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Abstract

The non-stationary character of stock market returns manifests itself through
the volatility clustering effect and large jumps. An efficient way of representing
a time series with such complex dynamics is given by wavelet methodology.
With the help of a wavelet basis, the discrete wavelet transform (DWT) is able
to break a time series with respect to a time-scale while preserving the time
dimension and energy. Time-scale specific information is important if one ac-
cepts the view that stock market consists of heterogenous investors operating
at different time-scales. Considerable more insight into the volatility dynamics
is gained by looking at the data at several different time-scales. At small time-
scales, in particular, the locality of wavelet analysis allows one to fully exploit
high-frequency data. In addition, the DWT is even faster than the fast Fourier
transform, so it is ideally suited for analyzing large data sets. The ”large-scale
aim” of this paper is to first introduce wavelet methodology and then to an-
alyze high-frequency stock market volatility with it. In more detail, the data
consists of 5-minute observations of Nokia Oyj at the Helsinki Stock Exchange

∗The main results of the empirical section of this particular version are to be presented at the
”Economics and Econometrics of the Market Microstructure Summer School” (June 7—11 2004;
Constance, Germany). To save space and to make the paper a little bit more focused, Sections 2, 3,
and 4 have been excluded (they contain wavelet theory). The full draft is available from the author
upon request. The thesis is expected to be ready in August, 2004.

†Comments are welcome! Email: tvuorenm@cc.helsinki.fi
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(HEX) spanning 4 years (1999-2002). Several microstructure problems have to
be dealt with, some characteristic of the HEX. Pre-filtered data is then being
analyzed by the ”maximal overlap” DWT to study both the global and local
scaling laws in turbulent and calm periods, separately. In particular, this gives
local long-memory estimates of a stochastic volatility model with time-varying
parameters.

1 Introduction

Financial time series share common characteristics. For example, in stock market
return data one typically observes discontinuities, i.e. sudden big changes, and clus-
ters of volatility, i.e. alternating of highly volatile and tranquil periods (see Fig. 1).
These, and many other, phenomena are so widely recognized that they are called
stylized facts (see e.g. Cont (2001) or Dacorogna et al. (2001)). Clearly a good model
of financial returns would at least have to capture the non-Gaussian behavior and
time-varying volatility. Most notably, the elegant Gaussian random walk framework
of Bachelier (1900) suffers seriously from the neglection of these empirical regularities.
A lot of effort has been put into the study of discontinuities since the pioneering

work of Mandelbrot (1963) and Fama (1965). In fact, back in the 1970s the study
of non-Gaussian (especially Paretian) heavy-tailed distributions dominated the em-
pirical finance literature. Although there is nowadays a vital new line of research of
jumps (see e.g. Ait-Sahalia (2003), Barndorff-Nielsen and Shephard (2003a, 2003b),
Andersen et al. (2003), and Huang and Tauchen (2003)), for the last two decades
the main emphasis has been put into the research of volatility clustering phenomena
or what has become to known as the ”ARCH-effect”. In particular, the seminal arti-
cles of Engle (1982) and Bollerslev (1986) launched a huge interest in different kinds
of (generalized) autoregressive conditional heteroskedastic ((G)ARCH) models.1 (For
a review of these models, see Bollerslev et al. (1992) or Bollerslev et al. (1994).)
In addition, an ever more important complementary class of models is the class of
stochastic volatility models (see e.g. Ghysels et al. (1995)) which are able to produce
the ARCH-effect, too. The immense interest in the conditional variance stems from
the fact that a correctly specified volatility model is important in valuation of stocks
and stock options and in designing optimal dynamic hedging strategies for options
and futures, among other reasons (see e.g. Engle and Ng (1993)).
But as important as these models and their numerous extensions have been for the

newborn field of financial econometrics (for an essay, see Bollerslev (2001)), they have
not helped much in explaining the stylized facts. True enough, they are only models,
and as such perhaps only meant for succesful data fitting, but are they missing on
something crucial? In a way they are, since they are modeling only one time-scale

1In fact, in 2003 Engle was given a (half of) Nobel Prize in Economic Sciencies ”for methods of an-
alyzing economic time series with time-varying volatility (ARCH)” (see the ”Advanced Information”
at Http://www.nobel.se/economics/laureates/2003).
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Nokia at Helsinki Stock Exchange (1999 - 2002)
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Figure 1: Logarithmic price and return history of Nokia sampled every 5-minutes
from 1999 to 2002. Notice the jumps and the clusters of volatility.
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(usually a day, or larger). But stock market data has no specific time-scale to analyze!
A notable exception in this respect is the heterogenous ARCH model introduced in
Müller et al. (1997) based on the hypothesis of a heterogenous market (see Müller
et al. (1993), Peters (1994)). According to this hypothesis the stock market consists
of multiple layers of investment horizons (time-scales) varying from an extremely
short (minutes) to long (years). The small time-scales are commonly thought to
be related to speculative activity and the bigger time-scales to investment activity.
Indeed, the players in the stock market form a heterogenous group with respect to
other reasons as well, such as perceptions of the market, risk profiles, institutional
constraints, degree of information, prior beliefs, and other characteristics such as
geographical locations. Interestingly though, Müller et al. (1993) argue that many
of these differences translate to sensitivity to different time-scales. Indeed, Müller
et al. (1997) show some support for the view that time-scale is ”one of the most
important aspects in which trading behaviours differ” (further support is given by
Lynch and Zumbach (2003)). For example, big institutional investors have relatively
long trading horizons and they trade on economic fundamentals. On the other hand,
some of the market participants, the so-called day-traders, don’t keep open positions
over night and they simply trade on market sentiment. These small time-scales, in
particular, have become increasingly important because of the recent availability of
high-frequency data. In fact, Goodhart and O’Hara (1997) conjecture that ”the ability
to analyze higher frequency data may be particularly useful in pursuing [why volatility
persistance endures]”. It is therefore obvious that to better capture the dynamics of
a stock market one must analyze data at multiple, perhaps even a continuum of,
time-scales.
Multiple time-scales are especially important from the view point of risk man-

agement. For example, in the risk management industry one often needs to scale a
risk measure (e.g. standard deviation) of one time-scale to another. The industry
standard is to scale by the square-root of time, familiar from Brownian motion (i.e.
continuous-time random walk). But one is then implicitly assuming that the data
generating process (DGP) is made of identically and independently distributed (IID)
random variables. This assumption is not reasonable for financial time series; just
consider volatility clustering, for example. The existance of serial correlation in the
conditional second moments is usually obvious even by eye (as in Fig. 1). In fact, the
persistance is universally found so strong and long-lasting that volatility is said to
exhibit long-memory (or long-range dependence). Under such non-IID circumstances
square root scaling may indeed lead to wrong conlusions (see Diebold et al. (1997)).
Interestingly, scaling laws have been mainly studied with foreign exchange rate data
only (e.g., Andersen et al. (2000) and Gençay et al. (2001)). This is probably because
of its larger turnover, higher liquidity, and lower transaction costs compared to stock
markets.
Another commonly used and overly simplifying assumption is stationarity, often

of second-order. Most of the parametric GARCH models belong to this group, for
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instance. In particular, spectral analysis requires ”covariance stationarity”. Spectral
analysis is a powerful non-parametric method that allows one to represent a station-
ary time series in frequency domain ( in which the frequency aspects of data can be
easily studied). This view point should be contrasted with time domain presentation
— the customary way of presenting stock market data — which hides the frequency
information. In the context of spectral analysis, in particular, the requirement of
stationarity stems from the fact that a power spectrum is just a Fourier transform
of the corresponding sample autocorrelation function.2 As is well-known, autocorre-
lation is incapable of detecting non-stationarities. And because Fourier transform is
looking only for sinusoids ”globally”, spectral analysis is not suitable for transient
and evolving behavior of stock markets. Clean sinusoid components are rarely (never,
dare to say!) encountered in empirical finance.
Clearly, therefore, one needs to use more flexible tools than the traditional ones

to study stock market data. Considering the arguments made this far, the most
straightforward way of increasing flexibility would be to use a non-parametric mul-
tiscale approach. This is exactly where wavelet analysis enters the picture. Wavelet
analysis offers a non-parametric, mathematically concise way of studying the hetero-
geneity of stock markets. But what is wavelet analysis exactly and how is it able
to provide a time-scale perspective on a complex (deterministic) function or, in the
case of time series, on a non-stationary realization of a stochastic process? Loosely
speaking, wavelet methodology extends Fourier methodology (i.e. spectral methods)
by replacing frequency by time-scale while still preserving time dimension. As the
reader might suspect at this point, time-scale and frequency have an intimate rela-
tionship. Indeed, if the data is stationary, then time-scale can be regarded as the
reciprocal of frequency (see Priestley (1996)): when frequency is high (low), then
time-scale is small (large). So in this way wavelet and spectral methods are comple-
mentary tools, just differing in angle. ”Rivals” they become as soon as one requires
local instead of global analysis. And in fact, local adaptiviness is the best asset of
wavelet analysis. This stems from the mathematical fact that the basis functions used
in wavelet analysis, called wavelets, are well-localized in both time and scale. This
gives wavelets a distinct advantage over standard frequency domain methods when
analyzing complex dynamics, such as the one found in stock markets.
There are a wide variety of wavelets available today. However, in the empirical

analysis (Sec. 7) only wavelets belonging to the family of Daubechies wavelets are
applied, mostly because of their compact support. In particular, the least asymmetric
wavelets are used to analyze the volatility of Nokia Oyj at Helsinki Stock Exchange.
The results are interesting in several respects. First, the multiresolution analysis
conducted offers qualititative insight into the volatility dynamics. Next, the analysis

2This is the famous Wiener—Khintchine Theorem (see e.g. Priestley (1981)). In certain cases one
can also analyze non-stationary series with Fourier methods. Furthermore, it has to be noted that
Fourier transform can be time-localized to a certain degree. This is done by the so-called windowed
Fourier transform (see Sec. 3.1.2).
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reveals interesting changes in global and local scaling laws which gives information
on the behavior of different type of investors in time. Quantitatively, the semipara-
metric wavelet approach allows the estimation of a stochastic volatility model with
a time-varying long-memory parameter. This approach is ideally suited in the high-
frequency context because of the existing complex volatility dependencies and large
number of observations. And contrary to wide held beliefs, high-frequency data is
very informative about longer-run volatility dependencies (see Andersen and Boller-
slev (1997b)). The analysis also reveals the consequences of microstructure effects
(especially the intraday periodicity in volatility) to long-memory estimation. Over-
all, the results clearly suggest the presence of long-memory volatility dependencies.
Indeed, the present paper is about more than just ”deployment of wavelet technique
to financial data” of which Norsworthy et al. (2000), and perhaps justifiably so, have
criticized some early authors of.
Before turning to the results of the empirical analysis, however, it is essential to

go through the basics of classical Fourier theory (Sec. ??) as well as wavelet theory
(Sec. ??). These two subsections serve as the backbone to the idea and theory of
multiresolution analysis, discussed next in somewhat technical manner (Sec. 4). Only
after then, I believe, one is prepared well enough to handle stochasticity (Sec. 5).
There is also a quick overview of volatility measures and modeling (Sec. 6) before the
actual analysis. I begin this rather long tour by taking a quick glance at the history
of wavelet methodology, a form of atomic decomposition.

2 A historical glance at wavelet methodology

Sections 2, 3, and 4 have been excluded from this version.

3 Essentials of Fourier and wavelet theories

The purpose of this section is to give the necessary technical background for the
wavelet multiresolution analysis (to be defined mathematically in Sec. 4). It is
suggested that also those familiar with the basics of Fourier and wavelet theories
would at least skim through this section to be acquintant with the notation used.

4 Multiresolution analysis

This section explains, mathematically, how wavelet methodology is used to decompose
a deterministic finite-energy function with respect to resolution (time-scale). The key
concept of multiresolution analysis (due to Mallat (1988)) is introduced. Importantly,
wavelets are shown to act as linear filters. Moreover, the construction of compactly
supported wavelets belonging to the family of Daubechies is discussed.
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5 Decomposing time series

This section aims to show how multiresolution analysis is done in a time series context.
More specifically, in this section the function-to-analyzed is not deterministic but
instead a realization of a stochastic process. Special attention is paid to the energy
preservation property that allows the decomposition of the total variance into time-
scale specific wavelet variances. At the moment, at least, the most comprehensive
coverage of wavelet analysis in statistical time series context is provided by Percival
and Walden (2000). A nice complementary review article is Nason and von Sachs
(1999).

5.1 Practical issues

In order to come up with a useful wavelet analysis of a time series, one must take
into account several issues. The most important ones are:

1. the choice of a wavelet filter;

2. handling boundary conditions;

3. sample sizes that are not a power of two.

These three points are next being shortly discussed in turn (for details, see Percival
and Walden (2000, Ch. 4.11)).
Choice of a wavelet filter. The problem with the smallest width wavelet filters

is that they can sometimes introduce undesirable artifacts into the resulting analy-
sis, such as unrealistic blocks, ”sharks’ fins”, etc. The wider width wavelet filters
indeed can better match to the characteristic features in a time series. Unfortunately
though, as the width gets wider, (i) more coefficients are being unduly influenced by
boundary conditions, (ii) there is some decrease in the degree of localization of the
DWT coefficients, and (iii) there is an increase in computational burden. Thus one
should search for the smallest L that gives reasonable results. In practice, if one also
wants to have the DWT coefficients be alignable in time, the optimal choice is often
LA(8) (this is the filter used in Sec. 7, in fact).
Handling boundary conditions. The DWT uses circular filtering which means

that the time series is treated as a portion of a periodic sequence with period N . For
financial time series this is problematic since there is rarely evidence to support this
assumption. Furthermore, there may be a large discontinuity between the last and
first observations. The extent that circularity influences the DWT coefficients and
corresponding MRA is quantified in Percival and Walden (2000, pp. 145—9). Notice
that the Haar wavelet yields coefficients that are free of the circularity assumption.
As a minimal way of dealing with the circularity assumption, Percival and Walden

suggest to exactly indicate on plots the DWT coefficients and MRAs that are affected
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by the boundary. However, they continue to argue that the influence of circularity
can be quite small, particularly when the discrepancy between the beginning and end
of the series is not too large. Thus the marked regions are usually quite conservative
measures of the influence of circularity. One way of reducing the impact of circularity
is to reflect the time series about its end point. The resulting series of length 2N has
the same mean and variance as the original series. This method eliminates the effects
due a serious mismatch between the first and last values. The cost is increased, but
”quite acceptable”, computational burden. There are also other ways to cope with
circularity like polynomial extrapolation at both ends of the time series and specially
designed ”boundary wavelets” that are zero outside the range of the data (for details,
see e.g. Bruce and Gao (1996)).
Handling sample sizes that are not a power of two. The ”full” DWT requires N

to be a power of two and the ”partial” DWT requires N to be an integer multiple of
2J0. In reality, however, it rarely happens that the data at hand is of dyadic length or
even an integer multiple of it. There are some ad hoc methods for dealing with this
problem. The most obvious one is to truncate the series to the closest integer multiple
of 2J0. One also needs to consider what choice J0 is reasonable. An easy alternative
— familiar from Fourier analysis — is to ”pad” the series with zeros or the sample
mean. Note that padding with the sample mean does not change the sample mean
from the original series. One could also pad by replicating a data value (typically the
last one). In fact, Ogden (1996) has compared various ways of preconditioning data
not meeting the criteria of power of two. He found no method to be clearly superior
in every respect but dictated by the particular application of interest. As one might
suspect, though, extending the data by padding is the easiest to implement and the
least computationally expensive too. Ogden points out that the wavelet coefficients
resulting from preconditioned data should be used cautiously, though. For example,
padding by repeating the last value will introduce a flat artifact towards the end of
the interval causing new problems that remain even with very large samples.
In the next subsections, I will consider only discrete wavelet transforms for two

reasons: (i) financial data is inherently discrete, and (ii) discrete transforms are
computationally less demanding than continuous ones. This is the standard way in
time series applications.

5.2 Discrete wavelet transform

For a throughout description of the DWT, see Percival andWalden (2000, Sec. 4). For
a quick and ”dirty” treatment, see Gençay et al. (2002a, Sec. 4.4). My presentation
parallels with the latter because of space limitations.
Construction. An easy way to introduce the DWT is through a matrix operation.

Consider a dyadic length (i.e., N = 2J) column vector of observations x. The length
N column vector of discrete wavelet coefficients w is obtained via

w =Wx,
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where W ∈ M(N × N) is an orthonormal matrix defining the DWT (see App. B).
The matrix W is composed of the wavelet and scaling filter coefficients arranged
on a row-by-row basis. The structure of the resulting w and the matrix W may
be seen through the subvectors w1,w2, ...,wJ ,vJ and submatrices W1, ...,WJ ,VJ ,
respectively:

w =


w1
w2
...
wJ
vJ

 and W =


W1

W2
...
WJ

VJ

 ,

where wj is a length N/2
j column vector of wavelet coefficients associated with

changes on a scale of length λj = 2j−1 and vJ is a length N/2J column vector of
scaling coefficients associated with averages on a scale of length 2J = 2λJ . Similarly,
Wj ∈M(N/2j ×N) and VJ ∈M(N/2J ×N).
As an illustration of the structure of the matrix W, consider a filter of length

L = 2 and a signal of length N = 8. Then the matrix W1 ∈M(4× 8) is

W1 =


h1 h0 0 0 0 0 0 0
0 0 h1 h0 0 0 0 0
0 0 0 0 h1 h0 0 0
0 0 0 0 0 0 h1 h0

 =

h
(2)
1

h
(4)
1

h
(6)
1

h1

 ,
where h

(k)
1 , k ∈ {2, 4, 6}, is the vector of zero-padded unit scale wavelet filter coeffi-

cients in reverse order, and which is circularly shifted to the right by k.
Similarly, by letting h2 and h4 denote the vector of zero-padded scale two and four

wavelet filter coefficients, respectively, one can construct the matrix W2 ∈ M(2× 8)
and the row vector W3 ∈ M(1 × 8). In this case, the circular shift is by factors of
four and eight (i.e., no change), respectively:

W2 =

·
h
(4)
2

h2

¸
and W3 = h3.

Finally, the matrix V3 ∈ M(1 × 8) is a row vector whose elements are all equal to
1/
√
N (Gençay et al. (2002a, p. 120)).
Of course, one must be able to explicitly compute the wavelet filter coefficients

for level j = 1, ..., J to complete the construction of the matrix W. Given the FRFs
of the unit scale wavelet and scaling filters, it is possible to recover the wavelet filter
hj,l for scale λj = 2

j−1 by the inverse DFT of

Hj,k = H1,2j−1kmodN

j−2Y
l=0

G1,2lkmodN , for k = 0, ..., N − 1.
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The length of the resulting wavelet filter is Lj = (2
j − 1)(L − 1) + 1. Similarly, one

can recover the scaling filter gJ for scale λJ by the inverse DFT of

GJ,k =
J−1Y
l=0

G1,2lkmodN , for k = 0, ..., N − 1.

(Gençay et al. (2002a, p. 121).)

Example 1 (Haar) In the case of L = 2 and N = 8, the matrix W is

W =


W1

W2

W3

V3

 =



1√
2
− 1√

2
0 0 0 0 0 0

0 0 1√
2
− 1√

2
0 0 0 0

0 0 0 0 1√
2
− 1√

2
0 0

0 0 0 0 0 0 1√
2
− 1√

2
1
2

1
2
−1
2
−1
2

0 0 0 0
0 0 0 0 1

2
1
2

−1
2
−1
2

1√
8

1√
8

1√
8

1√
8
− 1√

8
− 1√

8
− 1√

8
− 1√

8
1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8


.

Boundary effects. It is important to know which wavelet coefficients have been
computed using observations across the boundary (cf. Sec. 5.1). Clearly the number
of affected coefficients grow as the level j and length L grow. More precisely, Percival
and Walden (2000, Ch. 4.11) show that the number of the affected DWT coefficients
is

L0j =
§
(L− 2) ¡1− 2−j¢¨ ,

where dxe is the smallest integer greater than or equal to x. Thus, for display purposes,
it is possible to approximately line up the DWT coefficient vectors with the original
time series by circularly shifting the level j vector of DWT coefficients appropriately.
Percival and Walden (2000, Ch. 4.11) give a precise table of integer shifts for the
least asymmetric wavelet filter. The following heuristic can be used, however: If the
number of coefficients affected by the boundary is even, then place half of the of the
boundary coefficients at each end of the series. If, on the other hand, the number
of coefficients affected by the boundary is odd, then place the ”extra” coefficient at
the beginning of the series. Notice that shifting coefficients from the extremal phase
wavelet filter is not as straigthforward given its poor phase properties (see Sec. ??).
(Gençay et al. (2002a, p. 145.)
Multiresolution analysis. An additive decomposition of a time series can be ob-

tained using the DWT by first defining the jth level wavelet detail

dj
.
=WT

j wj, for j = 1, ..., J,

which is associated with changes in x at scale λj. The wavelet coefficients wj =Wjx
represent the portion of the wavelet analysis attributable to scale λj. Thus WT

j wj
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is the portion of the wavelet synthesis attributable to scale λj. For a dyadic length
N = 2J time series, the final wavelet detail dJ+1 = VTJ vJ is equal to the sample mean
of observations. On the other hand, define the jth level wavelet smooth as

sj
.
=

J+1X
k=j+1

dk for 0 ≤ j ≤ J,

where sJ+1 is defined to be a vector of zeros. In contrast to the wavelet detail dj which
is associated with variations at a particular scale, the wavelet smooth sj becomes
smoother as more details are summed. Indeed, it holds that x− sj =

Pj
k=1 dk. The

jth level wavelet rough characterizes the remaining lower-scale details through

rj
.
=

jX
k=1

dk, for 1 ≤ j ≤ J + 1,

where r0 is defined to be a vector of zeros. Thus a time series x may be decomposed
as

x = rj + sj =

jX
k=1

dk +
J+1X
k=j+1

dk =
J+1X
k=1

dk,

where dJ+1 is the sample mean of observations.
Variance decomposition. One of the most important properties of the DWT is

to decompose the sample variance of a time series on a scale-by-scale basis. This is
possible because the DWT is an energy (variance) preserving transform:

kxk2 = xTx = (Ww)TWw = wTWTWw = wTw = kwk2 ,
where W is an orthonormal matrix defining the DWT. In another words,

kxk2 =
N−1X
t=0

x2t =
JX
j=1

N/2j−1X
t=0

w2j,t + v
2
J,0 = kwk2 .

Given the structure of the wavelet coefficients, kxk2 is decomposed on a scale-by-scale
basis via

kxk2 =
JX
j=1

kwjk2 + kvJk2 ,

where kwjk2 is the energy (proportional to variance) of x due to changes at scale λj
and kvJk2 is the information due to changes at scales λJ and higher. BecauseW and
V are orthonormal matrices, we have dTj dj = wT

j wj for 1 ≤ j ≤ J and sTJ sJ = vTJvJ ,
so alternatively,

kxk2 =
JX
j=1

kdjk2 + ksJk2 .

The theoretical counterpart of the variance decomposition in the context of sta-
tionary long-memory processes will be discussed later (Sec. 5.5).
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5.3 Partial DWT

For a bit closer look at the partial DWT than presented below, see either Percival
and Walden (2000, Sec. 4.7) or Gençay et al. (2002a, Sec. 4.4.2). I will be rather
brief because the partial DWT is a straightforward generalization of the DWT.
Partial discrete wavelet transform (pDWT) offers more flexibility than

the ”full” DWT due the choice of a scale beyong which a wavelet analysis into indi-
vidual large scales is no longer of real interest. A practical benefit of this method is
that the sample size no longer needs to be a of dyadic length. Indeed, it is enough
that the sample size to be a multiple of 2J0. Naturally, the choice of J0 depends on
the goals of the analysis.
Construction. The structure of the orthonormal matrixW is similar to the DWT:

W =


W1

W2
...
WJp

VJp

 ,

except that the matrix of scaling filter coefficients VJp ∈ M(N/2Jp ×N) is a matrix
of circularly shifted scaling coefficients vectors.
Multiresolution analysis. For a level J0 < J partial DWT, one has the MRA

x =
J0X
j=1

dj + sJ0 ,

where the details dj are related to changes on a scale of λj = 2
j−1 and the smooth

sJ0 to averages of a scale of λJ0 = 2
J0 .

Variance decomposition. The energy decomposition is

kxk2 =
J0X
j=1

kwjk2 + kvJ0k2

=
J0X
j=1

kdjk2 + ksJ0k2 .

5.4 Maximal overlap DWT

For a throughout discussion of the maximal overlap DWT, see Percival and Walden
(2000, Sec. 5). Once again, Gençay et al. (2002a, Sec. 4.5) give a compact intro-
duction. I will mostly follow the latter because of the increased complexity of the
transform. Notice that in practice a pyramid algorithm similar to that of the DWT
is utilized (see Percival and Mojfeld (1997)). This algorithm requires O(N log2N)
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multiplications, so it is computationally a bit heavier to execute than the DWT, but
still only as heavy as the FFT.
The increased complexity stems mostly from the fact that the maximal overlap

discrete wavelet transform (MODWT) gives up orthogonality in order to gain
features that the DWT (the full or partial) does not posses.3 The following properties
distinguish the MODWT from the DWT (Percival and Walden (2000, pp. 159—60)):

1. The MODWT can handle any sample size N , while the Jpth order partial DWT
restricts the sample size to a multiple of 2Jp;

2. The detail and smooth coefficients of a MODWT multiresolution analysis are
associated with zero-phase filters;

3. The MODWT is invariant to circularly shifting the original time series (this
does not hold for the DWT);

4. The MODWT wavelet variance (to be defined in Sec. 5.5) estimator is asymp-
totically more efficient than the same estimator based on the DWT.

Construction. Let x be a length N column vector of observations. The length
(J + 1)N column vector of MODWT coefficients ew is obtained via

ew = fWx,
where fW ∈ M((J + 1)N × N) is a non-orthogonal matrix defining the MODWT.
The resulting ew and the matrix fW consist of column subvectors ew1, ..., ewJ , evJ , each
of length N , and submatrices fW1, ...,fWJ , eVJ ∈M(N ×N):

ew=

ew1ew2
...ewJevJ

 and fW =


fW1fW2
...fWJeVJ

 ,

where ewj is associated with changes on a scale of length λj = 2j−1 and evJ is associated
with averages on a scale of length 2J = 2λJ . In the special case of a dyadic length time
series, the MODWT may be subsampled and rescaled to obtain the DWT wavelet
and scaling coefficients via

wj,t = 2
j/2 ewj,2j(t+1)−1 and vJ,t = 2J/2evJ,2J (t+1)−1, for t = 0, ..., N/2j − 1.

3The MODWT is also known as the ”stationary DWT”, the ”translation-invariant DWT” and
the ”time-invariant DWT”.
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In this dyadic case the DWT and MODWT filter coefficients are related in the fol-
lowing way: instead of using the wavelet and scaling filters from the previous section,
the MODWT uses the rescaled filters

ehj = hj
2j
and egJ = gJ

2J
, for j = 1, ..., J.

The construction of the submatrix fW1 is done by circular shifting the rescaled
wavelet filter vector eh1 by integer units. The matrices fW2 and fW3 are formed similarly
by replacing eh1 by eh2 and eh3. Thus revisiting the case of L = 2 and N = 8 of Example
1, one has

fW1 =



eh1 0 0 0 0 0 0 eh2eh2 eh1 0 0 0 0 0 0

0 eh2 eh1 0 0 0 0 0

0 0 eh2 eh1 0 0 0 0

0 0 0 eh2 eh1 0 0 0

0 0 0 0 eh2 eh1 0 0

0 0 0 0 0 eh2 eh1 0

0 0 0 0 0 0 eh2 eh1


=



eh(1)1eh(2)1eh(3)1eh(4)1eh(5)1eh(6)1eh(7)1eh1


.

Example 2 (Haar) Insert eh1 = −1/√8 and eh2 = 1/
√
8 in the above matrix fW1.

Unfortunately, the matrix fW ∈ M(32 × 8) is too large to write down here, but it
follows the same logic.

For any positive integer J0, the level J0 MODWT of x is a transform consisting
of the J0+1 vectors ew1, ..., ewJ0 and evJ0 which are all N -dimensional. The vector ewj
contains the MODWT wavelet coefficients associated with changes on scale λj

.
= 2j−1,

while evJ0 contains the MODWT scaling coefficients associated with averages on scale
λJ0

.
= 2J0 .
Boundary effects. The MODWT uses integer translates of the wavelet and scaling

filters, both of length Lj = (2
j − 1)(L− 1) + 1. This causes there to be a total of Lj

wavelet coefficients affected by the boundary at each j. The time-alignment property
of an MRA (Property 2) does not hold for the MODWT wavelet and scaling coeffi-
cients anymore without a proper adjustment (determined in McCoy et al. (1995)),
however. This adjustment is different from the DWT (see Sec. 5.2). Precise integer
shifts for the least asymmetric low-pass filter gj,l and high-pass filter hj,l are given by

ξgj =


− (Lj−1)(L−2)

2(L−1) if L
2
is even

− (Lj−1)L
2(L−1) if L = 10 or 18

− (Lj−1)(L−4)
2(L−1) if L = 14

,

14



ξhj =


−Lj

2
if L

2
is even

−Lj
2
+ 1 if L = 10 or 18

−Lj
2
− 1 if L = 14

,

respectively. (Gençay et al. (2002a, p. 145).)4

Multiresolution analysis. A MODWT MRA can be written as

xt =
J+1X
j=1

edj,t for t = 0, ..., N − 1,
where edj,t is the tth element of the the jth level MODWT detail edj .= fWT

j ewj, for
j = 1, ..., J. The MODWT wavelet smooth and rough are, respectively,

esJ,t = J+1X
k=j+1

edk,t and erj,t = jX
k=1

edk,t, for t = 0, ..., N − 1.
Importantly, although MODWT is not an orthonormal transformation, the MRA

x =
J0X
j=1

edj +esJ0 , (1)

where esJ0 .= VTJ0evJ0 is the J0 level MODWT smooth, still holds true. This is useful in
practice because as stated before, a special property of the MODWT wavelet details
and smooths is that they are associated with zero-phase filters, i.e. features in the
original time series are alignable with the wavelet details and smooth. Thus there is
no need for an adjustment.
Variance decomposition. In order to retain the variance preserving property of

the DWT, the wavelet and scaling coefficients must be rescaled properly as seen
above. Unfortunately, although the MODWT is capable of producing a scale-by-scale
analysis of variance upon the energy decomposition (Percival and Mojfeld (1997)),

kxk2 =
J0X
j=1

kewjk2 + kevJ0k2 , (2)

energy preservation does not hold for the MODWT details and smooths in general:

kxk2 6=
J0X
j=1

kdjk2 + ksJ0k2 . (3)

This is because the MODWT is not an orthonormal transformation. Indeed, Percival
and Walden (2000, Ch. 5.3) show for example that kd1k2 ≤ kew1k2 . Thus when using
the MODWT, one is restricted to analyzing the wavelet and scaling coefficients in
order to quantitatively study the scale-dependent variance properties.

4An alternative definition of shifts for both extremal phase and least asymmetric wavelet filters
is provided by Hess-Nielsen and Wickerhauser (1996), but Gençay et al. (2002a, p. 145) argue the
differences be of minor importance.
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5.5 Wavelet variance

The DWT and the MODWT can decompose the sample variance of a time series
on a scale-by-scale basis. A wavelet based analysis of variance is sometimes called
a wavelet spectrum. Such a spectrum may be of interest for several reasons
(Percival and Walden (2000, p. 296)):

1. a scale-by-scale decomposition of variance is useful if the phenomena consists
of variations over a range of different scales;

2. wavelet variance (to be defined below) is closely related to the concept of spec-
tral density function (SDF, Fourier spectrum);

3. wavelet variance is a useful substitute for the variance of a process for certain
processes with infinite variance.

Consider a discrete parameter real-valued stochastic ARFIMA process {Xt} (see
App. C) whose dth order backward difference Yt is a stationary process with mean

µY (not necessarily zero). Then a Daubechies wavelet filter ehl of width L ≥ d results
in the jth wavelet coefficient process

wj,t
.
=

Lj−1X
l=0

ehj,lXt−l,
being a stationary process (for a stationary process any L would suffice). Now define
the (time-independent, global) wavelet variance for {Xt} at scale λj

.
= 2j−1 to

be
ν2X(λj)

.
= V {wj,t} ,

which represents the contribution to the total variability in {Xt} due to changes at
scale λj. Then by summing up these time-scale specific wavelet variances, one gets
the variance of {Xt}: ∞X

j=1

ν2X(λj) = V{Xt}. (4)

Notice that the wavelet variance is well-defined for both stationary and non-stationary
processes with stationary dth order backward differences as long as the width L of
the wavelet filter is large enough. In the non-stationary case, in particular, the sum
of the wavelet variances diverges to infinity. An advantage of the wavelet variance is
that it handles both types of processes equally well. (Percival and Walden (2000, Ch.
8.2).)
The wavelet coefficients affected by the boundary are a source of a bias and warrant

special attention (see Sec. 5.1). Namely, by taking into account only coefficients that
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are not affected by the periodic boundary conditions, an unbiased estimator of ν2X(λj)
is

eν2X(λj) = 1

Mj

N−1X
t=Lj−1

ew2j,t,
where Mj

.
= N − Lj + 1 > 0 and ewj,t .= PLj−1

l=0
ehj,lXt−l modN are the (periodically

extended) MODWT coefficients. Furthermore, if a sufficiently long wavelet filter is
used, i.e. if L > 2d (or if µY = 0), then E (wj,t) = 0, which in turn implies that

ν2X(λj) = E
©
w2j,t
ª
= E

©ew2j,tª ,
where the last equality follows from using coefficients only for the range not affected
by the boundary. In fact, if the sample mean over all possible t would be calculated,
then in general, one would get a biased estimator of ν2X(λj). (Percival and Walden
(2000, Ch. 8).)
Now consider {Xt} to be a stationary process with SX(f) defined over the fre-

quency interval [−1/2, 1/2]. A fundamental property of the Fourier spectrum is thatZ 1/2

−1/2
SX(f)df = V{Xt},

i.e. the SDF decomposes the variance of a series across different frequencies (Percival
and Walden (2000, p. 296)). On the other hand, the wavelet spectrum decomposes
the variance of a series across different scales (see Eq. (4)). By recalling the close
(although fragile) relationship between frequency and time-scale (see Sec. ??), it is
then no surprise that the estimates of the wavelet variance can be turned into SDF
estimates. In specific, the band-pass nature of the MODWT wavelet filter implies
that

ν2X(λj) ≈ 2
Z 1/(2j∆t)

1/(2j+1∆t)

SX(f)df,

where SX is the SDF estimated by the squared magnitude of the coefficients of the
DFT, called periodogram,

bSX(fk) = 1

N

¯̄̄̄
¯
N−1X
t=0

Xte
−2πfkt

¯̄̄̄
¯
2

,

and fk = k/N denotes the kth Fourier frequency, k = 0, ..., bN/2c. This approxima-
tion improves as the width L of the wavelet filter increases because then ehj,l becomes
a better approximation to an ideal band-pass filter. In fact, if the filter is wide
enough, one can estimate SX using piecewise constant functions over each interval
[1/2j+1∆t, 1/2j∆t]. Notice that in the case of long-memory, however, this approx-
imation underestimates the lowest frequencies (see Percival and Walden (2000, Ch.
8.5)).
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The SDF can be used to construct a confidence interval for ν2X(λj). Namely, assum-
ing that {wj,t} is a Gaussian process, then for largeMj the random variable eν2X(λj) is
approximately Gaussian distributed with mean eν2X(λj) and variance 2Aj/Mj, where

Aj
.
=
R 1/2
−1/2 S

2
j (f)df, provided that Aj is finite and Sj(f) > 0 almost everywhere.

The downside of this contruction is that the confidence interval may have a nega-
tive lower limit which is problematic when plotting wavelet variance estimates in a
double-logarithmic scale. Furthermore, Gençay et al. (2002a, p. 244) point out that
an incorrect Gaussian assumption would produce too narrow intervals that would
not reflect the true variability of the point estimate.5 There does exist other ways
of constructing confidence intervals, but these are a bit more complex. Confidence
intervals could for example constructed using an ”equivalent degrees of freedom” ar-
gument and chi-squared distribution (see Percival and Walden (2000, pp. 336—7)) or
multitaper spectrum estimation (Serroukh et al. (2000)).
It is well-known that the periodogram is an inconsistant estimator of the Fourier

spectrum (see Priestley (1992, p. 425)). Likewise, the popularly used GPH-estimator
(Geweke and Porter-Hudak (1983)) based on an ordinary least squares (OLS) regres-
sion of the log-periodogram for frequencies close to zero (see App. C), is in general an
inconsistant estimator of the long-memory parameter from a fractionally integrated
process with |d| < 1/2. Other asymptotic properties of this estimator are problematic
too (see Hurvich and Beltrao (1993) and Robinson (1995)).6

On the other hand, it has been argued above that wavelet variance is a regular-
ization of the Fourier spectrum (see Percival (1995) or McCoy and Walden (1996))
so that those scales that contribute the most to the variance of the series are as-
sociated with those coefficients with the largest variance. Using this fact, Jensen
(1999) showed that an OLS-based wavelet estimator is indeed consistant when the
sample variance of the wavelet coefficients is used in the regression. Namely, using
the wavelet variance of the DWT coefficients wj,t,

ν2X(λj) =
1

2j

2j−1X
k=0

w2j,k, (5)

one has that
V {wj,t} = ν2X(λj)→ σ22j(2d−1),

as j →∞. Here σ2 is a finite constant. If a large number of wavelet coefficients are
available for scale j, then the sample wavelet variance provides a consistent estimator

5In the context of volatility modeling (see Sec. 7.4), the assumption of Gaussinity is admittedly
not correct; absolute returns are known to be exponentially distributed (Granger and Hyung (1999)).
The assumption of Gaussianity is not considered critical, though.

6However, in the case of 0 < d < 1/2 and under certain regularity conditions — Gaussianity, in
particular — Robinson (1995) has proven that the GPH-estimator is consistant and asymptotically
Gaussian. But as argued in the previous Footnote, volatility is not distributed normally.
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of the true wavelet variance (Jensen (1999, p. 22)). Thus, by taking logarithms on
both sides, one obtains the log-linear relationship

log ν2X(λj) = log σ
2 + (2d− 1) log 2j, (6)

from which the unknown d can be estimated consistently by OLS-regression by re-
placing ν2X with its sample variance ν

2
X of Eq. (5).

The asymptotic variance of the estimator of d has been derived in Jensen (1999).
In particular, Jensen found that the (negative) bias found in this estimator is offset
by its low variance. Indeed, in mean square error (MSE) sense the wavelet OLS-
estimator fared significantly better than the GPH-estimator. To further reduce the
MSE of bd, a weighted least squares (WLS) estimator could be applied (see e.g. Abry
et al. (1993) and Abry and Veitch (1998)). In particular, Percival and Walden (2000,
Ch. 9.5) have shown that the WLS estimator reduces the MSE by a factor of two in
comparison to the OLS estimator in simulation studies.
Wavelet variance can be defined also locally. But unlike in Jensen (1999), where

all wavelet coefficients were used in calculating the wavelet variance, now only those
”close” to the time point t are used. Namely, given L > 2d(u), an unbiased estimator
of local wavelet variance for {Xt} at scale λj based upon the MODWT is

eν2X(u,λj) = 1

Kj

τj+KjX
s=τj

ew2j,t+s,T , (7)

where u represents a time point in the rescaled time domain [0, 1] (i.e. u = t/T ), Kj

is a ”cone of influence”, and τ j is an ”offset” described below (Whitcher and Jensen
(2000, p. 98)).
In principle, the ”cone of influence” Kj includes only those wavelet coefficients

where the corresponding observation made a significant contribution. Indeed, as
Percival and Walden argue (2000, p. 103), the width of the filter L is not a very
good measure of the effective width of the filter because coefficients around l = 0
and l = Lj − 1 are very close to zero and thus do not significantly contribute to
the calculation of the wavelet coefficient. Whitcher and Jensen (2000) suggest Kj

(the central portion of a filter) as a more reasonable choice. A slight inconvience in
using Kj is that it varies across scales and different filters. The tabulated values for
Daubechies family of wavelets are given in Whitcher and Jensen (2000, Table 1). Also
the values of ”offsets” τ j for each wavelet filter L > 2 are needed to indicate where
the width Kj begins (given in Whitcher and Jensen (2000, Table 2)).
Whitcher and Jensen (1999) have shown that when the MODWT is being applied

to a locally stationary (in the sense of Dahlhaus (1996, 1997), see App. D)
long-memory process {Xt,T}, then the level-j MODWT wavelet coefficients {ewj,t,T}
form a locally stationary process with mean zero and time-varying variance

V {ewj,t,T} = ν2X(u,λj)→ σ2(u)2j[2d(u)−1],
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as j →∞. Thus, analogously to Eq. (6),

log ν2X(u,λj) = log σ
2(u) + [2d(u)− 1] log 2j, (8)

from which the unknown d(u)’s can be estimated consistently by OLS by replacing ν2X
with its time-varying sample variance eν2X from Eq. (7). The exact expression for σ2(u)
is given in Whitcher and Jensen (2000). In general, Gençay et al. (2002a, p. 172)
argue that the parameter estimation for a non-stationary long-memory time series
model through OLS (or ML) ”should benefit greatly” from wavelet-based methods.

Through simulations, Whitcher and Jensen (2000) showed that the median of bd(u)
accurately estimates the true value of the fractional differencing parameter (with a
slight negative bias near the boundaries) in the case of globally stationary ARFIMA.
Because less information is used to construct the local estimator than the global one,bd(u) also exhibited a slight increase in its MSE. Interestingly, when the ARFIMA
process was disturbed by a sudden shift in the long-memory parameter to imitate
local stationarity, the estimated fractional differencing parameter still performed well
(on both sides of the change) although with a slight bias and increase in MSE at the
boundaries.

6 Volatility modeling

Volatility, interpreted as uncertainty, is one of the key variables in most models in
modern finance.7 The explosive growth in derivative markets and the recent avail-
ability of high-frequency data have only highlighted its relevance. In option pricing,
for example, volatility of the underlying asset (which may be volatility itself, by the
way) must be known from now until the option expires as accurately as possible. In
financial risk management, volatility forecasting has even become compulsary after
the ”1996 Basle Accord Amendment” which sets the minimal capital requirements in
banks. In a more general level, evidence of how strongly financial market volatility can
affect the economy as a whole was recently acquired when the terrorist attack in New
York on September 11, 2001 took place; periods of high uncertainty have economi-
cally paralyzing consequences. In a way, then, volatility estimates can be considered
”as a barometer for the vulnerability of financial markets and the economy” (Poon
and Granger (2003, p. 479)).
In this section some of the most popular measures of volatility and types of models

are discussed. There are basicly two strands of volatility models, those assuming that
conditional variance depends on past values (i.e. observation driven models) and

7Volatility is not the same as risk, however. In particular, risk is usually associated with small or
negative returns (the so-called ”downside risk”) whereas most measures of dispersion (e.g. standard
deviation) make no such distinction. Furthermore, standard deviation is a useful risk measure only
when it is attached to a distribution or a pricing dynamic. For further details on the conceptual
differences between volatility, risk, and standard deviation, see Poon and Granger (2003, Sec. 2.1).
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those assuming that conditional variance is stochastic (made precise later). Although
this section starts with the former approach, most attention is paid to the more
flexible case of ”stochastic volatility” (flexibility is discussed in Carnero et al. (2001),
for instance). Poon and Granger (2003) provide an extensive up-to-date review of
different types of volatility models used for forecasting in financial markets.

6.1 Measures of volatility

It is an indisputable stylized fact that volatility tends to cluster so that the variance
is time-varying and shows persistant behavior. A systematic search for the causes of
serial correlation in conditional second moments is in its infancy, though. Diebold
and Nerlove (1989) discuss the possibility of a serially correlated news arrival pro-
cess as the generating mechanism for which Engle et al. (1990) find some evidence.
Further support is given by Tauchen and Pitts (1983) who have argued that such a
news process would probably induce a strong contemporaneous relationship between
volume and volatility, confirmed by e.g. Lamoureux and Lastrapes (1990a) and sur-
veyd in Karpoff (1987). In particular, using the mixture-of-distribution hypothesis
(see Clark (1973)), Andersen and Bollerslev (1997b) show that long-memory features
of volatility (the slowly decaying autocorrelation function) may indeed arise through
the interaction of a large number of heterogenous information arrivals. Such a finding
is important because then long-memory characteristics reflect inherent properties of
the DGP, rather than structural shifts as suggested e.g. by Lamoureux and Las-
trapes (1990b). Still, part of the reason for the uncertainty of the causes is the lack
of unique, universally accepted definition of volatility. The ambiguity stems from its
latency, i.e., volatility is not a directly observable measure in general.
In volatility estimation, the basic paradigm is that ”volatility” (in this case ap-

proximated by the square of returns rt) can be decomposed into predictable and
unpredictable components,

rt = σtεt,

where εt are IID disturbances with mean 0 and variance 1. By definition, then, the
predictable component is the conditional variance σ2t of a series. The determinants
of the predictable part are of special interest in finance because the risk premium is
a function of it.
In a seminal paper, Engle (1982) proposed that the conditional variance depends

linearly on the past squared values of the process,

σ2t = σ2 +

qX
k=1

αkr
2
t−k;

the well-known ARCH(q) model. Bollerslev (1986) generalized this to the parsimo-
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nious GARCH(p, q) model,

σ2t = σ2 +

pX
j=1

βjσ
2
t−j +

qX
k=1

αkr
2
t−k,

where the volatility is a linear function of both lagged squares of returns and lagged
volatilities. Bollerslev showed that this equation defines a second-order stationary so-
lution if (and only if)

Pp
j=1 βj+

Pq
k=1 αk < 1 (and σ

2 > 0). In practice, GARCH(1, 1)
often suffices. Moreover, it is usually found (in long time series, at least) that the
estimated parameters β and α sum close to one suggesting the presence of a ”unit
root” in the volatility equation. This so-called ”Taylor-effect” (Taylor (1986)) has
commonly been interpreted as evidence of volatility persistance (see e.g. Poterba
and Summers (1986)), although this interpretation has faced a considerably amount
of criticism lately (see e.g. Mikosch and Stărică (2004)). In any case, Engle and
Bollerslev (1986) extended the model to the case where

Pp
k=1 βj +

Pq
k=1 αk = 1, i.e.

the integrated GARCH (IGARCH) model.8 Counterintuitively the autocorrelation
function for IGARCH(1, 1) is exponentially (not hyperbolically) decreasing, which
is itself indicative of ”short-memory” although the effect of a shock to expectation
is permanent (for an insightful discussion along these lines, see Ding and Granger
(1996)).
A more succesful (in the stock markets at least, not necessarily in the FX markets)

extension of GARCH is to let σ2t be an asymmetric function of the past data. Namely,
to model the stylized fact that in stock markets volatility is negatively correlated with
lagged returns, the so-called leverage-effect (first noted by Black (1976)), Nelson
(1988) proposed exponential GARCH (EGARCH) that model the logarithm of the
variance log σ2t . Added flexibility to this model is achieved by applying a ”fractional
differencing operator” d (a parameter that is going to play a big role in the following
sections, see App. C), resulting in fractionally integrated EGARCH (FIEGARCH)
model (Bollerslev and Mikkelsen (1996)) that nests the conventional EGARCH for
d = 0. In general, a fractional generalization has proved to be empirically useful in
modeling long-term dependence in conditional variances (see e.g. Vilasuso (2002)).
(This generalization corresponds to the generalization of the standard ARIMA class
of models to fractionally integrated ARMA (ARFIMA) (see App. C) models that
model long-term dependence in mean.) The usefulness is mainly attributable to the
fact that the weakly stationary FIEGARCH succeeds in modeling the slow hyperbolic
rate of decay of a shock to the forecast of log σ2t+T if 0 < d < 1/2, and thus captures
the observed ”long-memory” in volatility (confirmed again in Sec. 7). Of course,
there exist numerous other extensions such as regime switching models, for example.

8Here the prefix ”integrated” does not imply non-stationarity as in the case of random walk,
however (proved in Bougerol and Picard (1992)). More precisely, strict stationarity still holds but
because the marginal variance of rt is infinite, weak stationarity does not (see e.g. Gourieroux and
Jasiak (2001, Ch. 6.2.4)).
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For some of the most popular ones, see Bollerslev et al. (1992), Hentschel (1995),
and (in the multivariate case) Kroner and Ng (1998).9

Several other type of measures have been used to measure volatility, as well. It is
for example known that normalized squared or absolute returns over an appropriate
horizon provide an unbiased estimate for volatility. Although the majority of time
series volatility models are squared returns models (as above), absolute returns based
models seem to produce better volatility forecasts in practice (see e.g. Taylor (1986)
and McKenzie (1999)). Indeed, for example Ding et al. (1993) suggest measuring
volatility directly from absolute returns (this is my choice in Sec. 7, too). The use
of squares is most likely a reflection of the Gaussian assumption made regarding the
data (McKenzie (1999, p. 50)). But the error distribution of stock market returns is
not Gaussian and therefore higher moments than the second one must be considered.
In fact, Davidian and Carroll (1987) have shown that absolute returns specification is
more robust against asymmetry and non-normality. Unfortunately, though, in either
case the signal-to-noise ratio is diminutive when evaluations are conducted over daily
time-spans (Andersen and Bollerslev (1997)); i.e. absolute (or squared) returns over
longer horizons provide a very noisy estimate for volatility. Blair et al. (2001) have
reported a significant increase in forecasting ability for 1-day ahead forecast when
intraday 5-minute squared returns are used instead of daily ones. Another closely
related variance estimate is to average the squared returns over a fixed horizon (see
e.g. Poterba and Summers (1986)). Standard time series techniques could then be
applied to assess the temporal dependence. As explained in Bollerslev et al. (1992, pp.
17—18), this two-stage procedure is subject to criticism, too. First, it does not make
efficient use of all the data and the conventional standard errors from the second-stage
estimation may not be appropriate. Second, there is the possibility that the actual
parameter estimates may be inconsistant. Third, this kind of a procedure may lead
to misleading conclusions about the true underlying dependence in the second-order
movements of the data.
Another popular method of assessing volatility is based on the implied volatility

from options prices. This particular approach is indirect, however. Namely, the tra-
ditional Black—Scholes formula can be inverted to give an estimate of volatility under
the assumption of a constant variance (i.e. volatility). Engle and Mustafa (1992),
among others, have considered the case of ARCH-volatility in this setting. Unfortu-
nately, when using stochastic volatility (to be discussed in the next two subsections)
several complications arise in option theory (see e.g. Wiggins (1987) and Melino and
Turnbull (1990)). Moreover, on practical side, not every asset of interest have ac-
tively traded options and implied volatilities derived from frictionless market models
may be affected by institutional factors distorting the time series analysis (Fung and
Hsieh (1991)). In fact, option markets may not be sufficienty developed to allow
for meaningful variations in intra-day implied volatility to be derived as Goodhart

9An estimate of volatility in these models is attained via (quasi) maximum likelihood (ML) or
via generalized method of moments (GMM).
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and O’Hara (1997) note. Still, volatility extracted from options can be very informa-
tive because it uses a potentially richer information set and could therefore lead to
improved forecasting performance.
Yet another method is the use of historical ”highs and lows” as in Parkinson

(1980) who assumes that prices follow a continuous time random walk with constant
variance. By developing this idea a little further, Garman and Klass (1980) derive
several efficient estimator of volatility using highs, lows, opening, closing, and trans-
actions volume. Beckers (1983) test the accuracy of these estimators and suggest an
adjustment which could even be improved upon by including variances implied in
option prices. However, the generalization of these ideas to other stochastic processes
allowing for time-varying variances is not straightforward (Bollerslev et al. (1992, p.
19)).
Theoretically the most attractive way of measuring volatility is the sum of short-

term intraday squared (or absolute) returns of a predetermined horizon (usually a
day) resulting in realized volatility (explicitly considered in Fung and Hsieh (1991)
and Andersen and Bollerslev (1997)). The idea that high-frequency data might be
useful in estimating the variance is not that new, however. In particular, Schwert
(1989) has estimated monthly volatility from daily returns and, most importantly,
Merton (1980) has postulated that the variance of returns can be estimated far more
accurately from the available time series of realized returns than can the expected
return (under certain general assumptions). This makes sense because for a random
walk a minimal exhaustive statistic for volatility is essentially given by the full set
of increments (Corsi et al. (2001)). Indeed, under the assumption of a continuous-
time diffusion, the realized volatility is a consistant estimator of the 1-day integrated
volatility. In fact, it can be shown that the stochastic error of the measure can
be reduced arbitrarily by increasing the sampling frequency of returns. Integrated
volatility is a natural population measure of the volatility as it is fundamental in
pricing of derivative securities (see e.g. Hull and White (1987)).
The use of realized volatility has some interesting consequences. First, it allows

one to treat volatility as an observable. Furthermore, Andersen and Bollerslev (1997)
have shown that realized variance takes the beloved ARCH models ”back into busi-
ness” in the sense that ARCH models again seem to serve as good forecasting devices
(which has been put into serious doubt lately). However, the trouble with the realized
volatility approach is that in practice one does not observe the price continuously. In
addition, the small time intervals are contaminated by microstructure effects such as
”bid-ask bounce” (see e.g. Roll (1984)) and volatility seasonalities (see e.g. Andersen
and Bollerslev (1997)). Thus the precision to which one can measure the volatility
using high-frequency data depends on the characteristics of the return series analyzed
(Bai et al. (2001)). Finally, the realized variance approach is computationally quite
expensive.
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6.2 Stochastic volatility and long-memory

Most of the modern financial theory is based on continuous-time semimartingales
(see e.g. Shiryaev (1999) for an excellent account). In particular, stochastic volatility
(SV) models of the form

dX(t) = µ(t)dt+ σ(t)dW (t) (9)

belong to this family. Here the drift µ(t) and the instantaneous standard deviation
σ(t) are time-varying random functions and W (t) is a standard Brownian motion.
Many specifications for σ(t) are available (see Taylor (1994)). It may be, for example,
that the logarithm of the volatility follows an Ornstein—Uhlenbeck process (as in
Wiggins (1987)).10 Continuous-time SV models have been proposed and applied also
in Melino and Turnbull (1990) and Harvey et al. (1994), for example. See Ghysels et
al. (1995) for a good review.
Although continuous-time models are more elegant to work with in theory, in

practice one often settles for a discrete model. A discrete-time SV model may be
written as

yt = σtεt,

where yt denotes the demeaned return process yt = log(St/St−1)− µ, {εt} is a series
of IID random disturbances with mean 0 and variance 1, and the conditional variance
{σ2t} is modeled as a stochastic process {log σ2t} .= {ht}. The modeling of volatility as
a stochastic variable immediately leads to heavy tailed distributions for returns (e.g.
Poon and Granger (2003, p. 485)). Here the logarithm ensure that {σ2t} is always
positive, similarly to the EGARCH specification above (Sec. 6.1). The important
difference is, however, that {σ2t} is not directly observable. Furthermore, {ht} is
now independent of {εt}. Introduction of correlation between {ht} and {εt} would
produce volatility asymmetry (Hull and White (1987)).
From the point of view of financial theory, a particularly attractive and simple

model for {ht} is an AR(1)-process ht = γ + φht−1 + ηt, where ηt ∼ IID(0,σ2η),
and |φ| < 1 ensures that {ht} (and hence {yt}) is strictly stationary.11 Such an
autoregressive term introduces persistance (i.e. volatility clustering). In general, SV
models are more flexible than GARCH models because of the extra volatility noise
term ηt in the volatility equation. For example, the simple ARSV(1) specification
has been shown by Carnero et al. (2001) to be empirically more adequate than
the most popularly used GARCH(1, 1). Interestingly, Carnero et al. demonstrate

10In specific, Wiggins (1987) supposes that d(log σ(t)) = λ (ξ − log σ(t)) dt + γdW2(t), where
dW (t)dW2(t) = ρdt and γ is called the ”volatility of volatility”. When ρ = 0, the price process and
the volatility process are not correlated at all. Interestingly, γ alone is enough to produce heavy
tails. When ρ < 0, large negative return corresponds to high volatility and stretches the left tail
into the left. The opposite happens when ρ > 0.
11The attractiveness of this ”ARSV(1)” specification (proposed by Taylor (1986)) stems from

the fact that an AR(1)-process is the natural discrete-time approximation to a continuous-time
Ornstein—Uhlenbeck process.
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that ARSV(1) produces smoother volatility estimates. Not all of the results are
that unanimous, though (see Poon and Granger (2003, Sec. 5.3) and the references
there-in). Finally notice that the model for {yt} is usually represented in the form

yt = σ exp(ht/2)εt,

where the scale parameter σ > 0 removes the need for the constant term γ in the
first-order autoregression.12

Naturally there exist many specifications for the volatility scheme {ht}, such as
ARMA or random walk. In particular, a long-memory stochastic volatility (LMSV)
model was proposed in Breidt et al. (1998) (and independently in Harvey (1998)). In
their model {ht} (i.e. log-volatility) is generated by fractionally integrated Gaussian
noise,

(1−B)dht = ηt,

where |d| < 1/2 and ηt ∼ NID
¡
0,σ2η

¢
. More generally, {ht} can be modeled as an

ARFIMA(p, d, q) process,

φ(B)(1−B)dht = θ(B)ηt, (10)

where φ(z) = 1− φ1z− ...− φpz
p for |z| ≤ 1 is an autoregressive polynomial of order

p, θ(z) = 1+φ1z+ ...+φqz
q is a moving average polynomial of order q, both φ(z) and

θ(z) have all of their roots outside the unit circle, and θ(z) has no roots in common
with φ(z). Notice that this model encompasses a ”short-memory” model when d = 0.
Breidt et al. (1998) argued the LMSV model to have certain advantages over

observation driven models (e.g. FIEGARCH). For example, because it is built from
the widely used ARFIMA class of long-memory models, LMSV inherits most of the
statistical properties of ARFIMA models and is therefore analytically tractable. Even
the limiting distribution of the GPH-estimator of d has been derived (see Deo and
Hurvich (1999) and Velasco (1999)). Moreover, the estimation of d is not crucially
dependent on the choice of a unit discrete time interval, as noted in Bollerslev and
Wright (2000, p. 87). Namely, although the LMSV (like ARFIMA) model is not
closed under temporal aggregation, the rate of decay of the autocovariance function
of squared (or absolute) returns is invariant to the length of the return interval (see
Chambers (1998)).
The LMSV model is still a stationary model, however. Thus it ignores ”the

known intraday volatility patterns and the irregular occurances of market crashes,
mergers and political coups” as Jensen and Whitcher (2000) note. In particular, the
long-memory parameter d may not be constant over time. This motivated them to
introduce a non-stationary class of long-memory stochastic volatility models with
time-varying parameters. In their model, the logarithmic transform of the squared

12However, the estimation of SV models is notoriously difficult and usually done by variants of
the method of moments (as in Melino and Turnbull (1990), for example). For a survey of estimation
methods for stochastic volatility models, see Broto and Ruiz (2002).
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returns is a locally stationary process that has a time-varying spectral representation
(see App. D). This means that the level of persistance associated with a shock to
conditional variance (which itself is allowed to vary in time) is dependent on when
the shock takes place. The shocks themselves, of course, still produce responses that
persist in the long-memory hyperbolic sense.
In specific, Jensen and Whitcher defined yt,T to be

yt,T = exp (Ht,T/2) εt, (11a)

Φ(t/T,B)(1−B)d(t/T )Ht,T = Θ(t/T,B)ηt, (11b)

where |d(u)| < 1/2, εt ∼ NID(0, 1) and ηt ∼ NID(0,σ2η) are independent of each
other. The functionsΦ(u,B) andΘ(u,B) are, respectively, order p and q polynomials
whose roots lie outside the unit circle uniformly in u and whose coefficients functions,
φj(u), for j = 1, ..., p, and θk(u), for k = 1, ..., q, are continuous on R. The coefficient
functions satisfy φj(u) = φj(0), θk(u) = θk(0) for u < 0, and φj(u) = φj(1), θk(u) =
θk(1) for u > 1, and are differentiable with bounded derivatives for u ∈ [0, 1]. Notice
by setting Φ(u,B) = Φ(B), Θ(u,B) = Θ(B), and d(u) = 0 for all u ∈ [0, 1], then one
gets the SV model of Harvey et al. (1994). If, on the other hand, one sets d(u) = d
for all u ∈ [0, 1], then one gets the LMSV model (Eq. (10)) of Breidt et al. (1998).

7 Empirical analysis

The analysis below is not yet complete. More emphasis will be put on ”microstruc-
ture effects” and economic interpretation. In particular, the FFF (see App. E) is
currently being used to remove the strong intraday periodicity in volatility. The
results of the re-runned analysis compared to the ones without the periodicity re-
moved. This comparison should shed some light on whether the (i) scaling law (using
wavelet variances across different levels) and consequently (ii) the OLS-estimate of
the fractional differencing parameter d changes when accounting for the seasonality.

7.1 Data description

The original data set included all stock transactions done at the Helsinki Stock Ex-
change (HEX) between January 4 (1999) and December 30 (2002), i.e. it was so-called
”tick-by-tick” data. Because of its highest liquidity, the stock of Nokia Oyj was cho-
sen and the data was discretized (i.e. homogenized): 5-minute prices were extracted
using the closest transaction price to the relevant time mark.13 Discretizing is nec-
essary for the wavelet decomposition to be interpretable in terms of time-scales that
capture a band of frequencies (cf. spectral analysis). From a theoretical perspective

13The HEX is by far the most liquid market place trading Nokia: In year 2003, for example, the
HEX accounted for 62, 1% of the total number of shares traded while the percentage for New York
Stock Exchange (NYSE) was only 20, 3%. (Source: the HEX (May 4, 2004).)
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discretizing can be justified by assuming that the DGP does not vary significantly
over short time intervals.14 It is worth acknowledging, however, that the statisti-
cal behavior of the sampled data could differ significantly from the behavior of the
DGP from which the sample was obtained. In the current context this principle
might manifest itself through the so-called ”non-synchronous trading” and possibly
inducing negative serial correlation (see Campbell et al. (1997, Ch. 3.1) and Lo and
MacKinlay (1999, Ch. 4)). To better account for such microstructure effects, one
could have also used the last transaction before the relevant time mark (a method
originally introduced by Wasserfallen and Zimmermann (1985) and used in Hol and
Koopman (2002), among others) or linearly interpolated price (introduced by An-
dersen and Bollerslev (1997c)). But because there was occasional liquidity problems,
the closest one was considered the best compromise. This choice should not have any
significant affect to the conclusions of the subsequent analysis.
The interval of 5 minutes has been used in many earlier studies (e.g. Andersen

and Bollerslev (1998)). It has been found ”optimal” in the sense that it is often the
smallest interval that doesn’t suffer too badly from microstructure effects such as
”bid-ask bounce” (see Campbell et al. (1997, Ch. 3) or Gourieroux and Jasiak (2002,
Ch. 14)). Concerning missing observations for a specific time mark (such as technical
breaks and incomplete trading days), the previous price standing was always used.
The 5-minute returns were then calculated as the scaled difference between successive
log-prices, i.e.,

rt,d = 100 (lnPt,d − lnPt,d−1) ,
where rt,d denotes the return for intraday period d on trading day t, with d ≥ 1 and
t = 1, ..., T. Notice that the prices Pt,d were adjusted for splits but not for dividends.
This is because there were only four divident paying days in the whole four year
period 1999—2002 and their impact were very small. As a general rule, the empirical
analysis is done including overnight returns if not otherwise mentioned (as in Sec.
7.6). Finally, the so-called ”block trades” were not removed, possibly causing a few
”artificially generated” jumps per month. These trades are currently considered to
be of minor importance, however.
At the HEX, an electronic trading system called Helsinki Stock Exchange Auto-

mated Trading and Information System (HETI) has been in use since 1990. This
means that there is no ”floor” but brokers trade electronically, the smallest ”tick-
size” (i.e. price change) being 0.01.15 As a general rule, all banking days are also
market days at the HEX. From the point of view of data handling, however, one of

14For some other ways to deal with the ”sporadic nature” of trading, see the discussion in Goodhart
and O’Hara (1997) or Dacorogna et al. (2001, Sec. 3.2.1).
15At this point it is worthwhile to acknowledge that there are several different types of market

places. Obviously, different systems potentially affect the dynamics of the price differently, too. So
to be precise: the HEX is a continuous, order-driven limit-order-book (LOB) market place, although
there is call auction at the market opening. (In year 2004, the HEX is going to be integrated to
the SAXESS trading system, however. See Http://www.hex.fi.). For comparison, the NYSE is an
order-driven, floor-based, continuous market with a specialist (acting as the ”market maker”). In
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the main problems were that the HEX did not have constant trading hours during
the four years. In fact, the trading day was first extended to include evening hours
like in many other countries, but then this trend was reversed. These changes were
mainly caused by an international pressure towards harmonization of exchange open
hours. The long-run trend of longer trading days has been suppressed by the weak
market conditions during the last few years.16 For example, at the HEX the evening
trading hours currently form only around 6% of the daily trading volume. Therefore,
in the following analysis four different time periods are analyzed. These periods are
next being described in detail (see also Table ??). Notice that Periods I and III both
contain approximately the same number of observations (although Period III does
not last that long). In fact, these two periods are being analyzed in more detail in
the next subsections.

Time period Trading (I) AMT (I) Trading (II) AMT (II)
4.1.1999 — 31.8.2000 10.30—17.30 17.30—18.00 — 9.00—9.30
1.9.2000 — 11.4.2001 10.00—18.00 18.00—18.15 — 8.30—9.00
17.4.2001 — 27.3.2002 10.00—18.00 18.03—18.30 18.03—21.00 8.30—9.00
2.4.2002 — 30.12.2002 10.00—18.00 18.03—18.30 18.03—20.00 8.30—9.00

In Period I, from January 4 (1999) to August 31 (2000), continuous trading took
place between 10.30 a.m. and 5.30 p.m., totaling to 7 hours and 85 intraday 5-minute
prices. Transactions between 8 a.m. and 10.30 a.m. were discarded, most of them
belonging to the after market trading II (AMT (II)) taking place between 9.00 a.m.
and 9.30 a.m.17 Likewise, transactions between 5.30 p.m. and 6 p.m. were discarded
because they belonged to AMT (I). Only one day, namely April 20 (2000), was an
incomplete day and the missing observations were substituded by the last observed
price. In total, therefore, there were 419 trading days resulting in 35,615 (= 419∗ 85)
price observations (i.e. 35,614 return observations).
In Period II, from September 1 (2000) to April 11 (2001), continuous trading was

extended from both ends by half an hour.18 Thus trading took place between 10 a.m.
and 6 p.m., totaling to 8 eight hours and 91 intraday 5-minute prices. December 12
(2000) was an incomplete trading day and it was corrected by substitution. In total,
therefore, there were 155 trading days resulting in 14,105 price observations.
In Period III, from April 17 (2001) to March 27 (2002), continuous trading was

extended further by including evening hours from 6. p.m. to 9 p.m. A technical
break (when no transactions took place), occured every day between 6 p.m. and

general, one particular advantage of a continuous market is that it provides good intraday market
information. For more details on different systems, see Gourieroux and Jasiak (2001, Ch. 14.1).
16For example, Deutsche Börse cut its trading hours from 9.00 − 20.00 to 9.00 − 17.30 in the

beginning of November 2003.
17During AMT, the trading price can fluctuate between the trading range established during

continuous trading for round-lot trades (Http://www.porssisaatio.fi).
18Actually, this period ended the day before, but the data of day April 11 (2001) included trans-

actions only up to 6.52 p.m. For simplicity, therefore, this day was ended at 6 p.m.
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6.03 p.m. Importantly, continuous trading and AMT (I) took place simultaneously.
This simultaneity required very careful filtering. Especially when the trading day
experienced a big cumulative price change, then artificially big returns (even around
20%) could appear (see Fig. 2). An example of such a trading day was April 18
(2002) when Nokia announced its 1st quartal result that triggered a significant price
drop earlier on that day. To safeguard from such artificial returns, the following
filtering rule was applied: prices that had a percentage price change of more than 3%
relatively to the last genuine price recorded (before the technical break at 6 p.m.) were
detected as artificial and replaced by the previous genuine price. This particular rule
was based on a careful inspection of the data (for some other rules often employed
in high-frequency finance, see Dacorogna et al. (2001)).19 And in fact, the noise
reduction obtained with this filter was so considerable that the difference to the non-
filtered series was evident by eye. In summary, continuous trading took place for
11 hours (including the 3-minute break) and produced 133 intraday 5-minute prices.
There were no incomplete trading days. In total, therefore, there were 237 trading
days resulting in 31,521 price observations.
In Period IV, from April 2 (2002) to December 30 (2002), continuous trading was

cut from the end by an hour. That is, continuous trading took place between 10
a.m. and 8 p.m. — apart from the technical break and simultaneity just described
— totaling to 10 hours and 121 intraday 5-minute prices. The same 3%-filter was
employed. There were no incomplete trading days here either. In total, therefore,
there were 188 trading days resulting in 22,748 price observations.

7.2 Preliminary data analysis

Statistical key figures of all the four periods are summarized below (Table ??). In
what follows, however, only the first and the third period are being analyzed. There
are at least three reasons for preferring these two periods over the other two. First,
Periods I and III are of approximately equal size and also contain the greatest number
of observations. Second, Periods I and III represent turbulent and calm regimes,
respectively. In specific, Period I (1/99—8/00) is representative of the ”IT-bubble”
and Period III (4/01—3/02) of its aftermath. In fact, Polzehl et al. (2004) find that the
”2001 recession” in the U.S. might have started as early as October 2000 and ended
as late as the summer of 2003 which neatly supports these two categories. Notice that
the volatilities of Periods I and III seem to differ significantly by simply eyeballing

19Notice that the percentage change was calculated relatively to the last genuine price because
there is no guarantee that two artificial prices could not be adjacent. In fact, if the percentage
would be have been calculated simply from adjacent prices, an artificial price would then have
survived the filter. Admittedly, however, there is a small ”defect” in this 3%-filter. Namely, fixing
the denominator to the last genuine price is not reasonable if there is a strong price trend in either
direction. But because the AMT (I) lasted only for 27 minutes, a trend was regarded of minor
importance.
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Figure 2: Four examples of trading days that experienced extremely high return
variability during the AMT (I), 6.03 − 6.30 p.m (notice that all transactions are
included here). Such volatility is not genuine, however, and must be filtered out
before any reasonable analysis can be conducted.
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the log-return series (see the bottom plots of Figs. 3 and 4).20 This is important
because it is known that structural breaks can generate artificial long-memory (see
e.g. Diebold (1986), Lamoureux and Lastrapes (1990b), Granger and Hyung (1999),
and Diebold and Inoue (2001)). In particular, Mikosch and Stărică (2004)) have
argued that long-memory might be due to non-stationarity, thus lending stationary
models (GARCH-type models, in particular) inappropriate over longer horizons. It
is thus safer to analyze these periods separately. Third, although Periods I and
III supposedly belong to different regimes, they have an interesting characteristic
in common: they both contain an upward trend although the trend is much more
pronounced in Period I (see the top plots of Figs. 3 and 4). This is relevant to the
current study for example because a trend is known to be another possible source of
spurious long-memory (see e.g. Bhattacharya et al. (1983)). Thus in many aspects
it should be fruitful to compare the results of these two periods.
The sample autocorrelation functions (ACFs) of returns in Periods I and III differ

interestingly from each other (see the top plots of Figs. 5 and 6). First, it seems that
there is a statistically significant pattern in Period I: the opening of the HEX as well
the the U.S. markets (New York) at 5.30 p.m. (CET+1) have caused some linear
dependence. Of course, this finding does not necessarily imply any kind of arbitrage
opportunities in economic sense. Indeed, when transactions costs are included a mi-
nor amount of autocorrelation is totally consistent with a martingale process and
the notion of efficient markets. Considering the results of Period III, it seems that
markets have become more liquid and efficient. A bit surprisingly, though, in Period
I no significant negative autocorrelation of MA(1) type at lag one exists that is typ-
ically found and attributed to bid-ask bounce. In Period III, a significant negative
first-lag autocorrelation −0.08 does appear (Andersen and Bollerslev (1997b) found
it to be −0.04 in the FX markets with 5-minute data). It is then somewhat puzzling
how increased liquidity would be related to the appearance of negative first-lag au-
tocorrelation. One possibility is that the sizes of the trades have increased as well,
thus causing the microstructure effects to last longer. In the subsequent analysis the
MA(1) type of dynamics have not been considered that essential and therefore they
have not been filtered out.
To proxy volatility, I decided to use absolute returns (as e.g. in Granger and

Ding (1996) and Andersen and Bollerslev (1997c)) for several reasons. First, absolute
returns are relatively outlier-resistant compared to squared returns (used e.g. in
Lobato and Savin (1998)). In particular, log-squared returns would suffer from an
”inlier” problem because a return very close to zero would result in a large negative
number (although there are ways to deal with this kind of problem, see e.g. Fuller

20However, the two big ”outliers” in Period III tend to balance the total difference so that the
standard deviation of the returns of Period I is actually smaller than that of Period III: they are
0.3789182 and 0.386855, respectively. Similarly, the means of absolute returns (proxying volatility)
are 0.1874 and 0.22870, respectively. Wavelet variances will shed more light on this apparently
counterintuitive finding (see Sec. 5.5).
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Figure 3: The price and return series of Period I. This period has a relatively restless
outlook because of the large amount of intermediate sized jumps. Still, small pockets
of tranquility are also visible.
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Period III (April 17, 2001 - March 30, 2002)
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Figure 4: The price and return series of Period III. This period is relatively calm, there
is only one major cluster of larger volatility between observation numbers 10, 000 and
15, 000.
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Figure 5: The sample autocorrelation function of returns and absolute returns in
Period I. The 95% confidence interval (dashed line) is for Gaussian white noise:
±1.96/√N .
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(1996)). Secondly, Wright (2000) has demonstrated that squared returns result in
large downward bias when using semiparametric methods to estimate long-memory
in the context of conditionally heavy-tailed data such as stock returns. He showed
that this bias does not to appear with absolute returns. This is consistant with the
result of Ding et al. (1993), Ding and Granger (1996), and Lobato and Savin (1998)
that the long-memory property is strongest for absolute returns (in stock markets,
at least). Finally, the well-known advantages of the more accurate realized variance
could not be exploited in just 5 minutes, so absolute returns as an unbiased measure
of the latent volatility remains the best alternative (see Sec. 6.1).
As expected, the results show that the sample autocorrelations of absolute returns

stay significantly positive for a long time, in statistical as well as in economic sense
(see the bottom plots of Figs. 5 and 6). In particular, in Period III the first-lag
autocorrelation 0.32 is well above the confidence interval (Andersen and Bollerslev
(1997b) found 0.309). Clearly, then, returns are not independent. Interestingly,
the emerging intradaily ”U-pattern” (sometimes referred to as the ”inverse J”) is
quite similar in both periods. There are some important differences, however. First,
the ACF peaks higher in Period I. This peak is caused by the large (in average)
overnight return which is calculated over a much longer interval than just 5 minutes
(this will be discussed in more detail in Sec. 7.6). The adjacent lags experience high
autocorrelation in both periods. Second, the sudden drop before the peak in Period
III seems to be caused by the closure of continuous trading. The reason why this
slump does not exist in Period I is simply that evening trading did not take place
then (see Sec. 7.1). Third, in Period I, the smaller peaks prior to the highest peak
are attributable to the opening of the New York stock markets, i.e. they are the
”New York effect”.21 Interestingly, in Period III no distinct New York effect exists in
autocorrelations (see Sec. 7.6, however). This is probably due the weaker link between
the U.S. and European markets after the burst of the IT-bubble. At this point one
should be reminded that volatility spillover effects have been reported elsewhere,
too. In fact, Engle et al. (1990) termed such contagion effects in the FX markets as
”meteor showers” suggesting that different market places affect each other. A possible
source of meteor showers are heterogoneous expectations (Hogan and Melvin (1994)).
Similar U-pattern has been observed in the New York stock markets (see e.g. Wood
et al. (1985), Harris (1986) and Lockwood and Linn (1989)) and the FX markets (see
e.g. Andersen and Bollerslev (1997, 1997b), Baillie and Bollerslev (1991), Dacorogna
et al (1993), Ito et al. (1996), and Bollerslev and Wright (2000)), although in the
FX markets this periodicity is associated with the opening and closing of the various
financial centers around the world.
The initial rapid decay of the sample autocorrelation followed by a very slow rate

of dissipation (although the strong periodicity confounds this in the raw absolute re-

21Notice that all these effects would be blurred (not totally lost, however) if the sample autocorre-
lation would be calculated over the whole period of four years (1999—2002). This is the consequence
of the New York effect and the changes in trading hours at the HEX.
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turns, see Sec. 7.6) is characteristic of slowly mean-reverting fractionally integrated
processes that exhibit hyperbolic rate of decay. As noted in several occasions con-
cerning stock market volatility (see e.g. Bollerslev and Mikkelsen (1996), Breidt et
al. (1998), Ding et al. (1993), and Granger and Ding (1996)), the common ARCH-
models exhibiting exponential rate of decay (i.e. ”short-memory”) fail in this respect.
The hyperbolic rate of decay will be quantified later with the fractional differencing
parameter d (Sec. 7.4).

7.3 Multiresolution decomposition

This subsection takes a first-hand multiresolution look at Periods I and III. Such a
decomposition is expected to give more insight into the evolving dynamics of stock
market volatility. The analysis conducted below is also intended to highlight some of
the aspects of wavelet theory described in the previous sections.
A first-hand look at the long-run dynamics of the data is achieved conveniently

by an MRA. In specific, a MODWT MRA(J = 14) of price series of Periods I and
III using a LA(8) filter (with reflecting boundary) produces a set of wavelet smooths
with varying amount of details included (see Figs. 7 and 8). These smooths show, for
example, that Period I has a strong upward trend. Notice that all the smooths are
automatically aligned in time with the original series. Furthermore, these smooths
converge to the original price series as more and more details are being added.22

Concerning volatility, however, very little can be inferred from these figures.
In order to study volatility, the MODWT(J = 12) is performed to absolute returns

using LA(8) (with reflecting boundary). Instead of focusing on the scaling coefficients
or smooths as above, the wavelet coefficients are now of interest (see Fig. 9 for even
levels j = 2, 4 and Fig. 10 for j = 6, 8, 10 in Period I). Now the approximate zero-
phase filter property (i.e. alignment in time) becomes much more apparent: big
changes in volatility stand out at the smallest scales (i.e. highest frequencies). As
the scale gets bigger (i.e. frequency lower), rapid changes tend to be smoothed out
because a wider filter averages more. For example, in Period III the large spike in
volatility between observations 5, 000 and 10, 000 has died out already at the 6th level
(see Fig. 13). On the other hand, the spike between 10, 000 and 15, 000 continues to
prevail even at the 10th level. This means that the former spike was a high-frequency
event only, while the latter was a more severe and long-lasting burst of volatility. Thus
from a purely non-firm specific angle, short-time speculators and long-term investors
would have to react differently in such an event: the former would be a concern for
speculators while the latter would interest investors as well. Moreover, because the
wavelet coefficients should in theory form a stationary series at each level (see Sec.
5.5), the same general characteristics should persist in the future, as well. This does
not imply, however, that for example the ”cycle” visible at the end of the 10th level

22These ”moving averages” could be applied in, e.g., forecasting in the spirit of ”double” and
”triple crossing” methods (methods that are shortly discussed in Gençay et al. (2002a, pp. 48—49)).
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Figure 6: The sample autocorrelation function of returns and absolute returns in
Period III. The 95% confidence interval (dashed line) is for Gaussian white noise:
±1.96/√N.
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Figure 7: The original price series of Period I (left upper corner) and its wavelet
smooths of varying levels. As less and less details are included, the smoother the
outcome (right lower corner).
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smooths of varying levels. As less and less details are included, the smoother the
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of Period I is something that could be used for forecasting. Although it is not a pure
artifact of the wavelet filter, there is simply no reason why such a cycle should persist
in an efficient stock market.
The first 12 wavelet levels with the corresponding scales and associated changes

are listed below (see Table ??). Notice that I follow Daubechies’ indexing so that a
bigger level is associated with larger time-scale (in contrast to what I used in Sec.
4). An unfortunate consequence of dyadic scaling is that it becomes coarse fast, so
that some interesting dynamics might be lost (alternative scaling has been proposed
by Pollock (??)). In interpreting the time-scales in ”market time”, one should be
careful with the period in question since the length of the trading day has varied
considerably during the four years (see Sec. 7.1). For instance, in Period I the first
6 levels correspond to intraday dynamics capturing frequencies 1/64 ≤ f ≤ 1/2, i.e.
oscillations with a period of 10−320 minutes (approx. 5 hours). In Period III, on the
other hand, the first 7 levels correspond to intraday dynamics capturing frequencies
1/128 ≤ f ≤ 1/2, i.e. oscillations with a period of 10 − 640 minutes (approx. 11
hours). In particular, in Period I, the 6th level corresponds to approximately a half
of a trading day. In Period III a half of a trading day corresponds to the 7th level.
These levels are possibly a watershed between intraday and interday dynamics.

Level Scale Associated with changes of
1 1 5 min.
2 2 10 min.
3 4 20 min.
4 8 40 min.
5 16 80 min.
6 32 160 min. ≈ 3 h.
7 64 320 min. ≈ 5 h.
8 128 640 min. ≈ 11 h.
9 256 1280 min. ≈ 21 h.
10 512 2560 min. ≈ 43 h.
11 1024 5120 min. ≈ 85 h.
12 2048 10240 min. ≈ 171 h.

This far the analysis has been mainly descriptive. Although no scale-specific quan-
titative conclusion concerning the energy could not be made based on the MODWT
MRA, the MODWT coefficients lend themselves to a quantitative study (see Eq.
(2)). Few general observations can be made immediately. It is for example seen
that the unconditional distributions at the 12 levels show convergence from a highly
leptokurtic distribution to a Gaussian one (see Figs. 11 and 14) which is confirmed
by the Jarque—Bera test statistic (see Table ??). Furthermore, statistical key figures
confirm that the mean stays zero at all levels (a consequence of the zero average
property of wavelets) while the changes get smaller in absolute value (see Table ??).
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A closer quantitative look at the unconditional wavelet variance is the topic of the
next subsection.

Period I
j
1
2
3
4
5
6
7
8
9
10
11
12

Min. 1st Q. Median Mean 3rd Q. Max.
−4.868 −0.05475 −4.776e− 03 −9.334e− 18 0.04743 6.067
−2.931 −0.04164 −2.733e− 03 −9.391e− 18 0.03772 4.182
−1.769 −0.03490 −1.913e− 03 −9.389e− 18 0.03158 2.641
−1.007 −0.03249 −2.538e− 03 −9.381e− 18 0.02580 1.442
−0.7617 −0.03709 −7.627e− 03 −9.356e− 18 0.02695 1.181
−0.6765 −0.05384 −2.553e− 03 −9.555e− 18 0.05114 0.7713
−0.3751 −0.01752 −5.763e− 04 −9.356e− 18 0.01723 0.5056
−0.1974 −0.01794 −7.311e− 04 −9.336e− 18 0.01547 0.3057
−0.1334 −0.01359 −1.204e− 03 −7.994e− 18 0.01070 0.1726
−0.08500 −0.01775 −1.569e− 03 −7.069e− 18 0.01372 0.08984
−0.06619 −0.01798 −3.173e− 03 −4.563e− 18 0.01349 0.08682
−0.06628 −0.02302 −1.341e− 03 −1.228e− 17 0.02361 0.06722

Period III
j
1
2
3
4
5
6
7
8
9
10
11
12

Min. 1st Q. Median Mean 3rd Q. Max.
−4.964 −0.07072 −6.457e− 03 −1.157e− 17 0.06400 6.669
−3.909 −0.05304 −3.357e− 03 −1.155e− 17 0.04888 5.670
−2.329 −0.04397 −2.212e− 03 −1.149e− 17 0.03913 3.390
−1.215 −0.03808 −3.502e− 03 −1.140e− 17 0.03178 1.768
−1.065 −0.03987 −3.898e− 03 −1.092e− 17 0.03720 1.411
−0.6380 −0.03441 −1.539e− 03 −1.179e− 17 0.03263 0.7801
−0.4323 −0.02711 −9.540e− 04 −1.190e− 17 0.02490 0.4504
−0.2017 −0.01848 −1.213e− 03 −1.170e− 17 0.01658 0.3167
−0.1679 −0.01843 −1.911e− 03 −1.278e− 17 0.01632 0.2068
−0.07587 −0.01253 −5.021e− 04 −1.240e− 17 0.01174 0.1299
−0.09427 −0.01174 −8.843e− 04 −1.798e− 17 0.01048 0.1225
−0.07697 −0.01674 −1.734e− 03 −1.062e− 17 0.01239 0.1108

7.4 Global scaling laws and long-memory

There is no privileged time horizon in financial decision making. As a consequence,
financial risk is often assessed at different horizons varying from small (minutes) to
long (months). In risk management industry it is typical to convert risk measures
(such as standard deviation) at small time-scales to large time-scales by square-root
scaling. For example, a standard deviation calculated from daily returns is converted
to weekly standard deviation by multiplying the daily standard deviation by

√
5.

However, this simple square-root scaling is valid only if the underlying data is IID
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Volatility (January 4, 1999 - August 31, 2000)
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Figure 9: The original absolute return series proxying volatility in Period I (the top
subplot) and the MODWT(J = 12) wavelet coefficients of levels j = 2 and 4 using
LA(8) and reflecting boundary.
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Figure 10: The Period I MODWT(J = 12) wavelet coefficients of levels j = 2 and 4
using LA(8) and reflecting boundary.
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Figure 11: The unconditional distributions of the Period I MODWT wavelet coeffi-
cients across levels j = 1, ..., 12. Notice the change in the shape of the distribution
from the small levels to large levels.
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Volatility (April 17, 2001 - March 30, 2002)
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Figure 12: The original absolute return series proxying volatility in Period III (the
top subplot) and the MODWT(J = 12) wavelet coefficients of levels j = 2 and 4
using LA(8) and reflecting boundary.
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Figure 13: The Period III MODWT(J = 12) wavelet coefficients of levels j = 6, 8
and 10 using LA(8) and reflecting boundary.
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Figure 14: The unconditional distributions of the Period III MODWT wavelet coef-
ficients across levels j = 1, ..., 12. Notice the change in the shape of the distribution
from the small levels to large levels.
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which clearly does not hold for financial time series (see Diebold et al. (1998)). Several
authors have provided evidence of scaling laws in the FX markets (for example Müller
et al. (1990, 1995), Guillaume et al. (1997), and Andersen et al. (2000)) but a bit
less so in the stock markets.
However, a single scaling factor might be appropriate only in a subset of time-

scales. Namely, it has been argued that intradaily dynamics are different from the
dynamics of larger time-scales. To study this ”multi-scaling” in the FX markets,
Gençay et al. (2000) used wavelet methodology based on the argument that it is
specification free and robust to a possible misspecification of the distribution of re-
turns. Using absolute returns as volatility proxy, they confirmed that a different
scaling regime exists for intradaily time-scales than does for interday and larger time-
scales. Based on their findings, it is thus interesting to see if (i) the same phenomena
appears in stock market data, (ii) the scaling factor is stable in time (i.e. the same in
Periods I and III), and if (iii) there is any reasonable explanation for its magnitude
and structure. Although the first point has already been studied in the literature,
the next two have not (and the first one rarely with wavelets).
In contrast to Gençay et al. (2000) who used returns sampled every 20 minutes to

reduce the impact of microstructure effects (originating from the buying and selling
intentions of quoting institutions), I decided to use 5-minute returns. As the bid-ask
bounce effect may be now more severe, special care has to be taken when interpreting
the results. So although no large first-lag negative autocorrelation was observed
in neither period (significant only in Period III, see Sec. 7.2), the results from the
smallest time-scales (especially the 1st) should be interpreted cautiously. Fortunately,
wavelet methodology is very flexible in this respect and there is no ex ante reason
in exlucing any particular time-scale from the analysis (it may be done ex post). In
fact, including a time-scale as small as possible (5-minutes here) is quite reasonable
to see all the effects. The second important point to keep in mind is that the strong
intraday periodicity (reported in Sec. 7.2) may have confounding effects. Thus the
results concerning the intraday levels from 1 to 7 should be regarded as preliminary
until the periodicity has been taken care of (in Sec. 7.6). Finally (as explained in
Sec. 6.1), absolute returns provide a rather noisy measure of the latent volatility, so
the following results might a bit different under a different volatility measure.23

Because the MODWT coefficients preserve the total energy of a time series, it is
sensible to analyze time-scale specific energy (cf Eq. (2)). In the current analysis,
the MODWT coefficients of absolute returns of Periods I and III were formed by the
MODWT(J = 12) using LA(8) filter. Interestingly, by assuming the boundary to
be reflecting instead of periodic resulted in noticiable different results at the largest

23Realized volatility (e.g. daily) cannot be comfortably used in this context because intradaily
dynamics are the subject of interest and very frequently sampled returns would suffer excessively
from microstructure effects. Recently, however, Hansen and Lunde (2004) have shown that a Newey—
West type of correction of realized variance yields an unbiased measure of volatility even if intraday
returns are sampled every second!
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scales (see the top plots of Fig. 15). Most likely this is because at the largest scales
the filter is so wide that neither type of specification holds very well and the boundary
effects prevail (seen as a sudden growth in the wavelet variance at levels 11 and 12).
However, in the current context the reflecting boundary assumption was considered
as more natural. The Gaussian confidence bands were calculated only in this case
(see the bottom plots of Fig. 15). Notice that the non-Gaussian confidence intervals
would be a bit wider.
From the results of Period I (see the left hand part of Fig. 15) it is obvious that

most of the total energy of volatility is located at the smallest time-scales, i.e. the
highest frequencies.24 It is the good localization properties of wavelets that are able
to reveal this. Moreover, it is seen that energy decreases as the function of frequency:
the lower is the frequency, the lower its energy content. In fact, the relationship is
approximately hyperbolic which is observed as an approximate linear relationship on
a double-logarithmic scale. More precisely, there would seem to exist two different
scaling regions in Period I, namely levels j1 = 1, ..., 6 and j2 = 7, ..., 10. The first six
levels capture frequencies 1/64 ≤ f ≤ 1/2, i.e. oscillations with a period of 10—320
minutes. In Period I these levels correspond to intraday dynamics. Interestingly, there
is a visible break in the scaling law at the seventh level associated with 320-minute
changes or oscillations with a period of approximately 640 minutes. The seventh and
higher levels are related to one day and higher dynamics in Period I.
To study if the break in the scaling law is stable, Period III is analyzed similarly.

Unfortunately, there is no similar ”kink” at any level in Period III (see the right hand
part of Fig. 15). One might have naively expected a break at the 8th level because
of the considerable longer trading day (see Sec. 7.1). But the relationship is almost
perfectly linear across all levels up to 10; there is only a very slight kink at the 6th
level. The difference between the scaling laws of Periods I and III is most evident at
this particular level: the wavelet variance of Period I seem to be significantly larger
than in Period III (see Fig. 16). Indeed, the 6th level wavelet variance of Period I lies
outside the Period III’s Gaussian 95% confidence interval. The difference is visible
by eye when the wavelet coefficients are plotted together (see Fig. 17). It seems that
Period I experienced more turbulence in the corresponding time-scale than Period III
did. However, this simple observation is not yet enough to explain the more jumpy
look of Period I. Because sudden jumps are high-frequency events, they should be
well captured by the 1st level. This intuition is confirmed by the 1st level wavelet
variance of Period I which lies outside the confidence interval, as well (see Fig. 16).
In fact, the difference is now even more pronounced (see Fig. 18). Based on these
findings it can then be concluded that the ”more volatile” outlook of Period I is
mainly caused by the different dynamics at levels 1 and 6 corresponding to 5-minute
and approximately 5-hour changes, respectively. Thus the difference in the overall
level of volatility can be attributed to specific time-scales and intraday speculators.

24Or as D.S.G. Pollock suggested to me at the ”Workshop on Computational Econometrics and
Statistics” (Neuchâtel, Switzerland 2004), financial markets tend to ”shriek” under stress.
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Figure 15: Wavelet variances of Periods I (on left) and III (on right) on a double-
logarithmic scale. The upper plots show the result using reflecting (continuous line)
and periodic boundary (dotted line). The lower plots show the Gaussian 95% confi-
dence intervals with reflecting boundary only.
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Figure 16: The wavelet variances of Periods I (continuous line) and III (dashed line)
on a double-logarithmic scale using LA(8) with reflecting boundary. Gaussian 95%
confidence interval (dotted line) of Period III has been drawn, too. In particular,
notice that the 6th level wavelet variance of Period I is significantly different.
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The jumps at the 1st level measure the flow of new information and the general level
of nervousness. The wavelet variance at level 6 is not so easily interpretable, however.
The difference in this particular level may be just an artifact of the strong volatility
seasonality (see Sec. 7.2). The effect of this seasonality is studied later (in Sec. 7.6).
Notice, however, the wavelet variances at levels 3 and 5 are almost identical.
As noted earlier (in Sec. 7.2), the slow decay of the sample autocorrelations of

the absolute returns is suggestive of long-range dependence. This dependence is now
being quantified using a wavelet variance approach. From a statistical point of view
this quantification is important as standard statistical tools for inference are invalid
in the case of long-memory. For example, standard errors for the estimates of the
coefficients of ARCH or stochastic volatility models would be incorrect and hence the
confidence intervals for predictions (Lobato and Savin (1998); see also Beran (1994)).
Economically long-memory has consequences for option pricing. For instance, long-
memory has a significant impact upon the term structure of implied volatilities (see
Taylor (2000)). And of course, estimation of the fractional differencing parameter d
allows the use of long-memory ARCH (e.g. FIEGARCH) and stochastic volatility
(e.g. LMSV) models for simulation and forecasting.
The semiparametric wavelet domain method (see Sec. 5.5) is able to ignore the

intraday periodicities and hence it is in principle ideally suited for estimating the
rate of this decay. However, the relatively short time-span used (approx. 1.5 years)
could well be criticized and it has been a topic of hot debate in past years. It is
true that when estimating long-memory dependencies in the mean, the small sample
bias depends crucially on the time span of the data. But the most recent evidence
(see Andersen and Bollerslev (1997, 1997b) and Bollerslev and Wright (2000)) sug-
gests that the performance of the estimates from the volatility series may be greatly
enhanced by increasing the observation frequency instead of time-span. In partic-
ular, Bollerslev and Wright (2000) have argued that high-frequency data allows for
vastly superior and nearly unbiased estimation of the fractional differencing parame-
ter d. For example, Andersen and Bollerslev (1997) (using realized volatility as their
volatility measure) found that already 3 months may be enough to obtain an accu-
rate estimate of d when the intraday periodicity has been first properly taken care
of. Thus relatively short time spans of high-frequency data should be very informa-
tive about long-run volatility dependencies, too. This argument is intimately related
to the seminal observation of Merton (1980) that high-frequency data may greatly
enhance estimates of volatility (cf. Sec. 6.1).
Using the linear relationship of log ν2X(λj) and log 2

j (see Eq. (6)), the estimation
of d is done for Periods I and III by OLS. The same approach has been used before
by Jensen (2000) and Tkacz (2000), for example. Furthermore, a similar type of
OLS procedure using the Fourier periodogram has been carried out by Andersen
and Bollerslev (1997b, 1997c), Ray and Tsay (2000), and Wright (2002), among
others. Following Ray and Tsay (2000), the standard errors obtained from regression
theory are now being used to judge the significance. This is because in the context
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Level 6 wavelet coefficients (Period I)

C
ha

ng
e

0 5000 10000 15000 20000 25000 30000 35000

-0
.5

0.
0

0.
5

Level 6 wavelet coefficients (Period III)

Time

C
ha

ng
e

0 5000 10000 15000 20000 25000 30000

-0
.5

0.
0

0.
5

Figure 17: The 6th level MODWT wavelet coefficients of absolute returns of (a)
Period I and (b) Period III. The LA(8) filter with reflecting boundary was used.
Notice that the outlook of (a) is fatter. Indeed, its wavelet variance is significantly
larger than in (b).
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Level 1 wavelet coefficients (Period I)
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of GPH-estimator Deo and Hurvich (1998) have shown that these standard errors
are much closer to the standard errors obtained in finite-sample simulations than
the asymptotical standard errors obtained from theory. The estimates of d using
different levels j in the regression support the conjectured long-memory (see Table
??). Notice that coefficients using levels j1 = 2, ..., 6 and j2 = 7, ..., 10 in Period III do
not differ statistically. This would seem to imply that the strong intraday periodicity
of volatility has not influenced the estimate of d to a crucial extent. The results of
Period I are not as evident, though. To be sure that the intraday periodicity has not
confounded the estimate of the d, the periodicity was removed and the estimation
re-run (see Sec. 7.6).25

Period I

Levels Coefficient Std. error t-value P(> |t|) bd
2− 10 −0.62044 0.05016 −12.37 5.19e− 06 0.18978
2− 6 −0.44433 0.09108 −4.879 0.01646 0.277835
7− 10 −0.37730 0.02267 −16.65 0.003590 0.31135

Period III

Levels Coefficient Std. error t-value P(> |t|) bd
2− 10 −0.64082 0.02061 −31.10 9.18e− 09 0.17959
2− 6 −0.56431 0.04396 −12.84 0.00102 0.217845
7− 10 −0.57769 0.03998 −14.45 0.00475 0.211155

7.5 Local scaling laws and long-memory

The assumption of a constant long-memory structure may not always be reason-
able. Bayraktar et al. (2003) tackled the problem of time-varying long-memory by
segmenting the data before the estimation of the Hurst coefficient H(t) (a closely
related measure of long-memory, see e.g. Beran (1994)). But this scheme might not
always be sufficient as Whitcher and Jensen (2000) have pointed out. In particular,
they argued that ”the ability to estimate local behavior by applying a partitioning
scheme to a global estimating procedure is inadequate when compared with an estima-
tor designed to capture time-varying features”. In this respect, the work of Gonçalves
and Abry (1997), who estimated a local scaling exponent for a continuous-time mul-
tifractal Brownian motion, seems more appropriate. Unfortunately, the approach of
Gonçalves and Abry involves the contruction of non-standard wavelets which hinders
practical implementation. To overcome this difficulty, Whitcher and Jensen (2000)

25In fact, the wavelet method could have been used to annihilate the intraday dependencies in a
similar way that was done in Andersen and Bollerslev (1997b) who used a low-pass filtering technique
based on a two-sided weighted average of both past and future absolute returns. Unfortunately
however, by only considering the interdaily and longer dynamics (i.e. wavelet smooth of level
J), as in Gençay et al. (2000), I was not able to reproduce the hyperbolic decay in the sample
autocorrelation function of the filtered series. So the FFF was used instead.
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introduced a local long-memory parameter estimator based on the MODWT allowing
them to stay in the more traditional ARFIMA framework (Gilbert et al. (1998) use
the DWT). I follow the methodology laid out in Whitcher and Jensen (2000) and
Jensen and Whitcher (2000).
In contrast to Jensen and Whitcher (2000) who use log-squared returns to proxy

volatility, I continue to use absolute returns (for the reasons stated in Sec. 7.2). To
let the linear relationship of log ν2X(u,λj) and log 2

j (see Eq. (8)) hold, I then im-
plicitly assume that absolute results are generated by a locally stationary process.
Considering the jumps and clustering of volatility, this assumption seems more rea-
sonable than covariance stationarity. The estimation of time-varying long-memory
parameter is therefore done for Periods I and III by OLS. The choice of levels j to be
included in the regression was first based on the approximately linear portion of the
global scaling law; the global analysis suggested that there exists two linear regions,
j1 = 1, ..., 6 and j2 = 7, ..., 10, in Period I. However, using only the smallest levels
resulted in estimates of d(u) that varied in a white noise fashion (see the top plots of
Figs. 19 and 20). This is in agreement with the argument of Jensen and Whitcher
(2000) that intraday levels are irrelevant to long-memory phenomena. However, this
contradicts the findings of Andersen and Bollerslev (1997b) that intraday volatility
can be informative even in the long-run. Because of this contradiction, and the fact
that 5-minute returns are still subject to microstructure effects (bid-ask bounce at
the first lag) in Period III, I considered only the first level as uninformative. On the
other hand, using only the larger levels resulted in severe unstability in the estimate
(see the bottom plots of Figs. 19 and 20). This unstability can be explained by the
small number of levels (only 4) used in the OLS-regression. Yet, larger than 10 levels
were seriously affected by the boundary.26

It turned out that using the small and large levels together, i.e. levels j3 =
2, ..., 10,gave the most stable results. This is to expected because of the larger number
of observations included. The local long-memory parameter estimates of Periods I
and III show similar characteristics (see Figs. 21 and 22). Namely, most of the time
the estimate of d(t) stays in the interval (0, 1/2) indicative of long-memory although
”outliers” tend to drag the estimate downwards and ”out of bounds”. Now the
approximate zero-phase filter property of the MODWT wavelet filters (after a proper
adjustment, see Sec. 5.4) shows it usefulness: the drops in the estimate of d(t) are
alignable in time with the original series. For example, it can be inferred from the
figure that in Period I the sudden low estimates of d(t) between observations 5, 000
and 10, 000 are due to high returns at that moment in time (see Fig. 21). However,
there are also instants when the estimate jumps upwards. In these peculiar cases
the regression using levels j1 and j2 separately can be informative. For example, in
Period I the high jump between observations 25, 000 and 30, 000 is the result of the

26The use of levels 11 and 12 is computationally costly too. (These levels can still be included
if deemed useful, however! It might be that the use of more levels in the regression could further
stabilize the estimate of d.)
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Local estimates using levels 2-6 (Period I)
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Local estimates using levels 2-6 (Period III)
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wavelet variances at the smallest levels being extremely unstable (see the top plot of
Fig. 19).27 In general, wavelet variances at the smallest levels react more powerfully
to jumps in volatility. This is the downside in including the smallest levels in the
regression. At this point, then, some crititicm of the range of estimates can be raised.
It is not at all obvious how one would use estimates that do not belong to a sensible
interval of (0, 1/2). This is of course crucial from the point of view modeling using
the LMSV model (see Eq. (11a)—(11b)) and will be shortly discussed next.
The estimates of d(t) are of little use if they behave uncontrollably. It is however

reliefing to note some structure in the behavior of the long-memory estimate. Namely,
the estimate seems to become more stable during less turbulent times. In particular,
during the long upward trends the estimate of long-memory rises before reaching
stability at about 0.3 − 0.4. This is in line with the definition of long-memory: the
long-memory parameter should be larger when stronger persistance is found. From
the view point of modeling the dynamics of d(t), it is interesting to note that the
estimates are unconditionally Gaussian (see Fig. 23). This is confirmed by the
Jarque—Bera test of normality (see Table ??). At this stage, however, it is too early
to say if there is any specific structure in d(t) (such as ARFIMA) that could be
exploited in forecasting, for example. This problem is hampered by the possibility of
long-memory being spurious; i.e. structural breaks might have affected the estimate
of d(t) upwards. Indeed, it has been shown by Granger and Hyung (1999) that there
exists a positive relationship between the number of breaks and the value of d. More
precisely, in their study of daily S&P 500 absolute returns (from January 4, 1928 to
August 30, 1991), d varied in the range of 0.154 and 0.715 calculated over 10 non-
overlapping subperiods. They found that d was possibly affected by the magnitude
of the break, too, and concluded that the long-memory property is more likely caused
by the presence of breaks. These findings would then imply that the timing and size
of the breaks is important. Thus, regarding forecastability, it would then be equally
important to know if the breaks are endogenous and therefore forecastable. Whether
d(u) carries inherent structure or the breaks are endogenous remains an interesting
research problem and will be studied in the near future.
The possibility of misspecification has to be acknowledged, too. Namely, it is

disturbing that the medians of d(t)s in both periods are different (larger) from the ds
(cf. Sec. 5.5) although they are expected to match. This anomaly is currently under
study.

Period I
Statistical key figures

Min. 1st Q. Median Mean 3rd Q. Max.
−0.3426 0.2084 0.3117 0.3020 0.4056 1.0313

Jarque—Bera

X2 df p
5.5039 2 0.0638

27To be precise, this sudden instability was caused by sudden drop in the wavelet variance at the
very low levels. This forced me to ignore the 2nd level wavelet variances in OLS for a while. Ignoring
was mandatory because taking a logarithm of 0 is not well-defined and certainly not applicable in
regression.
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Local long-memory parameter estimates (Period I)
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Figure 21: Local long-memory parameter estimates in Period I (the top subplot). The
return and price series are plotted below to align the features in time. In particular,
notice how the estimate of d(t) drops whenever a big price change takes place.
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Local long-memory parameter estimates (Period III)
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Figure 22: Local long-memory parameter estimates in Period III (the top subplot).
The return and price series are plotted below to align the features in time. In partic-
ular, notice how the estimate of d(t) drops whenever a big price change takes place.
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Figure 23: The unconditional distributions of the estimate of d(t) is Gaussian in both
periods (see Jarque—Bera test statistic).
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Period III
Statistical key figures

Min. 1st Q. Median Mean 3rd Q. Max.
−0.3287 0.1663 0.2505 0.2412 0.3262 0.6624

Jarque—Bera

X2 df p
3.6219 2 0.1635

7.6 Effects of volatility periodicity

The effect of intraday volatility periodicity on the above results (especially the scaling
laws) will now be studied. From now on, the overnight 5-minute returns will be
excluded from the analysis. In average, the general shape of volatility is similar in
Periods I and III (see Figs. 24 and 25). It is obvious that the exclusion of the overnight
return interval has not removed all the overnight effects: the first interval exhibits
considerably larger volatility than the rest of the intraday intervals. However, after
the highly volatile first 5 minutes the average volatility tends to calm down smoothly
(although some predetermined days have significant turbulence at midday because of
the announcement of quartal reports). At afternoon hours the behavior of volatility
becomes abrupt again. The first regular peak occurs at 3.35 p.m. (futures market
opening?) and a larger one just an hour later at 4.35 p.m. The latter peak is the New
York effect (see Sec. 7.2). There is also a small peak half an hour later at 5.05 p.m.
(why?). In Period III, the biggest peak is at 6.05 p.m. (and right after it) when AMT
(I) starts (at 6.03 p.m.). It is still a bit unclear if this particular peak is genuine or
not; it might well just be an artifact that the 3%-filter was unable to get totally rid
of.
The removal of the intraday seasonalities was done using Fourier Flexible Form

(FFF) (see App. E). The results depend largely on how many sinusoidal terms are
included in the parametric form. It seems that more terms does not necessarily give
a better result in every respect. For example, by including many terms the overall
fit becomes better but then the filtered returns tend to become autocorrelated. On
the other hand, while a small number of terms does not touch the autocorrelation
structure that much, the inferior fit obtained does not remove all the intraday pat-
terns. Balancing between these two goals suggests to settle for a minimal amount of
sinusoids. In Period III, setting P = 4 and J = 0 and 5 dummies gives a nice fit in
average (see Fig. 25):

bf (θ;n) = 1.85
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where the numbers in parentheses are standard errors and the asterixes are signifi-
cance codes (for 0.001, 0.01, and 0.05). Using this estimate resulted in filtered returns
that have the overall same autocorrelation characteristics as the original returns with
the exception that the first-lag halfed in size, being still statistically significant (see
Fig. 26). Although the filtered absolute returns continue to show some signs of pe-
riodicity, this is considered adequate in the present context. Interestingly, allowing
daily variability in the regression (i.e. J ≥ 1) did not make the fit signifantly better
but instead wrongly emphasized few ”outliers”. Daily volatility was estimated by
realized variance.
The analysis of this subsection is currently being done.

8 Conclusions

To be done.

A Some functional analysis

Supports sections 3 and 4 and is therefore skipped in this version.

B Orthonormal transforms

This section borrows from Percival and Walden (2000, Sec. 3.1).
Let O be an orthonormal real-valued N ×N matrix, i.e. OTO = IN . Let Oj• and

O•k refer to the jth row vector and kth column vector, respectively. Then

[N×N ]
O =


OT
0•

OT
1•
...

OT
N−1•

 = [O•0,O•1, ...,O•N−1].
One can use this matrix to analyze an arbitrary real-valued time series, given by the
column vector x, in the following way:

[N×1]
O = Ox =


OT
0•

OT
1•
...

OT
N−1•

x =


OT
0•x

OT
1•x
...

OT
N−1•x

 =


hx,O0•i
hx,O1•i
...

hx,ON−1•i

 ,
since OT

j•x =
­Oj•,x® = ­

x,Oj•
®
. The column vector O consists of the transform

coefficients for x with respect to the orthonormal transform O. Specifically, the jth
transform coefficient Oj is given by the inner product

­
x,Oj•

®
.
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Average Volatility Fit (Period III)
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ACF of Filtered Returns (Period III)
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On the other hand, premultiplying both sides of the above equation by OT , and
using orthonormality, one can synthesize the time series x as

[N×1]
x =OTO = [O0•,O1•, ...,ON−1•]


O0
O1
...

ON−1

 =
N−1X
j=0

OjOj•.

Furthermore, since Oj =
­
x,Oj•

®
, it is possible to re-express the time series x as a

unique linear combination of O0•,O1•, ...,ON−1•:

x =
N−1X
j=0

­
x,Oj•

®Oj•.
That is, one has recovered the ability to write a vector as the sum of its projections
on the basis vectors.

C Fractional differencing and long-memory

The fractional differencing operator (1−B)d is formally defined by its infinite Maclau-
rin series expansion,

(1−B)d .=
∞X
k=0

Γ(k − d)
Γ(k + 1)Γ(−d)B

k,

where B and Γ(·) denote the lag-operator and the gamma function, respectively (e.g.
Breidt et al. (1998, p. 328)).
A real-valued discrete parameter fractional ARIMA (ARFIMA) process {Xt} is

often defined with a binomial series expansion (Gençay et al. (2002a, p. 163)),

(1−B)dXt .=
∞X
k=0

µ
d

k

¶
(−1)kXt−k.

where µ
a

b

¶
.
=

a!

b!(a− b)! =
Γ(a+ 1)

Γ(b+ 1)Γ(a− b+ 1) .

These models were originally introduced by Granger and Joyeux (1980) and Hosking
(1981).
In ARFIMA models, the ”long-memory” dependency is characterized solely by

the fractional differencing parameter d. A time series is said to exhibit long-memory
when it has a covariance function γ(j) and a spectrum f(λ) such that they are
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of the same order as j2d−1 and λ−2d, as j → ∞ and λ → 0, respectively.28 For
0 < d < 1/2, an ARFIMA model exhibits long-memory, and for −1/2 < d < 0 it
exhibits antipersistance. In practice, the range |d| < 1/2 is of particular interest
because then an ARFIMA model is stationary and invertible (Hosking (1981)).
More detailed definitions of long-memory can be found from Beran (1994), for

example. Concerning fractionally integrated processes in econometrics in particular,
see Baillie (1996).

D Locally stationary process

Dahlhaus (1996, 1997) defines a locally stationary process Xt,T (t = 0, 1, ..., T − 1) as
the triangular array, with transfer function A0, drift µ, and spectral representation

Xt,T = µ (t/T ) +

Z π

−π
eiωtA0t,T (ω)dZ(ω),

where the components satisfy certain technical conditions (see Dahlhaus (1997, Def-
inition 2.1) or Jensen and Whitcher (2000)). For example, autoregressive processes
with time-varying coefficients are locally stationary (Dahlhaus (1996, Theorem 2.3)).
Jensen and Whitcher (2000) give another example of a locally stationary process.

It is constructed by considering a stationary, invertible moving average process Yt
with spectral representation

Yt =

Z π

−π
eiωtA(ω)dZ(ω),

where the transfer function is A(ω) = (1 + θe−iωt) /2π and |θ| < 1. If the process Xt,T
is now defined as

Xt,T = µ (t/T ) + σ (t/T )Yt,

where µ,σ : [0, 1] → R are continuous functions, then Xt,T is a locally stationary
process with the time varying transfer function

A(u,ω) = A0t,T (ω) =
σ(u)

2π

¡
1 + θe−iωt

¢
.

Thus the time-path of Xt,T exhibits the periodic behavior of a stationary moving
average process but with time-varying amplitude equal to σ(u).

28The rate of decay in covariance does not necessarily imply the rate of decay in spectrum, as
noted in Bollerslev and Wright (2000, p. 87). Formal conditions for the equivalance are discussed
in Beran (1994), for example (see also Granger and Ding (1996)).
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E Fourier Flexible Form

Following Andersen and Bollerslev (1997c), intraday returns can be decomposed as

rt,n = E (rt,n) +
σtst,nZt,n√

N
,

where in their notation N refers to the number of return intervals n per day (i.e. not
to the total length of the series!), σt is the daily volatility factor, and Zt,n is an IID
random variable with mean 0 and variance 1. Notice that st,n, the periodic component
for the nth intraday interval, depends on the characteristics of trading day t. By then
squaring both sides and taking logarithms, define xt,n to be

xt,n
.
= 2 log [|rt,n − E (rt,n)|]− log σ2t + logN = log s2t,n + logZ

2
t,n,

so that xt,n consists of a deterministic and a stochastic component.
The modeling of xt,n is done via non-linear regression in n and σt,

xt,n = f (θ;σt, n) + ut,n,

where ut,n
.
= logZ2t,n−E

¡
logZ2t,n

¢
is an IID random variable with mean 0. In practice,

the estimation of f is implemented by the following parametric expression:

f (θ;σt, n) =
JX
j=0

σjt

"
µ0j + µ1j

n

N1
+ µ2j

n2

N2
+

DX
i=1

λij1n=di

+
PX
p=1

µ
γpj cos

pn2π

N
+ δpj sin

pn2π

N

¶#
,

where N1
.
= (N + 1)/2 and N2

.
= (N + 1)(N + 2)/6 are normalizing constants.

If one sets J = 0 and D = 0, then this reduces to the standard FFF proposed
by Gallant (1981, 1982). The trigonometric functions are ideally suited for smooth
varying patterns. Andersen and Bollerslev (1997c) have argued that in equity markets
allowing for J ≥ 1 might be important, however. Namely, by including cross-terms
in the regression allows st,n to depend on the overall level of volatility on trading day
t which is often the case in stock market data. The actual estimation of f is most
easily accomplished using a two-step procedure described in Andersen and Bollerslev
(1997c, App. B).
After a proper normalization, the estimator of the intraday periodic component

for interval n on day t is found to be

bst,n = T exp
³ bft,n/2´P[T/N ]

t=1

PN
n=1 exp

³ bft,n/2´ ,
71



where T is the total length of the sample and [T/N ] denotes the number of trad-
ing days. The filtered returns (returns free from the volatility periodicity) are then
obtained via ert,n .= rt,n/bst,n.
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Comptes Rendus Acad. Sciences Paris A 315, 211—216.

[102] Karpoff, Jonathan M. (1987): The Relation Between Price Changes and
Trading Volume: A Survey. Journal of Financial and Quantitative Analysis 22,
109—126.

[103] Kroner, Kenneth F. — Ng, Victor K. (1998): Modeling Asymmetric
Comovements of Asset Returns. Review of Financial Studies 11, 817—844.

[104] Lamoureux, Christopher G. — Lastrapes, William D. (1990a): Het-
eroskedasticity in Stock Return Data: Volume versus GARCH Effects. Journal
of Finance 45, 221—229.

[105] Lamoureux, Christopher G. — Lastrapes, William D. (1990b): Per-
sistance in Variance, Structural Change, and the GARCH Model. Journal of
Business and Economic Statistics 8, 225—234.

[106] Lo, Andrew W. — MacKinlay, A. Craig (1999): A Non-Random Walk
Down Wall Street. Princeton University Press, New Jersey.

[107] Lobato, L.N. — Savin, N.E. (1998): Real and Spurious Long-Memory Prop-
erties of Stock-Market Data. Journal of Business and Economic Statistics 16,
261—267.

[108] Lockwood, Larry J. — Linn, Scott C. (1990): An Examination of Stock
Market Return Volatility During Overnight and Intraday Periods, 1964—1989.
Journal of Finance 45, 591—601.

[109] Lynch, Paul E. — Zumbach, Gilles O. (2003): Market Heterogeneities
and the Causal Structure of Volatility.

[110] Malliavin, Paul — Mancino, Maria Elvira (2002): Fourier Series Method
for Measurement of Multivariate Volatilities. Finance and Stochastics 6, 49—61.

[111] Mandelbrot, Benoit (1963): The Variation of Certain Speculative Prices.
Journal of Business 36, 394—419.

[112] McKenzie, Michael D. (1999): Power Transformation and Forecasting the
Magnitude of Exchange Rate Changes. International Journal of Forecasting 15,
49—55.

[113] Merton, Robert C. (1980): On Estimating the Expected Return on the
Market: An Exploratory Investigation. Journal of Financial Economics 8, 323—
361.

80



[114] Meyer, Yves (1994): Wavelets: Algorithms and Applications. Second print-
ing. Society for Industrial and Applied Mathematics.

[115] Müller, U. A. — Dacorogna, M. M. — Olsen, R. B. — Pictet, O. V.
— Schwarz, M. — Morgenegg, C. (1990): Statistical Study of Foreign Ex-
change Rates, Empirical Evidence of a Price Change Scaling Law, and Intraday
Analysis. Journal of Banking and Finance 14, 1189—1208.

[116] Müller, U. A. — Dacorogna, M. M. — Dave, R. D. — Pictet, O. V.
— Ward, R. B. (1995): Fractals and Intrinsic Time, a Challenge to Econome-
tricians. Olsen & Associates Discussion Paper.

[117] Müller, Ulrich A. — Dacorogna, Michel M. — Davé, Rakhal D. —
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