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Abstract

For financial time series, the generation of error bars on the point prediction
is important in order to estimate the corresponding risk. The Bayesian evidence
framework, already successfully applied to design of multilayer perceptrons, is ap-
plied in this paper to Least Squares Support Vector Machine (LLS-SVM) regression
in order to infer nonlinear models for predicting a time series and the related volatil-
ity. On the first level of inference, a statistical framework is related to the L.S-SVM
formulation which allows to include the time-varying volatility of the market by an
appropriate choice of several hyperparameters. By the use of equality constraints and
a 2-norm, the model parameters of the LS-SVM are obtained from a linear Karush-
Kuhn-Tucker system in the dual space. Error bars on the model predictions are
obtained by marginalizing over the model parameters. The hyperparameters of the
model are inferred on the second level of inference. The inferred hyperparameters,
related to the volatility, are used to construct a volatility model within the evidence
framework. Model comparison is performed on the third level of inference in order to
automatically tune the parameters of the kernel function and to select the relevant
inputs. The LS-SVM formulation allows to derive analytic expressions in the feature
space and practical expressions are obtained in the dual space replacing the inner
product by the related kernel function using Mercer’s theorem. The one step ahead
prediction performances obtained on the prediction of the weekly 90-day T-bill rate
and the daily DAX30 closing prices show that significant out of sample sign predic-

tions can be made with respect to the Pesaran-Timmerman test statistic.

Keywords: Financial Time Series Prediction, Least Squares Support Vector Ma-
chines, Bayesian Inference, Volatility Modelling, Hyperparameter Selection, Model

Comparison



1 Introduction

Motivated by the universal approximation property of multilayer perceptrons (MLPs),
neural networks have been applied to learn nonlinear relations in financial time series
[3, 12, 19]. The aim of many nonlinear forecasting methods [5, 14, 25] is to predict next
points of a time series. In financial time series the noise is often larger than the underlying
deterministic signal, and one also wants to know the error bars on the prediction. These
density (volatility) predictions give information on the corresponding risk of the investment
and they will, e.g., influence the trading behavior. A second reason why density forecasts
have become important is that the risk has become a tradable quantity itself in options and
other derivatives. In [15, 16], the Bayesian evidence framework was successfully applied to
MLPs so as to infer output probabilities and the amount of regularization.

The practical design of MLPs suffers from drawbacks like the non-convex optimization
problem and the choice of the number of hidden units. In Support Vector Machines (SVMs),
the regression problem is formulated and represented as a convex Quadratic Programming
(QP) problem [7, 24, 31, 32]. Basically, the SVM regressor maps the inputs into a higher
dimensional feature space in which a linear regressor is constructed by minimizing an
appropriate cost function. Using Mercer’s theorem, the regressor is obtained by solving a
finite dimensional QP problem in the dual space avoiding explicit knowledge of the high
dimensional mapping and using only the related kernel function. In this paper, we apply
the evidence framework to Least Squares Support Vector Machines (LS-SVMs) [26, 27],
where one uses equality constraints instead of inequality constraints and a least squares
error term in order to obtain a linear set of equations in the dual space. This formulation
can also be related to regularization networks [10, 12]. When no bias term is used in the
LS-SVM formulation, as proposed in kernel ridge regression [20], the expressions in the
dual space correspond to Gaussian Processes [33]. However, the additional insight of using
the feature space has been used in kernel PCA [21], while the use of equality constraints
and the primal-dual interpretations of LS-SVMs have allowed to make extensions towards
recurrent neural networks [28] and nonlinear optimal control [29)].

In this paper, the Bayesian evidence framework [15, 16] is applied to LS-SVM regression

[26, 27] in order to estimate nonlinear models for financial time series and the related



volatility. On the first level of inference, a probabilistic framework is related to the LS-SVM
regressor inferring the time series model parameters from the data. Gaussian probability
densities of the predictions are obtained within this probabilistic framework.

The hyperparameters of the time series model, related to the amount of regularization
and the variance of the additive noise, are inferred from the data on the second level on
inference. Different hyperparameters for the variance of the additive noise are estimated,
corresponding to the time varying volatility of financial time series [23]. While volatility
was typically modelled using (Generalized) Autoregressive Conditionally Heteroskedastic
((G)YARCH) models [1, 6, 30], more recently alternative models [9, 13, 17] have been pro-
posed that basically model the observed absolute return. In this paper, the latter approach
is related to the Bayesian estimate of the volatility on the second level of inference of the
time series model. These volatility estimates are used to infer the volatility model.

On the third level of inference, the time series model evidence is estimated in order to
select the tuning parameters of the kernel function and to select the most important set
of inputs. In a similar way as the inference of the time series model, the volatility model
is constructed using the inferred hyperparameters of the time series model. A schematic
overview of the inference of the time series and volatility model is depicted in Figure 1.
The LS-SVM formulation allows to derive analytical expressions in the feature space for
all levels of inference, while practical expressions are obtained in a second step by using
matrix algebra and the related kernel function.

This paper is organized as follows. The three levels for inferring the parameters of
the LS-SVM time series model are described in Sections 2, 3 and 4, respectively. The
inference of the volatility model is discussed in Section 5. An overview of the design of the
LS-SVM time series and volatility model within the evidence framework is given in Section

6. Application examples of the Bayesian LS-SVM framework are discussed in Section 7.

2 Inference of the Model Parameters (Level 1)

A probabilistic framework [15, 16] is related to the LS-SVM regression formulation [26, 27]
by applying Bayes’ rule on the first level of inference. Expressions in the dual space for

the probabilistic interpretation of the prediction are derived.



2.1 Probabilistic Interpretation of the LS-SVM Formulation

In Support Vector Machines [7, 24, 27, 32] for nonlinear regression, the data are generated

by the nonlinear function y; = f(x;) + e; which is assumed to be of the following form
yi = w'o(z;) + b+ e (1)

with model parameters w € R and b € R and where ¢; is additive noise. For financial
time series, the output y; € R is typically a return of an asset or exchange rate, or some
measure of the volatility at the time index 7. The input vector z; € R® may consists
of lagged returns, volatility measures and macro-economic explanatory variables. The
mapping ¢(-) : R* — R* is a nonlinear function that maps the input vector x into
a higher (possibly infinite) dimensional feature space R*f. However, the weight vector
w € R™ and the function ¢(-) are never calculated explicitly. Instead, Mercer’s theorem
K (z;,7) = o(x;)Tp(x) is applied to relate the function () with the symmetric and positive
definite kernel function K. For K(z;, z) one typically has the following choices: K(z;,z) =
zlz (linear SVM); K(z;,z) = (z7z + 1)? (polynomial SVM of degree d); K(z;,z) =
exp(—||z —z;]|3/0?) (SVM with RBF-kernel), where o is a tuning parameter. In the sequel
of this paper, we will focus on the use of an RBF-kernel.

Given the data points D = {(z;, ;) })Y, and the hyperparameters y and (.x = [(1, (o, oy
(n] of the model H (LS-SVM with kernel function K'), we obtain the model parameters
by maximizing the posterior P(w, b|D,log u, log (,.y, H). Application of Bayes’ rule at the
first level of inference [5, 15] gives:

D|w7 ba lOg 2 log Cl:Na %>P(w7 bl lOg K, IOg Cl:Na %)
P(D|log 1, log ¢, M) ’

P(w,b|D,log p,log C,.n, H) = il (2)

where the evidence P(D|log p,log( .y, H) follows from normalization and is independent
of w and b.

We take the prior P(w, b|log i, log (;.x, H) independent of the hyperparameters (;, i.e.,
P(w,bllog p,log (v, H) = P(w,b|log u, H). Both w and b are assumed to be independent.
The weight parameters w are assumed to have a Gaussian distribution P(w|logu, H) =
(%)%f exp(—4w”w) with zero mean, corresponding to the efficient market hypothesis.

A uniform distribution for the prior on b is taken, which can also be approximated as a
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Gaussian distribution P(b| log oy, H) = (i) ) exp(—=25), with o, — co. We then obtain

2b7r 20?
the following prior:

ny nf
— (B2 _u,,T 1 _ b VAW _ e, T
P(w,bllogu, H) = (£) 7 exp(—LwTw) exp( 205) o (£)7 exp(—4wTw). (3)

\/27“75
Assuming Gaussian distributed additive noise e; (i = 1,...,N) with zero mean and
variance (; !, the likelihood P(D|w, b, log(,.v,H) can be written as [16]
1

P(D|w,b,log(.x,H) = Hf\il (Q)Zexp(—QGQ)P(xi). (4)

27 2 v

Taking the negative logarithm and neglecting all constants, we obtain that the likelihood (4)
corresponds to the error term Zﬁil GiEp,;. Other distributions with heavier tails like, e.g.,
the student-t distribution, are sometimes assumed in the literature; a Gaussian distribution
with time-varying variance ¢! is used here [1, 6, 30] and is recently motivated by [2]. The
corresponding optimization problem corresponds to taking the 2-norm of the error and
results into a linear Karush-Kuhn-Tucker system in the dual space [20, 26, 27] while SVM
formulations use different norms with inequality constraints which typically result into a
Quadratic Programming Problem [7, 24, 31, 32].

Substituting (3) and (4) into (2) and neglecting all constants, application of Bayes’ rule
yields P(w,b|D,log p,log ¢y, M) o exp(—4ww) exp(— Zf\;l Se?). Taking the negative
logarithm, the maximum a posteriori model parameters wysp and by;p are obtained as the

solution to the following optimization problem:

mwlgl Ji(w,b) = pEw + Zf\il GEpy (5)

with
By = jw'w, (6)
Ep; = %e% = %(?Jz - wTﬁp(sz‘) - b)%. (7)

The least squares problem (10)-(11) is not explicitly solved in w and b. Instead, the linear
system (13) in « and b is solved in the dual space as explained in the next Subsection.
The posterior P(w, b|D,log i, log (;.x, 1) can also be written as the Gaussian distribu-

tion:

P(w7b|D710gM710g<1:NaH) = mexp(_%g,r@_lg)v (8)



with ¢ = [w — wuyp; b — byrp] and Q = covar(w,b) = E(g7g), where the expectation is
taken with respect to w and b. The covariance matrix () is related to the Hessian H of the

LS-SVM cost function J;(w,b):

-1 -1
35 N
Q=H"'= Hu Hip _ | ow®  owdb (9)
HT H 325 AN ’
12 22 obdw b2

2.2 Moderated Output of the LS-SVM Regressor

The uncertainty on the estimated model parameters results into an additional uncertainty
for the one step ahead prediction §yp v, = wh pp(z) + byp, where the input vector
x € R" may be composed of lagged returns yy,yn_1,. .. and of other explanatory variables
available at the time index N. By marginalizing over the nuisance parameters w and b [16]
one obtains that the prediction g, is Gaussian distributed with mean §y,p v = 23 p =
wl pp(z) + byp and variance UZ%NH = (¥}, + o2 The first term (', corresponds to the
volatility at the next time step and has to be predicted by volatility model. In Section 5
we discuss the inference of an LS-SVM volatility model to predict CAA}%%V 1= Q;fr/f . The

second term o2 is due to the Gaussian uncertainty on the estimated model parameters w

and b in the linear transform z = w? p(x) + b.

2.2.1 Expression for z,p

Taking the expectation with respect to the Gaussian distribution over the model parameters

w and b the mean z;;p is obtained:

2up = E{2} = wipe(2) + byp.

In order to obtain a practical expression in the dual space, one solves the following opti-

mization problem corresponding to (5):
min Ji(w, e) = LwTw + I3V Ge? (10)
w,e
s.6. yi = wlo(z;) + b+ e, i=1,...,N. (11)

To solve the minimization problem (10)-(11), one constructs the Lagrangian £, (w, b, e; &) =

Ji(w, e) — zl]\il ailwTo(x;) + b+ e; — y;], where o; € R are the Lagrange multipliers (also

7



called support values). The conditions for optimality are given by:

4

N
%ful =0 = w=) ;o)
Gr=0 — Zz]\il a; =0

\ or . (12)
G =0 — a=ve, i=1,...,N
\%:0 — b:yl_wT@(‘T%)_eU iz].,...,N,

with v = ¢/p (4 = 1,...,N). Eliminating w and e, one obtains the following linear
Karush-Kuhn-Tucker system in o and b [26, 27]

0 17 b 0
R KA 03
1, | Q+ Dt o Y
with! y = [y1; .. un], 1o = [1; .5 1], € = [e1; s en], @ = [aq;...;an] and D, = diag([vy; ...;
vn]). Mercer’s theorem [7, 24, 32] is applied within the {2 matrix
Qij = ol (z)) = K(zi, ;). (14)
The LS-SVM regressor is then obtained as:
Znp = Yoiey K (2, 2:) + by p (15)

Efficient algorithms for solving large scale systems such as e.g., the Hestenes-Stiefel con-
jugate gradient algorithm from numerical linear algebra can be applied to solve (13) by
reformulating it into two linear systems with positive definite data matrices [27]. Also
observe that Interior Point methods for solving the QP problem related to SVM regression
solve a linear system of the same form as (13) in each iteration step. Although the effec-
tive number of parameters ~y.¢; are controlled by the regularization term, the sparseness
property of standard SVMs [11] is lost by taking the 2-norm. However, sparseness can be
obtained by sequentially pruning the support value spectrum [27].

!The matlab notation [X;; Xs] is used, where [X;; X3] = [XT XJ]7. The diagonal matrix D, =
diag(a) € RV*N has diagonal elements D, (i,i) = a(i), i = 1,...,N, with a € RV.



2.2.2 Expression for o2

Since z is a linear transformation of the Gaussian distributed model parameters w and b,

the variance o2 in the feature space is given by:
07 = E{(z — zup)*} = E{[(w" p(2) + b) — (wyrp(x) + barp) ]} = () H¢(x), (16)

with ¢(z) = [p(x); 1]. The computation for o2 can be obtained without explicit knowledge
of the mapping ¢(-). Using matrix algebra and replacing inner products by the related

kernel function, the expression for o2 in the dual space is derived in Appendix A:

0'3 = Q(x)TUgQDUgﬁ(x)UT + iK(.T, SL’) - ig(l’)TUgQDUgQDclv
+2p710(2)" Dly + 5 + 1T DQUaQpUEND L, + 5517 D QD1

2 2
¢ 5¢

(17)

with Qp = (uln,,, + Da)~' — i 'y,,, and the scalar s = 3° | ¢;. The vector §(z) € RV
and the matrices Ug € RY*Mess and Dg € RNess*Ness are defined as follows: #;(z) =
K(z,x;),1 = 1,...,N; Ug(:,i) = (Z/G,Z'QZ/GJ')%VG,Z',Z' =1,...,Nysy < N—-1and Dg =
diag([Ac1,- -, Aa,n,;;]), where vg; and Ag; are the solution to the eigenvalue problem

(45):
(DC — iDglvlgDC)QVG,i = )\G,iVG,i y 1= 1, - .,Neff S N —1. (18)

The number of non-zero eigenvalues is denoted by N.ss < N. The matrix D, = diag([(y, ...,

(n]) € RY*N is a diagonal matrix with diagonal elements D¢ (i,i) = ¢;.

3 Inference of the Hyperparameters (Level 2)

In this Section, Bayes’ rule is applied on the second level of inference [15, 16] in order to
infer the hyperparameters ;o and ;. Whereas it is well-known that the Bayesian estimate
of the variance is biased, this problem is mainly due to the marginalization (see also (31) in
this Section). The cost function related to the Bayesian inference of the hyperparameters is
derived first. We then discuss the inference of p and ( = ¢; (i = 1,..., N) and the inference

of non-constant ¢;.



3.1 Cost Function for Inferring the Hyperparameters

The hyperparameters g and ¢; (¢ = 1,..., N) are inferred from the data D by applying

Bayes’ rule on the second level:

P(D|log p,log ¢, H)P(log i, log Con |H
P(log p,log ¢.x| D, H) = (D|log p, log P(D|)H)( g, log v M)

o P(D|logp,log (., H), (19)

where a flat, non-informative prior is assumed on the hyperparameters p and (;. The
probability P(D|log u,log(,.x, H) is equal to the evidence in (2) of the previous level. By
substitution of (3), (4) and (8) into (19), one obtains:

i i exp(— w "I i
P(log 1, log C,.x | D, H) oc Y Lat VG o0 lub)) o [l Thes & o (— 7, (g, bagp)). (20)

exp(—597 Hg)

Using the expression for det H from Appendix A and taking the negative logarithm, we
find the maximum a posteriori estimates pyp and (pp; by minimizing the level 2 cost

function:

To (s, Cion) = pBw (warp) + ZZ]L GEpi(wamp,bup)
NE €
"‘% St log(p + Aayi) — % log pu — % ij\il log G; + %IOg(Zi]il Gi)

This is an optimization problem in N + 1 unknowns and may require long computations.

(21)

Therefore, we will first discuss the inference in the case of constant (; = . This value for

the hyperparameters will then be used to infer the non-constant (.

3.2 Inferring p and (; =

We will now further discuss the inference of the hyperparameters for the special case of
constant ; = ¢. In this case, one can observe that the eigenvalues Ag; in (18) are equal

to Agi = (A, where the eigenvalues Af; ; are obtained from the eigenvalue problem
(In = ¥L19) e = Xgvei, i=1,...,Nesg SN =1, (22)

with the identity matrix Iy € R¥*¥ and with the corresponding diagonal matrix D}, =

diag([AG1, - - Ag,w,,,]) = (' Dg. The eigenvalue problem (22) is now independent” from

20bserve that in this case, the eigenvalue problem (22) is related to the eigenvalue problem used in
kernel PCA [21]. The corresponding eigenvalues are also used to derive improved bounds in VC-theory

[22]. In the evidence framework, capacity is controlled by the prior.

10



the hyperparameter (. By defining Fp = Zfil Ep,; and by using s, = N(, the level 2

optimization problem (21) becomes:
min Jy(, ) = Ji(warp, buee) + 5 00 log( + Cig,) — S logpn — K5t log (. (23)

The gradients of J3(p, () towards p and ¢ are [15]

N, N,

%—‘Z?’ = EW(U)MP) —+ %Zi:{f u+<1)\/cﬂ, - 2;7 (24)
N, e _

88—‘?’ = Ep(wyp,bup) + % S #+CG)1'G,14 — —N2C1. (25)

Since the LS-SVM cost function consists of an error term Ep with regularization term
Ew (ridge regression), the effective number of parameters [5, 16] is decreased by applying

regularization. For the LS-SVM, the effective number of parameters v.;; is equal to

Ne C)‘I X
Yess = 1 25 55 (26)

where the first term is due to the fact that no regularization is applied on the bias term b
of the LS-SVM model. Since N, < N — 1, we cannot estimate more effective parameters
than the number of data points N, even if the parameterization of the model [w; b] has
ny -+ 1 degrees of freedom before one starts training, with typically ny > N.

In the optimum of the level 2 cost function J3(u, (), both the partial derivatives (24)
and (25) are zero. Putting (24) equal to zero, one obtains 21y, p By (wyp) = 7, — 1, while
one obtains 2¢, pEp(wyp, bysp) = N — Yerp from (25). This equation corresponds to the
unbiased estimate of the variance (,;p = 2Ep/(N — 7,s;) within the evidence framework.

These optimal hyperparameters iy p and (s p are obtained by solving the optimization
problem (23) with gradients (24) and (25). Therefore, one needs the expressions for Ep =
Zij\il Ep, and Ew = 1w}, pw,p. These terms can be expressed in the dual variables using

1

the conditions (12) in the optimum of level 1. The first term Ep; = 3€7 is the easiest to

calculate. Using the relation «; = v;e; of (12), we obtain:

2 242
Bpi =% = jU8r. 1)

The regularization term Eyy is calculated by combining the first and last condition in (12):

N N o
Ew = 5300 cilwype(zi)] = 5 2050, ailyi — 184 — bup]- (28)

In the case of constant (;, the parameters ; are also constant v; = v = (/p.

11



3.3 Inferring p and (;

In the previous Subsection, the conditions for optimality of the level 2 cost function J3(u, ¢)
with respect to uyp and (uyp were related to the number of effective parameters vesr. In
this Subsection, we will derive the conditions in the optimum of J2(y, (;) with respect to
¢; to infer the Bayesian estimate of the volatility.

The gradient %—f is derived in a similar way as the gradient 88—*23 and is obtained by

formally replacing (¢ ; by Ag; in (24). By defining the effective number of parameters as

N AGi
Yepr =1+ 2200, #+§G,i’ (29)

a similar relation between ppp and 7.y holds in the optimum of 73 as in Subsection 3.2.

For the gradient %—{f, one obtains (starting from the negative logarithm of (20)):
NE 1 _,0H 1 1, 1 .
— Fp, + ~Tr[H = Fp; -0 - — =1,...,N, (30
ac, et g T ag ey g 30)

where Tr[H‘lg—g] =Tr[H "9 (x;)1p(z;)")] = 02, using (16) and the expression for H. In the

optimum, the gradient is zero, which yields:
20npiEp,i(wap, byp) =1 — 02 Cupj, i=1,...,N. (31)

The last equation has to be interpreted as the unbiased estimate of the variance in the
Bayesian framework, as mentioned in the introduction of this Section. The maximum a
posteriori estimate of the variance 1/(yp; is equal to the squared error, corrected by the
relative model output uncertainty e?/(1—Capi02,). Since the estimates (yp,; are essentially
only based on one observation of the time series, these estimates will be rather noisy.
Therefore, we will infer the hyperparameters (ysp; by assuming that we are close to the

optimum:
Caps ~ € +os, i=1,...,N, (32)

where both ¢; and ai are obtained from the LS-SVM model with constant (3;p. The above
assumption corresponds to an iterative method for training MLPs with constant ¢ [15, 16]
but does not guarantee convergence. We did not observe convergence problems in our

experiments. The 'noisy’ estimates will not be used to infer the LS-SVM time series model

12



with non-constant hyperparameters (ap;. Instead, the estimates (yp; are used to infer
the LS-SVM volatility model in Section 5. The modelled é_Mp,i of the LS-SVM volatility
model are far less noisy estimates of the corresponding volatility and will be used to infer

the LS-SVM model time series model using a weighted least squares error term.

4 Model Comparison (Level 3)

In this Section Bayes’ rule is applied to rank the evidence of different models H; [15, 16].
For SVMs, different models H; correspond to different choices for the kernel function;
e.g., for an RBF kernel with tuning parameter o;, the probability of the corresponding
models H; is calculated in order to select the tuning parameter o; with the greatest model
evidence. Model comparison can also be used to select the relevant set of inputs by ranking
the evidence of models inferred with different sets of inputs. The model selection of the
time series model is performed before inferring the é Mp,i, obtained as the outputs of the
volatility model; and therefore we will assume a constant (; = (, ¢« = 1,..., N in this
Section.

By applying Bayes’ rule on the third level, we obtain the posterior for the model H;:
P(H,;|D) o< P(D|H;)P(H;). (33)

At this level, no evidence or normalizing constant is used since it is impossible to compare
all possible models #;. The prior P(H;) over all possible models is assumed to be uniform
here. Hence, (33) becomes P(#;|D) o« P(D|H;). The likelihood P(D|H,) corresponds
to the evidence (19) of the previous level. For the prior P(log iiyp,log (ap|H;) on the
positive scale parameters ;o and ¢, a separable Gaussian with error bars oig, and oo ¢
is taken. We assume that these a priori error bars are the same for all models #;. To
calculate the posterior approximation analytically, it is assumed [15] that the evidence
P(log t,log ¢|D, H;) can be very well approximated by using a separable Gaussian with

error bars Oieg up and oleg¢(p. As in Section 3, the posterior P(D|H;) then becomes [16]

Olog u|DOlog ¢| D

P(D[H;) o< P(D|log piarp,log Cup, Hy) (34)

Olog nFlog ¢
Ranking of models according to model quality P(D|#H;) is thus based on the goodness

of the fit (20) and the Occam factor [15], which punishes for overparameterized models.

13



We refer to [16] for a discussion on relations between the evidence framework and other

theories of generalization like, e.g., Minimum Description Length and VC-theory.
Following a similar reasoning as in [15, 16] approximate expressions for the errors bars

Ologu/p and Oy ¢ p are obtained by differentiating (21) twice with respect to p and (:

Uﬁ)gu\p ~ 2/(Yess — 1) and Uﬁ)qu >~ 2/(N — %ers). One then obtains

g
Nver ) ILSH7 ump+CMPAG

P(DIH,) uaft! iF (35)
i) X
! (Yers—1)(

5 Volatility Modelling

Since the volatility is not an observed variable of the time series {y;}/¥,, we will use the
inferred hyperparameters (ypy, ¢ = 1,..., N, from (32) to train the LS-SVM volatility
model. The inverse values 1/(yp; correspond to the estimated variances of the noise e;
on the observations y;. Instead of modelling and predicting the inferred (up; or C]\}lpﬂ-
directly, we will model C;/Il]g, which corresponds to the prediction of absolute returns
[13, 17, 30]. Indeed, one can observe that when the model output uncertainty ag’i is small
(CMP’Z‘O'Z < 1), then (30) becomes (yp; =~ 1/eZ. In this case, the prediction of CA_#E
corresponds to predicting the absolute values |e;|, which corresponds to the prediction of
the absolute returns when the no time series model is used (see, e.g., [13, 17, 30]). We
briefly discuss the three levels of inference and point out differences with the inference of
the LS-SVM time series model.

The outputs ; € R of the LS-SVM volatility model f(#) = @7 () + b are the inferred
C]\}lg values of the second level of the time series model, i.e., §; = ]\}1]43 The inputs #; € R”
are determined by the user and may consist of lagged absolute returns [13, 30] and other
explanatory variables. Input pruning can be performed on the third level as explained in
the previous Section. In a similar way as in Section 2, the model parameters w and b are
inferred from the data D = {(&;,#)}Y, by minimizing J;(,b) = pwTw + ¢ Ep, with
Ep = %Zf\;l 2 and &, = §; — (W' @(;) + b), i = 1,..., N. By introducing the Lagrange

multipliers &; € R, the following linear set of equations is obtained in the dual space:

0 17 b 0
‘ = Y 1 - - - s (36)
L, |+ D7 Q Y
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with § = [1;...;9n], & = [da;...;én] and Dy = FIy, where 4 = {/ji. The matrix
Q € R¥*N has elements Q;; = K(i;,4;). The expected value QA“A}%,Q]VH = zyp of the

LS-SVM volatility model is obtained as:
Zup = f(2) = Wl p@(E) + byp = Yo, &K (3, %) + bysp. (37)

In a similar way as in Subsection 2.2, one may derive error bars on the predicted volatility
measure ¢p/p. This uncertainty on the volatility forecasts is not in the scope of this paper.

The hyperparameters ji and ¢ = ¢ (i = 1,..., N) of the volatility model correspond to
the regularization term Ey and error term Ep, respectively. Observe that we assume a
constant variance of the noise in the volatility model. The hyperparameters i and ¢ are

obtained by minimizing
min J3(1,¢) = Ju(@,5) + 3 30" log(ji + CN;,) — Y log ji — Y7t logl,  (38)

where ED(u?Mp,lN)Mp), EW(pr) and /\’Gl are obtained in a similar way as in Section
3 from (27), (28) and (22), respectively. Similar relations as in Subsection 3.2 exists,
relating the regularization term and the error term to the effective number of parameters
Ters =1+ Xt frortumias

In a similar way as in Section 4, the probability of different volatility models H; can

Carp Al .y Y
N 2065 of the volatility model .

be ranked. This then yields a similar expression as (39):

P(DH,) o AR . (39)
(Fefpr—1)(

- Ng - ot
N—Fers) Hi=1ff /LMP+CMP>\IGJ-

6 Design of the Bayesian LS-SVM

We will apply the theory from the previous Sections to the design of the LS-SVM time

series and volatility model within the evidence framework.

6.1 Design of the LS-SVM Time Series Model

The design of the LS-SVM time series model consists of the following steps (see also
Figure 1):
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. The selected inputs are normalized to zero mean and unit variance [5]. The normal-
ized training data are denoted by D = {(z;,y:)}Y,, with z; € R* the normalized

inputs and y; € R the corresponding outputs, transformed to become stationary.

. Select the model H; by choosing a kernel type K, e.g, an RBF-kernel with parameter
o;. For this model, the hyperparameters pap and Carp; = Carp are inferred from the
data on the second level. This is done as follows: (a) Solve the eigenvalue problem
(22) to find the N.yy important eigenvalues A ; and the corresponding eigenvectors
vg;. (b) Minimize J3(u, () from (23) with respect to p and . The cost function
(23) and gradients (24)-(25) are evaluated by using the optimal time series model
parameters wyp and byp. These are obtained from the first level of inference in the
dual space by solving the linear system (13). (¢) Calculate the number of effective
parameters ;s defined in (26). (d) Calculate the volatility estimates C]\}lléj with
Curpy from (32) (these values will be used to infer the volatility model ;).

. Calculate the model evidence P(D|H;) from (35). For an RBF-kernel, one may
refine o; such that a higher model evidence is obtained. This is done by maximizing
P(D|H;) with respect to o; by evaluating the model evidence for the refined kernel

parameter starting from step 2(a).

. Select the model H; with maximal model evidence P(D|H,;). If the predictive perfor-
mance is insufficient, select a different kernel function K; (step 2) or select a different

set of inputs (step 1).

. Use the outputs CAJIQ of the volatility model to refine the time series model. This is
done in the following steps: (a) Solve the eigenvalue problem (18) to find the Ness
important eigenvalues Ag; and the corresponding eigenvectors vg;. (b) Refine the
amount of regularization p. This is done by optimizing J2(y, ¢;) in (21) with respect
to u, while keeping (; = éz The gradient 83—*22 is obtained by formally replacing (A ;
by Ag, in (24). The cost function and the gradient are evaluated as in step 2(b) by
inferring v and by,p in the dual space on the first level and calculating E'p and Ey
from (27) and (28), respectively. (c) Calculate the effective number of parameters

Yefr from (29) .
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Notice that for a kernel function without tuning parameter like, e.g., the polynomial kernel
with fixed degree d, steps 2 and 3 are trivial. No tuning parameter of the kernel function
has to be chosen in step 2 and no refining is needed in step 3. The model evidence P(D|H,;)
can be used in step 4 to rank different kernel types. The model evidence can also be used

to rank models with different input sets, in order to select the most appropriate inputs.

6.2 Design of the LS-SVM Volatility Model

The design of the LS-SVM volatility model is similar to the design of the time series
model. In step 1, the inputs are normalized to zero mean and unit variance [5]. The
normalized training data are denoted by D = {(%;,5:)}X,, where 7; e R*, i = 1,..., N,
are the normalized inputs and where 7, = A_/[lléz € R are the corresponding outputs, with
Cmp, from (32) of the time series model H,;. In step 2, one selects the model ’;Qj by
choosing a kernel type f(j, e.g., an RBI-kernel with parameter ¢;. For this model, the
hyperparameters firp and Cyp are inferred from the data on the second level as in steps
2(a), 2(b) and 2(c) of the time series model. The model evidence P(D|H;) is calculated
from (39) in step 3. In step 4, one selects the model 7:lj with maximal model evidence
P(D|H;). Go to step 2 or step 1 if the performance is insufficient. For an RBF-kernel, one

may refine J; such that a higher model evidence is obtained. Finally, one calculates the

éMp,i from (37) in step 5.

6.3 Generating Point and Density Predictions

Given the designed LS-SVM time series and volatility model H; and 7—~£j, the point predic-

tion garp,n+1 and corresponding error bar oy, ., are obtained as follows:

1. Let the input z of the time series model be normalized in the same way as the training

data D. The point prediction §pp 1 is then obtained as §ap i1 = 2ap from (15).

2. Normalize the input of the volatility model in the same way as the training data D.
The normalized input is denoted by Z. Predict the volatility measure CAA_/[IAQNH = (@)
from (37). Calculate error bar o, due to the model uncertainty from (17). The total

. . . . 2 1 2
uncertainty on the prediction is then oy = Cypyyq + 0%
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7 Examples

The design of the LS-SVM regressor in the evidence framework is applied to two cases.
First, the performance of the LS-SVM time series model is compared with results from the
literature [4, 8] for the case of one step ahead prediction of the US short term interest rate.
Second, we illustrate the use of the LS-SVM time series and volatility model for the one

step ahead prediction of the DAX30 index. All simulations were carried out in Matlab.

7.1 Prediction of the US Short Term Interest Rate

The LS-SVM times series model is designed within the evidence framework for the one
step ahead prediction weekly Friday observations of the 90-day US T-bill rate on secondary
markets from 4 Jan. 1957 to 17 Dec. 1993, which is the period studied in [4, 8]. The first
differences of the original series are studied, which is stationary at the 5% level according
to the augmented Dickey-Fuller test. Using the same inputs as in [8], the input vector
is constructed using past observations with lags from 1 to 6. The time series model was
constructed assuming a constant volatility.

The first 1670 observations (1957-1988) were used to infer the optimal hyperparameters
pap = 0.0057 and (yp; = (up = 1.23 and the optimal tuning parameter oyp = 12
resulting into an effective number of parameters v,y = 108.88. These hyper- and kernel
parameters were kept fixed for the out of sample one step ahead prediction on the 254
observations of the period 1989-1993. In the first experiment, the model parameters wysp
and by p were kept fixed (NRo, No Rolling approach, [8]); in the second experiment the
Rolling approach (Ro) was applied, i.e., re-estimating the model parameters w and b or
a and b each time a new observation becomes available. In Table 1, the out of sample
prediction performances of the LS-SVM an AutoRegressive model (AR14) with lags at 1,
4, 7 and 14 (this is the optimal model structure selected in [8] using Akaike’s information
criterion (AIC)). The performances of a kernel-based non-parametric conditional mean
predictor (NonPar), with mean squared error cost function (MSE) [8], are quoted in the
last row of Table 1.

The MSE and corresponding sample standard deviations of the different models are

reported in the first column. The MSE for a random walk model is 0.186 with sample
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standard deviation (0.339), which indicates that only a small part of the signal is explained
by the models. The reduction obtained with the LS-SVM is of the same magnitude as
the reduction obtained by applying a nearest neighbor technique on quarterly data [4].
The next columns show that the LS-SVM regressor clearly achieves a higher Percentage
of Correct Sign Predictions (PCSP). The high values of the Pesaran-Timmerman (PT)
statistic for directional accuracy [18] allow to reject the HO hypothesis of no dependency

between predictions and observations at significance levels below 1%.

7.2 Prediction of the DAX 30

We design the LS-SVM time series model in the evidence framework to predict the daily
closing price return of the German DAX30 index (Deutscher Aktien Index). Then we
used the inferred hyperparameters of the time series model to construct the LS-SVM
volatility model. The modeled volatility level is then used to refine the LS-SVM model
using the weighted least squares cost function and to calculate the return per unit risk
UMP,N+1/Tgrpny: (Sharpe Ratio [14, 19, 30] neglecting riskfree return) of the prediction.
The following inputs were used: lagged returns of closing prices of DAX30, Germany 3-
Month Middle Rate, US 30-year bond, S&P500, FTSE, CAC40. All inputs were normalized
to zero mean and unit variance [5], while the output was normalized to unit variance for
convenience. We started with a total number of 38 inputs for the LS-SVM time series
model. The performance of the LS-SVM model was compared with the performance of an
ARX model (ARX10) with 10 inputs and an AR model (AR20) of order 20 with lags (1,
3,4, 9,17, 20), estimated with Ordinary Least Squares (OLS). The inputs of the AR and
ARX model were sequentially pruned using AIC, starting from 20 lags and the 38 inputs
of the LS-SVM model, respectively. The performances are also compared with a simple
Buy-and-Hold strategy (B&H). The training set consists of 600 training data points from
17.04.92 till 17.03.94. The next 200 data points were used as a validation set. An out
of sample test set of 1234 points was used, covering the period 23.12.94-10.12.98, which
includes the Asian crises in 1998.

The LS-SVM model was inferred as explained in Section 6. From level 3 inference, we

obtained the kernel parameter o = 20. The effective parameters of the LS-SVM model
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with weighted error term is 7.¢s = 146.4. Predictions were made using the rolling ap-
proach updating the model parameters after 200 predictions. The performances of the
models are compared with respect to the Success Ratio (SR) and the Pesaran-Timmerman
test statistic [18] for directional accuracy (PT) with corresponding p-value. The market
timing ability of the models was estimated by using the prediction in 2 investment strate-
gies assuming a transaction cost of 0.1% (10 bps as in [19]). Investment Strategy 1 (IS1)
implements a naive allocation of 100% equities or cash, based on the sign of the predic-
tion. This strategy will result in many transactions (588 for the LS-SVM) and profit will
be eroded by the commissions® In Investment Strategy 2 (IS2) one changes the position
(100% cash/0% equities - 0%/100% cash/equities) according to the sign of the prediction
only when the absolute value of the Sharpe Ratio §arp n41/0gyp yy, €Xceeds a threshold,
determined on the training set. This strategy reduces the number of transactions (424 for
the LS-SVM) changing positions only when a clear trading signal is given. The volatility
measure 51?111 in 04,5 v, is predicted by the LS-SVM volatility model as explained below.
The cumulative returns obtained with the different models using strategy IS2 are visualized
in Figure 2. The annualized return and risk characteristics of the investment strategy are
summarized in Table 2. The LS-SVM with RBF-kernel has a better out of sample per-
formance than the ARX and AR model with respect to the Directional Accuracy, where
the predictive performance of the ARX is mainly due to lagged interest rate values. Also
in combination with both investment strategies IS1 and IS2, the LS-SVM yields the best
annualized risk/return ratio (Sharpe Ratio, SR), while strategy S2 illustrates the use of
the uncertainty? on the predictions.

Finally, we illustrate input pruning for the case of the time series model. This is done
by sequentially pruning the inputs of the model comparing the full model evidence with the
input pruned model evidences. We start from the time series model with 38 inputs, which

yields a PCSP of 57.7% on the validation set. In the first pruning step, we compare 38

3For zero transactions cost, the LS-SVM, ARX10, AR20 and B&H achieves annualized returns (Re)
32.7%, 21.8%, 8.7% and 16.4% with corresponding risk (Ri) 14.6%, 15.2%, 15.3% and 20.3% resulting in

Sharpe Ratios (SR) 2.23, 1.44, 0.57 and 0.81, respectively.
*In order to illustrate the use of the model uncertainty for the LS-SVM model, trading on the signal

ngp’NH/é;,i/f with 1S2 yields a SR, Re and Ri of 1.28, 18.8 and 14.8, respectively.
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models and remove the input corresponding to the lowest model evidence. After the first
pruning step, the PCSP remained 57.7%. The pruning of the input corresponding to the
highest model evidence would have resulted in a significantly lower PCSP of 55.2%. We
restart now from the first model with 37 inputs and compare again the model evidence with
37 prunded model evidences. The pruning process is stopped when the model evidences
of the pruned model are lower than the full model of the previous pruning step. Here, we
performed 5 pruning steps, resulting in no loss with respect to the PCSR on the validation
set. One may notice that the pruning is rather time consuming. An alternative way is to
start from one input and sequentially add inputs within the evidence framework.

The volatility model is inferred as explained in Section 5. The input vector Z consists
of ten lagged absolute returns, while the outputs of the training set are obtained from the
LS-SVM Time Series Model. The hyperparameters fiy;p = 2.87 and <~MP = 4.31 and the
kernel parameter 6 = 18 were inferred on the second and third level, respectively, yielding
Yers = 8.61. The performance of the volatility model was compared on the same targets
with a GARCH(1,1) model [1, 6, 23, 30] and with three autoregressive models of order
ten (JAR10|, |AR10|*! and |AR10J?) for the absolute returns [9, 13, 17, 30] using power
transformations 1, 1.1 and 2, respectively. Since these models do not guarantee positive
outputs, also an AR model (logAR10) is estimated on the logarithms of the data predicting
where the predicted volatility corresponds to the exponential of the output of the logAR10
model. The AR models are estimated using OLS and pruning the inputs according to
AIC, while the power transformation 1.1 was selected from a power transformation matrix
[9, 17] according to AIC. The MSE and Mean Average Error (MAE) test set performances
of the 5 models are reported together with the corresponding sample standard deviations
in Table 2. In the last two columns, the models are compared with respect to the Negative
Log Likelihood (NLL) — log [ P(e;) of the observation e; given the modeled volatility.
Although guaranteeing a positive output, the logAR10 yields clearly lower performances.
The nonlinear LS-SVM model with RBF-kernel yields a better performance than the AR
models. Also, all AR models yield better performances than the GARCH(1,1) model on
the MSE and MAE criteria, while vice versa the GARCH(1,1) yields a better NLL. This
corresponds to the different training criteria of the different models. The LS-SVM model
yields comparable results than with the GARCH(1,1) model.
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8 Conclusions

In financial time series, the deterministic signal is masked by heteroskedastic noise and
density predictions are important because one wants to know the associated risk, e.g.,
to make optimal investment decisions. In this paper, the Bayesian evidence framework is
combined with Least Squares Support Vector Machines (LS-SVMs) for nonlinear regression
in order to infer nonlinear models of a time series and the corresponding volatility. The
time series model was inferred from the past observations of the time series. On the first
level of inference, a probabilistic framework is related to the LS-SVM regressor in which
the model parameters are inferred for given hyperparameters and given kernel functions.
Error bars on the prediction are obtained in the defined probabilistic framework. The
hyperparameters of the time series model are inferred from the data on the second level
of inference. Since the volatility is not a directly observed variable of the time series,
the volatility model is inferred within the evidence framework from past absolute returns
and the hyperparameters of the time series model related to the volatility inferred in the
second level. The volatility forecasts of the volatility model are used in combination with
the model output uncertainty in order to generate the error bars in the density prediction.
Model comparison is performed on the third level to infer the tuning parameter of the
RBF-kernel by ranking the evidences of the different models. The design of the LS-SVM
regressor within the evidence framework is validated on the prediction of the weekly US

short term T-bill rate and the daily closing prices of the DAX30 stock index.
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A Expressions for the variance o> and det H

The expression (16) for the variance o2 cannot be evaluated in its present form, since ¢(-)
is not explicitly known and hence also ¥(z) and H~! are unknown. By defining T =
[o(z1),...,p(zn)], with @ = TTY, the expressions for the block matrices in the Hessian
(9) can be written as follows: Hyy = pul,, + YD YT, Hiy = TD¢l, and Hyy = 31| G = s¢.
The diagonal matrix D, € RV*Y is defined as follows D, = diag([(s, - .., (n]). The inverse

Hessian H is then obtained via a Schur complement type argument:

-1

I,, X Hy, — HH;;)HLE 0 I,., 0
H_l _ I 11 124199 12 ; 7 (40)
0 1 0 oy X7 1

with X = H ,H5,'. By defining G = Y(D, — éDglvlng)TT, we obtain that
H11 — H12H231H£ = /,L[nf + G. (41)

Notice that the maximum rank of D, — éDCLJlUTDC, with dimension N x N, is equal
to N — 1, since 1, is the eigenvector corresponding to the zero eigenvalue. Finally (40)

becomes

H! = (dn, + G —(pdny + G) ™' HipHy' (42)
—Hy' Hiy(uly, + G)™' Hyy' -+ Hy Hi, (pl,, + G) " Hyp Hy'
2 now becomes o7 = o(z)" (ul,, + G)'o(z) —

¥4 ¥4

f—cgp(x)T(pInf —l—G)_lTDClﬁ—é+%1Z’DCTT(p,Inf—i—G)*lTDClU. The next step is to express

The expression (16) for the variance o

the inverse (ul,, + G)7! in terms of the mapping o(z;), 1 = 1,..., N using properties of
linear algebra. The inverse will be calculated using the eigenvalue decomposition of the
symmetric matrix G = GT = PIDgP; + cPl'P,, with P = [P, P;] a unitary matrix and
where ¢ = 0. The matrix P, corresponds to the eigenspace corresponding to the non-zero
eigenvalues and the null space is denoted by P,. Indeed, since D, — éDclvlch is a positive
semi-definite matrix with rank N — 1, there are maximally N — 1 eigenvalues A;; > 0 and
their corresponding eigenvectors v ; are a linear combination of T: vg, = ¢5,Tvg,;, with
¢¢; @ normalization constant such that vf;v,,; = 1. The eigenvalue problem we need to

solve is the following: Y(D, — sngglvlvTDg)TTvG’i = Ag,iVg,; OT
Y(D¢— s, ' Dloli DY Yvg, = g Yvg, (43)
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Multiplication of the last equation to the left with Y7 and applying the Mercer condition
yields:

QD¢ — s D11y Do)Qwg = Aa ey, (44)

which is a generalized eigenvalue problem of dimension N. If €2 is invertible, this corre-

sponds to the eigenvalue problem
(D¢ — Sg_chlvluTDOQVG,i = Agier (45)

When (2 is not invertible, one can always proceed with the non-zero eigenvalues of the
generalized eigenvalue problem. The remaining ny — Nss dimensional orthonormal null
space P, of G can not be explicitly calculated, but using the fact that [Py P5] is a unitary
matrix will allow us to use P,Py = I,, — PP[. This finally yields

(4y +G) ' = P(ul, + D) ' PT = Pi(uly,,, + D) 'PT + i 'PPY. (46)

By defining 0(x) = Y7 () with 6;(z) = K(x,z;), i = 1,..., N, the variance 02 can now
be calculated by using Mercer’s theorem and one obtains (17).

Finally, an expression for det(H) is given using the eigenvalues of G. The Hessian is
nonsingular, mainly because of the use of a regularization term pEw when ny +1 > N.
Thus the inverse exists and we can write det H~' = 1/det H. Since det(H) is not changed
the block diagonalizing (40). By combination with (41), we obtain: det H = N( det(ul,, +
(G). Since the determinant is the product of the eigenvalues, this yields:

Negy

det H = scp Vet T (1 + Cha). (47)

i=1
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Captions of Figures

Figure 1:

[lustration of the different steps for the modelling of financial time series using LS-SVMs
within the evidence framework. The model parameters w, b, the hyperparameters u, (;
and the kernel parameter and relevant inputs of the time series model H are inferred from
the data D on different levels of inference. The inferred hyperparameters (a/p; are used to
estimate the parameters w, 5, i, C~ and & of the volatility model #H. The predicted volatility

is used to calculate error bars ay?MP x, OD the point prediction §apn41-

Figure 2:

Cumulative returns using Investment Strategy 2 (IS2) (transaction cost 0.1%) on the test
set obtained with: (1) LS-SVM regressor with RBF-kernel (full line); (2) the ARX model
(dashed-dotted); (3) the Buy-and-Hold strategy (dashed) and (4) the AR model (dotted).
The LS-SVM regressor yields the highest annualized return and corresponding Sharpe
Ratio as denoted in Table 2.
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