
Neuro-genetic system for DAX index prediction

Marcin Jaruszewicz and Jacek Mańdziuk

Faculty of Mathematics and Information Science, Warsaw University of Technology,
Plac Politechniki 1, 00-661 Warsaw, POLAND

Abstract. The task of stock index prediction is presented in this paper.
The data is gathered at the target stock market (DAX) and two other
markets (KOSPI and DJIA). The data contains not only raw numerical
values from the markets but also indicators pre-processed in terms of
technical analysis, i.e. oscillators and patterns. Statistical analysis and
the genetic algorithm are used to create the proper sequence of inputs
from all available variables. Selected data is input to a neural network
trained with backpropagation with momentum. The prediction goal is
the next day’s closing value of German stock market index DAX with
consideration of Korean and USA stock markets’ indexes. The prediction
is performed within a tight time-window in order to protect the model
against changing relationships between variables. For each time-window
the best neural network is evolved and applied. The evaluation is re-
peated for every time-window in order to discover a new set of proper
input variables.

1 Introduction

Despite a lot of effort that has already been devoted to financial time series
predictions based on various techniques (e.g. mathematical models [1], support
vector machines [2, 3], neural networks [4–6]) or the use of genetically developed
prediction rules [7] prediction of a stock market index remains an uneasy goal.
The main reason of the complexity of this task is the lack of the autocorrelation
of an index value changes even in a period of one day [8]. Moreover, the insta-
bility of prediction is increased by the influence of non-measurable incidents like
economic or political situation, catastrophe or war that may change the value
of stock market index [8]. The other problem concerns proper selection of in-
put variables that are taken into account in the prediction process. Although
there exist some general practice which supports selection of inputs (financial
indicators) [7] proper choice of this data remains a challenge for both human
and artificial agents. This issue, in our opinion, is one of the impediments in
building efficient financial prediction systems. The idea of how to approach this
problem presented in the paper relies on defining short-term suboptimal sets of
inputs which are changing in time based on the repeatable application of genetic
optimization procedure.

This paper is a continuation of our prior work [9] where the efficacy of a large
modular neural network was examined. Here we propose a different approach



relying on the use of genetic algorithm and simple neural network for short
history based learning. The role of genetic algorithm is to make pre-selection of
input variables for further neural network learning.

In the next sections the data pre-processing method and genetic algorithm
for selecting input variables are described in detail. Finally, based on the above
two steps the final prediction system is created and tested.

2 Data pre-processing

The data was collected on a daily basis. For each day the sample was composed
of the date, the opening, the closing, the highest and the lowest values1.

Having values of a stock market index statistical variables were calculated:
percentage changes in different periods and weighted moving averages for dif-
ferent periods. The closer look at these variables can by found in [9]. Finally
technical analysis data was evaluated. Eight different oscillators [10] were cal-
culated: MACD, Williams, Impet, Rate of Change, RSI, Stochastic Oscillator,
Fast Stochastic Oscillator, 2 Averages.

Moreover patterns known in technical analysis [10] were extracted. An ex-
traction is based on an analysis of the shape of the chart of the index value.
In the technical analysis theory these patterns forecast change or continuation
of a trend. Information about patterns and signals of trend changes generated
according to them were also included in the learning data as “struct” and “ type
of struct”

All “buy” signals were coded as 0.8 value and all “sell” signals as −0.8. In-
formation about signal was copied into samples through the next 5 days with
values linearly decreasing in time. It was done to prevent the existence of too
many samples with no signal value. Anyway, in practice, the signal is usually
correct during the next few days after its appearance. Signals were cumulated
when appeared more than once in a single record. All above data was generated
for three stock markets from different continents: KOSPI, DJIA, DAX and for
the rate of exchange USD to JPY and EUR to USD. After all the above calcu-
lations 2 420 records were created covering dates 1995/01/31 – 2004/09/02. In
the experiment the last 200 records out of the above number were selected for
prediction. A single prediction was done with time-window of 150 records. The
first 140 records were learning records. The next 5 records constituted validation
set. The last 5 records were the test samples (and were not used in the training
phase). The stopping condition in genetic algorithm depended on the number
of training epochs, a diversity of the population, and the number of training
epochs without finding the new best chromosome. The stopping condition in
neural networks’ learning depended on either the number of iterations or the
increasing of prediction error on validation set.

1 Unfortunately the volume values were not available to us.



3 System architecture

Generally speaking the proposed idea of building the short-term prediction sys-
tem is to initially provide a large number of different variables and then
select the locally suboptimal set of variables as the input data for a
small ensemble of simple neural networks.

Hence, after pre-processing of raw data described in the previous section the
autocorrelation matrix R of input vectors was calculated:

R =
1
n

n∑

i=0

xix
T
i (1)

where n is the number of all available input vectors xi. The higher value in
the matrix, the higher correlation of trends between corresponding variables
in a vector. Using this matrix it is possible to find variables correlated with
predicted variable. Based on this method 10% − 20% of all variables (the ones
with correlation no less than 50% of maximum and 200% of average correlation)
were initially selected for further steps. Furthermore, all variables from the target
stock market were also added to the initial selection. These pre-selected input
variables were available for genetic algorithm. Chromosomes coded the list of
input variables of the final neural networks. The number of variables coded by
a single chromosome was between 4 and 7. The number of hidden layers was set
to 1 for all neural architectures.

In the genetic algorithm the first variable coded by each chromosome was
forced to be the last available value of predicted variable (i.e. change of DAX
closing value of the previous day). This data obviously seems to be crucial for
prediction and therefore we’ve decided that it would always appear in the initial
set of neural networks’ input variables.

The crossover depends on the common parts of two parent chromosomes
and random selection of the rest of variables. Two children are created as a re-
sult. During mutation variables coded by one chromosome are exchanged with
randomly selected variables of all available ones. In each step of the algorithm
the mutation can affect only one randomly selected variable, with some muta-
tion probability (the detailed description follows). Selection of chromosomes for
crossover was done by the rank method. Parents were exchanged with children
only if the latter were better fitted. The fitness was calculated based on the
results of training of the neural network coded by a chromosome. The smaller
error on validation samples, the higher fitness of a chromosome. The fitness was
calculated using the average prediction error of 3 neural networks (corresponding
to the coded architecture) with random initial weights.

It is important to note, that in the initial set of randomly generated chromo-
somes almost all coded neural networks were unable to learn efficiently. Because
of the lack of coherence between input variables the error value did not decreased
during learning process. Such chromosomes were called not-alive. Chromosomes
which coded networks with ability to learn efficiently were called alive. For both



types of chromosomes the probability of crossover was equal to 1. The probabil-
ity of mutation depended on a current situation in a population. If there were
any not-alive chromosomes the mutation affected only them with probability 1.
If more than 90% of chromosomes were alive the mutation was done with prob-
ability 0.05 for alive chromosomes. The reason of such behavior was a necessity
to preserve alive chromosomes.

After 300 iterations of genetic algorithm the best chromosome from all iter-
ations was selected for the last step.

After the last iteration of genetic algorithm the specific brute force method
was applied. Every variable coded by the best chromosome was sequentially (one
at a time) changed by mutation and the fitness of a modified chromosome was
calculated. Note, that also the first variable which was not allowed to change in
the genetic algorithm could be impacted by this procedure.

Three instances of the network architecture coded by the best chromosome
were then trained, each with randomly selected initial weights. Training in this
step and during the genetic algorithm was performed with backpropagation with
momentum. The input data was normalized and scaled to the range (−1, 1). In
all neurons sigmoidal activation function was used. Initially, all weights in the
network were randomly chosen from the range (−0.01, 0.01).

4 Experiment set-up

Ten experiments were performed in order to present usefulness of the above ap-
proach for prediction task in a short period of time. In each experiment learning
and validation were based on 140 and 5 days (samples), resp. The test data was
the following 5 days. Large part of the data was shared between experiments
since in subsequent ones the time-window was shifted by 5 days forward (test
samples from immediately previous experiment became validation ones and val-
idation samples became the last part of the training days). Each experiment was
repeated 10 times on disjunctive 5-day test records, as described above. Hence,
the model was tested on the period of 50 days in total.

In the following discussion of results variables denoted by value O, value C,
value H and value L denote open, close, highest and lowest values of a given day,
resp.; change O (%), change C (%) - change of resp. open, close values in per
cent within one day; mov avg n - moving average for n days; n days change (%)
- change in per cent of open value in the period on n days; DAY NO - day of the
week one day before prediction. The rest of the indicators (e.g. pattern, MACD
signal line, WILLIAMS buy/sell signal, ROC n, RSI n, etc. are self-explained
and denote popular technical analysis oscillators and signals [10].

5 Results

The goal of each day’s prediction was the percentage change of closing value of
DAX index. In each experiment, first an average error of prediction and corre-
sponding average change of index value (volatility) are presented. More precisely



avg.err. = 1
10

i=10∑
i=1

∣∣∣(volatilityi
correct − volatilityi

prediction)
∣∣∣

where volatility means percentage change of an index value of the i-th sample.
While the prediction task was a percentage change of an index value, we can
compute an error as a difference between real and predicted change. Suppose
that the prediction is always “no change”. In that case the error would be the
same as the volatility of an index value.

The errors are followed by description of variables - each description is of the
form [stock market; variable name; connection], where stock market can be ei-
ther Target (i.e DAX), DJIA, KOSPI, USD/JPY or EUR/USD and each of the
above can be calculated for any of the t−n last days n = 0, ..., 5. variable name
describes the actual indicator (being either an oscillator, or signal, or numerical
value, ...). Finally connection provides the information about the occurrence of
variable name in other experiments - this way some dependencies between vari-
ables in different periods are presented (in case of no such dependencies the sign
“X” is placed in this field). Moreover the phrase (sim.) following the exp. number
means that the meaning of the selected variables is almost the same (e.g. the
average value of the past 20 days is almost the same for today and yesterday).
Finally, the number after the variable name (e.g. ROC 5) indicates oscillator’s
parameter. Furthermore information about source of chromosome is provided:
‘GA’ if it came directly from genetic algorithm, ‘BF’ if it was improved by the
brute force method mentioned in section 3. It’s interesting to note that 5 out of
10 best chromosomes were not improved by brute force algorithm, which means
that they were ‘locally optimal’.

exp. 1; avg.err. 0, 00820; avg. volatility 0, 00828; source: GA
[target dax [t]; close change (%); exp.1,3,4,6,7,8,9,10]
[target dax [t]; value o; sim.exp.2, sim.exp.9]
[eur/usd [t]; impet 20; x]
[target dax [t-5]; roc 5; sim.exp.2]
[eur/usd [t]; value l; x]
[eur/usd [t]; close change (%); x]

exp. 2; avg.err. 0, 00574, avg. volatility 0, 00483; source: BF
[eur/usd [t]; so; x]
[target dax [t-5]; close change (%); x]
[djia [t]; rsi 5; exp.9]
[target dax [t]; so; exp.5, sim.exp.6, exp.10]
[target dax [t-1]; roc 5; sim.exp.1, sim.exp.7]
[djia [t]; close change (%); exp.4, exp.8, exp.9]
[target dax [t]; value h; sim.exp.1, sim.exp.9]



exp. 3; avg.err. 0, 00532, avg. volatility 0, 00541; source: GA
[target dax [t]; close change (%); exp.1,3,4,6,7,8,9,10]
[target dax [t]; impet 5; exp.5, sim.exp.10]
[djia [t]; 5 days change (%); exp.4]
[target dax [t-1]; close change (%); x]
[target dax [t]; 2 avg’s buy/sell signal; exp.7]
[usd/jpy [t]; 20 days change (%); x]

exp. 4; avg.err. 0, 00501, avg. volatility 0, 00555; source: GA
[target dax [t]; close change (%); exp.1,3,4,6,7,8,9,10]
[target dax [t-1]; 20 days change (%); exp.5, sim.exp.10]
[djia [t]; close change (%); exp.2, exp.8, exp.9]
[usd/jpy [t]; williams; x]
[djia [t]; 5 days change (%); exp.3]
[target dax [t]; change o(%); x]

exp. 5; avg.err. 0, 00875, avg. volatility 0, 00912; source: BF
[target dax [t-1]; 20 days change (%); exp.4]
[kospi [t]; so; x] - [djia [t]; impet 10; sim.exp.10]
[target dax [t]; impet 20; exp.10] - [target dax [t]; impet 5; exp.3]
[target dax [t]; so; exp.2, exp.10] - [target dax [t-5]; macd; x]

exp. 6; avg.err. 0, 00922, avg. volatility 0, 01052; source: GA
[target dax [t]; close change (%); exp.1,3,4,6,7,8,9,10]
[djia [t]; so; x] - [kospi [t]; impet 5; x]
[target dax [t]; roc 10; sim.exp.2, sim.exp.7]
[target dax [t-2]; rsi 5; x] - [target dax [t]; fso; sim.exp.2, sim.exp.10]
[target dax [t]; mov avg 10; sim.exp.8]

exp. 7; avg.err. 0, 00578, avg. volatility 0, 00579; source: GA
[target dax [t]; close change (%); exp.1,3,4,6,7,8,9,10]
[target dax [t]; roc 5; sim.exp.2, sim.exp.7]
[target dax [t]; 5 days change; x]
[target dax [t]; 2 avg’s buy/sell signal; exp.3]
[target dax [t]; macd signal line; exp.9, sim.exp.10]
[usd/jpy; williams buy/sell signal; x]

exp. 8; avg.err. 0, 01151, avg. volatility 0, 01231; source:BF
[target dax [t]; close change (%); exp.1,3,4,6,7,8,9,10]
[target dax [t-3]; so; sim.exp.10]
[target dax [t]; type of pattern; sim.exp.9]
[target dax [t-4]; value o; x]
[usd/jpy [t]; macd; x] - [djta [t]; close change (%); exp.2, exp.4, exp.9]
[target dax [t]; mov avg 20; sim.exp.6]



exp. 9; avg.err. 0, 00488, avg. volatility 0, 00513; source:BF
[target dax [t]; close change (%); exp.1,3,4,6,7,8,9,10]
[target dax [t]; rsi 5; exp.2]
[djta [t]; williams; x]
[target dax [t]; pattern; sim.exp.8]
[target dax [t]; value l; sim.exp.1, sim.exp.2]
[target dax [t]; macd signal line; exp.7, sim.exp.10]
[djta [t]; close change (%); exp.2, exp.4, exp.8]

exp. 10; avg.err. 0, 00642591, avg. volatility 0, 00706417; source:BF
[target dax [t]; close change (%); exp.1,3,4,6,7,8,9,10]
[target dax [t]; so; exp.2, exp.5, sim.exp.6, sim.exp.8]
[target dax [t-2]; 20 days change (%); sim.exp.4]
[djta [t]; impet 5; sim.exp.5]
[target dax [t-3]; Williams buy/sell signal; x]
[target dax [t-1]; macd signal line; sim.exp.9, sim.exp.7, sim.exp.9]
[target dax [t]; impet 20; sim.exp.3, exp.5]

6 Conclusions and directions for future research

In 9 out of 10 experiments the average error is smaller than volatility of test sam-
ples. In majority of (independent) tests several similarities between the choices
of input variables in subsequent experiments are discovered. For example the
Stochastic Oscillator or its extended version (FSO) for the target stock market
DAX repeats as an input in experiments 2, 5, 6, 8, 10. Also inputs from stock
market DJIA repeat in several experiments. Close change (%) from DJIA is
chosen in experiments 2, 4, 8 and 9.

This implies that the evolutionary-based input variable selection and the
choice of network’s architecture are reasonable. Since the exactness of any fi-
nancial indicator (oscillator, signal, etc.) varies in time, having some indicators
shared between subsequent experiments is an expected and promising feature.
Certainly, in each experiment some number of new variables is also expected to
appear and replace the “used” and “not adequate” ones.

Since the mechanism of selecting input variables works quite tempting, the
main future goal is to improve the exactness of the fitness function in genetic
algorithm and the learning process of the final neural network, which should
result in further decreasing of the error value.

Since many variables available for genetic algorithm are very similar to each
other in their meaning and numerical properties another direction for future
research is to introduce some kind of penalty for the algorithm for selecting
similar variables.



References

1. Lajbcygier, P.: Improving option pricing with the product constrained hybrid
neural network. IEEE Transactions on Neural Networks 15 (2004) 465–476

2. Cao, L., Tay, F.: Support vector machine with adaptive parameters in financial
time series forecasting. IEEE Transactions on Neural Networks 14 (2003) 1506–
1518

3. Gestel, T., Suykens, J., Baestaens, D.E., Lambrechts, A., Lanckriet, G., Vandaele,
B., Moor, B.D., Vandewalle, J.: Financial time series prediction using least squares
support vector machnies within the evidence framework. IEEE Transactions on
Neural Networks 12 (2001) 809–820

4. Podding, T., Rehkegler, H.: A “world” model of integrated financial markets using
artificial neural networks. Neurocomputing 10 (1996) 251–273

5. Kodogiannis, V., Lolis, A.: Forecasting financial time series using neural network
and fuzzy system-based techniques. Neural Computing & Applications 11 (2002)
90–102

6. Tino, P., Schittenkopf, C., Dorffner, G.: Financial volatility trading using recurrent
neural networks. IEEE Transactions on Neural Networks 12 (2001) 865–874

7. Dempster, M., Payne, T., Romahi, Y., Thompson, G.: Computational learning
techniques for intraday fx trading using popular technical indicators. IEEE Trans-
actions on Neural Networks 12 (2001) 744–754

8. Mantegna, R., Stanley, E.: An Introduction to Econophysics. Correlations and
Complexity in Finance. Cambridge University Press (2000)

9. Jaruszewicz, M., Mańdziuk, J.: One day prediction of nikkei index considering
information from other stock markets. L. Rutkowski et al. (Ed.), ICAISC, Lect.
Notes in Art. Int. 3070 (2004) 1130–1135

10. Murphy, J.: Technical Analysis of the Financial Markets. New York Institiute of
Finance (1999)


