
motion distributed normally without kurtosis. And that in turn makes the
standard deviation of the measured variance a measly 

√
2/N times the true

variance, where N is the number of observations. So sad, so true. The meas-
ured variance of white noise is so incredibly smooth and boring that
nobody could identify it with real financial time series even when they
squinted really hard in poor light.

So you can easily appreciate the jubilation with which GARCH has been
received in financial econometrics. But how much does it really explain?
Nothing. That’s right. N-O-T-H-I-N-G-A-R-C-H. It’s just a way to fit empirical
data. It’s like using Ptolemaic epicycles to track the perceived rotation of
sun and planets around the earth. Add enough circles within circles and
you can approximate an ellipse centered somewhere else.

Explaining the Wiggledy Waggle
To really explain the wiggledy waggle of the wiggle you need to start with
the fundamentals. Analyze how they tend to evolve over time. Discount
back their values to the present and roll them into a price, the price of the
asset that’s expected to pay those future dividends. Then analyze the volatil-
ity and the volatility of the volatility. GARCH by itself does none of that.

But finformatics does. In a recent article I showed that the differential of
a cumulant of beliefs varies with the next-higher cumulant, all the way up
the infinite cumulant ladder. So far the only cumulant we’ve bothered
investigating is the first cumulant or mean. The second cumulant is the
variance. Let’s look at its differential in more detail:

To review previous terminology, µ refers to the various possible values of
drift, E to their forecast mean 〈µ〉 where 〈·〉 is the standard physics notation
for expectation, σ to the volatility of fundamentals dx (typically viewed as
the percentage change dD/D of dividends D) and dW to the “normalized”

fundamentals 
dx − Edt

σ
having unit volatility and zero expected drift. Fair

market value is denoted V . Drifts can switch from value ν to value µ with
instantaneous probability λνµ (i.e., approximately λνµdt in a small interval
dt), with the additional convention λµµ = − ∫

ν �=µ
λµν dν to indicate the (neg-

ative) instantaneous probability of leaving drift µ. As two more shorthands I
will use Var to denote 

〈
(µ − E)2

〉
, the variance of beliefs, and Skew to denote〈

(µ − E)3
〉

Var3/2
, the skewness of beliefs. Then, drawing on results derived in pre-

vious articles, the learning processes for E and Var can be expressed as:
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Samurai GARCHkillers
In which the ubiquity of GARCH gets a swift Katana to the Bento box

Having long admired Julius Irving’s abilities as a basketball player, the
world was even more impressed to discover his talents as a novelist. The
World According to GARCH, written in 1978, was an instant bestseller; and the
screen version in 1982 was just as popular. Soon economics departments
joined in, adapting GARCH to their purposes. It is now the favored tech-
nique for estimating the volatility of financial time series. But I think things
have gotten way out of hand.

In case you got your financial quant training on Mars, let me note that
GARCH stands for Generalized Autoregressive Conditional Heteroskedasticity.
To translate, skedasticity refers to the volatility or wiggle of a time series.
Heteroskedastic means that the wiggle itself tends to wiggle. Conditional
means the wiggle of the wiggle depends on something else. Autoregressive
means that the wiggle of the wiggle depends on its own past wiggle.
Generalized means that the wiggle of the wiggle can depend on its own past
wiggle in all kinds of wiggledy ways. 

On merit economists could just as easily call these WWWWW processes,
and perhaps they should have. But nowadays that would confuse things
with the World-Wide Web. So GARCH it will remain. Only that’s so vague —
kind of like eating “flavorful” ice cream—that folks tend to add or subtract
more letters for clarification. There’s threshold GARCH or TARCH, power
ARCH or PARCH, exponential GARCH or EGARCH, and component GARCH
or CGARCH, and various combinations thereof.

Also, like their cousin ARIMA modelers, GARCHists are entitled to add a
(p,q) suffix or vice-versa to indicate the number of lags of different types. As
usual in econometrics, more is always better except when it’s too much, but
since it usually is, people tend to stock with (1,2) or (2,1) or even the lowly (1,1).

In every case, the point is to write down a tracking equation where the
left hand side that has to be explained is variance or a function of variance
like square root or logarithm, and the right hand side that has to explain it
uses lagged values thereof mixed in with new noise. Lo and behold, if you
use GARCH for estimation you will predict that the wiggle of the time series
wiggles to its past wiggle in all kinds of wiggledy ways.

This discovery came as a great relief to classical finance theorists.
Before GARCH, nearly everyone tried to explain nearly everything using
Brownian motion, aka white noise, aka lots of independent identically dis-
tributed disturbances that bump into each other, one after another, long
into the statistical night. But all that identical stuff makes the true vari-
ance per unit time constant, while the independent stuff makes Brownian
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dE =
(∫

〈λνµ〉ν (µ − E)dµ

)
dt + 1

σ
Var dW

dVar

Var
=

∫ 〈
λνµ

〉
ν
(µ − E)2dµ

Var
dt + 1

σ
Skew

√
Var dW

With two regimes, we have seen that the fair value price-to-dividend ratio
is affine in E.; that is, it equals a + bE for suitable constants a and b. With
multiple regimes, E might not always map to a single price-dividend ratio,
but in general the relation should be roughly affine. This implies that

dV

V
∼= dD

D
+ bdE

a + bE
= Edt + σdW + b

a + bE
dE

=
(

E + b

a + bE

∫ 〈
λνµ

〉
ν
(µ − E)dµ

)
dt +

(
σ + b · Var

(a + bE)σ

)
dW

Price volatility, which I will abbreviate as Pvol, is given by the multiplier on

dW , namely σ + b · Var

(a + bE)σ
. Define 	 as the fractional excess vol compared to

fundamentals; that is, 	 ≡ Pvol

σ
− 1 = b · Var

(a + bE)σ 2
. Its differential is given by

dPvol = Zdt + b · Var

(a + bE)σ
·
(

dVar

Var
− b · dE

a + bE

)

= Z∗dt + (Pvol − σ )

(
1

σ

) (
Skew

√
Var − b · Var

a + bE

)
dW

= Z∗dt + 	(Skew
√

Var − 	σ 2)dW

where Z and Z∗ include drift terms arising from Ito’s rule that I’m not both-
ering to write out. For an alternative formulation in terms of price variance
Pvar ≡ (Pvol)2 ,

dPvar

Pvar
= 2

dPvol

Pvol
= Z∗

Pvol
dt + Pvol − σ

Pvol · σ 2
(Skew

√
Var − Pvol · σ + σ 2)dW

In words, the logarithm of price volatility will have some elements that
are approximately white noise and some that move inversely with volatility.
This is broadly speaking what the EGARCH formulation says. Interestingly.
Hamilton’s 1994 bible on Time Series Analysis notes (p. 672) that EGARCH is
one of the best-fitting GARCH models.

The comparison to EGARCH presumes that pesky Skew
√

Var doesn’t get
in the way. Let’s work it out for the simplest possible case, namely a two-
regime world with drifts ±µ and believed probability p of drift +µ .There

Var = 4µ2p(1 − p) and Skew = 1 − 2p√
p(1 − p)

, implying 

Skew
√

Var = 2µ(1 − 2p) = ∓
√

µ2 − Var

Hence, far from undermining the comparison, the skewness term rein-
forces it as it decreases in absolute value with the uncertainty in beliefs.

In addition, our derivation leaves ample scope for asymmetric responses.
To begin with, the multiplier on dW is biased negative by the −	σ 2 term.
Hence, all else being equal, volatility will tend to be more volatile when the
regime is perceived to be bad. That effect stems from the same dE passthrough
effect of dividends on price despite a lower price-to-dividend base. In other
words, dP is approximately the same but P is lower when news has been poor,
so that |dP/P| is higher. 

For the same series of absolute shocks at the same price the negative
shocks will tend to be more damaging if bad regimes are less common than
good ones. The demonstration would require more analysis of the dt terms
than I am prepared to enter here. A previous article, “Iceberg Makers”,
probed the general phenomenon. Basically, when bad regimes are less com-
mon, bad news tends to come as more of a surprise and require more adjust-
ment. Again, empirically these effects are widely noted in the GARCH litera-
ture, though the explanation provided there is Ptolemy’s.

The SAMURAI Alternative
Hence, GARCH is probably best viewed as an empirical approximation to the
random regime-switching process described by finformatics. As I mentioned
earlier, it’s not a bad approximation. Only it’s not all that useful, other than
as a subject for journal articles, like making sculptures of manikins when
real nudes aren’t available. 

Here’s the rub. Simpler approximations do nearly as well as GARCH and
often better. I’m going to present you readers a few approximations here,
and invite you to test for yourselves. 

The simplest approximation is an exponential moving average or EMA. In
theory, EMAs are enormously complicated, because they sum up an infinite
number of lagged observations with weight λ(1 − λ)n−1 on the nth closest
observation. In practice, EMAs are a snap to update recursively: just calculate
the new EMA score as the old score plus λ times the difference between the
new observation and the old score. Using the operator L to denote lags, we
can thus compute an EMA Y as 

Y = λ(x − LY) + LY = λx + (1 − λ)LY

By setting λ = 2

N + 1
we obtain an EMA of duration and variance equiva-

lent to a rectangular (equal-weighted) window of length N. Since people find
rectangular windows easier to grasp than geometrically declining infinite
staircases, let’s label this EMA(x:N), and apply some lag operator algebra to
express this more compactly as

Y ≡ EMA(x; N) ⇔ Y =
2

N + 1
x

1 −
(

1 − 2

N + 1

)
L

= 2x

N + 1 − (N − 1)L

Then if you want to track the variance of individual US stock returns and
aren’t overly fastidious, I recommend EMA(x2; 30), where x denotes the daily
return.
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Actually, since I’m getting to that time of night when all moral scruples
loosen, I’m going to reveal something really déclassé, namely that I use
EMA(x2; 30) myself. Oops. My wife was reading over my shoulder and broke
into tears, since the doormen at finer derivative bars in New York will no
longer let us in. Too late dear, our only options going forward will be
vanilla. . .

But to restore the family dignity, let me tell you an alternative approach
that’s exactly twice as sophisticated as EMA. Namely, average a short-term
EMA with a longer-term EMA. With individual US stocks for I have found that
a simple average of EMA(x2; 10) and EMA(x2; 65) often performs as well as
fancier GARCH methods 

When you look under the hood, the similarity is evident. Using lag oper-
ators we see that:

θEMA(x2; M) + (1 − θ)EMA(x2; N) = 2θx2

M + 1 − (M − 1)L
+ 2(1 − θ)x2

N + 1 − (N − 1)L

= [2(θM + (1 − θ)N + 1)(1 − L) + 4L]x2

(M + 1 − (M − 1)L)(N + 1 − (N − 1)L)

This is basically a GARCH(2,2) specification with several parameter
restrictions including zero intercept. The only surprise is that it performs as

well as it does. On reflection even that should not come totally as a surprise.
Lagged values of estimated variances are so highly autocorrelated that
GARCH parameters are rarely well identified. To avoid wild results,
GARCHmetricians often impose additional ad hoc restraints. 

Still not fancy enough for you? Then try the following super-duper-whoop-
er method. Fix M and N at some reasonable values: 10 and 65, 10 and 260?
Then let θ adjust to minimize the mean squared error of estimation. Simple
rearrangement shows that this is equivalent to regressing L−1x2 − EMA(x2; N)

against EMA(x2; M) − EMA(x2; N) and using the resulting beta estimate as θ .
To avoid cheating we should use only data available at the time, which means
the estimated θ will evolve over time. In practice you need to be careful not to
let θ evolve too fast or the estimates will “rattle” too much around the opti-
mum. But this is a standard problem when updating estimates.
GARCHmetricians typically avoid this only by cheating. They use data from
the whole period before assigning the best parameters to the past. 

This method creates Self-Adjusting Mixtures Using Recursive Artificial
Intelligence, so naturally I abbreviate this as SAMURAI. So now at last you
know how this article got its title. If finformatics can’t kill GARCH, SAMURAI
will! 


