
versus 1−nx as in Figure 1.

FIG 1: Strange Attractor of the Hénon Map

The LE calculated for the Hénon map
using 5000 time steps equals .42093 and the
goal of this paper is to describe how neural
networks and support vector regression
models can be used to calculate the LE for
this map and other similar dynamical
systems.

Models Studied

 Artificial neural networks have been
used in past for modeling time series [5],
nonlinear prediction [6], and analyzing the
underlying features of data [7]. Hornik et al.
[8] claimed that these models were universal
approximators with the ability to represent
any function with an arbitrary number of
hidden units. This model, seen
schematically in Fig. 2, used to replicate the
LE uses a single layer of hidden units to
perform function approximation and takes
the form,

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑∑

=
−

=

d

j
jniji

n

i
ik xaabx

1
0

1
tanhˆ ,

where a is an dn× matrix of coefficients,
and b is represented by a vector of length the
number of neurons n. The a matrix
represents the connection strengths of the
neurons, and the b vector is used to modulate
the strength of a particular neuron i. In this
model, ai0 represents the bias term that is
commonly used in neural network
architectures.

FIG. 2: Single Layer, Feed-Forward Neural

Network

 2

The neural network uses the d last
points from a scalar time series x in the
prediction of the next step k. In this model,
d is considered the dimension or embedding
of the neural network. It represents the
number of inputs or previous time lags used
to predict each subsequent value in the time
series.

The weights in a and b are updated
using a variant of the simulated annealing
algorithm where temperature is held constant
at 1, effectively removing the term. For each
coefficient, a Gaussian neighborhood is
searched whose size is changed based on
progress in training. The coefficients are
chosen to minimize the mean-square
prediction error,

()

c

xx
e

c

i
ii∑

=

−
= 1

2ˆ

The other model studied, Support

Vector Machines have traditionally been
used in classification problems; in 1996
Vapnik et al. [9] extended this model to
perform robust function approximation that
is insensitive to small changes in the data.
The LibSVM Toolbox for Support Vector
Machines by Chang and Lin [10] was used
in this project.

Vapnik claimed that ε-Insensitive
Support Vector Regression would provide
effective estimation of functions [11] and
SVR has also been used in forecasting the
stock price change with the help of analysts
[12].

As Smola stated in [12] SVR is used
to approximate a function)(xf that has at
most ε deviation from the targets kx . This
effectively removes certain data points from
the model’s approximation of the data. A
function is found that can approximate just a
subset of the actual data and because of the
chaotic nature of the data being studied;
using a subset of points should change the

model’s ability to replicate the same chaotic
dynamics of the system being studied.
However, we found that it performs just as
well as neural networks in approximating the
LE.

The function that the SVR model
produces takes the form

bxwxf += ,)(,

where xw, denotes the dot product of w
and x. Calculation of w and b involves
minimizing w through a convex optimization
problem [13] that minimizes a Lagrangian
function [14]. The computation of b can be
performed in different ways. LibSVM
computed b by finding the average value of
the support vectors with Lagrange
multipliers between 0 and the user-defined
variable C.

Once a model was produced, the
forecast of p points took the form

Kwbx
s

i
ip ∑

=

+=
1

ˆ ,

where s represents the number of support
vectors used in the model. In the LibSVM
toolbox, this was automatically calculated.
K represents the kernel used in the model
and the approximation. In this experiment,
K took the form of a Gaussian Radial Basis
function with an adjustable parameter σ .
The training data and forecast were
initialized with data from the Hénon map.
Two time series were used to train the
model. One time series served as training
data for the model, the other time series
served the test time series that predicted the
forecasting error. After obtaining a model
with a low forecasting error compared to the
system being studied, forecasting was used
to calculate the LE.

During the training of the SVR
model, we optimize the model on the set of

 3

data but there are a number of parameters to
train to create a low test error. The size of ε,
the cost of vectors on the wrong side of the
function C, the kernel parameters, etc, must
all be chosen. Since each parameter can be
any real number, a training schedule was
created that was similar to the neural
networks training. The parameters trained
C, ε, σ, p, were initialized with values .001,
.01, .1, and .1, respectively. To train the
parameters, the parameters were varied
according to a Gaussian neighborhood
whose size depends on the progress being
made in training the model.

To objectively choose one model
over another the mean-square prediction
error was used to compare the forecast of the
SVR and test data with one caveat. The size
of the test time series used was effectively
shortened by a weighting scale created so the
model focused on replicating the first points
in the test time series.

()

c

xx
e

c

i
iii∑

=

−
= 1

2

'

ˆψ

The 1ψ was chosen arbitrarily for

this project and set to seven and for each
additional k, kψ was halved, though further
research may find that ψ can be optimized
for the system being studied. This scheme
was created because of the chaotic nature of
both the model created and the data being
modeled, sensitive dependence on initial
conditions would cause the two sets of data
to be incomparable after just tens of steps. If
we tried to minimize the mean square error
between the entire forecast and the test data,
it eventually led to a model that found the
average between the high and low peaks in
the test data.

Numerical Results

 After training the SVR model on 400
points, the LE was calculated and found to
be .41288 for the Hénon map with a test
error of 4.6866 x 10-5. The strange attractor
of the SVR model produced was visually
indistinguishable. It is important to note for
all cases that different training instances lead
to different results and these were chosen
because they were the lowest mean square
errors found.

The neural network was trained for
one million epochs with c = 400 points taken
from the Hénon Map. After training, the LE
of the model was calculated. The LE was
found to be .38431 with a mean-square error
of 4.646 x 10-5. Figure 3 shows the strange
attractor produced by this network, as seen,
the neural network had some trouble
reproducing the attractor for the Hénon map
exactly though other better trained neural
networks may perform better. Likewise, the
difference between the true LE of the system
and the neural network may arise from
stopping the training too soon. A more
accurate model seems to correlate with a
more accurate LE of the model to the test
system.

FIG. 3: The Hénon map attractor reproduced by

the Neural Network

 4

Two other systems were studied
using the Neural Network (NN) and SVR
models, the Logistic map (LM) [15],

)1(41 nnn xxx −=+

and the delayed Hénon map (DHM) [16],

4
2

1 1.06.11 −+ −−= nnn xxx

which led to the following table of LEs.

Table 1: The LE approximations using 5000 steps

in the forecast of each system and model

The neural network and SVR model both
produced strange attractors for the delayed
Hénon map, Fig. 4 and Fig. 5, respectively
that were visually similar to the actual
strange attractor, Fig. 6. The Neural
Network and SVR model achieved a mean
square error of 5.6792 x 10-6 and 5.4632 x
10-6, respectively.

FIG. 4: The delayed Hénon map attractor

reproduced by the Neural Network

FIG. 5: The delayed Hénon map attractor

reproduced by the SVR model

FIG. 6: Strange Attractor for delayed Hénon map

The SVR model did not reconstruct
the exact structure of the strange attractor for
the Logistic map but this could be due to
inadequate training, the error was .004256.
The neural network was able to reconstruct
the attractor and the LE with an error of
3.9735 x 10-6. The attractor of the logistic
map and the attractor produced by the SVR
model are seen in Fig. 7 and 8, respectively.

FIG. 7: Strange Attractor for Logistic map

 Actual NN SVR
LM .69526 .63744 .68923

DHM .37038 .35030 .35550

 5

FIG. 8: The Logistic map attractor reproduced by

the SVR model

Though both models produce mean
square errors, it is not fair to compare them
using these values. The weighting on the
errors in SVR model was different from that
of the Neural Network. These objective
functions were simply used to train each
model. If a comparison was needed, a more
accurate measurement would be to identify
the difference between the true Lyapunov
exponent of the system being studied and the
Lyapunov exponent produced by each
model.

Discussions and Conclusion

 Artificial neural networks serve as
excellent models for reconstructing the data
and studying the LE for the Hénon Map. If
we applied these models on data taken from
a system whose LE is unknown, they would
perform well given that they are adequately
trained. Certain measures could be taken to
ensure that the correct LE is found which
include cross validation and ensembles of
neural networks among other ways to
provide that the neural network does not
overfit the data it is given. One drawback of
this neural network model is that they
require many more calculations than SVR
and unlike SVR (prior to training the
parameters), neural networks often fail to
find the global optimum or absolute best way
to model the data therefore it is imperative to

train many different networks on the same
data.
 Support Vector Regression
performed much better than expected.
Mattera et al. found that reconstructing the
strange attractor and the chaotic dynamics
for a given system using SVR is not always
possible [17] but by using a weighting
system on the forecast of the data, it is
possible to train the parameters for these
models to produce an accurate representation
of the data.

The number of free parameters
created a challenge for trying to calculate the
LE, a training schedule was created to alter
these parameters and reconstruct both the
chaotic dynamics and the strange attractor.
Like the neural network, using this type of
training causes the model parameters to fall
into local optimums, one way to overcome
this is to use an ensemble of SVR models to
find an average Lyapunov exponent.
 One important aspect of time series
analysis involves determining the embedding
dimension for a model. For the attractor to
be reconstructed it must be embedded in an
appropriate dimension so it can be unfolded
so one preimage does not produce two
different images. A sufficient condition for
the embedding dimension was provided by
Takens [18] who showed that complete
unfolding is guaranteed if the time-delayed
embedding space has a dimension at least
one greater than twice the dimension of the
original state space.

For the purpose of this project, the
data was embedded in a space that was
guaranteed to unfold it, by looking at the
time-delayed equations of each system, the
embedding could be deduced. For the
Hénon map, the embedding was 2, for the
delayed Hénon map, 4, and for the Logistic
map, 1. For an unknown system, embedding
can be calculated using an algorithm known
as false nearest neighbors [19].

 6

Support Vector Regression has
shown to be useful in function
approximation, forecasting, and
reconstruction of chaotic dynamics for a
given system. Support Vector Regression
creates a model that uses far less points than
the artificial neural network. Training the
SVR model parameters takes less time than
the neural network and in some cases it
arrives at a better approximation of the LE
for the system being studied. SVR serves as
another model to approximate the LE for a
dynamical system and it would be interesting
to test SVR more rigorously on continuous
systems and real-world data.

References

[1] E. Allman and J. Rhodes, Mathematical

Models in Biology: An Introduction
(Cambridge, New York, 2004).

[2] L. Yu, S. Wang, and K. K. Lai,
Foreign-Exchange-Rate Forecasting
with Artificial Neural Networks
(Springer, New York, 2007).

[3] J. C. Sprott, Chaos and Time-Series
Analysis (Oxford, New York, 2003).

[4] M. Hénon, Comm. Math. Phys. 12, 1
(1976).

[5] S. Troncia, M. Gionab, and R. Barattia,
Neurocomputing 55, 3-4 (2003).

[6] G. Zhang, B. Patuwo, and M. Hu, Int. J.
Forecasting 14, 1 (1998).

[7] J. Principe, A. Rathie, and J. Kuo, Int. J.
Bifurcation Chaos 2, 4 (1992).

[8] K. Hornik, M. Stinchocombe, and H.
White, Neural Networks 2, 5 (1989).

[9] V. Vapnik, S.E. Golowich, and A.
Smola, in Advances in Neural
Information Processing Systems, San
Mateo, 1996, edited by M. Mozer, M.
Jordan, and T. Petsche, p. 155.

[10] C. Chang and C. Lin, LibSVM: a library
for support vector machines (2001).

[11] V. Vapnik. The Nature of Statistical
Learning Theory. (Springer, New York,
1995).

[12] Z. Zhang, C. Shi, S. Zhang, and Z. Shi,
in Advances in Neural Networks -ISNN,
Chengdu, 2006, edited by J. Wang, Z.
Yi, J. Zurada, B. Lu, H. Yin.

[13] A. Smola and B. Scholkopf. Stat.
Comput. 14, 3 (2004).

[14] S. Haykin Neural Networks, a
Comphrensive Foundation. (Prentice Hall,
New Jersey, 1992).

[15] R. May, Nature, 261 (1976).
[16] J. C. Sprott, Electron. J. Theor. Phys. 3,

12 (2006).
[17] D. Mattera and S. Haykin in Advances

in Kernel Methods: Support Vector
Learning, edited by B. Schölkopf, C. J.
Burges, and A. J. Smola, p. 211.

[18] F. Takens, Detecting strange attractors
in turbulence (Springer, Berlin, 1981).

[19] H. Abarbanel, Analysis of Observed
Chaotic Data (Springer, New York, 1996

