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Abstract
The Teager energy operator is a simple function related to the

“energy” of a sinusoidal signal. This paper explores the behavior and
usefulness of the Teager energy operator in several contexts, drawing
on the work of several researchers in signal processing and speech
analysis. It also describes an implementation of Teager-based
analysis using a filter bank and the DESA-2 algorithm to retrieve
information regarding the spectral content of a multicomponent
signal.

Introduction
In 1990, James F. Kaiser published “On a simple algorithm to

calculate the 'energy' of a signal,” which derived a mathematically
simple, real-time measure of the “energy” of a sinusoidal signal [1].
This function, commonly called the “Teager energy operator,” has
been the subject of several subsequent studies with focus on its many
uses in discrete and analog signal processing. 

This project involves the review of several such studies and the
verification of their results through computer simulation, and this
paper serves as a companion to the project scripts listed in Appendix
II. First, this paper provides an overview of the work of Kaiser and
selected other researchers on the Teager operator and its use in
various contexts. Then, after discussing the function implementation
in both Max/MSP and MATLAB, its basic behavior is illustrated within
these two environments. Subsequent sections explore the behavior of
the Teager operator on noisy signals, the behavior and precision of
the DESA-2 algorithm on various signals, the use of a generalized
Teager operator in resolving two closely spaced tones, and the
implementation of a filter bank system for Teager-based analysis of
multicomponent signals.

The results of this project demonstrate the ease of
implementation of the Teager operator, generally support and
elucidate the results of several research papers on the subject,
illustrate the effects of noise on Teager-based analysis in several
different contexts, and provide an example of a new basic analysis
system. These results suggest that the Teager operator should be
considered as a potential analysis tool in many practical signal
processing tasks, and that further research will likely continue to
explore the application of the Teager operator to new problems and
contexts.

Background
[1] outlines the motivation, derivation, and basic use of a simple

algorithm to calculate the “energy” of a discrete, single-component
sinusoidal signal. Using the equation for the total energy of a spring-
mass system and the approximation sin(x) = x for small values of x,



Kaiser derives the following expression for the input energy of a
discrete signal (where A and Ω are the instantaneous amplitude and
frequency):

En = A2Ω2 = xn
2 – xn+1*xn-1

The paper continues by demonstrating the basic behavior of this
operator on an exponentially-damped sinusoid, a chirp signal, and a
two-component signal. It is of note that the non-linearity of the
Teager operator makes it impractical for direct analysis of
multicomponent signals, and [1] recommends the use of a filter bank
in this situation.

Many subsequent studies have been done to analyze the
properties of the Teager operator and its extensibility to other signal
processing tasks. Much of this work was discussed in my in-class
presentation and therefore will not be duplicated in this paper.

Of most relevance to the work presented in this paper are [5]
and [4]. [5] offers two simple algorithms, DESA-1 and DESA-2, for
separating the amplitude and frequency contributions to the Teager
operator output. [4] describes a generalized Teager energy function,
of which the operator described in [1] is a special case. This
generalized function, which is calculated with a variable lag rather
than a lag of one sample, can be adjusted to enhance the presence of
the difference or summation frequency of two closely-spaced tones,
thereby allowing more precise spectral analysis of a signal. In
addition to [4] and [5], the reader is referred to [2], [3], [6], and [7]
for other interesting discussion of the Teager operator's properties
and applications. 

Basic Implementation in Max/MSP
The first task of this project involved the writing of a Max/MSP

patch to perform Teager operator analysis of a signal in real-time.
The resulting patch (teag.mxb) is shown below in Fig. 1. Clearly, the
Teager operator's implementation in Max/MSP is quite simple.

This patch was then used to analyze the same basic input signal
types as in [1]. The patch simple_teager.mxb demonstrates that when
a sine wave with time invariant amplitude and frequency is input to
the “teag” object, the output of the Teager function is a DC signal.
Furthermore, increasing the amplitude or frequency of the input sine
wave results in an increased output of the Teager function. 

The “teag” object was used in the same manner in three other
patches to qualitatively verify the behavior of the Teager function on
damped sine, chirp, and two-component signals, respectively. Each of
these patches stores the signal and the Teager function value in a
buffer so that they may be compared. The contents of these buffers
for typical input signal parameters appear below in Figs. 2-4.



 Figure 1:  Max/MSP patch to calculate the Teager operator on a signal input

Figure 2: Max/MSP example of a damped sine wave and its Teager operator output



Figure 3: Max/MSP example of a chirp signal and its Teager operator output\

Figure 4: Max/MSP example of a two-component sine wave and its Teager operator
output



The buffer outputs demonstrate that the Teager operator
behaves in the manner described by [1]. However, quantitative
analysis of the operator output is not practical in Max/MSP, so no
further observations were made in this environment. The above work
simply demonstrates that Teager energy function can be computed
directly in Max/MSP, making the function output value available as a
signal that behaves precisely as expected on basic input signals.
Furthermore, the function output need only be delayed by only one
sample from the input signal for real-time analysis.

Implementation and Exploration in MATLAB
Although Max/MSP is an environment familiar to many

musicians, MATLAB allowed greater precision, efficiency, and
flexibility in further exploration of the Teager operator in this study.
Using the same equation for the discrete Teager operator as in the
MSP implementation, a short MATLAB function was written. The code
for this function appears below in Fig. 5 to demonstrate the
succinctness of implementation. Note that this function assigns the
first and last vector values to be identical to the second and second-
to-last values, respectively. The decision could be made to omit these
values entirely, but this implementation allows the size of the Teager
vector be identical to the size of the input vector while not
introducing discontinuities in the Teager vector. This allowed for the
simplest approach to analysis and graphing.

Figure 5: MATLAB function for calculating the Teager operator

MATLAB Part 1: Basic behavior
The MATLAB component of this project is broken down into

four parts, each of which focuses on a different facet of the operator
and its use. Scripts with the code for each part appear in part1.m
through part4.m, and the graphs output by all scripts appear in
Appendix I. Part 1 of the MATLAB  component of this project uses the
function above to analyze the same set of basic input signals as were
analyzed earlier in Max/MSP. This script also generates noisy
versions of each of the signals, with a signal-to-noise ratio (SNR) of



25, to demonstrate the sensitivity of the Teager operator to a modest
amount of noise. Finally, the effects of noise are further explored by
applying the Teager operator to different versions of the same signal,
each having a different SNR. 

The figures “Teager on Sine and Damped Sine Waves” and
“Teager on Chirp and 2-Component Signals” (see Appendix I)
demonstrate that the output of the Teager operator on each signal
matches the behavior found in the Max/MSP analysis and described
in [1]. Furthermore, it is apparent that the noise has a large impact
on the Teager operator output. For the noisy single component sine
wave, the Teager operator behavior deviates greatly from the steady
line that is output without noise. However, basic behavior of the
Teager operator on noisy damped sine, chirp, and two-component
signals is still apparent.

A related question asks, how might the magnitude of the signal-
to-noise ratio affect the Teager operator? The figure “Effect of Noise
on the Teager Operator” demonstrates that, for a single component
sinusoid, even a very low SNR of 200 results in noticeable changes in
the Teager output. The quality of the Teager operator output
significantly degrades as the SNR decreases, and the degradation of
the operator output is noticeably more dramatic than that of the
source signal. This is a logical result of the fact that the Teager
operator is calculated on only three adjacent samples rather than on
a large window.

MATLAB Part 2: Using DESA-2 to separate amplitude and frequency
Part 2 of the MATLAB component uses an implementation of

the DESA-2 algorithm to separate amplitude and frequency
contributions to the Teager operator behavior. First, DESA-2 is used
to separate amplitude and frequency components for the set of basic
input signals. The figures “Real and DESA-2 Amplitude and
Frequency for Simple Sine,” “Real and DESA-2 Amplitude and
Frequency for Damped Sine,” and “Real and DESA-2 Amplitude and
Frequency for Chirp” display the DESA-2 calculations alongside the
true amplitude and frequency values. Visual comparisons verify that
DESA-2 is generally accurate and fast to respond to changes in the
input. 

There are, however, some notable discrepancies between the
real values and the DESA-2 calculations. Most interesting is the
behavior of the DESA-2 frequency measure on the damped sine wave.
The initial frequency value of 980 for the first few samples is followed
by a steady line which, at first glance, seems to coincide with the
behavior of the true frequency (which remains steady). However, this
steady frequency value is approximately 1003 Hz, while the true
value of the frequency is 1000 Hz. 

Furthermore, it is interesting to note that the DESA-2 values for



the chirp signal are less smooth than those for the other signals. The
abrupt drop in the calculated amplitude around sample 25 may not be
a failure of DESA-2, because the amplitude of the input signal
generated by the MATLAB chirp function is not really 1 at that point.
However, the frequency and amplitude tracking for the chirp signal
show a distinctly wavy behavior that is not as apparent for the other
signals.

It is also notable that DESA-2 occasionally calculates complex
values for frequency and amplitude on these simple noiseless signals,
because of the square root operations. The MATLAB script for Part 2
handles this by only considering the real part of any frequency and
amplitude values calculated, and this seems to work well.

After verifying that DESA-2 performed reasonably well on basic
signal inputs, the performance of DESA-2 was examined with respect
the frequency of the signal. [5] notes that the presence of an arcsine
computation in the DESA-2 algorithm allows tracking of frequencies
up to only one-fourth of the sampling frequency. While the authors
assert that the performance of DESA-2 led to errors of 1% or less in
general, no discussion is offered on the effect of frequency on error
magnitude. Therefore, five frequency values were chosen that ranged
from one-twentieth the sample rate to one-fourth the sample rate.
DESA-2 was run on both simple and damped sine waves with these
frequencies.

The average magnitude of the percentage of error for both
DESA-2 amplitude and frequency appears in “% Error for DESA-2
Amplitude and Frequency, Damped and Simple Sine.” (In these
graphs, the x-axis shows the frequency of each input signal in
radians/sample.) These plots indicate that the magnitude of error is
similar for frequency and amplitude estimation for a particular wave
shape, and the magnitude of error is much higher for the damped
sine wave input. However, the error remains very low for even the
damped sine wave (less than 2%). Interestingly, the error decreases
as the frequency approaches one-fourth the sample rate, and the
shape of the error decay is similar for both frequency and amplitude,
and for both the damped and simple sine waves. Overall, this analysis
suggests that DESA-2 may be used to track the frequency and
amplitude accurately, and that while frequencies close to one-fourth
the sampling rate will have the least error, error is generally low for
all input frequencies.

Finally, the effect of noise on DESA-2's ability to track
frequency and amplitudes was examined.  The effects of the noise are
shown in the DESA-2 output in “Effect of Noise on DESA-2,” and it is
apparent that even a SNR of 100 results in serious degradation of the
algorithm's ability to track frequency. The script also outputs the
mean percentage error for amplitude (1.0%) and frequency (157%)
tracking on this signal, and it is apparent that a large difference



appears between the magnitude of the error for amplitude and
frequency. The percentage error for the amplitude remains tiny. This
result suggests that DESA-2 might still be useful on noisy signals if
only the amplitude measurement is desired.

The MATLAB analysis of the behavior of DESA-2 supports [5]'s
finding that DESA-2 can track frequency and amplitude relatively
accurately in the absence of noise. For this reason, DESA-2 is
integrated into the filter bank-based analyzer at in Part 4. However,
idiosyncrasies such as the bumpiness in the calculated frequency of
the chirp, errors in misidentification of frequency such as for the
damped sine wave, and high sensitivity of the frequency measure to
noise indicate that DESA-2 may be more appropriate for some
analysis contexts than for others.

MATLAB Part 3: Using the Teager operator to resolve two tones
In order to use the Teager energy function in the same manner

as in [4], a new MATLAB function was written to allow for variable
lag parameters. This function appears in gtkef.m. For a given lag m
and input length N, the generalized Teager operator is undefined for
samples 1 to m and samples (N-m+1) to N. As in the implementation
of the original Teager operator, these values are set to the nearest
defined samples (sample (m+1) and sample (N-m)). Again, this
allowed the Teager output vector to be the same size as the input
vector, easing the analysis process. Experimentation with cutting the
output vector size by removing these undefined samples had no
perceivable effect on the operator's use in peak detection.

The frequencies and lag parameter values chosen for analysis
are the same as in [4]. The signal analyzed was made up of one
330Hz and one 300Hz sine wave. First, the output of the original
Teager operator, with a lag parameter of 1, is shown with its FFT
(“TKEO on noiseless two-component signal” and “FFT of TKEO on
noiseless two-component signal”). As noted by [4], analysis of the
original operator reveals a strong frequency component at the
difference frequency of 30Hz, but no corresponding component at the
summation frequency of 630Hz. 

Next, noise was added to the signal, and it was analyzed with
the original Teager operator. The Teager operator and its FFT appear
in “TKEO on noisy two-component signal, SNR=25” and “FFT of
TKEO on noisy two-component signal, SNR=25.” The spectral peak at
30Hz is less pronounced but still somewhat apparent, and there is no
indication of a peak at 630Hz.

“GTKEO on noiseless signal, m=25” and “FFT of GTKEO on
noiseless signal, m=25” demonstrate the use of the generalized
Teager operator at a lag value that accentuates the summation
frequency. The Teager operator output itself clearly shows a
prominent high frequency component, especially when compared to



the output when m=1 as in the original case. This is indeed reflected
in its FFT, which shows a clear peak at 630Hz and none at 30Hz.
When the generalized operator with a lag parameter of m=25 is
applied to the noisy version of the signal, the behavior of the operator
is much less clear from the time-domain output alone (“GTKEO on
noisy signal, SNR=25, m=25.”) However, the spectrum of the
generalized Teager operator still shows a very pronounced peak at
630Hz (“FFT of GTKEO on noisy signal, SNR=25, m=25”). 

Next, the generalized Teager operator with a lag parameter of
m=6 was used to analyze a noiseless signal and a noisy signal. [4]
asserts that m=6 will enhance the difference frequency even more
than m=1, and this is indeed the case. “GTKEO on noiseless signal,
m=6” and “FFT of GTKEO on noiseless signal, m=6” appear very
similar to the original Teager operator and its FFT with m=1;
however, comparison of the two FFTs shows that the peak of the
generalized operator at 30Hz is significantly higher due to the decibel
scaling of the y-axis. Similarly, at first glance the generalized Teager
operator output with m=6 and its FFT (in “GTKEO on noisy signal,
SNR=25, m=6” and “FFT of GTKEO on noisy signal, SNR=25, m=6”)
appear quite alike to those for the original operator on noisy input.
However, again, the spectral peak at 30Hz is in fact more prominent
in the case where m=6. 

The above results support [4]'s finding that changing the lag
parameter can result in enhancing the summation or difference
frequencies of two component tones. Furthermore, noise with a SNR
of 25 does not degrade the prominence of the summation or
difference components in the FFT to the point where they are no
longer easily distinguishable.

MATLAB Part 4: Using Teager with a filter bank
The final component of this project involved the use of a filter

bank to allow Teager analysis of multicomponent signals. For this
purpose a function (myfilters1.m) was written to implement a linear-
phase response filter bank with a logarithmically scaled, variable
frequency range. This function also applies the original (m=1) Teager
operator on the output of each filter. “Teager analysis of filtered
440Hz signal”, “Teager analysis of filtered 440Hz + 1000Hz signal”,
and “Teager analysis of filtered 440Hz + 1000Hz + 300Hz signal”
show the output of the filter bank for 1-, 2-, and 3-component signals.
In these graphs, the x-axis corresponds to the sample number, the y-
axis corresponds to the filter number, and the z-axis shows
magnitude. Each of these graphs demonstrates the expected steady
output of each filter after an initial delay. As long as no more than
one signal component is present in the frequency range of each filter,
such a system can be used to obtain Teager energy measures for each
frequency band.



This system was then used to analyze recorded musical sounds,
which consisted of multiple frequency components. “Teager analysis
of filtered piano C3” displays the Teager analysis of a piano note.
When more than one partial is present in the frequency band for a
single filter in the higher frequency range, the Teager output is
periodic as expected. 

Because of the ability to obtain Teager energy measures within
each frequency band, it should also be possible to use DESA-2 to
obtain the frequency and amplitude values within each band. The
final portion of the Part 4 MATLAB script uses a second filtering
function (myfilters2.m) to identify the primary frequency components
in a multicomponent signal along with their amplitudes. This is
accomplished by first isolating the portion of the signal after the
initial delay period, then averaging the DESA-2 frequency calculation
for each filter. (This assumes that each filter has at most one
frequency component of the signal within its range.) Because of small
amounts of leakage into adjacent filters, there exist many duplicate
values among the set of frequency averages. Therefore, only the
unique frequency values are saved, and the filter numbers
corresponding to these frequencies are identified. The effects of
leakage are minimized by zeroing the outputs of any filters not in this
set. Finally, the mean amplitudes of the filters in the set are matched
with the corresponding frequencies.

The result is a set of frequency and amplitude pairs identifying
the signal components. This set is plotted in “Amplitude of Frequency
Components, using DESA-2 and a filter bank.” It is clear from this
graph that the algorithm correctly identified strong frequency
components at 440Hz, 1000Hz, and 300Hz. The amplitudes for each
component are slightly below the correct value of 10, due to the
leakage effect.

The application of this algorithm in its present form to real
signals is made problematic because of the inability of the DESA-2
function to handle silence correctly (a silent signal results in a
division by 0). This problem could be easily overcome in an
application in which silence is a possible input. A significant
improvement could be made to this algorithm by using a moving
window and applying DESA-2 over the output within this window, as
the current implementation assumes that frequency and amplitude
are unchanging over the course of the entire input signal. In any
case, the above results clearly demonstrate that the Teager operator
and DESA-2 can be used in conjunction with a filter bank to provide
an alternative to traditional spectral analysis methods. 

Conclusion
Past research has shown that the Teager operator is useful in

signal analysis in several different contexts, and this project further



demonstrates this fact. The Teager operator can be implemented
easily in Max/MSP for real time musical control, but MATLAB offers a
superior environment for exploring its  behavior and extending it to
new applications. This project elucidates and generally supports the
findings of [1], [5], and [4]. Additionally, this study shows that much
can be done to use the Teager operator in traditional signal
processing tasks, such as the retrieval of information regarding
spectral components and their magnitudes. These results suggest
that the Teager operator has a well-deserved place on the palette of
signal processing tools available for practical use in a variety of
contexts.
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Appendix I: MATLAB Graphics

The following graphics are identical to those output by the MATLAB
scripts for parts 1 through 4. They are provided here for the reader
who does not wish to run the scripts directly, as they are necessary

supplements to this paper.



















































Appendix II: Associated Max/MSP and MATLAB Files

Max/MSP:
teag.mxb: Simple patch taking the signal through an inlet and 

passing the real-time calculated Teager operator 
through an outlet.

simple_teager.mxb: A simple patch illustrating how the teag object 
can be used.

MATLAB:
C3loudmonoshort.wav: An 8-bit, 44.1Khz, 1 second, mono .wav clip of

a piano C3 being struck loudly.
desa2.m: Calculate the frequency and amplitude of a signal 

using DESA-2.
disp_spec2.m:  Display spectrum of  signal using periodogram.
find_filt.m: Given a number of filters in a logarithmic filter bank 

and an overall frequency range, find the filter 
number corresponding to a frequency (used in 
myfilters2.m for Part 4).

gen_noise.m: Generate a noisy signal with a given SNR from a 
noiseless input image.

gtkef.m: Implement [4]'s variable lag generalized Teager 
energy operator.

makemonoshort.m: Generate a 1 second, 8 bit mono .wav file from a 
larger stereo .wav file, assuming a 44.1KHz sample 
rate. Used to process the piano recording before 
analysis in Part 4. 

myfilters1.m: Implement a basic linear phase response, 
logarithmic filter bank, and apply the Teager 
operator to the output of each filter.

myfilters2.m: Implement a basic linear phase response, 
logarithmic filter bank. Use DESA-2 to analyze 
the frequency content of each filter output, then 
identify the primary frequency components of the 
signal and their amplitudes.

part1.m: Demonstrate basic Teager functionality with basic 
signal inputs, with and without noise.

part2.m:  Examine performance of DESA-2 on different inputs,
with and without noise.

part3.m: Demonstrate the generalized Teager in resolving 
two tones.

part4.m: Show how Teager operator can be used on multi-
component signals using a filter bank.

teager.m: Compute the Teager operator on a signal.


