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suitable model and to calibrate its parameter to match the model price of
a vanilla product with the market quote:

model::price (product(α), quote(product(·), t), parameter , t)

= quote(product(α), t).

whenever a quote is available. Thus, by the implicit function theorem,
the model parameter is a function of market prices and time:

parameter = θ(quote(product(·), t), t) .

This function is supposed to be invariant under the change of time and
quote, but there is no physical constraint that it has to be invariant. A
model uses its parameter to describe the random behavior of the market
prices. Therefore, if the model parameter changes, the prices before and
after the change are not consistent any more. This will generate P&L that
is unexplained by the model.

In the stochastic volatility framework, it looks as if the model allows
its parameter to change. However, the volatility in this context is not a
parameter any more. It is just an index which is assumed observable or
estimable. The parameter is one that describes the dynamics of the
volatility. The obvious merit of a stochastic volatility model is that it has
more parameters to fit the market quotes better (for example, the smile).
Nevertheless, its parameter is not immune from changing randomly in
time. This is simply because the market itself has a higher order of com-
plexity than that of a stochastic volatility model.

Suppose that a stochastic volatility model has its parameters invari-
ant under the change of time and quote. Does this mean that this model
leads us to a risk-free land? Here’s an extreme example. The market is
pricing all the vanilla options with a flat volatility at 50%. One calibrates
the Black-Scholes model perfectly, always. What happens if the realized
volatility of the underlying price won’t agree with 50%? Thus, a perfect
and stable calibration does not necessarily immunize the portfolio.

1 Introduction
Stochastic volatility models usually lead to a linear option pricing equa-
tion containing a market price of risk term. This term is the source of
endless problems and argument.

The main reason for the argument is that this quantity is not directly
observable. At best it can be deduced from the prices of derivatives, so
called ‘fitting.’ But this is far from adequate, the fitting will only work if
those who set the prices of derivatives are using the same model and they
are consistent in that the fitted market price of risk does not change
when the model is refitted a few days later. 

In practice, refitted parameters are always significantly different
from the original fit. This is why practitioners use static hedging, to min-
imize model error. However, static hedging may be considered to be an
afterthought, since it is, in the classical framework, no more than a
patch for mending a far-from-perfect model.

Whether we have a deterministic volatility surface or a stochastic
volatility model with prescribed or fitted market price of risk, we will
always be faced with how to interpret refitting. Was the market wrong
before but is now right, or was the market correct initially and now there
are arbitrage opportunities? We won’t be faced with awkward questions
like this if we don’t expect our model, whatever it may be, to give unique
values. In this paper we’ll see how to estimate probabilities for prices
being correct. We do this by only delta hedging and not dynamically vega
hedging. Instead we look at means and variances for option values.

2 What’s Wrong
In the mark-to-market accounting framework, the price of a security
should be marked at the prevailing market price. Thus, we do not need a
theoretical model to price vanilla products in this framework. A model
plays a significant role for determining the price of custom products as
well as for risk management. A typical approach in practice is to select a



where P denotes a payoff of a contingent claim at τi ∈ [t, T], which can be a
stopping time, and where r denotes a funding cost rate. One can make r
time dependent, but we’ll keep things simple here. Except those times
when a claim is settled, the change in this cash-flow in time is continuous:

	(t, T) = (1 − rdt)	(t + dt, T) − 
(dS(t) − rS(t)dt). (1)

We are going to vary 
 dynamically so as to replicate as closely as possi-
ble the option payoff. At expiration we will hold stock, and have a cash
account containing the results of our trading. We are going to analyze
the mean and the variance of our total position and interpret this in
terms of option prices and probabilities.

4 Analysis of the Mean
Naturally we are to determine the trading strategy 
 in a Markovian way.
In fact, the stochastic control problem is reduced to a Markov control
problem under a mild regularity condition, and therefore we will simply
start from this for now. Define the mean (or the expected future cash
flow) m at any time by 

m(S(t), Z(t), t) = Et

[
	(t, T)

]

where the expectation Et is a shorthand notation for the conditional
expectation given the state of the world at time t. Using the equation (1),
we obtain:

m = Et

[
(1 − rdt)(m + dm) − 
(dS(t) − rS(t)dt)

]
.

Thus, using Itô’s formula we obtain the following partial differential
equation (PDE):
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Once again, we emphasize that all the drift coefficients are from the
physical dynamic of the spot process not from risk-adjusted dynamic. For
simplicity, we will write

L = 1
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and the equation for the mean becomes

∂m

∂ t
+ Lm − rm = (µ − r)S
. (2)

We still have to decide on 
. We will choose it to minimize the vari-
ance locally, so we can’t choose it until we’ve analyzed the variance in

^
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Market prices are subject to supply and demand. Since the buy-side and
sell-side may have different rules (such as a short selling constraint) and
asymmetric information, there is a possibility of price elevation, also
known as a bubble. The typical approach, where model parameters are
fitted to match the market prices, will not help you to manage the risk
better in such a case.

There are other problems. A significant one in practice is that the
meaning of vega hedging is ambiguous. One interpretation is that it is a
hedge against the change of the portfolio value with respect to the
change of implied volatilities (i.e. market prices of vanilla products). In
this case, one has to re-calibrate the model by bumping the market prices
to obtain the sensitivity. Another interpretation is that it is a hedge
against the change of the portfolio value with respect to the change of
volatility index, that is assumed observable but never is. In this case, the
sensitivity is obtained from the model without necessarily bumping the
market prices. The first one complies with the motivation of the mark-to-
market framework. The second is more faithful to theory. Neither one is
perfect. When these two are different, we are in serious trouble, as a
wrong choice will give a mishedge.

3 The Model for the Asset
and its Volatility
We are going to work with a general stochastic volatility model

dS(t) = µ(S(t), Z(t), t)S(t) dt + σ (S(t), Z(t), t)S(t) dX1(t)

and

dZ(t) = p(S(t), Z(t), t) dt + q(S(t), Z(t), t) dX2(t)

where X1 and X2 are standard Brownian motions under physical measure
with an instantaneous correlation d[X1, X2](t) = ρ(S(t), Z(t), t)dt . If the
coefficient function σ (s, z, t) = z, the above specification agrees with the
classical setting. We’ll only consider a non-dividend-paying asset, the mod-
ifications needed to allow for dividends are the usual. In what follows we
will drop the time index (t) and function arguments (S(t), Z(t), t) as long
as the expressions are clear.

We are going to examine the statistical properties of a portfolio that
tries to replicate as closely as possible the original option position. We
will not hedge the portfolio dynamically with other options so our port-
folio will not be risk free. Instead we will examine the mean and variance
of the value of our portfolio as it varies through time. 

With 	 representing the discounted cash-flow of maintaining −
 in
the asset dynamically:

	(t, T) =
n∑

i=1

e−r(τ i−t)P(S(τi), τi) −
∫ T

t
e−r(τ −t)


(
dS(t) − rS(t)dt

)
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the next section. Note also that the final condition for (2) will be the pay-
off for our original option that we are trying to replicate.

This equation for m was easy to derive, the equation for the variance
is a bit harder. 

5 Analysis of the Variance
The variance v(S(t), Z(t), t) is defined by

v(S(t), Z(t), t) = Et

[
(	(t, T) − m(S(t), Z(t), t))2

]
.

We may write

	(t, T) − m(S(t), Z(t), t) = (1 − rdt)A1 + A2 + O(dt)

where

A1 = 	(t + dt, T) − (m + dm) ,

A2 = dm − 
dS .

Also note that A1 and A2 are uncorrelated. Therefore

v = Et [(1 − rdt)2(v + dv) + (dm − 
dS)2] + o(dt)

which further reduces to

o(dt) = Et [dv] − 2rvdt + Et

[(
−σ S
dX1 + ∂m

∂Z
q dX2 + ∂m

∂S
σ S dX1

)2
]

.

The end result is, for an arbitrary 
,
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(3)

6 Choosing 
 to Minimize the Variance
Only the last two terms in (3) contain 
. We therefore choose 
 to mini-
mize this quantity, to ensure that the variance in our portfolio is as
small as possible. This gives
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7 The Mean and Variance Equations
Define a risk-adjusted differential operator
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Substituting (4) into (2) and (3) we get
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+ L�m − rm = µ − r

σ
ρq
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∂Z
(5)

and

∂v

∂ t
+ Lv − 2rv + q2(1 − ρ2)

(
∂m

∂Z

)2

= 0. (6)

The final conditions for these are obviously the payoff, for m(S, Z, T),
and zero for v(S, Z, T). If the portfolio contains options with different
maturities, the equations must satisfy the corresponding jump condi-
tions as well.

Since the final condition for v is zero and the only ‘forcing term’ in (6)
is 

(
∂m
∂Z

)2
, equation (6) shows that the only way we can have a perfect hedge

is for either q to be zero, i.e. deterministic volatility, or to have ρ = ±1. In
the latter case the asset and volatility (changes) are perfectly correlated.
The solution of (5) is then different from the Black—Scholes solution.

Equation (5) is very much like the pricing equation for stochastic
volatility in a risk-neutral setting. It’s rather like having a market price of
volatility risk of (µ − r)ρ/σ . But, of course, the reasoning and model are
completely different in our case. 

The system of equations is nonlinear (actually two linear equations, cou-
pled by a nonlinear forcing term). We are going to exploit this fact shortly. 

8 How to Interpret and Use the Mean
and Variance
Take an option position in a world with stochastic volatility, and delta
hedge as proposed above. Because we cannot eliminate all the risk we
cannot be certain how accurate our hedging will be. Think of the final
value of the portfolio together with accumulated hedging as being the
‘outcome.’ The distribution of the outcome will generally not be Normal.
The shape will depend very much on the option position we are hedging.
But we have calculated both the mean and the variance of the hedged
portfolio. 

If the distribution of profit/loss were Normal then we could interpret
the mean and the variance as in Figure 1.

Since this is likely to be one of very many trades, the Central Limit
Theorem tells us that only the mean and the variance matter as far as our
long-term profitability is concerned.

It is therefore natural to price the contract so as to ensure that it has
a specified probability of being profitable. If we made the assumption
that the distribution was not too far from Normal then the mean and the
variance are sufficient to describe the probabilities of any outcome. If we
wanted to be 95% certain that we would make money then we would
have to sell the option for 

m + 1.644853v1/2
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or buy it for
m − 1.644853v1/2.

The 1.644853 comes from the position of the 95th percentile assuming a
Normal distribution. 

More generally we would price at 

m ± ξ v1/2,

where the ξ is a personal choice.

Clearly the larger ξ the greater the potential for profit from a single
trade, see Figure 2.

However, the larger ξ the fewer trades, see Figure 3.
The net result is that the total profit potential, being a product of the

number of trades and the profit from each trade, is of the form shown in
Figure 4. Don’t be too greedy or too generous.
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Figure 1: Distribution of profit/loss
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Figure 2: Expected profit from a single trade versus ξ
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We’ll use this idea in the example below, but we will insist that we are
within one standard deviation of the mean so that ξ = 1. This is simply
so that we have fewer parameters to carry around.

9 Static Hedging and Portfolio
Optimization
If we use as our option (portfolio) ‘price’ the following

mean − (variance)1/2 = m − v1/2

then we have a non linear model. 
Whenever we have a non linear model we have the potential for

improving the price by static hedging (see Avellaneda and Parás, 1995,
and Wilmott, 2000). This static hedging is, unlike the static hedging of
linear problems, completely internally consistent. We will see how this
works in the example.

10 Example: Valuing and Hedging
an Up-and-out Call
In this section, we consider the pricing and hedging of a short up-and-
out call. Furthermore. we will consider a special case when the stochastic
volatility is parameterized in a classical way: σ (S, Z, t) = Z. Throughout
this section, our choice of mean-variance combination is:

m − v1/2. (7)

First consider a single up-and-out call with barrier located at Su . In this
case, we solve the equations (5) and (6) subject to:

(a) m(Su, σ, t) = v(Su, σ, t) = 0 for each (σ, t) ∈ (0, ∞) × [0, T) where T is
maturity; 

(b) m(S, σ, T) = −max(S − E, 0) for each (S, σ ) ∈ (0, X) × (0, ∞) where
E is the strike;

(c) v(S, σ, T) = 0 for each (S, σ ).

The discontinuity of the payoff at the knock-out barrier makes this posi-
tion particularly difficult to hedge. In fact this can be easily seen from
our equations. Figure 5 and Figure 6 are the pictures of calculated mean
and variance respectively with strike at 100, barrier at 110, and expiry in
30 days. We have chosen the model

p(σ ) = 0.8(σ −1 − 0.2), q(σ ) = 0.5 with ρ = 0.

Near the barrier, 
(

∂m
∂σ

)2
is huge (see Figure 5) and this feeds the variance,

being the source term in (6). If the spot S is 100, and the current spot
volatility σ is 20% per annum, the mean is −1.1101 and the variance is
0.3290. Thus if there is no other instrument available in the market, one
would price this option at $1.6836 to match with Equation (7).

These results are shown in the table.
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Figure 5: Mean for a single up-and-out call
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Figure 6: Variance for a single up-and-out call

Mean (m) Var. (vv ) Value
Unhedged −1.1101 0.329 1.6836

10.1 Static Hedging
Suppose that there are six 30-day vanilla call options available in the
market with the following specifications:
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(AAssiiddee:: These hypothetical market prices were generated by comput-
ing the mean of each call option, with 

dσ =
( 1

σ
− 0.2

)
dt + 0.5 dX2 (8)

where X is a Brownian motion with respect to the risk-neutral measure.
Then 0.5% bid-ask spread was added.)

Now we employ the optimal static vega hedge. Suppose we trade
(q1, . . . , q6) of the above instruments and let Ei be the strikes among the
payoffs. Furthermore, let (m(0), v(0)) be the mean variance pair after
knock out and (m(1), v(1)) be that before knock out. Then (m(i), v(i)),
i = 0, 1, satisfy the equations (5) and (6) subject to:

(a) m(1)(110, σ, t) = m(0)(110, σ, t) and v(1)(110, σ, t) = v(0)(110, σ, t) for
each (σ, t) in (0, ∞) × [0, T);

(b) m(0)(S, σ, t) =
6∑

i=1

qimax(S − Ei, 0) for each (S, σ ) ∈ (0, ∞) × (0, ∞);

(c) m(1)(S, σ, T) =
6∑

i=1

qimax(S − Ei, 0) − max(S − 100, 0) for each (S, σ )

in (0, 110) × (0, ∞);

(d) v(1)(S, σ, T) = v(0)(S, σ, T) = 0 for each (S, σ ) in (0, ∞) × (0, ∞).

Thus m(1)(S, σ, 0) stands for the mean of the cashflows excluding the up-
front premium. We find a (q1, . . . , q6) that maximizes:

m(1)(S, σ, 0) −
√

v(1)(S, σ, 0) −
6∑

i=1

p(qi)

where p(qi) is the market price of trading qi shares of strike Ei. In the case
of S = 100 and σ = 0.2, our optimal choice for vega hedge is given by:

These results are shown in the table.
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Figure 7: Mean of portfolio after optimal static vega hedging
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Figure 8: Variance of portfolio after optimal static vega hedging

Option 1 2 3 4 5 6
Strike 96.62 100.00 104.17 108.70 112.36 116.96

Bid Price 4.6186 2.6774 1.1895 0.4302 0.1770 0.0557

Ask Price 4.6650 2.7043 1.2014 0.4345 0.1788 0.0562

Option 1 2 3 4 5 6
Strike 96.62 100.00 104.17 108.70 112.36 116.96

Quantity 0.0000 −1.1688 1.0207 3.1674 −3.6186 0.8035

The cost of this hedge position is $1.1863. Figure 7 and Figure 8 are
the pictures of m(1) and v(1) after the optimal static vega hedge. After the
optimal static vega hedge, the mean is 0.0398 and the variance is reduced
to 0.0522. Thus the price for the up-and-out call that matches with our
mean-variance combination (7) is $1.3752(1.1863 − 0.0398 + √

0.0522).
In the risk-neutral set-up (8), the price for this up-and-out call is $1.1256.
The difference is mainly comes from the standard deviation term (vari-
ance1/2) in (7) which is 

√
0.0522 = 0.2286.

Mean (m) Var. (vv ) Hedge Value
Unhedged −1.1101 0.329 1.6836

Hedged 0.0398 0.0522 1.1863 1.3752
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12 Summary 
Constructing a risk-neutral model to fit the market prices of exchange
traded options consistently over a reasonable time period is a difficult
task. Putting aside the fundamental question of whether the axiomatic
risk-neutral model for stochastic volatility is legitimate or not, we must
face potential financial losses due to re-calibration. In this paper we have
taken another approach. We first evaluate the mean and variance of the
discounted future cashflow and then find market instruments that
reduce the volatility risk optimally. 

We’ve set this problem up in a mean-variance framework but it could
easily be extended to a more general utility theory approach.
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By statically hedging we have reduced the price at which we can safely
sell the option, from 1.6836 to 1.3752, while still making money 84% of
the time. Alternatively, we can still sell the option for 1.6836 and make
even more profit.

At the same time the variance has been dramatically reduced so that
we are less exposed to volatility risk than if we had not statically hedged
the position.

11 Other Definitions of ‘Value’
In the above example we have statically hedged so as to find the best
value according to our definition of value. This is by no means the only
static hedging strategy. One can readily imagine different players having
different criteria. 

Obvious strategies that spring to mind are as follows.
• Minimize variance, that is minimize the function v. This has the

effect of reducing model risk as much as possible using all available
instruments (the underlying and all traded options). This may be a
strategy adopted by the sell side. 

• Maximize the return-risk ratio. This is perhaps more of a buy-side
strategy, for maximizing Sharpe ratio, for example.
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