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Abstract: 
 
 Finding the salient patterns in chaotic data has been the holy grail of Chaos 
Theory.  Examples of chaotic data include the fluctuations of the stock market, weather, 
and many other natural systems.  Real world data has proven to be extremely difficult to 
predict due to it high dimensionality and the potential for noise.  It has been shown that 
artificial neural networks have been able to accurately calculate the Lyapunov Exponent, 
a feature that determines the divergence of two initially close trajectories and thus chaos.  
A variation of the support vector machine called support vector regression is used in 
function approximation and applying this tool to chaotic data may yield another model 
that can also be used in the prediction of the Lyapunov Exponent.  Since support vector 
machines have been found to arrive at a prediction much faster than the artificial neural 
network, it may prove to be the model to use in time sensitive applications. 
 
 

Introduction  
 

Nonlinear prediction attempts to 
describe the inherent qualities of a given 
dynamical system using mathematical 
models.  Models can range in complexity 
from a simple set of equations such as the 
logistic equation used to model the carrying 
capacity of a species in an ecosystem [1] to 
the creation of artificial neural network 
models with hundreds of parameters used in 
forecasting exchange rates [2]. These 
dynamical systems as well as the rise and 
fall of populations, the stock market, and the 
weather exhibit chaos where there is a 
sensitive dependence on initial conditions.  
Since two initially close conditions will 
diverge exponentially fast, chaotic dynamics 
pose a formidable challenge for long term 
forecasting. 
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Aside from long term forecasts, one 
goal of nonlinear prediction is to create a 
mathematical model that accurately 
represents data take from a system.  The 
hope is that by creating an accurate model, 
underlying features in the system will be 
replicated as well.  One such feature, the 
largest Lyapunov exponent (LE) is valuable 
in determining whether or not a given system 
is chaotic.  Its value describes the average 
rate at which predictability is lost.   

The largest Lyapunov exponent is 
usually geometrically averaged along the 
orbit and is always a real number.  This 
Lyapunov exponent is calculated 
numerically using the procedure in [3]. 
When calculating the LE for a model, we run 
fixed length forecasts using the models 
created by the artificial neural network and 
support vector regression model on training 
data.  These forecasts are fixed at 5000 time 
steps, 5000 was chosen because it gives a 
good approximation of the true LE and is 
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quicker to calculate than one million time 
steps to find the true LE of the models and 
systems being studied. 

The forecast from a model can 
converge to a number of different attractors 
that represent varying LEs.  A forecast that 
converges exponentially fast to a fixed point 
will have an LE with a value of negative 
infinity.  The limit cycle is a case that is 
often hard to distinguish without the 
calculation of the LE because the data may 
be following a strict path with a large 
number of periods or steps before repeating.  
The LE of a limit cycle ranges between 
negative infinity and 0.  An LE of zero 
denotes a system such as 
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requiring an infinite number of points to 
converge to an attractor.  Dynamical systems 
such as the Hénon map [4] have a positive 
LE and “converge” to what are called 
strange attractors.  These attractors appear to 
follow an orbit but it never repeats. The 
Hénon map whose form 
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can be initialized with x = (.1, .1) and 
produces a strange attractor plotted by nx  
versus 1−nx  as in Figure 1.   

 
FIG 1:  Strange Attractor of the Hénon Map 

The LE calculated for the Hénon map 
using 5000 time steps equals .42093 and the 
goal of this paper is to describe how neural 
networks and support vector regression 
models can be used to calculate the LE for 
this map and other similar dynamical 
systems. 
 

Models Studied 
 
 Artificial neural networks have been 
used in past for modeling time series [5], 
nonlinear prediction [6], and analyzing the 
underlying features of data [7].  Hornik et al. 
[8] claimed that these models were universal 
approximators with the ability to represent 
any function with an arbitrary number of 
hidden units.  This model, seen 
schematically in Fig. 2, used to replicate the 
LE uses a single layer of hidden units to 
perform function approximation and takes 
the form, 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑∑

=
−

=

d

j
jniji

n

i
ik xaabx

1
0

1
tanhˆ , 

 
where a is an dn×  matrix of coefficients, 
and b is represented by a vector of length the 
number of neurons n.  The a matrix 
represents the connection strengths of the 
neurons, and the b vector is used to modulate 
the strength of a particular neuron i.  In this 
model, ai0 represents the bias term that is 
commonly used in neural network 
architectures.  

 
FIG. 2: Single Layer, Feed-Forward Neural 

Network 
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The neural network uses the d last 
points from a scalar time series x in the 
prediction of the next step k.  In this model, 
d is considered the dimension or embedding 
of the neural network.  It represents the 
number of inputs or previous time lags used 
to predict each subsequent value in the time 
series.   

The weights in a and b are updated 
using a variant of the simulated annealing 
algorithm where temperature is held constant 
at 1, effectively removing the term.  For each 
coefficient, a Gaussian neighborhood is 
searched whose size is changed based on 
progress in training.   The coefficients are 
chosen to minimize the mean-square 
prediction error, 
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The other model studied, Support 

Vector Machines have traditionally been 
used in classification problems; in 1996 
Vapnik et al. [9] extended this model to 
perform robust function approximation that 
is insensitive to small changes in the data.  
The LibSVM Toolbox for Support Vector 
Machines by Chang and Lin [10] was used 
in this project. 

Vapnik claimed that ε-Insensitive 
Support Vector Regression would provide 
effective estimation of functions [11] and 
SVR has also been used in forecasting the 
stock price change with the help of analysts 
[12].  

As Smola stated in [12] SVR is used 
to approximate a function )(xf  that has at 
most ε deviation from the targets kx .  This 
effectively removes certain data points from 
the model’s approximation of the data.  A 
function is found that can approximate just a 
subset of the actual data and because of the 
chaotic nature of the data being studied; 
using a subset of points should change the 

model’s ability to replicate the same chaotic 
dynamics of the system being studied. 
However, we found that it performs just as 
well as neural networks in approximating the 
LE.   

The function that the SVR model 
produces takes the form 
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where xw,  denotes the dot product of w 
and x.  Calculation of w and b involves 
minimizing w through a convex optimization 
problem [13] that minimizes a Lagrangian 
function [14].  The computation of b can be 
performed in different ways. LibSVM 
computed b by finding the average value of 
the support vectors with Lagrange 
multipliers between 0 and the user-defined 
variable C.   

Once a model was produced, the 
forecast of p points took the form 
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where s represents the number of support 
vectors used in the model.  In the LibSVM 
toolbox, this was automatically calculated.  
K represents the kernel used in the model 
and the approximation.  In this experiment, 
K took the form of a Gaussian Radial Basis 
function with an adjustable parameter σ .  
The training data and forecast were 
initialized with data from the Hénon map.  
Two time series were used to train the 
model.  One time series served as training 
data for the model, the other time series 
served the test time series that predicted the 
forecasting error.  After obtaining a model 
with a low forecasting error compared to the 
system being studied, forecasting was used 
to calculate the LE.   

During the training of the SVR 
model, we optimize the model on the set of 
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data but there are a number of parameters to 
train to create a low test error.  The size of ε, 
the cost of vectors on the wrong side of the 
function C, the kernel parameters, etc, must 
all be chosen. Since each parameter can be 
any real number, a training schedule was 
created that was similar to the neural 
networks training.  The parameters trained 
C, ε, σ, p, were initialized with values .001, 
.01, .1, and .1, respectively.  To train the 
parameters, the parameters were varied 
according to a Gaussian neighborhood 
whose size depends on the progress being 
made in training the model.   

To objectively choose one model 
over another the mean-square prediction 
error was used to compare the forecast of the 
SVR and test data with one caveat.  The size 
of the test time series used was effectively 
shortened by a weighting scale created so the 
model focused on replicating the first points 
in the test time series. 
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The 1ψ  was chosen arbitrarily for 

this project and set to seven and for each 
additional k, kψ  was halved, though further 
research may find that ψ  can be optimized 
for the system being studied.  This scheme 
was created because of the chaotic nature of 
both the model created and the data being 
modeled, sensitive dependence on initial 
conditions would cause the two sets of data 
to be incomparable after just tens of steps. If 
we tried to minimize the mean square error 
between the entire forecast and the test data, 
it eventually led to a model that found the 
average between the high and low peaks in 
the test data. 
 
 

Numerical Results 
 
 After training the SVR model on 400 
points, the LE was calculated and found to 
be .41288 for the Hénon map with a test 
error of 4.6866 x 10-5.  The strange attractor 
of the SVR model produced was visually 
indistinguishable.  It is important to note for 
all cases that different training instances lead 
to different results and these were chosen 
because they were the lowest mean square 
errors found. 

The neural network was trained for 
one million epochs with c = 400 points taken 
from the Hénon Map.  After training, the LE 
of the model was calculated.  The LE was 
found to be .38431 with a mean-square error 
of 4.646 x 10-5.  Figure 3 shows the strange 
attractor produced by this network, as seen, 
the neural network had some trouble 
reproducing the attractor for the Hénon map 
exactly though other better trained neural 
networks may perform better.  Likewise, the 
difference between the true LE of the system 
and the neural network may arise from 
stopping the training too soon.  A more 
accurate model seems to correlate with a 
more accurate LE of the model to the test 
system. 
  

 
FIG. 3:  The Hénon map attractor reproduced by 

the Neural Network 
 
 
 



 4

Two other systems were studied 
using the Neural Network (NN) and SVR 
models, the Logistic map (LM) [15], 
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and the delayed Hénon map (DHM) [16], 
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which led to the following table of LEs. 
 

 
Table 1: The LE approximations using 5000 steps 

in the forecast of each system and model 
 
The neural network and SVR model both 
produced strange attractors for the delayed 
Hénon map, Fig. 4 and Fig. 5, respectively 
that were visually similar to the actual 
strange attractor, Fig. 6.  The Neural 
Network and SVR model achieved a mean 
square error of 5.6792 x 10-6 and 5.4632 x 
10-6, respectively.   
 

 
FIG. 4: The delayed Hénon map attractor 

reproduced by the Neural Network 
 

 
FIG. 5: The delayed Hénon map attractor 

reproduced by the SVR model 
 

 

 
FIG. 6: Strange Attractor for delayed Hénon map 
 

The SVR model did not reconstruct 
the exact structure of the strange attractor for 
the Logistic map but this could be due to 
inadequate training, the error was .004256.  
The neural network was able to reconstruct 
the attractor and the LE with an error of 
3.9735 x 10-6.  The attractor of the logistic 
map and the attractor produced by the SVR 
model are seen in Fig. 7 and 8, respectively. 

 
 

 
FIG. 7:  Strange Attractor for Logistic map 

 Actual NN SVR 
LM .69526 .63744 .68923 

DHM .37038 .35030 .35550 
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FIG. 8: The Logistic map attractor reproduced by 

the SVR model 
 

Though both models produce mean 
square errors, it is not fair to compare them 
using these values.  The weighting on the 
errors in SVR model was different from that 
of the Neural Network.  These objective 
functions were simply used to train each 
model.  If a comparison was needed, a more 
accurate measurement would be to identify 
the difference between the true Lyapunov 
exponent of the system being studied and the 
Lyapunov exponent produced by each 
model. 
 

Discussions and Conclusion 
 
 Artificial neural networks serve as 
excellent models for reconstructing the data 
and studying the LE for the Hénon Map.  If 
we applied these models on data taken from 
a system whose LE is unknown, they would 
perform well given that they are adequately 
trained.  Certain measures could be taken to 
ensure that the correct LE is found which 
include cross validation and ensembles of 
neural networks among other ways to 
provide that the neural network does not 
overfit the data it is given.  One drawback of 
this neural network model is that they 
require many more calculations than SVR 
and unlike SVR (prior to training the 
parameters), neural networks often fail to 
find the global optimum or absolute best way 
to model the data therefore it is imperative to 

train many different networks on the same 
data.   
 Support Vector Regression 
performed much better than expected.  
Mattera et al. found that reconstructing the 
strange attractor and the chaotic dynamics 
for a given system using SVR is not always 
possible [17] but by using a weighting 
system on the forecast of the data, it is 
possible to train the parameters for these 
models to produce an accurate representation 
of the data.   

The number of free parameters 
created a challenge for trying to calculate the 
LE, a training schedule was created to alter 
these parameters and reconstruct both the 
chaotic dynamics and the strange attractor.  
Like the neural network, using this type of 
training causes the model parameters to fall 
into local optimums, one way to overcome 
this is to use an ensemble of SVR models to 
find an average Lyapunov exponent.   
   One important aspect of time series 
analysis involves determining the embedding 
dimension for a model.  For the attractor to 
be reconstructed it must be embedded in an 
appropriate dimension so it can be unfolded 
so one preimage does not produce two 
different images.  A sufficient condition for 
the embedding dimension was provided by 
Takens [18] who showed that complete 
unfolding is guaranteed if the time-delayed 
embedding space has a dimension at least 
one greater than twice the dimension of the 
original state space.   

For the purpose of this project, the 
data was embedded in a space that was 
guaranteed to unfold it, by looking at the 
time-delayed equations of each system, the 
embedding could be deduced.  For the 
Hénon map, the embedding was 2, for the 
delayed Hénon map, 4, and for the Logistic 
map, 1.  For an unknown system, embedding 
can be calculated using an algorithm known 
as false nearest neighbors [19]. 
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Support Vector Regression has 
shown to be useful in function 
approximation, forecasting, and 
reconstruction of chaotic dynamics for a 
given system.  Support Vector Regression 
creates a model that uses far less points than 
the artificial neural network.  Training the 
SVR model parameters takes less time than 
the neural network and in some cases it 
arrives at a better approximation of the LE 
for the system being studied.  SVR serves as 
another model to approximate the LE for a 
dynamical system and it would be interesting 
to test SVR more rigorously on continuous 
systems and real-world data. 
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