int j;

for(j=0; j<15; j++)

            Print(j);

In our example the body loop will continue printing i (Print(i)) while the case j<15 is true. For example the j = 0,1,2,3,4,5,6,7,8,9,10,11,12,13 and 14.
You can use more that one initialization expression in for loop by separating them with comma (,) like this:
 
	int i;

int j;

for(i=0 ,j=0;i<15;i++)

   Print(i);


The above example will initialize the i to 15 and start the loop, every time it decreases i by 1 and check the test expression (i>0).
The program will produce these results: 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1.
Figure 1 shows a flow chart of the for loop.
Initialization expression
Test expression
 
Exit
Body of loop
Increment expression
False

 
Figure 1 - Flow chart of the for loop
You can use multi statements in the loop body delimited by braces like this:
 
	for(int i=1;i<=15;i++)

{

   Print(i);

   PlaySound("alert.wav");

}


The Break Statement:
 
When the keyword presents in the for loop (and in while loop and switch statement as well) the execution of the loop will terminate and the control passes to the statement followed the loop section.
 
For example:
 
	for(int i=0;i<15;i++)

{

  if((i==10)

    break;

  Print(i);

}


 
The above example will execute the loop until i reaches 10, in that case the break keyword will terminate the loop. The code will produce these values: 0,1,2,3,4,5,6,7,8,9.
The Break Statement:
 
When the keyword presents in the for loop (and in while loop and switch statement as well) the execution of the loop will terminate and the control passes to the statement followed the loop section.
 
For example:
 
	for(int i=0;i<15;i++)

{

  if((i==10)

    break;

  Print(i);

}


 
The above example will execute the loop until i reaches 10, in that case the break keyword will terminate the loop. The code will produce these values: 0,1,2,3,4,5,6,7,8,9.
 
The Continue Statement:
 
The break statement takes you out the loop, while the continue statement will get you back to the top of the loop (parentheses).
For example:
 
	for(int i=0;i<15; i++)

{

   if(i==10) continue;

   Print(i)

}


 
The above example will execute the loop until i reaches 10, in that case the continue keyword will get the loop back to the top of the loop without printing i the tenth time. The code will produce these values: 0,1,2,3,4,5,6,7,8,9,11,12,13,14.

The while Loop
---------------------
 
The for loop usually used in the case you know how many times the loop will be executed. What happen if you don’t know how many times you want to execute the loop?
This the while loop is for.
 
The while loop like the for loop has a Test expression. But it hasn’t Initialization or Increment expressions.
 
This is an example:
 
	int i=0;

while(i<15)

{

   Print(i);

   i++;

}


 
In the example you will notice the followings:
 
· The loop variable had declared and initialized before the loop, you can not declare or initialize it inside the parentheses of the while loop like the for loop.
· The i++ statement here is not the increment expression as you may think, but the body of the loop must contain some statement that changes the loop variable, otherwise the loop would never end.
 
How the above example does work?
 
The while statement contains only the Test expression, and it will examine it every loop, if it’s true the loop will continue, if it’s false the loop will end and the control passes to the statement followed the loop section.
 
In the example the loop will execute till i reaches 16 in this case i<15=false and the loop ends.
 
 
Figure 2 shows a flow chart of the while loop.
 
Test expression
 
Exit
Body of loop
False
True
[image: image1.jpg]
 
Figure 2 - Flow chart of the while loop
 
