
+.—-—— ——-—— .—— — —-—.—— ........ .

Probabilistic Segmentation of Volume Data for Visualization Using
SOM-PNN Classifier
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Abstiact
W’e present a new probtilfisdc cl=-fier, ded SOM-PNN
class-tier, for volume data class-fi~on md ~om The
new classifier produces probabilistic cl=-fication with Bayesian
cofidenu measure which is hi@y desirable in volume rendering
Based on the SOM map traind with a large training data set our
SOM-P~ classifier performs the probabiic classification
using the PNN rdgoriti This combmed use of SOhf and PNN
overcomes the shortcomings of the parametric methob the non-
p~etric methoa and the SOhI method The proposed SOM-
P~ classifier has been used to segment the CT sloth data and the
20 human h~ brain volumes retiting in much more informative
3D rendering with more deti and less *ts than other
methods. Nurnerid comparisons demonstrate that the SOM-PNN
classifier is a ~ accurate and probtil~c cl-er for volume
rendering.
CR Categories and Subject Dwcriptors: L4.6 me
Processing md Computer Viion]: Segmention - Piiel
Classticatioq L5.I Pattern Ra@tion]: Modek - Neurrd NeK.
Additional Keywords medicrd image seqentatiom multisde,
wavelet transfom SOhL pm, sohf-p~ cl=s-fier, 3D vol~e
rendering

1 INTRODUCTION
SegmentadoL or Class-ficatiou is defid as dividing a data set
into components with distincti}re characteristics. hfany methods
have bwn developed for CT or h~ images segrnentatiom
including tisticd segmentation [15], model-based methods [n,
snake methods [S] and the neti network approaches [6,13].

However, few of these classtiers produce probabilistic
classtication, which is highly desirable in volume rendering [4].

Tradhiondly, mixture models are often used for data
segmentation in volume rendering [2,4]. h these models, voxels
are modeled as compositions of one or more materials. Different
materird attributes, such as the light intensity and transparency,
are determined by the percentages of constituent materials. Thus
in this setting probtillistic classifiers are more desirable than rdl-
or-none methods in reducing artifacts in rendering. Classification
is given in terms of the percentage of each material from the
original dak

For each voxel in the volume data reprwented by a d

dimension f-e vector x = Rd, the percentage of materird i
in this voxel is determined by the posterior probability

p(xli)
p(ilx) = ~

~p(xlk)
(1)

k=]

where p(x] k) is the class condition probabili& density of

materhd k of the voxel x and K is the toti number of classes [4].
b practice, there are many ways to estimate the probability

density fictions, such as parametric methods, non-parmnetric
methods and semi-parametric methods [1]. The parametric
approach assumes a spectic form of the density fiction, usually
the norrnrd ditibutioq with a number of parametem to be
op=d by fitting the model to the data seL Maximum
Weriood ~) method is usually used to fid the optimal vducs
of the parameters. For an image pixel represented by d

dimension feature vector x = Rd, the normrdly distributed
densi~ fiction is

{-;(X-P)TZ-’(X-P)}
‘(x) = (2z)~:214~2 e

with parameters {p, X} , where P is the d dimension mean
,,

vector and x is the dxd covariance mati The parameters are

estimated as

;=+$x. (3)
n

N

z= +Z(xn –;)(X. -j)T (4) ,
n=l

{ }given adataset X= x1,~2,’..,xN .

~ough W method is straightforward and easy to implemen~
tie particulm form of the density functions chosen might be
incapable of providing a precise representation of the true density.
k con- non-pmetric estimation does not assume a
particulm fictional foq but rdlows the density function to be
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determined entirely by the data [14]. Such methods typidly
tier horn the drawbacks of r-g dl the data points to be
stored and the slow spd of evrduating a new data point k tie
semi-pammetic metho& a me distribution is used to estimate
the densi~ function. h the W-e distriiutio~ the density
tiction is @ formal born a ~m= combination of basis
tictios whereas the number of basis functions is a parameter of
tie model itse~ and can be varied independently from the size of
the data set A gened class of tictiond forms is *O dewed as
in the non-parametric metho~ The E~ectation-h~on
@h~ method is an e=ple of the semi-pammetric method [1].
However, for -h class, in addition to esdmatm“ga setof
parameters iteratively, the number of the basis tictions has to be
determined in advance. This raises another problem which has to
be solved exTetienM1y.

h this paper, we propose a hybrid classfier, the SOM-P~
classfier in which the densi~ function is ~ simply by the
com~mation of the se~-oreg map (SOW [9] and the
probtil~ic ned network ~~ [11,12]. The SOM map is
trained with a tminiig set W The Pm algorithm is then tied
out based on the SOM map traind k addition to the gened
form of density fictions achieve~ the number of the kernel
tictions used in Pm is independent of the training set and
much fewer than tie number of data poin~ This makes the
estimadon of the probtilfig density fictions much easier and
fnster.

Feature \7ectora play an important role in statistid pattern
ragnitiom According to the sale-space theory [~, Gaussian
and dl its ptid derivatives form a complete operator My of
an irnoge. W’eadopt this idea and form our f-e vmtor in the
proposed SOM-P~ classtier using the mtitistie technique
based onthewavelet tiorm [3], as descri%d byhfdlat [10].

~~e apply our method to sloth CT data and h~ human brain
volume data classification The probabiidy classified
volumes are rendered with the direct volume rendering technique
[lq. h botb w+ higher qtilty rendered images and better
numencrd re~ts have been achieved with the SOM-P~
classtier than with other methods.

The remainder of ti paper is organized as fo~ows. Swtion 2
gives the backgound of mtitisde image structure and wavelet
tiorrn. Section 3 presents the Pm, SOhI rdgorhhms and our
new SOM-P~ classfier. fiTerimentation redts and
conclusions are given in Sections 4 and 5 respecti~rely.

2 MULTISCALE IMAGE FEATURE
VECTOR ~RACTION USING WAVELET
TWNSFORM
It hos been shown that the ody operator fkrnily s-g the
nti front-end *ion constraints of ~meari~, s~ varianw,
rotation vtianc% and sde invariance is the bsian and W its
pardd derivatives [~. This operator Wy provides a complete
representation of image structure. For tw-ensiond hnage%
the five irreducible invariant of up to second order derivatives
can be represented using tensor notations

{L, L,L,, L”, L,LOLJ,L,LJJ (5)

where L is the image intensity, L&j the squared norm of the
gradieng and L,, the Laplacian of the image. It has been shown
that the segmentation of intensiv images can be done using ody
the zero and fist derivatives of tie Gaussi~ wtie the second
order derivatives are useti when d~g with te= images [q.
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The nmnerid dculation of these elements can be performed
with the type of wavelet transform described by Mdlat [10] when
the Gaussian is used as the smoothiig function in the wavelet
transfom For each pkel in the irn@e, our feature vector is then
formed by 9 components: the original intensity value, the
smoothed intensiv value and the gradient magnitude of the
smoothed images from scale 1 to scale 4 by following Wls idea
Let

be the ddation of tbe smoothiig function O(x,y) at sdes. The

two wavelet fictions are
de(x,y)

y’(x,y) = ~

m(x,y)
y’(x,y) =

@
(?

The dilations of tie wavelet functions at sties are

(8)

The wavelet transform of the image, ~(x,y), at scales has two

components

w,lf(x,y) = f * y: (X,y)

W=’f (X,y) = f * y:(x,y) (9)

Sinw

= SVU* ~.)(x,Y) > (lo)

tie image @lent magnitude at sdes is

[~’f (X,y)lz +Iyzf (X,y)tz (11)

Hence, for each pkel in the image, its smoothed intensity value
and the gradient magnitude of the image smoothed at each scrde
are obtained dwecfly from the discrete wavelet transform.

3 PNN, SOM ALGORITHMS AND THE NEW
SOM-PNN CLASSIFIER

3.1 The PNN Algorithm
The probtilfistic neti networh or Pm, is originated from
P-n’s probtilli~ density estimator [11,12]. For a given data
set X+{xl,~,...,xN}, theParzendensity functionestimatoris

(12)

where Xn = Rd, G is the kernel function and c tie scale factor.

The kernel fiction often takes the tiussian type
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G(x) = 2 - B~~ on tie condition pmb~fi~

(27) dJ2 e

density function estimated us”mg(12), a ~ven sample x win be
classified as class i if P(X] i) > p(xlj) ford classes j #j.

Dfierent values of sde titer o lead to @erent
classification petiorman= We fo~ow the id= in [11,12] to find
the optimal 0. F@ tie performance score of the Pm classfier
with a given G is determined by the cross-vflldation method h
the process of cross-vrdidatio% each -g smple is tempotiy
removed from tie training set and used as the test sample. The
remaining training data is then used in the Pm classfier to
clnssify tis test sample. H the sample is corrdy class-tied the
performance score is increased by 1. Repeat this procedure ford
tie -g -Ies go give the find score. FinMy, a one
dimension heuristi~y search is petiormed to fid the optimal
c with the lnrgest performance score.

3.2 The SOM Algoritim
me ~dard Kohonen map [9] is a useti tool for clustering
topologicrdly or-g and subspace mapping h most cases,
the topology of the SOhfisa two dirnensiomd lattice of neurons,
=h of which is associated with a reference vector connected to

m input ht x = Ra be the input data vector and m* c Rd be the

reference vector of map node ~ The input data vector is compared

with dl the m, in a metri~ such as the EucHd- distanw. The

node with its reference vector yielding the minimum distance to x
is selected as the winner nod~ si~ed by subscript c, i.e.,

l~-m=ll=+{ll~-m,ll}, i=lz,---,u (13)

where Jlis the toti number ofnodes.
During the learning process, the referenm vector associated

with each node is updated whh the same input x(t) in the

following way
m,(t + I) = m,(t) + h. (t)[x(~)– m,(~)1 (14)

~vhere t is the discrete-time coordinate and hd (t) is the

neighborhood kernel. The neighborhood kernel here adopts the
Oaussian type

[1h.(t) = a(t). eq -
I]rc-Zlr

202 (t)
(15)

where the width of the kernel a(t) and the lag* ~(t)

me monotonicrdly decrming tictions of time, and q is the two

dirnensionrd coordinates ofnode i in the lattice.

3.3 The Hybrid SOM-PNN Classifier
me tradition Pm rdgorhhrn descriied above uses dl the
samples in the timg set to ehate the probability density
fictions and perform classification k image segmentatio~ a
-g set often comprises a large number of samples and the
evaluation of a new sample is very slow for such a large training
set On the other han~ data in the training set is not noise free and
if the tradition~ Pm dgorhhrn is used don% the classtication
may be *-wted by the noise.

We propose a SOM-PN classfier to overcome the ~cdties
of the tradition Pm dgonti b the SOh4-P~ classifier,
reference vectors from each class of the trained SOM map, instead

of the originrd training samples of a large she, are used to
estimate the probtillig density function. Suppose that the tied
SOM map has Nk nodes for materhd with label k and the

corresponding reference vectors are m}, i = 1, 2, . . .. N1, the

probtilfity density fiction ofmaterid k is then estimated by

(16)

Having obtained the estimated probability density of each
material, the probabilistic classification are obtained using
formula (l).

Our hybrid approach as described in tils section has the
following advantages. F- through the use of SOM, the Pm
algorithm is relaed of the burden of having to proms a large
S* training se~ Secon& since the trained SOM map serves as a
good representative of the training samples, its use makes the
Pm classfier more robust M the presence of noise data in the
original trainiig set Ftiemore, the probabilistic classification,
which is highly d~irable for visudimtion but cannot be obtained
with SOM rdone, is achieved naturally in Pm. Finrdly, the
wmbination of SOM and Pm determines the number of basis
functions in the model automatically and simplifies the process of
probability density estimation as compared with the EM method
[1]. The procedures of our rdgorithm me shown in Fig. 1.

Step 1: SOM trainiig

trainiig set SOM map

Step 2 Pm classtication

SOM map obtained in step 1

I

fig. 1. Dagram of SOM-PNN classifier.

4 =PERIMENT RESULTS
The proposed SOM-P~ classfier has been built for classing
both CT sloth volume data and W human brain volume dak
For dtierent kinds of volume daw we apply different strategies in
choosing the f=ture vectors to achieve the best segmentations.
Compared to the brain volumes, the ~ sloth data is less
complicated anatomicrdly. The intensity contrast of image pkels
in ~ sloth data is dso higher than that in MR brain volumes.
Moreover, the phenomena of intensiv inhomogeneities in ~ data
are much less apparent than in MR dam To achieve fast ad
accurate segmentations, for each pkel, we use only the originrd
intensity value and its gradient magnitude at scale 1 to form the
f-e vector. Adding more components into the ftiture vector in
this case would not improve the performacc of the classifier, and
would m&e the algorithm less efficient However, for the
segmentation of more complicated MR brain data to be addressed
in the second subsection, we will have to use the complete 9
components f~ture vector for each pkel as described in Section 2
to get better results.
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4.1 Sloti CT Volume Classification
The dimensions of the ~ sloth data are 128x128x128 with each
voxel haling 256 gray Ievek. The task is to segment each voxel in
tie & set as a composition of four class= air, m soft tissue,
‘andbone.

Fti. 23643 phek of ~erent classes were hand-picked from
24 evdy spaced sficcs in the volume & According to their
intensity levels these pixels were labeIed mandy. N these
23643 feature vectors together with their labek form the training
seL me SOhl with dimensions of 7x11 is set up and trained as
destibed in Section 3.2. By the cross-vfildation method (see
Section 3.1). the optimal sde tier o is determined to be 0.45.
fien tie SOM-PNN classifier is appfied to ah sfice of the ~
I’olume.

For compariso% the h~ classfier and the Pm rdgorithm were
implemented with the same training set The SOM map obtained
above was dso used to classfi tie ~ volume as a separate
classtier. Fig. 2 (a) is one Originrdstice image. Its classifications
with these four classifiers are shown as Fig. 2 @) to Fig. 2 (e). b
tiese image 4 increasing gray levels are assigned to air, @ sofi
tisme, and bone pixels. For the probtilfistic classifie~ the gray
level of a p~~el in tie classfied images is the avemgd vrdue of
four matends with classified probabilities.

●um
(a) (c)

❑R
(d) (e)

fig. 2.The original slice image (a) and the
classifications wifi the SOM-PNN (b), ML (c),

PNN {d) and SOM (e) classifier respectively.

To test tie perfomanm of diffment classifiers, two test sets are
selatei Test set 1 consists of 930 sofi tissue pixek which are
located near to tie bone in Fig. 2 (a). Test set 2 consists of 696
bone pisels in the ssme image without special consideration The
two sets ~vereused to t- tie classifiers’ abiity to distinguish the
surrounding =eas of the bone and the bone itseK For pixel A let

tie clasfied probtilfities be Pa = {~,, ~,,---, Rx} and the
——

manually lAeIcd Frobtilfities be ~ = {Pn,, P.,,- --,~}, the

correct classtication rate of the test set is defid as

P-:a =l-;, (13

(18)
n=l j=l ‘ /1

where K is the number of materkds to be classified and N the
number of voxels in the test set Table 1 lists the results.

Table 1 Correct rate of the data sets with
different classifiers

SOM-PNN m Pm SOM
training set 97.97 97.89 97.85 98.52

test set 1 83.99 66.44 78.56 83.65
test set 2 74.17 74.81 73.36 55.17

Comparing Fig. 2 (c) with Fig. 2 (a), we might conclude that
the ~ method over-segmented the bone pixels in the image. This
agre~ with the low correct rate of test set 1 and high mrrect rate
of test set 2 with the ~ method in Table 1. It can dso been seen
horn Fig. 2 (e) that bone pixels with low intensity level are not
correctiy classfied with the SOM classifier which accords with
the very low correct rate of test set 2 with the SOM classifier. For *
the three data sets, the SOM-P~ classifier outperforms the PNN
classfier due to the clustering abifity of SOM.

Ml the 128 slice images are classified by the above classifiers.
The classified images are stacked together to yield a 3D
probtilhstic classification. On an SGI hdigo2 Maximum
~A~ wor~tion with 195W RIOOOOCPU and 192Mb
memory, the time used to perform the classification of the whole
3D ~ sloth data using the SOM-PNN, ~, PNN and SOM
clmstiers are 241s, 178s, 48524s and 159s, respectively. The
SOM-PNN classifier is about 200 times faster than the PNN
classtier. The signticant improvement in efficiency makes the
proposed SOM-PNN classifier a favorable choice in time-critid
applications, where non-parametric methods would be too slow to
be used. Moreover, the time that Pm classifier takes varies with
~erent trainiig sets, while the time used by the SOM-PNN
classfier is ahnost the same. The training time of the SOM used
in the SOM-PNN classifier is 734s while that of the PNN with the
full training set is more than 20 hours on the same machme.

A direct volume rendering method based on 3D texture
mapping [16] is used to render tie classfied daa The rendered
images of the volumes classified with the SOM-P~, ~, PNN
and SOM classifiers ae shown in Fig. 3, 4, 5 rmd 6, respectively.
k Fig. 4, the front cartilage of the sloth chest is clear and the back
ribs are shown to be connected to the spine. But the qurdity of the
image is severely tiectcd by the bone noise. h con- the
SOM-PNN classifier achieves stillar classification of the bone
with much less noise as shown in Fig. 3. h Fig. 5, where Pm
rdone is us~ the image quality is dso badly affected by the noise
due to the noise sample in the trainiig set Finally, in Fig. 6, the
front tilage disappears entirely and the back ribs are shown to
be disconnected to the spine with the SOM classifier.

me above results show that the proposed SOM-P~ classifier
works very well in the ~ sloth data classification. Nurnericrdly it
produces nearly the highest ovedl correct rate for different test
sets. The efficiency improvement is rdso siguifican~ From visurd
inspections, the SOM-P~ clmsfier segments the volume data
with least noise. Compared to the SOM cIasstier used in the
literature, the segmentation produced using the SOM-PNN
classifier revds anatomidly more meaningful structures.
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4.2 Human Brain Classification
~’~&SOapp~ed the SOhI-P~ classfier to human brain data
se-mention. The bra volumes are the 20 nod brain volume
data sets provided by the titemet Brain Segmentation Reposito~
(BSR)l [In. The dimensions of these coronal three~ensionrd
T1-~vei-@ted spoiIed pent echo h~ data range from
2j6x2j6x51 to 2j6Q56x61. Al the volumes have been
positiondly norm~ed by imposing a adard tbree~ension~
br~ coordinate ~~en hianti segmentation is rdso avtiahle
from tie same source [In, w’hich is obtained \viti semi-
autommed segmention algorithms.

These brain ~’oImnes ore to be segmented into three classe~
Cerebra Spired Fluid (CSF), gray matter (Gh~ and \vtite matter
ml~. For cnse 112_2, to apply our metho~ 16763 brain pixels
oftiese tie? clnsses from sfice 35 and stice 36 of the volume are
seIected as the training seL To precisely segment the complicated
bra .-ctures in the lo~v intensity contrast imagey multisde
feature vectors tvhh the complete 9 components described in
Section 2 are exti3cti using the lvnvelet tiorm The SOM
mzp ~~ithdimensions of 13x 11 is then established and trained as
described in Section 4.1. The correct rate of the training set is
90.S7?6. The optimal sde fictor 5 found using the cross-
~Jltion method is 0.13. Then the SOhf-P~ classtier is
appfied tO e~h scan of the ~vhole data set to field a 3D
se-mention. A threshold \7~ue of 20 is set to separate air pixels
horn kraa pixels. E3ch pixel lvith the intensity value greater than
20 is clmfied into the probtil~ic composition of CSF, gray
m=r and v;hite mntter ~vith the SOhI-P~ classifier. As in
Section 4.1, the hfi. Pm nnd SOhI classifiers \vere implemented
~~ith the selected training set and used to se~ent tie same
voluma h -h se.gmentatiom no post-processing is performd
Fig. 7 (a) is an onginrd brain scnn (sfice 21), Fig. 7 @) is the
manual segmentation. The segmentations using the SOM-P~,
h~, PNW and SOhl classifiers of the same brain sw are
presen~d os Fig. 7 (c)to Fig. 7 (~. The gray Ievek of air, CSF,
.gmymatter and \vhite matter are assigned in an increasing order.
As hefor% the coIor of each fid p~xel is the average of tie 3
closses’ colors \vei@ted ~viththe class-tied percentages.

From Fig. 7, it cnn be seen thti the SOhI-P~ classfier
achreves better segmentation compared to the marmd
se.gmention. As shoi~min Fig. 7 (e), the Pm algorithm using
the oti.gind training set retits a segmentation stim to tie one
obtained Tvith the SOhI-P~ classifier. h Fig. 7 (d), the h~
clustier produces good segmentation in the upper part of the
brain but CSF ficts nre produced in the bottom boundary of
tie train. hforeover, due to the e%ence of intra-sm
inhomogeneities of tie brain p~~el intensity, the ~vhite matter in
tie lo~verpti of tie bmin is under-segmented compared ~viththe
SOhl-P~ class~ed segmentation & seen in Fig 7 (~, the
~vhitematter in the lo~verpti of the brain is largely lost due to
non-prob~i~ic ch=cteristic of tie SOhI classtier. Atiough
tie problems ~~iti inter- and intra-scan inhomogeneities are not
dedt tvith in tils pzper, the proposed SOhl-P~ classifieryields
r-or~le se-mention despite these artifacts.

Cl=ified stices are stacked together to yield a 3D

] The 20 normal h~ brain &to sets and tieir manurd
se~entations tvere provided by the Center for

hforphometric Adysis at Mussachuseti Geneti Hospitsd
and ze av~able at httpY/neuro-

i\~\n\7.m@.hm7tidedticmtilbm.

segmentation. The time used to segment this volume \vith the
SOhf-P~, SO~ ~ and Pm classtier is 158s, 134s, 63s and
14470s respectively. Again significant improvement of efficiency
is achieved Ivith the SOM-P~ classifier compared tith the
original Pm algorithm. The classified volumes are rendered ~vith
textie mapping hard~vare. h Fig. 8, the five rendered volumes
are cfipped corondly \viti the same vie~vpointmd clipping depth.
k these images, the colors assigned to gray matter, \vhite matter
and CSF are r~ ~vhite and ~een respectively. From visual
inspection the SOM-P~ classifier, the Pm classifier and the
h~ classtier yield similar segmentations of gray matter and \vhite
matter in the upper pti of the brain. The ~ clmsifier over-
segments the CSF \vhich leads to the noise in the boundary area of
the brain. k the Io\ver part of the brain, due to the etistence of
intensity inhomogeneities, most of the \vhite matter is lost in the
SOM segmentation. For the other 3 methods, i.e., the ~, Pm,
and SOM-P~, the segmentations obtained \vith the SOM-P~
classifier are closest to the manual segmentation.

(a) (b)

(c) (d)

(e)
fig. 7. The original bwin scan (a), its manual

segmentation (b), the segmentations with the
SOM-PNN (c), ML(d), PNN (e) and SOM (9 classifier

respectively.

For dflerent segmentations, in addition to the visual inspection,
nmnerid metrics are needed to compare them quantitatively. b
tie literature, there are bvo metics often used to compare the
similarity behveen segmentations. One is tie overlap metric [ln
and the other is the percentage of dtierence [15]. For a given
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voxel class assignrnen~ the overlap metric between two
se~entations is defied as the number of voxek that have this
cl= assignment in boti segmentations divided by the number of
voxels where either of the two segmentations has this class
assignment [In. ~ metric approaches 1.0 for retits that are
very stiar and is near 0.0 when they share no stiarly classfied
voxek. The percentage of ~erence between two segmentations
is defined as tie ratio between the number of ~erenfly labeled
pixeh Mithin the region of interest @O~ and the toti number of
pixels ivithin the ROI [lq. The percentage of ~erence measures
tie sirnilarig between two segmentations in the ROI #obdy
w~e the Overlap m-es each classes separately. Nthough
these two metrics yield a reasonable comparison between two
se~entatiow they are not appropriate for comparing
probabiic segmentations because pixel aunting does not
accommodate prob&iEties associti with probabiidy
classtied voxek However, since in the Eterature, many
segrnentadons are ody compared with manti segmentatio~ in
pardctiar the orerlap metric in the ae of the 20 h~ brain
volumes we will dso use this metric to compare our results.

To evaluate a probabi~c segmentation with the overlap
metic, the prob~l~ic re~ts must ~ be mnverted into non-
prob~l~ic ones. To this en~ probabiistidly classified voxek
are labeled as the class with the largest probability. As with the
case 112_2, the other 19 h~ brain volumes are classfied and
tested in the same way. The over~ap values of CSF, gray matter
and white matter are averaged over these 20 normal wes. Table 2
is there-tits and the comparison witi other methods reported in
~SR ~lm. The gray matter overlap metric of ~erent methods
for tie 20 h~ brain volumes is shown in Fig. 9. k Fig. 9, the
sequence of the 20 brain volumes is rou@y arranged by their
Mcdty to be segmenti Some volumes that were acquired
recentiy with more sophisti- h~ machines have better data
qtixties and are Med at tie end of the sequence.

Table 2 Averaged ovedap of 20 normal brain volum~
be~ean automatic segmentations and tie manual

segmentation

methods CSF Ghi Mf
ad~tive hN- 0.069 0.564 0.567
biased hN- 0.071 0.558 0-562
m c-m-s 0.04s 0.473 0.567
h~. 0.071 0.550 0.554
m*urn- 0.062 0.535 0.551
l~elihood
tree-structure I 0.049 0.477 0.571

**4 b& aveqd over 2 exTerts

From Table 2 and Fig 9, it can be seen that the SOhI and
SOhI-P~ classfiem actieve hi@er overlap with the manti
se~entadon than tie other seven methods. For gray matter, the
SOM and SOhf-P~ classfier are at 1- 13% higher than other
methods. The most si@mt improvement is the CSF
segmentation. The CSF overlap of dl methods in ES~ with

rqect to the manual segmentatio~ is below 0.1. The CSF
overlap of our implementation of ~ is only 0.13. However, the
CSF overlap of the SOM-P~ classfier with manual
se~entation and that of the SOM classifiers have achieved 0.3S9
and 0.419 respectively. Besides, as seen in Fig. 9, the performance
of tie SOM and SOM-P~ classfier varim much less
si@candy than other methods, thus consistent classification has
been achieved for these 20 nonnd MR brain volumes. It is not
smprising that the SOM classifier yields better numerid resdts
than the SOM-P~ classifier with the overlap metric because
truncation on the probabilistic classification ofiets the accuracy
of the SOM-P~ classtier.

Since there is a considerable loss of classified information
when mnverting probabilistic segmentation into a non-
probabilistic segmentatio~ to get a more reasonable comparison
between the SOM-P~ classifier md the SOM classfier, we now
propose a generrdked difference ratio metric. For pixel n, let the

probabilities of segmentation A be PnA= {Pn~,Pn~,..-, P;} and

that of segmentation B be ~’ = {~~, Pn~,..., P~} , the

genedied dtierence ratio between A and B is defined as

(19)

where N is the totrd number of voxels in the ROI and K is the
number of materials to be segmented. Here the ROI is the brain
volume without air and K = 3. h the non-probabilistic we, the
genedtid dtierence ratio is reduced to the percentage of
dfierence be~een *O se~entation used in [15].

The dfierence ratios of automatic segmentations and the
manual segmentation for the 20 norrnrd brain volumes are listed in
Table 3. Three automatic segmentations, SOM-P~, SO~ and
~, are compared altogether.

Table 3 Difference ratio of tie 20 normal brain volumes
betieen automatic segmentation

and manual segmen~tion VA)

.- t . ..=- 1
,2 12 01

7s I 13.82I 14.52I 22.23
1103 10.59 I 12.77 I 15.s3

11 3 I 10.02 I

1 1.J4 I 10.OGI
11.04 11.79

.2. d 7.UL 12.27 15.74
123 S.sl 9.74 14.07
133 9.0s 10.97 14.1s
1 24 10.41 13.15 17.5s
2053 9.63 10.00 13.s9

10.s2 15.03
aveme I 13.03I 14.7n lRR?
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From Table 3, it a be seen that the avcragd difference ratio
of tie SOM-PNN clmsfier is 1.6~% lower than that of the SOM
cl=~er. Compared with ML metho~ the SOM-PNN classifier
has a 5.S96 lower difference ratio. hforeover, this refit is quite
promising because in [15], the avemgd ~erenm ratio is about
20Yq though ditTerentdata sets are usd

The experiment rd= in this subsection revd tie superiority
of the SOM-PNW classifier to other automatic classifiers
mentioned above. From 2D and 3D inspection it produ= the
closest images to the manti segmentation. Numeridy, the
SOhI-P~ classifier produws much better re~ts thm the
tradhion~ statistid classtiers with the o~rerlapmetric. According
to tie genedid ~erence ratio metic, it is *O better than the
SOM classfier. Compard with the tradition PNN dgoriti
the SOM-PNN classifier achieves si@cant improvement in
eticiency and the classification accuracy is dso irnprovd

5 CONCLUS1ONS
N’e have proposed a new probabiiic classfier, the SOhf-PNN
class-tier. for medicrd data classification and volume rendering.
The new classfier is a serni-pmetric density esdmator and
produces probtil~istic classification with the Bayesim cofidence
masure. The volumes segmented using the SOM-PNN classfier
reverd anatomidly more meaningful structures than non-
probtilfisdc segrnentatiom Nnrneridly, the SOhl-PNN classtier
is more accurate than other automatic se~entation methods in
both the sloth and the brain ens= me SOhI-PNN clwfier is
dso a M classfier. Based on the noise-free representative
reference vectors providti by SOhL tie SOhI-PNN classfier
segmens the sloti CT data 200 ties -r than the originrd PNN
algorithm.

Essentially, tie SOhI-PNN classfier is an intensity based
cl-er and wi~ lose its power when the inter- and intra-scan
intenshy inhomogeneities present severe problems. However, with
the modem h~ sue~ this problem has been - “ “ d as
inditied by tie low ~erence ratios for the last seved cases in
tie 20 normrd brain data sets. h another aspecc the SOh~-P~
clmsifier needs the semi-automatic segmentation of seved brain
scans -ad the pre-training of the SOhi map as prepro=s-mg steps.
By our exTefien&, segmentation of 2 or 3 scans does not present
as a big bnrdq and tie pre-tig of the SOhI in the SOhI-
P~ classtier can be done in a matter of minutes.

The problem of quantitatively evdnating probabiiidy
segmentation is raisd in this paper. The metrics cmrentiy used in
fite-e are suitable for non-probtil~ic segmentation and are
not appropriate for evrduatiag the qufllty of segmentation for
volume rendering. For e=ple, although the SOM classifier Ao
produ= high overlaps with mand segrnentatiow tie volumes
se~ented with tie SOhI classifier lose more detaik than
probtiiicrdly segmented volumes. h this paper, a gene~ed
ditimence mtio is proposed in order to conduct reasonable
comparison among probtilfistic classtien without sacrificing the
probtil~ic propm.
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Fig. 3. Rendered images of tie sloti CT volume
wifi SOM-PNN segmentation.

Fig. 4. Rendered images of tie sloti CT volume
witi MLsegmentation.

Fig. 5. Rendered images of tie sloti CT volume
witi PNN segmentation.

Fig. 6. Rendered images of tie sloti CT volume
witi SOM segmentation.

Fig. 8. CoronaIIy clipped views of tie MR1 brain case 112_2 witi manual segmentation,
SOM:PNN, ML, PNN and SOM segmentitio;s respectively. -
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Fig. 9 Gray matier ovetiap between automatic metiods witi manual segmentation
for tie 20 normal MR brain volumes
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