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Abstract: Many interesting complex systems are stochas-

tic. In order to model such complex systems, much ongo-

ing research is looking at how to precisely model uncertainty

in performance. In this paper, we proposed a novel type of

stochastic neural network (SNN), in which dynamic features

are added to the input layer allowing any non-deterministic

system to be modeled. The SNNs capture randomness from

the additional input nodes fed with internal random signals.

These random signals, combined with weights between the

additional nodes and the hidden nodes, allow stochastic out-

put even though the network is deterministic. To validate this

approach, a preliminary experiment was performed. To show

the SNN’s basic ability to represent uncertainty, a SNN model

is trained to represent a model of beta distribution. Experi-

ments verify the basic feasibility of the approach.

1. Introduction

To accurately characterize a complex system requires a

model of the system as well as a model of the uncertainty

impacting the system. That inherent uncertainty leads to un-

certainty in the performance of the system. The importance of

modeling uncertainty in system performance has been recog-

nized in many fields [8][6][7]. Notice that for many of these

systems, the uncertainty can not be captured as a normal dis-

tribution and will often not have been characterized at all.

While a range of techniques exist to describe a system and

its performance[1], techniques for capturing the uncertainty

in that performance are not as readily available. This paper

presents a novel approach to capturing both the performance

of a system and the uncertainty related to that performance in

a concise, easy to use form.

Previous approaches have shown significant potential for

representing uncertainty as a special form of stochastic neu-

ral networks (SNNs)[9]. However, the implementation is very

complicated and becomes more significantly more difficult

when the number of input parameters grow. Alternatively,

neural networks with stochastic resonance were introduced

by using a time periodic signal as a stochastic element[6].

Although such stochastic neural networks are trained with an

extended back propagation method, their performance is lim-

ited to very simple tasks. Recently, stochastic models of neu-

ral networks were used to representing complicated gene reg-

ulatory networks by using Poisson random signals, see [8].

However, such SNNs only capture Poisson and Normal un-

certainty distributions. Thus, although promising neural net-

works have no effective way of handling arbitrary uncertainty

distributions.

Figure 1. A traditional neural network can be transformed to

a SNN by adding extra input nodes and feeding them

with internal random signals to the input layer. These

random signals are stochastically changed every time the

network is executed. Output distributions can be gener-

ated by executing the network a number of times.

2. Algorithm and Approach
In this section, the concept of SNNs is described in detail.

In the first step, data is collected from target system. Then,

collected data is preprocessed so that it is in the right form

for use in the learning process. The process of learning takes

place, until the termination criteria is reached. Finally, the

SNNs are used for representing the target system. Details are

described below.

2.1 Stochastic Neural Network Models

With inspiration from the dynamic rearrangement [3], a

concept called Stochastic Neural Networks (SNNs) is pre-

sented here. This concept allows output nodes to act stochas-

tically even while input is held constant and internal nodes act

deterministically. In general, an ANN is an interconnected,

layer by layer, chain of simple processing nodes, where each

node receives a number of inputs and sends an output to other

nodes. Each node is deterministic in that its output is based

entirely on its input values. To make output nodes act effec-

tively stochastic, an internal stochastic component is included

in the network, which is responsible for producing random

signals. These internal random signals are simply treated as
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Figure 2. The network architecture for the experiment consists

of three layers. The input layer has α, β and internal

random signals. The output layer has only a variable x.

The hidden layer usually has two layers of nodes.

additional input signals of the ANN, i.e., they are connected to

every internal node by adjustable weights. Changing weights

result in changing the behaviors of the stochastic networks.

Thus, it makes possible to manipulate the neural networks

stochastic behavior by adjusting the weights inside the net-

work. If a target system has a high variation in outputs even

for the same input configuration, in non-deterministic cases,

the SNN adapts their weights to match these variances by be-

ing stochastic. If the target system is deterministic, which

means the outputs are static, the SNN adapts the weights to

ignore stochastic components.

As shown in Figure 1, a typical ANN network can be trans-

formed into a SNN by adding extra input nodes to the input

layer and feeding them with internal random signals. These

random signals are stochastically changed every time the net-

work is executed. Executing the network for a number of

times, a distribution of possible outputs can be generated. The

random signals that we normally use are random numbers in-

ternally generated from a uniform distribution between 0 and

1. All nodes in the network use sigmoid units. In addition, a

three-layer feed-forward network is typically preferred since

it is capable of representing any arbitrary function [7].

2.2 Data Collecting and Preprocessing

The initial step in modeling a very complex system is the

collection of a large volume of data. This data either already

exists or needs to be gathered and is stored in various forms.

Data preprocessing techniques are then utilized to convert the

data into a format which SNN can accept.

The process of creating and preprocessing training sets for

SNNs is atypical. Because, in the learning process part, dis-

tributions of target outputs and actual outputs are required in

fitness function. We need a set of distributions of target out-

puts for using in the evaluation process. Subsequently, each

set training data is made up of two subsets: a set of every in-

put value and a set of every output distribution. A simple way

for creating output distributions may be executing as follow.

First, each output is partitioned its all possible range into a

number of disjoint subset or slots. However, the partitioning

process can be done by any means; however it has to be the

same process when partitioning the output of SNNs. Then, by

collecting output data with the same input values for a number

of times, the distribution of the outputs is computed by count-

ing how many times the output values fall into each slot. The

same procedure is applied when obtaining the distributions of

outputs for the SNNs during learning process.

2.3 Learning Process

A genetic algorithm is a search technique loosely based on

the mechanism of natural selection and genetics. Given an

environment and a goal formulated as a fitness function, an

initial population is generated at random and a set of genetic

operators defined. New generations of individuals are gen-

erated using three common genetic operators: reproduction,

crossover, and mutation. This process repeats until either a

sufficiently fit individual is found or time expired. The solu-

tion of the problem is found in the final population.

For this work, each generation of the population contained

2,000 individuals. The chromosomes of each individual de-

fined the weights of the SNN connection. All weights were

randomly generated at the start. After evaluation of the train-

ing data set, the 500 best performers were kept and used to

produce the 1500 new individuals, via genetic operations.

Genetic algorithms were chosen for training because the re-

lationship between input variables was not only non-linear,

but also stochastic, which is problematic for back propaga-

tion methods due to the large number of local minima.

To evaluate each individual in every generation, every

SNN is required to execute with the same input values (ex-

cluding all stochastic signals) a number of times, so that dis-

tributions of actual outputs can be measured. These actual

output distributions are compared in the evaluation process

against the target output distributions from training sets via

the goodness-of-fit test or Pearson Chi-square (χ2) test [4] :

χ2 =
n∑

i=1

(
(fs − f∗

s )2

f∗
s

)
, n = na + nt, (1)

where n denotes the number of all slots, na denotes the num-

ber of slots in actual distribution, nt denotes number of slots

in target distribution, fs denotes observed frequency in a par-

ticular slot s, and f∗
s denotes predicted frequency in a partic-

ular slot s. The predicted frequency in a particular slot s can

be calculated from:

f∗
s =

to · ts
T

, (2)

where T denotes the total number of observations, to denotes

the total number of observations in actual or target distribu-

tions, and ts denotes the total number of observations in the

same slots combined. From [4], we can get an index of the

strength for the relation between these two distributions, by

using the formula:

V =

√
χ2

N(k − 1)
,

where N is the total frequency and k = 2 in this case. Then,

this index is used to estimate the percentage of error between
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actual and target distributions. In addition, we need to add

an admissible constraint, which is an absolute difference be-

tween means of actual and target distributions, to the fitness

function for directing the learning process to convert. Thus,

the fitness function of individual i in population is:

Fitnessi =

∑
d∈D

∑
p∈P

(
χ2

d,p + |μd,p
a − μd,p

t |
)

|D| · |P | , (3)

where D is the set of training data (d ∈ D), P is the set of

output nodes (p ∈ P ), χ2
d,p is the χ2 of the pth output of the

data entry d, μd,p
a is a mean of actual distribution of the pth

output of the data entry d, μd,p
t is a mean of target distribution

of the pth output of the data entry d, |D| is the size of training

data and |P | is the number of output nodes.

To compute fitness value for a SNNi in a particular gener-

ation, the process is as follows:

1) for each datak in training data set,

a. execute a SNNi with the same input values from

datak ta times

b. set Score = 0
c. for each outputj :

i. compute distributions of actual outputj and its

actual mean (μk,j
a )

ii. use target outputj distribution from datak to

compute the target mean (μk,j
t )

iii. compute predicted frequency f∗
s in every slot s

(Equation 2)

iv. compute χ2
k,j (Equation 1)

v. compute Score = Score + χ2
k,j + |μk,j

a − μk,j
t |

d. Score = Score/|P |
2) Fitnessi = Score/|D|

Then, Fitnessi is assigned to the ith SNN in the current

population. These values are used in a part of ranking pro-

cess for generating the new population of SNNs in the next

generation.

3. Modeling a Beta Distribution
A beta distribution is a versatile distribution that has been

commonly used for modeling data with uncertainty in many

applications [2]. The probability density function of the beta

distribution can be calculated with the equation :[5]

f(x; α, β) =
1

Beta(α, β)
xα−1(1 − x)β−1, 0 < x < 1, (4)

where α > 0, β > 0 and Beta(α, β) denote the beta func-

tion defined by

Beta(α, β) =
∫ 1

0

tα−1(1 − t)β−1dt.

The key feature of a beta distribution is that different den-

sity function shapes can be obtained by changing α and β. For

instance, uniform distribution can be obtained when α = 1

and β = 1 and when α = 1/2 and β = 1/2, a U-shape dis-

tribution called arc-sine distribution is produced [2]. When

α = β > 1, the distribution generates a symmetric normal

distribution. When α �= β, α > 1 and β > 1, an asymmetric

distribution is generated.

3.1 Experiments

To model the beta distribution, we used multilayer feed-

forward neural networks as shown in Figure 2. The network

topology consists of five nodes in the input layer (two input

nodes representing α and β parameters, and three stochastic

signal nodes), sixteen nodes in the first hidden layer, eight

nodes in the second hidden layer, and one node in the output

layer. The ranges of α and β are limited to 0 < α ≤ 10 and

0 < β ≤ 10. All stochastic signals are uniformly distributed

between 0.0 and 1.0. All nodes are sigmoid units.

To create training sets, data is collected by using Equation

4. The data collection process is described as follow.

1) First, to get a target distribution of x, we divide variable

x into 11 slots, where x = 0.0, x = 0.1, x = 0.2, · · · , x =
1.0.

2) Values of α and β are randomly generated.

3) Using Equation 4, the values of α and β are used with

values of x in all 11 slots to get its target distribution.

4) If not done, go to step 2.

In this experiment, the training set consists of 20 data

records, which are randomly generated. The training set will

be changed to a new set in every generation. The learning pro-

cess terminates when the best individual achieves less than 10

% error.

After running about 2000 generations (approximately 20

hours, using PC-Intel Celeron 1.4GHz, 480MB), the results

are shown in Figure 3. The target distributions are shown in

solid black bars and actual distributions are shown in white

bars. These plots are generated from one SNN by changing

values of α and β. Each plot is a result of executing the net-

work 110 times and counting frequencies of 11 slots of the

output node x. It is clear SNN can handle symmetric normal

distributions and asymmetric distributions well (when α > 1
and β > 1). Uniform distributions (when α = β = 1) and

U-shape distributions are more difficult. It was found that the

learning process adapted quickly to match the symmetric nor-

mal distributions and asymmetric distributions, but took much

more time to adapt to the more difficult ones.

An second experiment was run to determine the optimal

number of additional random inputs that are needed to solve

the problem. Without any additional random input, the SNNs

learned only to represent the means of the target distributions.

Having only one additional random input present the SNN

took a very long time to reach the error threshold whereas

having two or five present the threshold could be met in about

2000 generations (approximately 20 hours) on average. When

we compare the time taken in hours to reach a 25 percent

error threshold, the results shows that the optimal time was

achieved with three additional random inputs. Having too

few inputs makes it difficult to convert into complex input-

output relationships while having too many means more time
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Figure 3. With approximately 10 percent of error, these is a

set of 20 plots with different values of α and β produced

by one of the best generated SNNs comparing with tar-

get distributions. The target and actual distributions are

shown in solid black bars and white bars respectively.

is required to adjust more weights. This number must be de-

termined on a per problem basis.

An interesting feature of SNNs is that they can modify the

density of possible outputs and still get the same distributions.

When a trained SNN was modified its output discretization

by doubling its possible output ranges, the results still get the

same shape of distribution. The size of distribution is smaller

since there are more possible outcomes.

4. Conclusions and Future Work
In this paper, we have presented a preliminary approach

to represent uncertainties. We demonstrate the capability of

SNNs to represent the model of beta distribution, indicating

the potential to represent uncertainty. The techniques pre-

sented capture model uncertainty concisely and are simpler

and more effective than previous approaches.

One future question is how to obtain greater precision in

presenting the complex relationships within such large dy-

namic models. Another issue is how well results or even mod-

eling approaches may generalize between domains.
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