
Probabilistic neural network (PNN)

Consider the problem of multi-class classifica-

tion. We are given a set of data points from

each class. The objective is to classify any new

data sample into one of the classes.
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Figure above: A schematic illustration of a

PNN.
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Probabilistic neural network (PNN) is closely

related to Parzen window pdf estimator. A

PNN consists of several sub-networks, each of

which is a Parzen window pdf estimator for

each of the classes.

The input nodes are the set of measurements.

The second layer consists of the Gaussian func-

tions formed using the given set of data points

as centers.

The third layer performs an average operation

of the outputs from the second layer for each

class.

The fourth layer performs a vote, selecting the

largest value. The associated class label is

then determined.
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Suppose that for class 1, there are five data

points x1,1 = 2, x1,2 = 2.5, x1,3 = 3, x1,4 = 1

and x1,5 = 6. For class 2, there are 3 data

points x2,1 = 6, x2,2 = 6.5, x2,3 = 7. Using

the Gaussian window function with σ = 1, the

Parzen pdf for class 1 and class 2 at x are
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respectively. The PNN classifies a new x by

comparing the values of y1(x) and y2(x). If

y1(x) > y2(x), then x is assigned to class 1;

Otherwise class 2.

For this example y1(3) = 0.2103 (see Lecture

2).
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Figure above, Parzen window pdf for two classes.

y2(3) =
1
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= 0.0011 < 0.2103 = y1(x)

so the sample x = 3 will be classified as class

1 using PNN.
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The decision boundary of the PNN is given by

y1(x) = y2(x).

So
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The solution of x can be found numerically.

e.g. a grid search. This is an optimal solution,

minimizing misclassification rate.
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Figure above: Decision boundary and the error

probability of PNN (the shaded area).

Moving the decision boundary to either side

would increase the misclassification probability.
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Since the term 1√
2π

is a common factor in both

y1(x) and y2(x), it can be dropped out without

changing the classification result. We can use

y1(x) =
1

5
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and

y2(x) =
1
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In general, a PNN for M classes is defined as

yj(x) =
1

nj

nj
∑

i=1

exp

(

−(‖xj,i − x‖)2
2σ2

)

j = 1, ..., M

where nj denotes the number of data points

in class j. The PNN assigns x into class k

if yk(x) > yj(x), j ∈ [1, ..., M ]. ‖xj,i − x‖2 is

calculated as the sum of squares. e.g. if xj,i =

[2,4]T , x = [3,1]T , then

‖xj,i − x‖2 = (2 − 3)2 + (4 − 1)2 = 10
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Example 1: Determine the class label for the

data sample x = [0.5,0.5]T by using a two class

PNN classier, with σ = 1, based on the two

class data sets given in the following Table.

x1,1 1 0

x1,2 0 1

x1,3 1 1

x2,1 -1 0

x2,2 0 -1

class 1 class 2

Solution:

y1(x) =
1

3
{exp

(
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2
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2

)

+exp
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2
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}

= 0.7788
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y2(x) =
1

2
{exp
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2

)

+exp
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)

= 0.4724

Because y2(x) < y1(x), so x = [0.5,0.5]T is
classified as Class 1.
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Figure above, Data points in Example 1.
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