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Introduction 
 
Tables of correlation features are presented for the convenience of analysts and for use with statistical and practical 
significance tests. Analysts requiring additional theory or statistical data corresponding to confidence levels and/or 
degrees of freedom not covered in the tables are referred to the literature. Our tables are great for data mining studies or 
for those that don’t have access to power analysis software packages. 
 
Features of correlation distributions are compared up to a resolution of ± 0.005 and at several confidence levels and n – 2 

degrees of freedom. These features are summarized in the Appendix section.  

 
Reproducing our tables 
 
Our tables can be reproduced with Excel or a similar spreadsheet application by the following procedure.  
 

In one column of a spreadsheet, paste degrees of freedom, df, at a given confidence level; e.g., 95% ( = 0.05). In a 
second column, paste Student’s t values. You may want to use the Student’s t-distribution Table available at 
http://en.wikipedia.org/wiki/Student's_t-distribution. With df and t values several features can be computed. For instance in 
a third column, compute correlation coefficients defined as 
 

  
 

       
 

 
In a fourth column, list the amount of “signal” S associated to r, defined as 
 
S = r

2
  

 
Also known as Coefficient of Determination, S is the fraction of variations in the dependent variable (y) explained by the 
independent variable (x). The fraction of unexplained variations in the dependent variable or “noise” N is therefore 
 
N = 1 – S = 1 – r

2
 

 
and S/N is a signal-to-noise ratio. Construct columns for the N and S/N features.  

 
Compute also a column of 1/t values and a column of Cohen’s d values using any of the following equations 

 

d = 2 
 

      
 = 2     = 2 

 

   
 

 
where Cohen’s d is the difference between any two independent sample means. Note that Cohen’s d is approximated as a 
signal-to-noise function.  
 
For the grand finale, construct columns for comparing any two features F1 and F2 and as follows: 

 

1/t vs N S vs N S vs 1/t r vs N S/N vs r S/N vs 1/t r vs 1/t d vs N d vs 1/t 

 
You should be able to reproduce the following tables: 
 
 
 

 

mailto:admin@miislita.com
http://en.wikipedia.org/wiki/Student's_t-distribution
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Table 1. Features of a correlation distribution at a 90% confidence level ( = 0.10) 

df t r S N S/N 1/t d 1/t vs N S vs N S vs 1/t r vs N S/N vs r S/N vs 1/t r vs 1/t d vs N d vs 1/t 

1 6.314 0.988 0.976 0.024 39.867 0.158   
 

   
  

  

2 2.92 0.900 0.810 0.190 4.263 0.342   
 

   
  

  

3 2.353 0.805 0.649 0.351 1.846 0.425  1/t > N 
 

   
  

  

4 2.132 0.729 0.532 0.468 1.136 0.469  1/t  N S > N S > 1/t   
  

  

5 2.015 0.669 0.448 0.552 0.812 0.496 1.802 1/t < N S < N S < 1/t   
  

  

6 1.943 0.621 0.386 0.614 0.629 0.515 1.586  
 

 r > N  S/N > 1/t 
 

  

7 1.895 0.582 0.339 0.661 0.513 0.528 1.432  
 

 r < N S/N > r S/N < 1/t 
 

  

8 1.86 0.549 0.302 0.698 0.432 0.538 1.315  
 

  S/N < r 
 

r > 1/t   

9 1.833 0.521 0.272 0.728 0.373 0.546 1.222  
 

   
 

r < 1/t   

10 1.812 0.497 0.247 0.753 0.328 0.552 1.146  
 

   
  

  

11 1.796 0.476 0.227 0.773 0.293 0.557 1.083  
 

   
  

  

12 1.782 0.457 0.209 0.791 0.265 0.561 1.029  
 

   
  

  

13 1.771 0.441 0.194 0.806 0.241 0.565 0.982  
 

   
  

  

14 1.761 0.426 0.181 0.819 0.222 0.568 0.941  
 

   
  

  

15 1.753 0.412 0.170 0.830 0.205 0.570 0.905  
 

   
  

  

16 1.746 0.400 0.160 0.840 0.191 0.573 0.873  
 

   
  

d > N  

17 1.74 0.389 0.151 0.849 0.178 0.575 0.844  
 

   
  

d  N  

18 1.734 0.378 0.143 0.857 0.167 0.577 0.817  
 

   
  

d < N  

19 1.729 0.369 0.136 0.864 0.157 0.578 0.793  
 

   
  

  

20 1.725 0.360 0.130 0.870 0.149 0.580 0.771  
 

   
  

  

21 1.721 0.352 0.124 0.876 0.141 0.581 0.751  
 

   
  

  

22 1.717 0.344 0.118 0.882 0.134 0.582 0.732  
 

   
  

  

23 1.714 0.337 0.113 0.887 0.128 0.583 0.715  
 

   
  

  

24 1.711 0.330 0.109 0.891 0.122 0.584 0.699  
 

   
  

  

25 1.708 0.323 0.104 0.896 0.117 0.585 0.683  
 

   
  

  

26 1.706 0.317 0.101 0.899 0.112 0.586 0.669  
 

   
  

  

27 1.703 0.311 0.097 0.903 0.107 0.587 0.655  
 

   
  

  

28 1.701 0.306 0.094 0.906 0.103 0.588 0.643  
 

   
  

  

29 1.699 0.301 0.091 0.909 0.100 0.589 0.631  
 

   
  

  

30 1.697 0.296 0.088 0.912 0.096 0.589 0.620  
 

   
  

 d > 1/t 

40 1.684 0.257 0.066 0.934 0.071 0.594 0.533  
 

   
  

 d < 1/t 

50 1.676 0.231 0.053 0.947 0.056 0.597 0.474  
 

   
  

  

60 1.671 0.211 0.044 0.956 0.047 0.598 0.431  
 

   
  

  

80 1.664 0.183 0.033 0.967 0.035 0.601 0.372  
 

   
  

  

100 1.66 0.164 0.027 0.973 0.028 0.602 0.332  
 

   
  

  

120 1.658 0.150 0.022 0.978 0.023 0.603 0.303  
 

   
  

  

 1.645 
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Table 2. Features of a correlation distribution at a 95% confidence level ( = 0.05) 

df t r S N S/N 1/t d 1/t vs N S vs N S vs 1/t r vs N S/N vs r S/N vs 1/t r vs 1/t d vs N d vs 1/t 

1 12.710 0.997 0.994 0.006 161.544 0.079   
 

   
  

  

2 4.303 0.950 0.903 0.097 9.258 0.232   
 

   
  

  

3 3.182 0.878 0.771 0.229 3.375 0.314   
 

   
  

  

4 2.776 0.811 0.658 0.342 1.927 0.360  1/t > N 
 

   
  

  

5 2.571 0.755 0.569 0.431 1.322 0.389  1/t < N S > N    
  

  

6 2.447 0.707 0.499 0.501 0.998 0.409 1.998  S  N    
  

  

7 2.365 0.666 0.444 0.556 0.799 0.423 1.788  S < N S > 1/t   
  

  

8 2.306 0.632 0.399 0.601 0.665 0.434 1.631  
 

S < 1/t r > N S/N > r 
  

  

9 2.262 0.602 0.362 0.638 0.569 0.442 1.508  
 

 r < N S/N < r 
  

  

10 2.228 0.576 0.332 0.668 0.496 0.449 1.409  
 

   S/N > 1/t 
 

  

11 2.201 0.553 0.306 0.694 0.440 0.454 1.327  
 

   S/N < 1/t 
 

  

12 2.179 0.532 0.283 0.717 0.396 0.459 1.258  
 

   
  

  

13 2.160 0.514 0.264 0.736 0.359 0.463 1.198  
 

   
  

  

14 2.145 0.497 0.247 0.753 0.329 0.466 1.147  
 

   
  

  

15 2.131 0.482 0.232 0.768 0.303 0.469 1.100  
 

   
 

r > 1/t   

16 2.120 0.468 0.219 0.781 0.281 0.472 1.060  
 

   
 

r  1/t   

17 2.110 0.456 0.208 0.792 0.262 0.474 1.024  
 

   
 

r < 1/t   

18 2.101 0.444 0.197 0.803 0.245 0.476 0.990  
 

   
  

  

19 2.093 0.433 0.187 0.813 0.231 0.478 0.960  
 

   
  

  

20 2.086 0.423 0.179 0.821 0.218 0.479 0.933  
 

   
  

  

21 2.080 0.413 0.171 0.829 0.206 0.481 0.908  
 

   
  

  

22 2.074 0.404 0.164 0.836 0.196 0.482 0.884  
 

   
  

  

23 2.069 0.396 0.157 0.843 0.186 0.483 0.863  
 

   
  

d > N  

24 2.064 0.388 0.151 0.849 0.178 0.484 0.843  
 

   
  

d < N  

25 2.060 0.381 0.145 0.855 0.170 0.485 0.824  
 

   
  

  

26 2.056 0.374 0.140 0.860 0.163 0.486 0.806  
 

   
  

  

27 2.052 0.367 0.135 0.865 0.156 0.487 0.790  
 

   
  

  

28 2.048 0.361 0.130 0.870 0.150 0.488 0.774  
 

   
  

  

29 2.045 0.355 0.126 0.874 0.144 0.489 0.759  
 

   
  

  

30 2.042 0.349 0.122 0.878 0.139 0.490 0.746  
 

   
  

  

40 2.021 0.304 0.093 0.907 0.102 0.495 0.639  
 

   
  

  

50 2.009 0.273 0.075 0.925 0.081 0.498 0.568  
 

   
  

  

60 2.000 0.250 0.063 0.938 0.067 0.500 0.516  
 

   
  

 d > 1/t 

80 1.990 0.217 0.047 0.953 0.050 0.503 0.445  
 

   
  

 d < 1/t 

100 1.984 0.195 0.038 0.962 0.039 0.504 0.397  
 

   
  

  

120 1.980 0.178 0.032 0.968 0.033 0.505 0.361  
 

   
  

  

 1.960 
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Table 3. Features of a correlation distribution at a 98% confidence level ( = 0.02) 

df t r S N S/N 1/t d 1/t vs N S vs N S vs 1/t r vs N S/N vs r S/N vs 1/t r vs 1/t d vs N d vs 1/t 

1 31.820 1.000 0.999 0.001 1012.512 0.031   
 

   
  

  

2 6.965 0.980 0.960 0.040 24.256 0.144   
 

   
  

  

3 4.541 0.934 0.873 0.127 6.874 0.220   
 

   
  

  

4 3.747 0.882 0.778 0.222 3.510 0.267  1/t > N 
 

   
  

  

5 3.365 0.833 0.694 0.306 2.265 0.297  1/t < N 
 

   
  

  

6 3.143 0.789 0.622 0.378 1.646 0.318   
 

   
  

  

7 2.998 0.750 0.562 0.438 1.284 0.334   
 

   
  

  

8 2.896 0.715 0.512 0.488 1.048 0.345   S > N    
  

  

9 2.821 0.685 0.469 0.531 0.884 0.354 1.881  S < N    
  

  

10 2.764 0.658 0.433 0.567 0.764 0.362 1.748  
 

   
  

  

11 2.718 0.634 0.402 0.598 0.672 0.368 1.639  
 

S > 1/t r > N S/N > r 
  

  

12 2.681 0.612 0.375 0.625 0.599 0.373 1.548  
 

S  1/t r < N S/N < r 
  

  

13 2.650 0.592 0.351 0.649 0.540 0.377 1.470  
 

S < 1/t   
  

  

14 2.624 0.574 0.330 0.670 0.492 0.381 1.403  
 

   
  

  

15 2.602 0.558 0.311 0.689 0.451 0.384 1.344  
 

   
  

  

16 2.583 0.542 0.294 0.706 0.417 0.387 1.292  
 

   S/N > 1/t 
 

  

17 2.567 0.529 0.279 0.721 0.388 0.390 1.245  
 

   S/N   1/t 
 

  

18 2.552 0.515 0.266 0.734 0.362 0.392 1.203  
 

   S/N < 1/t 
 

  

19 2.539 0.503 0.253 0.747 0.339 0.394 1.165  
 

   
  

  

20 2.528 0.492 0.242 0.758 0.320 0.396 1.131  
 

   
  

  

21 2.518 0.482 0.232 0.768 0.302 0.397 1.099  
 

   
  

  

22 2.508 0.472 0.222 0.778 0.286 0.399 1.069  
 

   
  

  

23 2.500 0.462 0.214 0.786 0.272 0.400 1.043  
 

   
  

  

24 2.492 0.453 0.206 0.794 0.259 0.401 1.017  
 

   
  

  

25 2.485 0.445 0.198 0.802 0.247 0.402 0.994  
 

   
  

  

26 2.479 0.437 0.191 0.809 0.236 0.403 0.972  
 

   
  

  

27 2.473 0.430 0.185 0.815 0.227 0.404 0.952  
 

   
  

  

28 2.467 0.423 0.179 0.821 0.217 0.405 0.932  
 

   
  

  

29 2.462 0.416 0.173 0.827 0.209 0.406 0.914  
 

   
 

r > 1/t   

30 2.457 0.409 0.168 0.832 0.201 0.407 0.897  
 

   
 

r  1/t d > N  

40 2.423 0.358 0.128 0.872 0.147 0.413 0.766  
 

   
 

r > 1/t d < N  

50 2.403 0.322 0.104 0.896 0.115 0.416 0.680  
 

   
  

  

60 2.390 0.295 0.087 0.913 0.095 0.418 0.617  
 

   
  

  

80 2.374 0.257 0.066 0.934 0.070 0.421 0.531  
 

   
  

  

100 2.364 0.230 0.053 0.947 0.056 0.423 0.473  
 

   
  

  

120 2.358 0.210 0.044 0.956 0.046 0.424 0.431  
 

   
  

 d > 1/t 

 2.326 
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Table 4. Features of a correlation distribution at a 99% confidence level ( = 0.01) 

df t r S N S/N 1/t d 1/t vs N S vs N S vs 1/t r vs N S/N vs r S/N vs 1/t r vs 1/t d vs N d vs 1/t 

1 63.66 1.000 1.000 0.000 4052.596 0.016   
 

   
  

  

2 9.925 0.990 0.980 0.020 49.253 0.101   
 

   
  

  

3 5.841 0.959 0.919 0.081 11.372 0.171   
 

   
  

  

4 4.604 0.917 0.841 0.159 5.299 0.217   
 

   
  

  

5 4.032 0.875 0.765 0.235 3.251 0.248  1/t > N 
 

   
  

  

6 3.707 0.834 0.696 0.304 2.290 0.270  1/t < N 
 

   
  

  

7 3.499 0.798 0.636 0.364 1.749 0.286   
 

   
  

  

8 3.355 0.765 0.585 0.415 1.407 0.298   
 

   
  

  

9 3.25 0.735 0.540 0.460 1.174 0.308   S > N    
  

  

10 3.169 0.708 0.501 0.499 1.004 0.316 2.004  S  N    
  

  

11 3.106 0.684 0.467 0.533 0.877 0.322 1.873  S < N    
  

  

12 3.055 0.661 0.437 0.563 0.778 0.327 1.764  
 

   
  

  

13 3.012 0.641 0.411 0.589 0.698 0.332 1.671  
 

   
  

  

14 2.977 0.623 0.388 0.612 0.633 0.336 1.591  
 

 r > N S/N > r 
  

  

15 2.947 0.606 0.367 0.633 0.579 0.339 1.522  
 

 r < N S/N < r 
  

  

16 2.921 0.590 0.348 0.652 0.533 0.342 1.461  
 

S > 1/t   
  

  

17 2.898 0.575 0.331 0.669 0.494 0.345 1.406  
 

S < 1/t   
  

  

18 2.878 0.561 0.315 0.685 0.460 0.347 1.357  
 

   
  

  

19 2.861 0.549 0.301 0.699 0.431 0.350 1.313  
 

   
  

  

20 2.845 0.537 0.288 0.712 0.405 0.351 1.272  
 

   
  

  

21 2.831 0.526 0.276 0.724 0.382 0.353 1.236  
 

   
  

  

22 2.819 0.515 0.265 0.735 0.361 0.355 1.202  
 

   S/N > 1/t 
 

  

23 2.807 0.505 0.255 0.745 0.343 0.356 1.171  
 

   S/N < 1/t 
 

  

24 2.797 0.496 0.246 0.754 0.326 0.358 1.142  
 

   
  

  

25 2.787 0.487 0.237 0.763 0.311 0.359 1.115  
 

   
  

  

26 2.779 0.479 0.229 0.771 0.297 0.360 1.090  
 

   
  

  

27 2.771 0.471 0.221 0.779 0.284 0.361 1.067  
 

   
  

  

28 2.763 0.463 0.214 0.786 0.273 0.362 1.044  
 

   
  

  

29 2.756 0.456 0.208 0.792 0.262 0.363 1.024  
 

   
  

  

30 2.75 0.449 0.201 0.799 0.252 0.364 1.004  
 

   
  

  

40 2.704 0.393 0.155 0.845 0.183 0.370 0.855  
 

   
 

r > 1/t d > N  

50 2.678 0.354 0.125 0.875 0.143 0.373 0.757  
 

   
 

r < 1/t d < N  

60 2.66 0.325 0.105 0.895 0.118 0.376 0.687  
 

   
  

  

80 2.639 0.283 0.080 0.920 0.087 0.379 0.590  
 

   
  

  

100 2.626 0.254 0.065 0.935 0.069 0.381 0.525  
 

   
  

  

120 2.617 0.232 0.054 0.946 0.057 0.382 0.478  
 

   
  

 d > 1/t 

 2.576 
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Feature regimes 

The tables have been color coded to demonstrate the presence of several feature regimes. The following convention was 
used: 
 

 If F1 > F2 a cell is colored in blue.  

 If F1 < F2 a cell is colored in pink.  

 If F1 - F2 is less than ± 0.005, a cell is colored in yellow.  

 
So, borderline values were resolved up to that resolution. This procedure can be repeated for other confidence levels. We 
can keep expanding the tables by computing additional features from power analysis theory. See Figure 1. 
 

Results 
 
Several “row” and “column” correlation regimes have been identified, color-coded, and labeled at their interfaces. For 

instance from Table 2 (i.e., at a 95% confidence level,  = 0.05) two opposite and mathematically feasible “row” regimes 
have been determined: 

 

 when r ≥ 0.811, 1/t > N, S > N, S > 1/t, r > N, S/N > r, S/N > 1/t, r > 1/t, d > N, d > 1/t 

 when r  0.217, 1/t < N, S < N, S < 1/t, r < N, S/N < r, S/N < 1/t, r < 1/t, d < N, d < 1/t 
 
Note that we refer to these as mathematically feasible regimes since d values greater than 2 are computable from  

d =2 
 

      
 = 2     = 2 

 

   
 , but have no statistical meaning. If we ignore such values then the effective regimes are 

 

 when r ≥ 0.811, 1/t > N, S > N, S > 1/t, r > N, S/N > r, S/N > 1/t, r > 1/t 

 when r  0.456, 1/t < N, S < N, S < 1/t, r < N, S/N < r, S/N < 1/t, r < 1/t 
 
“Column” regimes have also been identified from our tables.  
 
For instance from the S vs N column of Table 2:  
  

 when r = 0.755, S > N  

 when r = 0.666, S < N  

 
In general the exact threshold of r values occurs when r values are above or below 0.707. See next section, Exercise 1. 

Mixed regimes can be identified from other cells. The tables can also be used to discriminate between r values.  

 
For instance, any two coefficients r1 and r2, are statistically significant if r observed > r table. We can arrive at the same 
conclusion by considering signal-to-noise data since for statistical significance S/N observed > (t table 

2
)/(df). 

 
For similar samples and number of observations, an r value where S > N is generally considered more useful than one 
where N > S. When N > S for any two values, r1 and r2, these can be discriminated by visually inspecting the tables or by 
computing individual features. Finally, the tables can be used to discriminate between identical feature values at different 
confidence levels. 
 

Using the tables 
 
As mentioned earlier in this article, the tables herein described are meant to be used as complementary shortcuts for 
statistical and practical significance work.  

To illustrate, let use Table 2 for the following examples: 

1. Classify r values in terms of the relative amount of signal and noise present in a set of paired variables. 

 

From the S vs N column we can see that when S    N,          = 0.707.  

 
Therefore, values above and below 0.707 define specific ranges.  
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2. From 20 pairs of measurements you find a correlation coefficient of 0.495. Can you conclude that a significant 
correlation exists in the population, at the 0.05 level of significance? 
 
For statistical significance, robserved > rtable .  

Table 2 shows for df = 18 that rtable = 0.444. Since robserved  = 0.495 > 0.444, we conclude that a significant correlation 
does exist. Note that this is a lot easier than computing and then comparing a tobserved against a ttable . 

3. At which experimental conditions d = 1/t? What does this mean? 

 

From d  =  2 
 

   
 when d = 1/t it is clear that df  =   

 

   .   

 
From the several tables we have developed, when d 
decreases 1/t increases and eventually reaches a plateau. 
From these tables, clearly d = 1/t can only occur at the 95% 

confidence level ( =0 .05) and when d = 0.5. 
 
A medium effect of d = 0.5 is visible to the naked eye of a 
careful observer. So, if for a medium effect d = 1/t = 0.5, df = 

64. This is a unique situation for a medium effect size. 
 

Note. A small effect of d = 0.2 is noticeably smaller than 
medium but not so small as to be trivial. A large effect of 
d = 0.8 is the same distance above the medium as small 
is below it.  
 
From Figure 1 d can be thought of as the average 
percentile standing of the average treated (experimental) 
relative to the average untreated (control) participant. 
Cohen’s d can also be interpreted in terms of the percent 
of non overlap of the treated group's scores with those of 
the untreated group. 

 
 
 

Remarks d Percentile Standing Percent of Non overlap 

  2.0 97.7 81.1% 

  1.9 97.1 79.4% 

  1.8 96.4 77.4% 

  1.7 95.5 75.4% 

  1.6 94.5 73.1% 

  1.5 93.3 70.7% 

  1.4 91.9 68.1% 

  1.3 90 65.3% 

  1.2 88 62.2% 

  1.1 86 58.9% 

  1.0 84 55.4% 

  0.9 82 51.6% 

Large 0.8 79 47.4% 

  0.7 76 43.0% 

  0.6 73 38.2% 

Medium 0.5 69 33.0% 

  0.4 66 27.4% 

  0.3 62 21.3% 

Small 0.2 58 14.7% 

  0.1 54 7.7% 

  0.0 50 0% 

  
Figure 1. See Becker, Lee. Effect Sizes. 

http://www.uccs.edu/~faculty/lbecker/es.htm 

 
4. What is the correlation associated to a 0.5 difference between two independent sample means of same number of 

observations at  = 0.05? 
 

From Table 2, d is close to 0.517, so r must be less than 0.250.  A refined result is obtained by expressing r in 
terms of d; i.e. 

 

         
  

     
 . Therefore, r = 

 

      
  

   

        
             

  
5. In the previous problem, how many observations in each group are required for a power of p = 0.80? 

 

Let  be the probability of a Type II Error. Power is defined as 

the 1 –  probability area of a population normal distribution.  
There is a cut-off t value associated to this area and its critical 
t value that depends on df. These cut-off values can be 
computed with the tool available at 
http://www.statdistributions.com/t/?p=0.1&df=12&tail=2 .   
 
In Figure 2 we have computed values by using the right-tail 
option of the tool and setting power p to 0.80. We used these 
values since from Table 2 we can see that for a single sample 
df > 60 and t < 2.    

 
df 60 80 100 120  

tcritical 2.000 1.990 1.984 1.980 1.960 

tcut-off -0.848 -0.846 -0.845 -0.845 -0.842 

 
Figure 2. Values associated to a power of 0.80. 

 

http://www.uccs.edu/~faculty/lbecker/es.htm
http://www.statdistributions.com/t/?p=0.1&df=12&tail=2
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As df increases tcut-off is about -0.84, so we can 
safely use this cut-off value. In general for a 
two-tailed t-tests, the difference between two 

independent means, with  = 0.05 is given by  
 

   
       

    ,  

 
where k is a t value that cuts off the upper 
portion of the t distribution corresponding to 
the desired level of power.   
 
So, n = 64.52 with df = 62.52 and           

 
     

 
 = 1.977. Note for both samples that a 

total size of 2n  129 and df = 2n – 2  127 are 
needed. These results are close to those 
obtained with software like G*Power. See 
Figure 3.  

 
 

Figure 3. G*Power results. 

 

G*Power gives n = 64 and tcritical = 1.979. For both samples a total of 128 observations and df = 126 are needed. So 
for those with no access to G*Power, the above procedure can be used with comparable results. 

 

Appendix: List of Symbols and Features 
 
n  = sample size defined as number of measurements 
t  = statistical confidence value 

df  = degrees of freedom defined as n - 2 

r  = correlation coefficient, computed as 
 

       
  

S = r
2
, Signal or fraction of explained variations in the dependent variable and due to variations  

in the independent variable 
N  = 1 – r 

2, Noise or fraction of unexplained variations in the dependent variable 

S/N  = Signal-to-Noise ratio 

1/t  = Inverse confidence value 

d  = Cohen’s d value, approximated as 2 
 

      
 = 2     = 2 

 

   
 

 

Note. Cohen’s d is listed up to d  2 (Becker, 2000; Cohen 1988). Procedures for transforming d to r and vice versa have 
been discussed by Cohen (1983, 1988, 1992), Friedman (1968), Glass, et. al. (1981), Rosenthal (1984), and Wolf (1986), 
using the following formula 
 

      
  

     
 

 
From the work of Hedges and Olkin (1985) and Aaron, Kromrey, and Ferron (1998), it is clear that  
 

      
  

                                
   

 
For the special case wherein n1 = n2 = n 
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And the first expression is obtained for n >> 1. Finally solving for d,  
 

d  =  2 
 

      
 = 2     = 2 

 

   
 

 
which approximates Cohen’s d as a signal-to-noise function. 
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