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Abstract This paper deals with an on line identification of the values of these entities by a suitable
adjusting of the filter gain and incorporating information about the quality of innovation sequence. The
result yields a new adaptive Kalman filter. The proposal is mainly based on statistical properties of the
innovation sequence of the filter and improves some previous results pointed out by Bellanger and Mehra.
Particularly, the autocorrelation function of the innovation sequence is used. Furthermore, information about
the quality of the autocorrelation parameter is incorporated through a weighted least squares methodology.
The determination of the weights is based on a distance criterion, which involves the ideal probability
distribution and the current probability referring to the first and second order statistics of autocorrelation
functions. The estimation of the a priori noise statistics Q and R is obtained straightforwardly from the
preceding and the optimal gain and the innovation covariance of the filter.
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1. Introduction

Analysis of divergence of optimal estimators like
Kalman filter (KF) [1, 5] was appeared since the
first papers given rise to the theoretical foundations
of KF [4]. Indeed, it is recognized from navigation
experiments, among others, that the performance of
KF under actual operating conditions can be
seriously degraded from the theoretical performance
indicated by the state covariance matrix inducing a
divergence of KF. Typically, divergence is said to
occur when the covariance matrix produced by KF
no longer provides a reasonable characterization of
the error in estimate. Effects that may cause
divergence are various, for example: i) ill known
parameters of the state or measurement models, i.e.,
the model itself is wrong or not adequate; ii) noisy
errors are ill known; iii) initial guesses; vi) strong
non linearity.
Assuming that the models are linear and roughly
acceptable up to some Gaussian additive noise with
known variance, then it was proven that the filter
converges to the steady state regardless of the initial
conditions. This justifies why particular interest has
been focused on the estimation of the noise
variance, or, equivalently, variance-covariance
matrices Q and R pertaining respectively to the state
and the measurement models. The resulting

algorithm is known in the literature as Adaptive
Kalman Filter (AKF), which has been investigated
by several researchers [2,3,6,7,8]. Intuitively, in
AKF, the filter adjusts its knowledge about the Q
and R values according to the gap between the
predicted estimates and the current measurements.
There are several ways to this end. Mehra [7]
classified these methods into four categories,
Bayesian, maximum likelihood, correlation
(autocorrelation) and covariance matching. The
approach described in this paper belongs to third
above class where the autocorrelation functions of
innovation sequence are constructed. It improves
Mehra’s [6] and Carrew’s and Bellanger’s [3]
approaches by incorporating information about the
quality of the innovation estimates leading to a
weighted least squares methodology. The latter
permits to generate a convergent sequence to the
steady state filter, which after some manipulations
allows to determine the values of a priori noise
statistics Q and R. Strictly speaking, the
convergence of the sequence towards the steady
state depends also on the quality of the innovation
values. Consequently, even if in practice it may
happen that Bellanger’s as well Mehra’s approaches
do not converge, our proposal can not be worse than
the former. This is, in some ways, similar to robust
statistical tools used in robust statistics [9]. In the
next section, we introduce the problem statement
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and general notations. The third section outlines
Carrew’s and Bellanger’s approaches based on the
autocorrelation functions of the innovation
sequence. The fourth section describes an
improvement of the previous approach based on a
weighted least squares methodology. Particularly,
an approach for determining the weight factors
taking into account both the first and second order
statistics of autocorrelation functions is put forward.
The determination of the values of Q and R noise
matrices in the case of weighted square approach is
pointed out in the fifth section. In section 6, some
simulations examples similar to that used by Mehra
[7] are carried out and the significant improvement
of the proposal are illustrated.

2. Statement of the problem

Consider a discrete-time dynamic system described
by the following vector difference equations

kk1k GwFXX +=+ .                                    (1)

kk1k vHXY +=+ .                                       (2)
Where

 Xi is n x 1 state vector, A is n x n state
transition matrix, wi is q x 1 process noise, Yi is m
x 1 measurement vector, vi is m x 1 measurement
noise, H is m x n measurement matrix. Both wi and
vi are assumed to be uncorrelated zero-mean
Gaussian white noise sequences with time-invariant
covariances respectively Q and R, i.e.,
E[wi]=E[vi]=0. ij

T
ji Q]ww[E δ=  and  ij

T
ji R]vv[E δ= ,

in which Q and R are nonnegative definite matrices
whose true values are assumed to be unknown. Note
that E [ ] denotes the expectation, and ijδ

corresponds to the Kronecker delta function, i.e.,
ijδ =1 if i=j and zero otherwise.

The adaptive filtering problem consists of obtaining
on-line estimates k|kX̂ of Xk based on observation

set }Y,...,Y,Y{Z k21
k = , and values of Q and R are

identified.

Let ])X̂X)(X̂X([ EP T
k|kkk|kkk|k −−=  be the

variance-covariance matrix of k|kX̂ .

In the case where Q and R are completely known,
then the solution is provided by the steady state
filter:

1k|1k1k|k X̂FX̂ −−− = .                                      (3)

)X̂HY(KX̂X̂ 1k|kkk1k|kk|k −− −+= .               (4)

1T
1k|k

T
1k|kk )RHHP(HPK −

−− += .                (5)

TT
1k|1k1k|k GQGFFPP += −−− .                      (6)

               1k|kkk|k P)HKI(P −−= .                              (7)

Kk refers to the Kalman gain and 1k|kkk X̂HY −−=ν

to the innovation or one-step- ahead prediction
error. The initial state 0|0X̂ is also assumed to be

Gaussian with mean X0 and variance matrix P0|0. I
refers to the identity matrix.
The system is assumed to be completely observable
and controllable if

  Rank [HT, (HF)T, …, (HFn-1)T] = n  and

 Rank [G, FT, ..., Fn-1G ] = n

In the case of a steady state filter, the state
prediction matrix Pk|k-1 fulfills the following time
discrete Riccati matrix [1]

(8)                                                    .GQG            

F ]HP)RHHP(HPP[ FP

T

T
1k|k

1T
1k|k

T
1k|k1k|kk|1k

+

+−= −
−

−−−+

Particularly, if the steady state is reached, then the
solution of (8) is unique and Pk|k-1=Pk|k, which
means that the state covariance coincides with its
prediction leading to an optimal value for the gain
Kk. The counterpart of (8) when using the state
estimate instead of covariance matrix is

    )X̂HY(FKX̂FX̂ 1k|kkk1k|kk|1k −−+ −+= .                 (9)

However, when the a priori noise statistics Q and R
are unknown or ill defined, the solution of (8) is not
unique and leads to a suboptimal filter, or,
equivalently, to a suboptimal gain filter. In what
follows, we will describe how the innovation as
well the autocorrelation functions can be used to
provide values of Q and R leading to optimal steady
state filter.
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3. Use of filter innovation and its
autocorrelation function

Let *
k|kX be denote the suboptimal estimate of Xk

(due to the unknown Q and R) leading to a
suboptimal gain KD. More formally,

   )X̂HY(FKX̂FX̂ *
1k|kkD

*
1k|k

*
k|1k −−+ −+= .    (10)

It is then clear that the gap between *
k|kX and

k|kX̂ provides a faithful information about the

convergence of the suboptimal filter to the steady
state filter. Let

      ])XX̂)(XX̂[(EP T*
1k|k1k|k

*
1k|k1k|k

*
1k|k −−−−− −−=        (11)

be its covariance matrix. Then using kν  and
expressions (2), (9), (10) and (11), we have

(12)                     ).XX̂((HK                           

)KK()XX̂(FXX̂

*
1k|k1k|kD

kDk
*

1k|k1k|k
*

k|1kk|1k

−−

−−++

−−

ν−+−=−

Using the othogonality principle, which entails

]X̂(E]X̂(E T
1i|ij

T
j1i|i −− ν=ν =0 (similarly for *

1i|iX − ,

with 1j|jjj X̂HY −−=ν ) for all i, j. While, the

covariance of the innovation is

RHHP](E T
1j|j

T
jj +=νν − .                         (13)

Putting this in (11), leads after some manipulations
to

(14)                .)KK)(RHHP)(KK(       

)HKF(P)HKF(P

T
kD

T
1k|kkD

T
D

*
1k|kD

*
k|1k

−+−

+−−=

−

−+

Now following the autocorrelation methodology
initiated by Mehra [6, 7], we shall find

])HXY)(HXY[(E][EC T*
1jk|jkjk

*
1k|kk

T*
jk

*
kj −−−−−− −−=νν=

(15)
which, after some manipulations becomes

 

.1jfor   )]RHHP)(KK(    

HP)[HKF()HKF(H

0j if    ,RH)PP(H
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1k|kDk

T*
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1j
D

T
1k|k
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1k|k
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>+−+

−−

=++

=

−
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     (16)

In the optimal case, of course, KD=Kk and

0PP *
k|k

*
1k|k ==− , thereby, 0Cj =  ∀ j. Using

RHHPS T
1k|kk += − , then  (15) can be rewritten for

j>1 as

 ].CKSKHFP[)HKF(HC 0Dkk
T*

1k|k
1j

Dj −+−= −
−      (17)

jC  are m x m matrices. Noticing that the

coefficients jC  can be assessed directly from

experiment data and the given model (let jC  be

such measured coefficient), then the quantity under
square brackets in (17) may be estimated. The use
of least squares method leads to
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)HKF(H
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.                                 (19)

T1Ttt A)AA(A −=  is a pseudo inverse of a matrix A.

The existence of ttA  follows from the
controllability and observability constraint.

Strictly speaking, the quality of such estimation is
mainly related to the goodness of the
autocorrelation estimates jC . Indeed, the latter are

also subjected to the effect of the suboptimal filter
since *

iν  are dependent of *
1i|iX − . This makes the

convergence of such algorithm difficult even with
some repetitive procedures in the spirit of those
proposed by Mehra [6, 7]. This motivates the use of
the weighted least squares introduced in the next
paragraph.

4.  Use of weighted least squares

One idea to overcome the above difficulty, or at
least to yield better estimates, is to introduce
information about the quality of the measured
autocorrelation jC  as a weighting factor, leading to

a weighted least squares scheme. While the
determination of the weights obeys the general
statistical behavioral of the autocorrelation



functions as it will be pointed out. Indeed, using
general statistics properties, assuming N samples,
we have

          ∑ νν=
=

−
N,1i

T*
ji

*
ij   

N

1
C .                                   (20)

While the associated variance can be determined
using

   .)C)(C(
1N

1
)C(Cov

N

1i

T
j

T*
ji

*
ij

T*
ji

*
ij ∑

=
−− −νν−νν

−
=      (21)

On the other hand, it has been proved (see for
instance [1]) that the normalized autocorrelation

  
2/1N

1i

*
ji

T*
ji

N

1i

*
i

T*
i

N

1i

*
ji

T*
ij )).((’C

−

=
++

==
+ 



 ∑ νν∑ νν∑ νν=           (22)

for large N, is, in view of central limit theorem,
normally distributed with zero mean and variance

1/N.  Note that expressions *
ji

T*
i +νν  and 

T*
ji

*
i −νν in

(21) and (22) are mathematically equivalent due to
the property of the autocorrelation function

T
jj )C(C −= .  Consequently, a rational for obtaining

the weight jw , which will be incorporated into the

above least squares method, should take account for
the closeness of the estimate in terms of its first and
second order statistics to the ideal distribution
having zero and 1/N as respectively first and second
order statistics.

For this purpose, we first compute Bhattacharyya
distance [9] between these two distributions. The
latter argues that given two normal distributions
provided by their means (may be in vector form)
and covariance (may be matricial), say, if G1 = (M1
, P1) and G2 = (M2 , P2), then

   

 (23)                           .
|P||P|

|)PP(5.0|
ln

2

1
                  

)MM(
2

PP
)MM()G,G(d

21
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T
21

1
21T
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 +−=

−

where the notation |. | stands here for the
determinant of the matrix.

As seen in (23), the distance employs two terms.
The first one is cancelled if both distributions have
the same mean or variance providing the class of
separability due the mean difference. While the

second gives the separability class due to the
covariance difference.

In our case the counterparts of G1 and G2 are

respectively ))Cov(C ,C( jj  and (zeros, (1/N).I),

where zeros stands for a null matrix, i.e., zeros
elements. That is, the first component in each pair is
in matricial form instead of vectorial form as it is
the case in (23). Therefore, in order to
accommodate to the constraint imposed by (23), we
will restrict to the diagonal elements of jC  Clearly,

this restriction will not change drastically the
performance of the result for many reasons. i) The
main information supported by the autocorrelation
functions jC  are concentrated within the diagonal

elements. ii) The use of scalar distances in (23) will
significantly simplify the forthcoming procedure for
the determination of the weight values. Particularly,
it permits to avoid some inconsistencies due to
singularity or lack of positive definiteness. iii) The
check for positiveness will be significantly
simplified, since it boils down to a comparison of
values of diagonal elements, while otherwise, it
entails the search for the eigen values of the matrix.
iv) The values of weights themselves are not so
significant as the order of magnitude is. That is, the
relevant information is rather the extent to which
one element is more significant than another one.
This means that the weights are rather defined in
relative scale instead of absolute scale. Let

    )
I).N/1(

)1,m(zeros
,

)C(Cov

)C(diag
(dd

j

j
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= ,                        (24)

where zeros(m,1) stands for the zeros vector of m
elements and I for the identity with the same size as
Cov( jC ), i.e., m x m matrix.

Substituting (24) in (23) leads to expression

(25)             .

N

|)C(Cov|

|]N/1.[Id)C(Cov(5.0|
ln.

2

1
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N

1
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The latter arises from noticing that |Id.[1/N]| =
mN

1
,

where the identity matrix Id has the same size as the
covariance matrix Cov( )Cj , i.e., m x m matrix.

Now in order to emphasize the meaning of the
weights with respect to the distances, one should
have

jiji wwdd ≥⇒≤ .                          (26)

In other words, the weight sequence is non-
increasing with respect to the distance sequence.
This is, of course, very natural, since small distance
means high agreement between the ideal
distribution and the current estimated distribution,
thereby, high degree of weight should be attached
to.
Consequently, any decreasing function f such that
wi=f(di) should be a potential candidate. We
assume the following representation

ji
i

j d]d[ maxw −=      (j=1 to n).               (27)

The expression (27) permits to avoid negative
values for weights jw . While, the use of maximum

operation allows a maximum compensation, in the
sense that the worst alternative is fully forbidden
since it will be attached zero weight. Of course, the
choice in (27) can be questioned and the use of
other alternative still is possible.
Finally, in order to accommodate with the size of

jC , the weight matrix W is given as a diagonal

matrix in the following way
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Note that in the matricial weighted least squares, it
is required that W possesses a symmetric positive
definite square root 2/1W  satisfying W=

2/1W . 2/1W   (W is m.n x m.n  matrix).
Clearly, this condition is satisfied using expression
(28) since all diagonal elements in (28) are
positively valued. Consequently, the square root

2/1W  corresponds to the matrix obtained when
replacing all the diagonal elements by their square

roots jw , which leads obviously to a definite

positive matrix.
Another remark stipulates that, in view of (28), the
entailment in (26) involves rather matrix
expressions of wi and jw . Consequently, the

inequality ji ww ≥  is equivalent to argue that the

matrix )ww( ji −  is positive definite, which, due the

diagonalization, boils down to a matrix with
diagonal elements of positive values. This provides
another justification issue for our above
simplification about the nature of the weight factors
wi.

Now, taking account for the weight matrix W, the
counterpart of  (18) is provided by the weighted
least squares. The latter can easily be proved that it
corresponds to

  .

C

.

C

WACKSKHFP

n

1
tt

w0Dkk
T*

1k|k
















+=+−              (29)

  With

             T1Ttt
w A)WAA(A −= .                              (30)

5.    Determination of Q and R  values

The determination of the a priori noise statistics Q
and R follows from the above analysis and the

properties of the  steady state filter. Let S, K and P*

be the optimal values of respectively Sk, Kk and
*

1k|kP − . Then, from (16), (28) and (14)

              S C HP HT= −0
* .                                      (31)



1T*

n

1
tt

w0D S).HFP
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.
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WACK(K −−















+= .                 (32)

(33)  .)KK(S)KK()HKF(P)HKF(P T
DD

T
D

*
D

* −−+−−=

The above sequence (31-33) should be repeated
several times to ensure the convergence to the
optimal steady state filter. The proof for the
convergence is outside the scope of this paper, but
the reader can be inspired mainly from Carrew’s and
Bellanger’s [3] methodology.

Assuming, that the filter reaches roughly its optimal
state, then R can be estimated using expressions of

S and gain K, i.e., S=HPHT+R  and  K=PHTS-1 (P
stands for optimal Pk|k-1). Indeed, from the last
expression, we get H.PHT =HK.H, which reported
in the first expression leads to

S.K.HSR −= = (I - H.K)S.                      (34)

The estimation of the matrix Q is more difficult
since it is not involved explicitly in any expressions
(31-33). Besides the error covariance P* is different
from the error covariance P where Q is involved
(see expression (6)). Indeed, P* refers to the
covariance of the error between the optimal steady
state estimate and the suboptimal estimate (current
estimate), while P refers to the error between the
current estimate and the true value of the state. To
circumvent, this difficult, one may determine an
estimate of PHT from the optimal gain K, i.e.,

PHT = K.S.                                              (35)

Then, we adopt the same procedure, as the one
followed by Mehra in the case where the number of
unknown in Q are less than n.m, obtained after
carrying n steps back and substituting in Ricatti
equation (8). It leads to

(36)n        1,k  ,H)F(HF                             

PHHFH)F(HPH)F(GQGHF

TTkj
1k

0j

j

1k

0j

TkTTkTTkjTj

=Ω−

−=

−−

=

−

=

−−

∑

∑

With
]KPHKHPKCK[F TTT

0 −−=Ω .                      (37)

Note that (36-37) is fully determined from 0C  and

PHT (remark that HP is the transpose of PHT since P
is symmetric matrix).

Consequently, the determination of the values of the
parameters pertaining to Q may be given using like
least square method, or one may restrict to values of
k that induce more important weight in the diagonal
elements of the matrix ascribed to the left hand side
of (36) as it was suggested by Mehra [6].

Note that for the implementation purpose, the
sequence (31-33) may be stopped when the
difference of the gain K between two successive
steps becomes significantly small, which means that
the system has roughly reached the steady state
filter. This can be adjusted by the user according to
the desired accuracy and the time constraint.
Besides, the above reasoning may either be carried
out at each step, meaning that Q and/or R are time
invariant, or be done only at the end of the process.
But of course, in practice, it is better to perform it
before the end in order to avoid strong divergence
of the filter.

Finally, the following algorithm summarizes the
different steps leading to the identification of the
noise statistics Q and R.

Step 1. Use the model of the state estimation (3-7)
with suboptimal R and Q and the true value of the

observations to assess the innovations *
ki−ν  (i=1,N

(number of observations) k=1,n (dimension of
vector X)

Step 2. Determine the autocorrelation functions

kC (k=1, n) using (20).

Step 3. Determine the weight matrix W using (25),
(27) and (28).

Step 4. Check consistency of W with respect to
mean values kC .

Step 5. Determine kk
T*

1k|k SKHFP +− using (28-29).

Step 6. Repeat iteratively (31-33) to determine

optimal values of S, K and *P .

Step 7. Estimate R via (34) with previous estimate
of S and K, then determine Q by solving (36-37).



Clearly, in Step 4, the consistency is understood in
the sense that the mean values are considered to be
favored over the simultaneous use of mean and
covariance estimates. This is mainly justified by
some observed incoherence due to the effect of non-
diagonal elements in cov( kC ) as well the calculus
of inverse matrix. This makes, in some ways, a
bridge between the proposal and the ordered
weighted averaging operator introduced by Yager
[10]. With the difference that the normalization
condition in our case is different from the Yager’s
proposal where .1w

i
i =∑  While it required in our

case that the matrix W possesses a symmetric
positive definite square root 2/1W  such that
W= 2/1W 2/1W .

Note that in general case where the autocorrelation
innovation functions are close to diagonal matrices,
the consistency still is hold in the sense that the
ordering property with respect to mean values is
fulfilled.

6. Simulation example

We will consider the same example tackled by
Mehra [6] to prove the feasibility of his approach of
adaptive filtering. The same example had also been
handled by Carrew and Belanger [3]. The system
arises from inertial navigation. The state model was
augmented to include all the correlated parameters
leading to the following matrices
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0.905       0          0           0         0 

0         0.55       0           0         0 

0           0       0.95         0         0 

0.008-     0   0.0015-   0.91    0.09
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=Γ
0    1    0    1   0

1    0    0    0   1
H   ,

1.83       0         0 

0   0.835       0 

      0       0   24.64

0       0          0

  0       0          0

,

Q = diag(1, 1, 1)
R = diag(1, 1)

The above values of Q and R are the known values.
It is required to identify these values using the
algorithm of adaptive filtering. While the starting
values of Q and R used in the system are

     















=

0.75     0       0

0     0.5       0

0      0    25.0

Q0    and  







=

0.6     0

0    4.0
R0

Using these values, the innovation sequence iν , and

next the autocorrelation functions n10 C...,C,C  are
estimated, for a number N=950 time increments
(points).
Figure 1 and Figure 2 provide the estimation of the
noise statistics Q and R based on weighted least
squares approach (curve 2) and without weight
vectors (curve 1). The estimation process is fired at
each batch of N=950 measurements, which permit
to determine the autocorrelation functions. It is clear
from these two figures that in the estimation of
either Q or R parameters, the weighted least squares
approach provides better results in terms of the
closeness of the output to the true value ('1') of Q
and R parameters.

Figure 1. Estimation of R values (r1 and r2) based on
a weighted least squares approach (curve 2) and
without weight factors (curve 1).



Figure 2. Estimation of Q values (q1, q2 and q3)
based on a weighted least squares approach (curve
2) and without weight factors (curve 1).

7. Conclusion

In the present paper, we have investigated a Kalman
filter approach when the a priori noise statistics Q
and R are unknown. This refers to adaptive Kalman
filter. We have proposed a new methodology based
on the use of weighted least squares methodology,
instead of least square approach, that generalizes
Carrew’s and Bellanger’s method. The rational
behind the proposal is to take account for the
quality of the autocorrelation function of the
innovation sequence. The weights are determined
using a distance criterion between the ideal
probability and the distribution referring to the
current first and second order statistics of
autocorrelation functions. Simulation examples are
performed to prove the feasibility of the proposal.
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