Decisions in a program cause a one-time jump to a different part of the program, depending on the value of an expression.

These are the kinds of decisions statements available in MQL4:

 

 

 
The if Statement
--------------------------------
 
 The if statement is the simplest decision statement, here’s an example:

 

	if( x < 100 )

Print("hi");


 

Here the if keyword has followed by parentheses, inside the parentheses the Test expression ( x < 100), when the result of test expression is true the body of the if will execute (Print("hi");) ,and if it is false, the control passes to the statement follows the if block.

 

Figure 1 shows the flow chart of the if statement:
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Figure 1 - Flow chart of the if statement
 

Multi Statements in the if Body:

 

Like the loops, the body of if can consist of more than statement delimited by braces.

 

For example:

 

	if(current_price==stop_lose)

{

            Print("you have to close the order");

            PlaySound("warning.wav");

}


 

 

Notice the symbol == in the Test expression; it's one of the Relational Operators you have studied in the lesson 4, operations & expressions.
This is a source of a lot of errors, when you forget and use the assignment operator =.
 

Nesting:
 
The loops and decision structures can be basted inside one another; you can nest ifs inside loops, loops inside ifs, ifs inside ifs, and so on.

 

Here's an example:

 

	for(int i=2 ; i<10 ; i++)

            if(i%2==0) 

            {

                        Print("It's not a prime nomber");

                        PlaySound("warning.wav");

            }


 

 

 

In the previous example the if structure nested inside the for loop.

 

Notice: you will notice that there are no braces around the loop body, this is because the if statement and the statements inside its body, are considered to be a single statement.
 

 

The if...else Statement
------------------------------------------
 

The if statement let's you to do something if a condition is true, suppose we want to do another thing if it's false. That's the if...else statement comes in.

It consist of if statement followed by statement or a block of statements, then the else keyword followed by another statement or a block of statements.

 

Like this example:

 

	if(current_price>stop_lose) 

            Print("It’s too late to stop, please stop!");

else

            Print("you playing well today!");


 

If the test expression in the if statement is true, the program one message, if it isn’t true, it prints the other.

 

Figure 2 shows the flow chart of the if…else statement:
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Figure 2 - Flow chart of the if..else statement
 
Nested if…else Statements
 
You can nest if…else statement in ifs statements, you can nest if…else statement in if…else statement, and so on.
 
Like this:
 
 
	if(current_price>stop_lose) 

            Print("It’s too late to stop, please stop!");

if(current_price==stop_lose)

            Print("It’s time to stop!");

else

            Print("you playing well today!");


 
There’s a potential problem in nested if…else statements, you can inadvertently match an else with the wrong if.
 
To solve this case you can do one of two things:
 
1-     you can delimited the if…else pairs with braces like this:
 
	if(current_price>stop_lose) 

{

            Print("It’s too late to stop, please stop!");

if(current_price==stop_lose)

            Print("It’s time to stop!");

else

            Print("you playing well today!");

}


 
 
2- If you can’t do the first solution (in the case of a lot of if…else statements or you are lazy to do it) take it as rule.
Match else with the nearest if. (Here it’s the line if(current_price==stop_lose)).
 
 
The switch Statement
------------------------------------------
 
If you have a large decision tree, and all the decisions depend on the value of the same variable, you can use a switch statement here.
Here’s an example:
 
	switch(x)

  {

   case 'A':

      Print("CASE A");

      break;

   case 'B':

   case 'C':

      Print("CASE B or C");

             break;

   default:

      Print("NOT A, B or C");

      break;

  }


 
In the above example the switch keyword is followed by parentheses, inside the parentheses you’ll find the switch constant, this constant can be an integer, a character constant or a constant expression. The constant expression mustn’t include variable for example:
case X+Y: is invalid switch constant.
 
How the above example works?
 
The switch statement matches the constant x with one of the cases constants. 
In the case x=='A' the program will print "CASE A" and the break statement will take you the control out of the switch block. 
 
In the cases x=='B' or x=='C', the program will print "CASE B or C". That’s because there’s no break statement after case 'B':.
 
In the case that x != any of the cases constants the switch statement will execute the default case and print "NOT A, B or C".
 
Figure 3 shows the flow chart of the switch statement
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Figure 3 - Flow chart of the switch statement
