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TRADING TECHNIQUES

by John F. Ehlers

T

What If Linear Filters Won’t Work For Your Tradable?

Nonlinear Ehlers Filters

he most common filters
that traders use are
moving averages —
either simple moving
averages (SMA) or
exponential moving
averages (EMA). These

are linear filters. Linear filters are
best for smoothing stationary, slowly
varying signals that are corrupted
with high-frequency noise. In this
instance, “stationary” means that the
rules that dictate the underlying
process do not change and remain
stable; the underlying process that
generates prices doesn’t change.
Unfortunately, price data is not
stationary most of the time.

An example of a statistically
stationary process is the classic coin-
flip experiment; the nature of the
coin flip never changes. However, if
weighted coins were randomly

Linear filters like moving averages
are great for slow, “stationary” data.
Unfortunately, prices aren’t slow or
stationary.

introduced into the experiment, the statistics of the
experiment would then depend on which coin is used,
and therefore the results would become nonstationary.

The signals you deal with every day often can be

described statistically. For example, human speech
has noise-like statistics. The speech process is
nonstationary because it changes from moment to
moment. Even though speech has noise-like
characteristics, it obviously carries information.

Price data resembles speech in statistical
characteristics; it is both noise-like and nonstationary.
One of the main problems you encounter in trading
when using technical analysis is that you must attempt
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to restore signals that often are nonstationary and also corrupted
by noise. When dealing with nonstationary signals with sharp
transitions or when dealing with impulsive noise, linear filtering
techniques give poor results.

NONLINEAR FILTERS
The filters I have devised are nonlinear finite impulse response
(FIR) filters. (See sidebar “Two types of filters.”) These filters
provide extraordinary smoothing in sideways markets and
aggressively follow major price movements with minimal lag.

The development of my filters started with a general class of
FIR filters called order statistic (OS) filters. In contrast to linear
filters, where sensitivity to time is necessary, OS filters are
based on the ranking of the samples within the filter window.
The OS filter ranking is based on summary statistics, such as
mean or variance, rather than by position in time.

Among OS filters, the median filter is the best known.
Median filters are used in video circuits to sharpen the edges of
images and to remove impulsive noise. In a median filter, the
output is the median value of all the values within the observation
window. As opposed to an averaging filter, which stores all the
data in its “output” or average, the median filter discards all data
except the median value. In this way, the median filter eliminates
impulsive noise spikes and extreme price data rather than
include either in the average.

Time-sensitive characteristics of the median filter are lost
because the median value can fall at any time. For example, if
the data inputs to a five-bar FIR filter are, sequentially,

[3 4 3 3 9]

the median value is 4. This median is neither the average value
(which is 4.4) nor the value at the center of the filter (which is
3). In this case, the big data spike value of 9 is ignored. As
another example, if the data inputs were

[3 3 8 9 9]

the median value would be 8, as opposed to the average
value of 6.4.

A nonlinear, median filter tends to smooth out short-term
variations that lead to whipsaw trades using linear filters. On
the other hand, the lag of a median filter in response to a sharp
and sustained price movement can be substantial; it is by
necessity about half the filter window width. The response of
a median filter with a 10-bar window width can be seen in
Figure 1. Note that the filter did not respond to small price
movements in October/November, nor in January/February.
That eliminated several potential whipsaw trades that would
have been produced by linear filters.

COMPUTATION
Finding the median value is a simple sorting problem. You only
need to list the data samples within the filter width in order of
their sizes and pick the value that has an equal number of values
above and below it. If there is no center value, you can compute
the average of the two middle values. Median filters typically
have high-frequency jiggles that can be smoothed by taking
a subsequent exponential moving average of the median
filter data.

My filter has a formulation similar to that of a finite impulse
response (FIR) filter. If y is the filter’s output or result and xi is
the ith input across a filter window width n, then the equation is:

y = c1x1 + c2x2 + c3x3 + c4x4 + . . . . . .+ cnxn

FIGURE 1: RESPONSE TIME. A median
filter does well in ranges but is slow to react
to dramatic price changes.

The c is the coefficient that contains the statistic in which you
are interested — momentum, relative strength index (RSI),
stochastic, you name it. As an example, a classic front-weighted
moving average might use:

Y = (4 * Pricetoday + 3 * Priceyesterday + 2 * Pricetwo days ago + 1 * Pricethree days ago)/10

This weighted moving average has each
coefficient normalized to the sum of the
coefficients — that is, 4 + 3 + 2 + 1 = 10
and 10/10 = 1. This normalization keeps
the average’s scale the same as the price
on your charts. But how would you
normalize a momentum? If you were
interested in a five-bar momentum, each
coefficient, c, would be:

Pricethis bar – Price5 bars back

The answer is to normalize all of the
coefficients to their sum, just as you did
for the weighted moving average.
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Therefore, the complete formal description of the nonlinear
filter is the summation of the product of the filter coefficient
and the price at each sample divided by the summation of the
coefficients as:

example. In this latter case, there is only a small percentage
difference between the coefficients and the filter would
have performance virtually indistinguishable from a simple
moving average.

The EasyLanguage code and an Excel model for the nonlinear
filter are given in Traders’ Tips in this issue for the particular
example of a five-bar momentum.

Figure 2 illustrates the fact that the momentum-derived
nonlinear filter — the red line — responds quickly to rapid
price movements while rejecting minor price movements to a
greater degree. (The blue line is a comparable moving average.)
This kind of filter can be used to respond quickly to changes in
trend direction without producing the whipsaws that are so
prevalent when linear filters are employed. This nonlinear,
momentum-based filter can be made to be very aggressive by
squaring each coefficient.

OTHER IDEAS
The flexibility of my nonlinear
filters — you can insert just about
any analytic construct into one —
opens up new avenues of technical
analysis research. For example, the
statistic can be some tangible
parameter of market activity such
as money flow or volume. On the

   
y =

cixiΣ
i = 0

n – 1

ciΣ
i = 0

n – 1

TWO TYPES OF FILTERS

There are two basic kinds of filters: finite impulse response
(FIR) filters and infinite impulse response (IIR) filters. An FIR
is referred to as finite because it only responds to prices within
the period (the “window”) of the filter (usually, an average of
some kind). An IIR, such as an exponential moving average,
retains data through its averaging process from all periods of
its calculation. Theoretically, at least, that could be an infinite
amount of data.

For example, say you have 9  sequential values: 1,2,3,. . .9.
On the last period, the seven-period simple average will be
(3+4+5+ 6+7+8+9)/7 = 6. The only values that went into the
calculation were those in the filter’s window: the last seven
numbers in the sequence.

An exponential moving average (EMA) of equivalent length
would be formulated as

EMA
today

 = 0.25*price
today

 + (1-0.25) *EMA
previous

or, more generally,

EMA
today

 = alpha*price
today

 + (1-alpha) *EMA
previous

Every time you calculate the EMA, you use its previous value,
thus, in effect, retaining some portion of the previous prices.
Here’s what would happen:

Value EMA Computation
  1 None. Period 1
  2 1.250 (0.25 * 2) + (0.75 * 1)
  3 1.687 (0.25 * 3) + (0.75 * 1.250)
  4 2.266 (0.25 * 4) + (0.75 * 1.687)
  5 2.949 (0.25 * 5) + (0.75 * 2.266)
  6 3.712 (0.25 * 6) + (0.75 * 2.949)
  7 4.534 (0.25 * 7) + (0.75 * 3.712)
  8 5.400 (0.25 * 8) + (0.75 * 4.534)
  9 6.300 (0.25 * 9) + (0.75 * 5.400)

When a price is applied to an IIR filter such as an exponential
moving average, a portion of the first output is fed back to the
input and added to the next data input sample. Because this
calculation is iterative, the effects of the impulse are theoreti-
cally present in the output indefinitely — hence the name
“inifinite impulse response.”

When the impulse is applied to the input of an FIR filter — an
SMA, for example — the effects of the impulse will be present in
the filter output only over the length of the filter, and the output will
be zero otherwise — hence the name “finite impulse response.”

Perry Kaufman, Tushar Chande, as well as others (see
sidebar “Adaptive averages”) have designed nonlinear IIR
filters to better smooth market data. Their basic approach is to
craft a volatility-adjusted value for the alpha parameter in an
EMA. These are certainly workable approaches, but their
effectiveness is constrained by the opposing requirements of
providing adequate smoothing while vigorously attacking ma-
jor price movements. —J.F.E.

The statistic used in the nonlinear filters should be detrended
for maximum effectiveness. If you do not detrend the statistic,
each of the coefficients may have a large common term relative
to any differences between them. For example, if a five-bar
filter has a statistic with values such as

[-1 -2 0 2 1]

the statistic has no common term, and there is a large percentage
change between positions within the filter. However, if the
statistic has values such as

[99 98 100 102 101]

the coefficients have a common term of 100, although the
difference between coefficients is the same as in the first
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other hand, more arcane parameters such
as signal-to-noise ratio can be used as the
statistic. The coefficients where the signal-
to-noise ratio is the greatest would have the
largest weight, discounting the price data
values where the signal-to-noise ratio is
less. In addition, my nonlinear filters can
be adaptive. The length of the five-bar
momentum filter in our example could be
made adaptive to the length of the measured
cycle period. Such a filter would be both
adaptive and nonlinear.

For example, in Figure 3, the statistic
used is the difference between the current
price and the previously calculated value
of the filter. This has some aspects not of a
finite impulse response filter, but an infinite
one.

THINKING ABOUT
THE FIR FILTER
Why derive the finite
impulse response filter
type at all? By so doing,
you may discover an
optimum solution for the
coefficient calculation.

We know market data is most often
nonstationary. We also know that you want
to follow the sharp and sustained
movements of price as closely as possible.
Just this desire led video engineers to devise
the median filter as an edge detector, to
clarify video images. But not all edges are
the same.

You can visualize the sharpness of edges
by imagining Figure 4 as a piece of paper
draped over the edge of a table. The edge at
the top of Figure 4 is very sharp, as if the
paper were creased. As you continue to
look down at Figure 4, the light diffusion
becomes more dispersed, giving the illusion

The “length” for any data
sample is the square root of
the sum of the squares of the
price difference between
that price and each of the
prices back for the length of
the filter window.

FIGURE 2: PERFORMANCE. A momentum plopped into a nonlinear filter responds well to sharp
movements without a great deal of dithering in ranges.

FIGURE 3: INCORPORATING A DIFFERENCE. This version of the nonlinear filter uses the
difference between the current price and the previous value of the filter.

FIGURE 4: VIDEO. Just as traders
must discern the difference between
noise and trend inception, video
engineers must discern the differ-
ence between gray and white in
video images.
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ADAPTIVE AVERAGES
Kaufman’s adaptive moving average (KAMA)
Perry J. Kaufman’s adaptive moving average (KAMA) is
based on the concept that a noisy market requires a slower
trend than one with less noise. The basic principle is that the
trendline must lag further behind the price in a relatively noisy
market to avoid being penetrated by the price. The moving
average can speed up when the prices move consistently in
one direction.

According to Kaufman, who invented the system, KAMA is
intended to use the fastest trend possible, based on the
smallest calculation period for the existing market conditions.
It does so by changing the alpha of the exponential moving
average with each new sample. The equation for KAMA is:

KAMA = S*Price + (1 – S)*KAMA[1]

Where S = Smoothing factor

This is the same equation that is used for the EMA, except the
variable S replaces the alpha constant of the EMA.

The equation for the smoothing factor involves two bound-
aries and an efficiency ratio:

S = (E*(fastest – slowest) + slowest)2

“Fastest” means the alpha of the shortest period used.
“Slowest” means the alpha of the longest period used. The
suggested period boundaries are two and 30 bars. In this
case, the two alphas are:

Fastest = 2/(2+1) = 0.6667

Slowest = 2/(30+1) = 0.0645

Simplifying the equation for the smoothing factor, we get:

S = (0.6022*E + 0.0645)2

The efficiency ratio (E) is the absolute value of the differ-
ence of price across the calculation span divided by the sum
of the absolute value of the individual price differences across
the calculation span. The equation for E is:

The default value for N is 10. However, testing to find the
best length is advisable.

Chande’s variable index dynamic average (VIDYA)
Tushar Chande’s variable index dynamic average (VIDYA)
uses a fixed pivotal smoothing constant. The suggested
value of this constant is 0.2, corresponding to the alpha of a
nine-day EMA. The equation for VIDYA is:

VIDYA = 0.2*k*Close + (1 - .2*k)*VIDYA[1]

Again, this is the same equation as for an EMA, except the
relative volatility term, k, has been included to introduce the
nonlinearity. The volatility term is the ratio of the standard
deviation of closes over the last n days to the standard
deviation of closes over the last m days, where m is greater
than n. Suggested values are n = 9 and m = 30.

that the edge becomes more rounded.
If you consider the gray shading levels

in Figure 5 as distances from the centerline,
you can compute filter coefficients in terms
of edge sharpness. White is the maximum
distance in one direction from the median
and black is the maximum distance in the
other direction. Thus, distance is a measure
of departure from the edge, taking into
account the edge sharpness.

Now, thinking of price charts, imagine
the difference in prices as a distance, but in
two dimensions. The “length” for any data
sample is the square root of the sum of the
squares of the price difference between
that price and each of the prices back for
the length of the filter window. The sum of
the distances squared at each data point are
the coefficients of the nonlinear filter. (I
use the sum of the squares rather than the
square root of the sum of the squares to
heighten the filter response.)

Suppose the last 10 data values were

[1 1 1 1 1 1 2 3 4 5]

FIGURE 5: HIGHLY RESPONSIVE. Coefficients are computed as the sum of the squares of price
differences across the filter span.

   
E =

Price –Price NΣ
N

Price i –Price i + 1Σ
i = 0
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†See Traders’ Glossary for definition

The coefficients of a nonlinear filter, at the end of the last
period, would then be calculated as:

C1 = (5-4)2 + (5-3)2 + (5-2)2 + (5-1) 2 + (5-1) 2

 = 1 + 4 + 9 + 16 + 16 = 46
C2 = (4-3)2 + (4-2)2 + (4-2) 2 + (4-1) 2 + (4-1) 2

 = 1 + 4 + 9 + 9 + 9 = 32
C3 = (3 - 2)2 + (3-1) 2 + (3-1) 2 + (3-1) 2 + (3-1) 2

 = 1 + 4 + 4 + 4 + 4 = 17
C4 = (2 –1)2 +(2 –1)2 + (2 –1)2+ (2 –1)2+ (2 –1)2

= 1 + 1 +1 + 1 + 1 = 5
C5 = (1 – 1)2 +(1 – 1)2+(1 – 1)2+(1 – 1)2+(1 – 1)2

 = 0 + 0 + 0 + 0 + 0 = 0

The calculation of the distance-like coefficients is shown in
the EasyLanguage code and Excel model for the filter in
Traders’ Tips’ “EasyLanguage code for the distance coefficient
of a nonlinear filter.” If the difference of prices across the filter
observation window are the same, then the coefficients of the
filter are all the same and you have the equivalent of a simple
moving average (SMA). On the other hand, if the prices shift
rapidly, the distances from the increased price points increase,
and higher weights are given to these filter coefficients. The
performance of the distance coefficient nonlinear filter can be
seen in Figure 5.

The filter coefficients can be made to be even more nonlinear.
For example, the distance can be cubed or raised to the fourth
power (by squaring the squared distance). A reciprocal Gaussian
response is an even more nonlinear function of distance than
you can use to calculate the filter coefficients. These more
nonlinear responses follow the edges in price movement more
aggressively. However, the fact that they are so nonlinear
removes much of the gray area in the response.

The most nonlinear calculations produce results that are not
discernible from median filters. The coefficients become black
and white, so there is very little middle-ground gray area.

Like order statistic (OS) filters, nonlinear filters are robust.
Moreover, they also exploit both the rank-order and the time-
sensitive characteristics of the data. The generalized nonlinear
filter can be oriented to any statistic you choose, making the
coefficients easy to calculate. The most obvious statistic to use
is price momentum, because this data enables the nonlinear
filter to rapidly follow price changes.

The choice of statistic used is virtually limitless. For example,
the filter could be nonlinear with respect to acceleration (the
rate change of momentum), signal-to-noise ratio, volume,
money flow (delta price times volume), and so on. Even other
indicators such as stochastic or RSI can be used as a statistic.

John Ehlers is president of MESA Software and a frequent
contributor to STOCKS & COMMODITIES. This article was
adapted from Rocket Science For Traders, published by John
Wiley & Sons in 2001.
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