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Abstract

This paper proposes a modi ed version of support vector machines, called C-ascending
support vector machine, to model non-stationary  nancial time series. The C-ascending
support vector machines are obtained by a simple modi cation of the regularized risk func-
tion in support vector machines, whereby the recent �-insensitive errors are penalized more
heavily than the distant �-insensitive errors. This procedure is based on the prior knowledge
that in the non-stationary  nancial time series the dependency between input variables and
output variable gradually changes over the time, speci cally, the recent past data could pro-
vide more important information than the distant past data. In the experiment, C-ascending
support vector machines are tested using three real futures collected from the Chicago Mer-
cantile Market. It is shown that the C-ascending support vector machines with the actually
ordered sample data consistently forecast better than the standard support vector machines,
with the worst performance when the reversely ordered sample data are used. Furthermore,
the C-ascending support vector machines use fewer support vectors than those of the stan-
dard support vector machines, resulting in a sparser representation of solution. c© 2002
Elsevier Science B.V. All rights reserved.

Keywords: Non-stationary  nancial time series; Support vector machines; Regularized risk
function; Structural risk minimization principle

1. Introduction

The  nancial market is a complex, evolutionary, and nonlinear dynamical system
[3]. The  nancial time series are inherently noisy, non-stationary, and
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deterministically chaotic [23]. This means that the distribution of  nancial time
series is changing over the time. Not only is a single data series non-stationary in
the sense of the mean and variance of the series, but the relationship of the data
series to other related data series may also be changing. Modeling such dynami-
cal and non-stationary time series is expected to be a challenging task. Over the
past few years, neural networks have been successfully used for modeling  nancial
time series ranging from options price [5], corporate bond rating [9], stock index
trading [8] to currency exchange [24]. Neural networks are universal function ap-
proximators that can map any nonlinear function without a priori assumption about
the data [4]. Unlike traditional statistical models, neural networks are data-driven,
non-parametric weak models, and they let “the data speak for themselves”. So neu-
ral networks are less susceptible to the model mis-speci cation problem than most
of the parametric models, and they are more powerful in describing the dynamics
of  nancial time series than traditional statistical models [1,7,24].
Recently, a novel neural network technique, called support vector machines

(SVMs), was proposed by Vapnik and his co-workers in 1995 [21]. The SVM
is a new way to train polynomial neural networks or radial basis function neural
networks based on the structural risk minimization (SRM) principle which seeks
to minimize an upper bound of the generalization error rather than minimize the
empirical error implemented in other neural networks. This induction principle is
based on the fact that the generalization error is bounded by the sum of the empir-
ical error and a con dence interval term that depends on the Vapnik–Chervonenkis
(VC) dimension. Established on this principle, SVMs will achieve an optimum
network structure by striking the right balance between the empirical error and the
VC-con dence interval, eventually resulting in better generalization performance
than other neural networks. Another merit of SVMs is that training SVMs is a
uniquely solvable quadratic optimization problem, and the complexity of the solu-
tion in SVMs depends on the complexity of the desired solution, rather than on
the dimensionality of the input space. Originally, SVMs have been developed for
pattern recognition problems [6,16,17]. Recently, with the introduction of Vapnik’s
�-insensitive loss function, SVMs have been extended to solve nonlinear regression
estimation problems, and they exhibit excellent performance [10–12,22].
In the  eld of  nancial time series forecasting, numerous studies show that the

relationship between input variables and output variable gradually changes over
time, and recent data could provide more information than distant data. Therefore,
it is advantageous to give more weights on the information provided by the recent
data than that of the distant data based on this prior knowledge [2]. In the light of
this characteristic, an innovative approach is proposed by Refenes and Bentz [13]
which used the discounted least squares (DLS) in the back-propagation neural
network to model non-stationary time series. The DLS is obtained by a simple
modi cation of the commonly used least square function whereby the recent errors
are penalized more heavily than the distant errors. As it is independent of the
actual order of pattern presentation in the training procedure, the DLS is simple to
implement. The DLS is reported to be very eIective in both a controlled simulation
experiment and the estimating of stock returns.
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The present study is motivated by the DLS work, and generalizes the idea for
SVMs whereby more weights are given to the recent �-insensitive errors than the
distant �-insensitive errors in the regularized risk function. The regularized term
in the regularized risk function is retained, regardless of the empirical error. The
objective of this paper is to investigate whether this prior knowledge can also be
exploited by SVMs in modeling the non-stationary  nancial time series. This is
important as the SVMs are based on the unique SRM principle which consists of
minimizing the sum of the empirical error and the regularized term.
The rest of this paper is organized as follows. In Section 2, we brieKy intro-

duce the theory of SVMs for regression estimation. In Section 3, the C-ascending
SVMs are described. Section 4 gives the experimental results as well as the data
preprocessing technique. Section 5 concludes the work done.

2. Theory of SVMs for regression approximation

For the case of regression approximation, suppose there are a given set of data
points G= {(xi; di)}ni (xi is the input vector, di is the desired value, and n is the
total number of data patterns) drawn independently and identically from an un-
known function, SVMs approximate the function with three distinct characteristics:
(i) SVMs estimate the regression in a set of linear functions, (ii) SVMs de ne
the regression estimation as the problem of risk minimization with respect to the
�-insensitive loss function, and (iii) SVMs minimize the risk based on the SRM
principle whereby elements of the structure are de ned by the inequality ‖w‖26
constant. The linear function is formulated in the high dimensional feature space,
with the form of function (1).

y=f(x)=w�(x) + b; (1)

where �(x) is the high dimensional feature space, which is nonlinearly mapped
from the input space x. Characteristics (ii) and (iii) are reKected in the minimization
of the regularized risk function (2) of SVMs, by which the coeMcients w and b
are estimated. The goal of this risk function is to  nd a function that has at most
� deviation from the actual values in all the training data points, and at the same
time is as Kat as possible.

RSVMs(C)=C
1
n

n∑
i=1

L�(di; yi) +
1
2
‖w‖2; (2)

L�(d; y)=

{
|d− y| − �; |d− y|¿ �;
0 otherwise:

(3)

The  rst term C(1=n)
∑n

i=1 L�(di; yi) is the so-called empirical error (risk), which
is measured by the �-insensitive loss function (3). This loss function provides the
advantage of using sparse data points to represent the designed function (1). The
second term 1

2‖w‖2, on the other hand, is called the regularized term. � is called the
tube size of SVMs, and C is the regularization constant determining the trade-oI
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between the empirical error and the regularized term. They are both user-prescribed
parameters and are selected empirically. Introduction of the positive slack variables
�; �∗ leads Eq. (2) to the following constrained function [21]:

Minimize RSVMs(w; �(∗))=
1
2
‖w‖2 + C

n∑
i=1

(�i + �∗i )

Subject to
di − w�(xi)− bi6 �+ �i;
w�(xi) + bi − di6 �+ �∗i ;

�(∗)¿ 0;

(4)

where i represents the data sequence, with i= n being the most recent observation
and i=1 being the earliest observation. Finally, by introducing Lagrange multipliers
and exploiting the optimality constraints, decision function (1) takes the following
form:

f(x; a(∗)i )=
n∑

i=1

(ai − a∗i )K(x; xi) + b: (5)

Lagrange multipliers and support vectors. In function (5); ai; a∗i are the in-
troduced Lagrange multipliers. They satisfy the equality aia∗i =0; ai¿ 0; a∗i ¿ 0;
i=1; : : : ; n, and are obtained by maximizing the dual form of function (4); which
has the following form:

R(a(∗)i ) =
n∑

i=1

di(ai − a∗i )− �
n∑

i=1

(ai + a∗i )

− 1
2

n∑
i=1

n∑
j=1

(ai − a∗i )(aj − a∗j )K(xi; xj) (6)

with the following constraints:
n∑

i=1

(ai − a∗i )=0;

06 ai6C; i=1; 2; : : : ; n;

06 a∗i 6C; i=1; 2; : : : ; n:

Based on the Karush–Kuhn–Tucker (KKT) conditions of quadratic programming,
only a number of coeMcients (ai − a∗i ) will assume non-zero values, and the data
points associated with them could be referred to as support vectors. They are the
only elements of the data points that are used in determining the position of the
decision function according to function (5). For comparison, the data points with
|ai − a∗i |=C are called error support vectors, because they are lying outside the
boundary of the decision function, and the data points with 0¡|ai − a∗i |¡C are
referred to as non-error support vectors, as they exactly lie on the boundary of the
decision function.
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Kernel function. In (5), K(xi; xj) is the kernel function. The value is equal to
the inner product of two vectors xi and xj in the feature space �(xi) and �(xj).
That is, K(xi; xj)=�(xi) · �(xj). The elegance of using kernel function lies in
the fact that one can deal with feature spaces of arbitrary dimensionality without
having to compute the map �(x) explicitly. Any function that satis es Mercer’s
condition [21] can be used as the kernel function. Common examples of kernel
function are the polynomial kernel K(x; y)= (x:y + 1)d and the Gaussian kernel
K(x; y)= exp(−(x − y)2=�2).
From the implementation point of view, training SVMs is equivalent to solv-

ing a linearly constrained quadratic programming (QP) problem with the number
of variables equal to the number of training data points. The sequential minimal
optimization (SMO) algorithm extended by Scholkopf and Smola [15,14] is very
eIective in training SVMs for solving the regression estimation problem.

3. C -Ascending support vector machines (C -ASVMs)

As shown in function (4); the empirical risk function has equal weight C to all
the �-insensitive errors between the predicted and actual values. The regularization
constant C determines the trade-oI between the empirical risk and the regularized
term. Increasing the value of C, the relative importance of the empirical risk with
respect to the regularized term grows. For illustration, the empirical risk function
is expressed as

ESVMs =C
n∑

i=1

(�i + �∗i ): (7)

In C-ASVMs, instead of a constant value, the regularization constant C adopts
a weight function:

Ec−ASVMs =
n∑

i=1

Ci(�i + �∗i ); (8)

Ci =w(i)C; (9)

where w(i) is the weight function satisfying w(i)¿w(i − 1); i=2; : : : ; n. As the
weights will incline from the distant training data points to the rent training data
points, Ci is called ascending regularization constant which will give more weights
on the more recent training data points. This raises the following question: what
kind of weight function w(i) should be used? In our experiment, the linear weight
function and an exponential weight function are investigated. They are described
as below.

1. For the linear weight function,

w(i)=
i

n(n+ 1)=2
: (10)
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Fig. 1. Weights function of C-ASVMs. In the x-axis, i represents the training data sequence. (a) When
a=0, all the weights are equal to 0.5. (b) When a=1000; the  rst half of the weights are equal to
zero, and the second half of the weights are equal to 1. (c) When a increases, the  rst half of the
weights become smaller while the second half of the weights become larger.

That is,

Ci =C
i

n(n+ 1)=2
: (11)

2. For the exponential weight function,

w(i)=
1

1 + exp(a− 2ai=n)
: (12)

That is,

Ci =C
1

1 + exp(a− 2ai=n)
: (13)

The exponential weight function is adopted directly from that used in the DLS. a is
the parameter to control the ascending rate. The behaviors of this weight function
are illustrated in Fig. 1, which can be summarized as follows.

(i) When a → 0 then lima→0 Ci = 1
2C. In this case, there are the same weights in

all the training data points, and EC−ASVMs = 1
2ESVMs.

(ii) When a → ∞, then

lim
a→∞Ci =



0; i¡

n
2
;

C; i¿
n
2
:

In this case, the weights for the  rst half of the training data points are
reduced to zero, and the weights for the second half of the training data points
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are equal to 1, and

EC−ASVMs =



0; i¡

n
2
;

ESVMs; i¿
n
2
:

(iii) a∈ [0;∞] and increases, the weights for the  rst half of the training data
points will become smaller, while the weights for the second half of the
training data points will become larger.

Thus, the regularized risk function is calculated as follows:

Minimize Rc−ASVMs(w; �(∗))=
1
2
‖w‖2 +

n∑
i=1

Ci(�i + �∗i )

Subject to
di − w�(xi)− bi6 �+ �i;
w�(xi) + bi − di6 �+ �∗i ;

�(∗)¿ 0:

(14)

The dual function has the original form,

R(ai; a∗i ) =
n∑

i=1

di(ai − a∗i )− �
n∑

i=1

(ai + a∗i )

− 1
2

n∑
i=1

n∑
j=1

(ai − a∗i )(aj − a∗j )K(xi; xj);

but the constraints are changed as follows:
n∑

i=1

(ai − a∗i )=0;

06 ai6Ci; i=1; 2; : : : ; n;

06 a∗i 6Ci; i=1; 2; : : : ; n: (15)

The SMO algorithm can still be used to optimize the C-ASVMs except that the
upper bound value Ci for every training data points is diIerent, and should be
adapted according to function (15).

4. Experiment results

4.1. Data set

Three real futures contracts collected from the Chicago Mercantile are examined
in the experiment. They are the Standard& Poor 500 stock index futures (CME-SP),
United States 30-year government bond (CBOT-US), and German 10-year govern-
ment bond (EUREX-BUND). Their corresponding time periods used are listed in
Table 1, and the daily closing prices are used as the data sets.
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Table 1
Three futures contracts

Names Time periods

CME-SP 24=05=1989–08=10=1993
CBOT-US 23=05=1991–20=10=1995
EUREX-BUND 31=05=1991–25=10=1995

Fig. 2. Histogram. (a) CME-SP daily closing price and (b) RDP + 5. RDP + 5 values have a more
symmetrical and normal distribution.

The original closing price is transformed into a 5-day relative diIerence in per-
centage of price (RDP). As interpreted by Thomason [18–20], there are four ad-
vantages in applying this transformation. The most prominent advantage is that the
distribution of the transformed data will become more symmetrical and closer to
normal as illustrated in Fig. 2. The modi cation in the trend of the data distribution
will improve the predictive power of the neural network.
The input variables are constructed from four lagged RDP values based on 5-day

periods (RDP-5, RDP-10, RDP-15, RDP-20), and one transformed closing price
(EMA15) which is obtained by subtracting a 15-day exponential moving average
from the closing price. The subtraction is performed to eliminate the trend in price.
The output variable RDP + 5 is obtained by  rstly smoothening the closing price
with a 3-day exponential moving average. The calculations for all the indicators
are given in Table 2.
The long left tail in Fig. 2b indicates that there are outliers in the data set.

Since outliers may make it diMcult or time-consuming to arrive at an eIective
solution for SVMs, RDP values beyond the limits of ±2 standard deviations are
selected as outliers. They are replaced with the closest marginal values. The other
preprocessing technique is data scaling. All the data points are scaled into the range
of [−0:9; 0:9] as the data points include both positive and negative values. Finally,
all of the three data sets are partitioned into three parts according to the time
sequence. The  rst part is used for training, the second part used for validation is
to select optimal parameters for the SVMs. The last part is used for the purpose of
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Table 2
Input variables and output variablea

Indicator Calculation

Input variables EMA15 P(i)− EMA15(i)
RDP-5 (p(i)− p(i − 5))=p(i − 5) ∗ 100
RDP-10 (p(i)− p(i − 10))=p(i − 10) ∗ 100
RDP-15 (p(i)− p(i − 15))=p(i − 15) ∗ 100
RDP-20 (p(i)− p(i − 20))=p(i − 20) ∗ 100

Output variable RDP + 5 (p(i + 5)− p(i))=p(i) ∗ 100
p(i)=EMA3(i)

aNote: EMAn(i) is the n-day exponential moving average of the ith day; p(i) is the closing price
of the ith day.

testing. There are a total of 907 data patterns in the training set, 200 data patterns
in both the validation set and the test set in each data set.

4.2. Experimental results

In this investigation, the Gaussian function is used as the kernel function of
SVMs, which is inspired by the empirical  ndings that Gaussian kernels tend to
give good performance under general smoothness assumptions, and therefore should
be considered especially if no additional knowledge of the data is available [14]. As
there is no structured way to choose the optimal parameters of SVMs, the values
of the kernel parameter �2, C and � that produce the best result on the validation
set are used for the standard SVMs. The validation set is also used to choose the
best combination of �2, C, �, and the optimal control rate a in the C-ASVMs.
These values could vary in futures due to diIerent characteristics of futures. The
SMO for solving the regression problem is implemented in this experiment, and
the program is developed using VC++ language.
Furthermore, the C-ASVMs of the same settings with the reversed order of

training data points which will put more weights on the more distant training data
points (referred to as C-RSVMs) and the standard SVMs without using the most
recent 200 training data points (referred to as SVMs-200) are also investigated. If
the performance of the C-RSVMs and SVMs-200 is inferior to that of SVMs, the
signi cance of the recent training data points will be made clearer.
The prediction performance is evaluated based on the criteria of the normalized

mean squared error (NMSE) on the test set, which is calculated as follows:

NMSE=
1

n∗�2

n∑
i=1

(di − yi)2;

�2 =
1

n− 1

n∑
i=1

(di − Ud)2; (16)

where Ud is the mean of the actual values.
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Table 3
The converged NMSE in all SVMs

Methods SVMs C-ASVMs C-RSVMs SVMs-200

Linear Exponential Linear Exponential

CME-SP 0.9353 0.8915 0.8850 0.9738 1.0198 0.9420
CBOT-US 1.0115 0.9978 0.9881 1.0423 1.0502 1.0375
EUREX-BUND 1.1114 1.0869 1.0694 1.1531 1.1867 1.1484

The best results in all types of SVMs are given in Table 3. From the ta-
ble, it can be observed that the C-ASVMs have smaller values of NMSE than
those of the standard SVMs. Also, the C-ASVMs with the use of the exponen-
tial weight function perform slightly better than those of using the linear weight
function. Moreover, by paying little attention on the information provided by the
recent training data points, both the C-RSVMs and SVMs-200 have worse per-
formance than the standard SVMs, with the worst performance in the C-RSVMs
by using the exponential weight function. All the results demonstrate the fact that
in the non-stationary  nancial time series the recent training data points are more
signi cant than the distant training data points. And by incorporating this prior
knowledge into SVMs, the C-ASVMs are more eIective in forecasting  nancial
time series than the standard SVMs.
Fig. 3a gives the predicted and actual values of RDP+5 for the  rst 100 training

data points in CME-SP. In C-ASVMs and C-RSVMs, only the exponential weight
function is illustrated in this  gure. It can be observed that the C-RSVMs  t
best in the  rst 100 training data points, because they put more weights on the
distant training data points which will be learned better than the recent training
data points. Fig. 3b gives the results of the last 100 training data points. In this
case, the C-ASVMs  t best since more weights are placed on the recent training
data points in this method. Fig. 4 gives the predicted and actual values for the  rst
100 test data points. It is obvious that the C-ASVMs forecast more closely to the
actual values and capture turning points better than both the standard SVMs and
C-RSVMs. The same observations were made when the methods were applied to
CBOT-US and EUREX-BUND.
The number of support vectors is also studied. Fig. 5 gives a comparison of

non-error support vectors in the C-ASVMs and the standard SVMs. It can be found
that the total number of non-error support vectors in the two methods is comparable
while the corresponding data points are mostly diIerent. In the C-ASVMs, most
of the non-error support vectors are distributed in the recent training data points
because the recent training data points have been penalized more heavily than
the distant training data points. Fig. 6 shows the error support vectors which are
diIerent in the C-ASVMs and the standard SVMs. Error support vectors which
are the same in the two methods are not shown in this  gure. Compared to the
standard SVMs, C-ASVMs have less error support vectors in the distant training
data points. The reason can be explained by the fact that it is easier for the distant
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Fig. 3. The predicted and actual RDP + 5 on the  rst 100 training data points (a) and the last 100
training data points (b) in CME-SP. (a) C-RSVMs perform best. (b) C-ASVMs perform best.

training data points to converge to non-support vectors resulting from using small
values of C. Thus, the solution of C-ASVMs is much sparser than that of the
standard SVMs. The result is consistent with the theory of support vector error
bound that the number of support vectors is an indication of the generalization
performance of SVMs [16]. Usually, the fewer the number of support vectors, the
higher the generalization performance of SVMs.
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Fig. 4. The predicted and actual RDP + 5 on the test set in CME-SP. C-ASVMs perform best.

Fig. 5. Non-error support vectors in the C-ASVMs and the standard SVMs in CME-SP.

5. Conclusions

In this paper, a modi ed version of SVMs is proposed to model  nancial time
series by taking into account the non-stationary characteristic of  nancial time se-
ries. This is obtained by modifying the empirical risk while keeping the regularized
term in its original form. The performance of the modi ed SVMs is evaluated us-
ing three real futures contracts, and the simulation results demonstrated that the
C-ASVMs is eIective in dealing with the structural change of  nancial time series.
The eIectiveness of this method indicates that the empirical risk is an important
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Fig. 6. DiIerent error support vectors in the C-ASVMs and the standard SVMs in CME-SP.

component in SVMs, since SVMs is established on the SRM principle which con-
sists of minimizing the sum of the empirical risk and the regularized term, and the
regularized term was retained in its original form for the simulation. Furthermore,
the C-ASVMs converge to fewer support vectors than those of the standard SVMs,
resulting in a sparser representation of solution.
Future work will generalize the C-ASVMs into other futures contracts. It is

also interesting to explore more sophisticated weights function which can closely
follow the dynamics of  nancial time series. Other types of kernel functions will
be explored for further improving the performance of SVMs in  nancial time series
forecasting.
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