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Abstract. This paper proposes a modi¢ed version of support vector machines (SVMs), called
e-descending support vector machines (e-DSVMs), tomodel non-stationary ¢nancial time series.
The e-DSVMs are obtained by incorporating the problem domain knowledge ^ non-stationarity
of ¢nancial time series into SVMs. Unlike the standard SVMs which use a constant tube in
all the training data points, the e-DSVMs use an adaptive tube to deal with the structure changes
in the data. The experiment shows that the e-DSVMs generalize better than the standard SVMs
in forecasting non-stationary ¢nancial time series. Another advantage of this modi¢cation is
that the e-DSVMs converge to fewer support vectors, resulting in a sparser representation of
the solution.
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1. Introduction

Financial time series are inherently non-stationary [1, 2]. That is, the distribution of
¢nancial time series changes over time. This leads to gradual changes in the actual
relationship between the independent and dependent variables. In the modeling
of ¢nancial time series, the learning algorithm used should take into account this
characteristic. Usually, the information provided by the recent data points will
be given more weights than that provided by the distant data points, as in non-
stationary time series the recent data points could provide more important
information than the distant data points [3, 4].
Recently, support vector machine (SVM) as a novel type of neural networks has

received increasing attention in areas ranging from its original application of pattern
recognition [5^7] to the extended application of regression estimation [8^11], due to
its remarkable generalization performance. SVM was developed by Vapnik and
his co-workers in 1995 [12]. Established based on the Structural Risk Minimization
principle which seeks to minimize an upper bound of the generalization error rather
than minimize the empirical error commonly implemented in other neural networks,
SVMs achieve higher generalization performance than traditional neural networks
in solving these machine learning problems. Another key property is that unlike
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other networks’ training which requires non-linear optimization with the danger of
getting stuck into local minima, training SVMs is equivalent to solving a linearly
constrained quadratic programming problem. Consequently, the solution of SVMs
is always unique and globally optimal.
In SVMs, the solution to the problem is represented by sparse data points called

support vectors. What are support vectors? In regression estimation, they are
the training data points which associated approximation errors are equal to or larger
than e, the so-called tube size of SVMs. That is, they are the data points lying on or
outside the e-bound of the decision function. Therefore, the number of support
vectors decreases as the tube size e increases. In the case of a wide tube size where
there are few support vectors, the decision function can be represented very sparsely.
However, too wide a tube size will also depreciate the estimation accuracy as e is
equivalent to the approximation accuracy placed on the training data points. In
the standard SVMs, e is used as a constant value and selected empirically.
This paper proposes e-descending SVMs (e-DSVMs) to model ¢nancial time series

by taking into account the non-stationarity of ¢nancial time series. Unlike the
standard SVMs which use a constant tube in all the training data points, the
e-DSVMs use an adaptive tube which value will decrease from the distant training
data points to the recent training data points. This modi¢cation is biased on the
prior knowledge that in the non-stationary time series, the recent training data points
could provide more important information than the distant training data points, and
therefore it is desirable to place more weights on the recent training data points than
the distant training data points. By using the proposed adaptive tube, the recent
training data points will be approximated more accurately than the distant training
data points. They also have larger probability of converging to support vectors.
The proposed method is illustrated experimentally by using both simulated and real
¢nancial data sets. The experiment shows great improvement by the use of
e-DSVMs. The e-DSVMs also have a sparser representation in the solution than
the standard SVMs, resulting from the use of the adaptive tube.
This paper is organized as follows. Section 2 describes the basic theory of SVMs in

regression estimation. Section 3 presents the e-DSVMs. Section 4 discusses about the
experimental results on both simulated and real data sets, followed by conclusions in
the last section.

2. Theory of SVMs for Regression Approximation

Given a set of data points ðx1; y1Þ, ðx2; y2Þ, . . . ; ðx1; y1Þ (xi 2 X � Rn, yi 2 Y � R, l is
the total number of training samples) randomly and independently generated from
an unknown function, SVMs approximate the function using the following form:

f ðxÞ ¼ w � fðxÞ þ b

where fðxÞ represents the high dimensional feature spaces which is nonlinearly
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mapped from the input space x. The coef¢cients w and b are estimated by minimizing
the regularized risk function (2).

Minimize
1
2
kwk2 þ C

1
l

Xl
i¼1

Leðyi; f ðxiÞÞ ð2Þ

Leðy; f ðxÞÞ ¼
j y
 f ðxÞj 
 e j y
 f ðxÞjX e
0 otherwise

�
ð3Þ

The ¢rst term kwk2 is called the regularized term. Minimizing kwk2 will make a
function as £at as possible, thus playing the role of controlling the function capacity.
The second term 1

l

Pl
i¼1 Leðyi; f ðxiÞÞ is the empirical error measured by the

e-insensitive loss function (3). This loss function provides the advantage of using
sparse data points to represent the designed function (1). C is referred to as the
regularized constant. e is the tube size of SVMs. They are both user-prescribed
parameters and determined empirically.
To get the estimations of w and b, equation (2) is transformed to the primal

objective function (4) by introducing the positive slack variables xð�Þi (( ) denotes
variables with and without *).

Minimize
1
2
kwk2 þ C

Xl
i¼1

ðxi þ x�i Þ ð4Þ

subject to

yi 
 w � fðxiÞ 
 bW eþ xi

w � fðxiÞ þ b
 yiW eþ x�i ; i ¼ 1; . . . ; l:

xð�Þi X 0

Finally, by introducing Lagrange multipliers and exploiting the optimality
constraints, the decision function (1) has the following explicit form [12]:

f ðxÞ ¼
Xl
i¼1

ðai 
 a�i ÞKðxi; xÞ þ b ð5Þ

In function (5), að�Þi are the so-called Lagrange multipliers. They satisfy the
equalities ai � a�i ¼ 0, aiX 0 and a�i X 0 where i ¼ 1; . . . ; l, and they are obtained
by maximizing the dual function of (4), which has the following form:

W ðað�Þi Þ ¼
Xl
i¼1

yiðai 
 a�i Þ 
 e
Xl
i¼1

ðai þ a�i Þ 

1
2

Xl
i¼1

Xl
j¼1

ðai 
 a�i Þðaj 
 a
�
j ÞKðxi; xjÞ

ð6Þ
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with the following constraints:

Xi
i¼1

ðai 
 a�i Þ ¼ 0

0W að�Þi WC; i ¼ 1; . . . ; l:

In function (6), Kðxi; xjÞ is de¢ned as the kernel function. Its value is equal to
Kðxi; xjÞ ¼ fðxiÞ � fðxjÞ. The elegance of using the kernel function is that one can
deal with feature spaces of arbitrary dimensionality without having to compute
the map fðxÞ explicitly [13]. Any function that satis¢es Mercer’s condition [12]
can be used as the kernel function.
Based on the Karush^Kuhn^Tucker (KKT) conditions [14], only a number of

coef¢cients ðai 
 a�i Þwill assume nonzero, and the corresponding training data points
have approximation errors equal to or larger than e, and are referred to as support
vectors. According to function (5), it is evident that only the support vectors are
used to determine the decision function as the values of ðai 
 a�i Þ for the other train-
ing data points are equal to zero. As support vectors are usually only a small subset
of the training data points, this characteristic is referred to as the sparsity of the
solution.

3. e-Descending Support Vector Machines (e-DSVMs)

In e-DSVMs, instead of a constant value, the tube size adopts the following
exponential function:

ei ¼ e
1þ expðp
 2p � i=lÞ

2
ð7Þ

Where i represents the data sequence, with i ¼ 1 being the most recent training data
point and i ¼ 1 being the most distant training data point. p is the parameter to
control the descending rate. ei is called the descending tube as its value will decrease
from the distant training data points to the recent training data points.
In e-DSVMs, the recent training data points are penalized more heavily than the

distant training data points can be explained from both the approximation accuracy
aspect and the characteristic of the solution of SVMs aspect. As aforementioned, e is
equivalent to the approximation accuracy placed on the training data points. A small
e corresponds to a large slack variable xð�Þi and high approximation accuracy. On the
contrary, a large e corresponds to a small slack variable xð�Þi and low approximation
accuracy. According to (4), a large slack variable will make the empirical error have
a large impact relatively to the regularized term. Therefore, the data point by using a
smaller value of ewill be penalized more heavily than the data point by using a larger
value of e. The characteristic of the solution of SVMs can also be used to explain that
there are more weights in the recent training data points than the distant training
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data points. As described in Section 2, the solution of SVMs is represented by
support vectors. Also the support vectors are a decreasing function of e. This means
that the recent training data points by using a smaller e will have a larger probability
of converging to the determinant support vectors than the distant training data
points by using a larger e. Thus, the recent training data points will be obtained
more attention in the representation of the solution than the distant training data
points.
The behaviours of the weight function (7) can be summarized as follows. Some

examples are illustrated in Figure 1.

(i) When p! 0, then

Lim
p!0

ei ¼ e0:

In this case, the weights in all the training data points are equal to 1.0.
(ii) When p! 1, then

Lim
p!1

ei ¼
1 i <

1
2

0:5e iX
l
2

:

8>><
>>:

Figure 1. The weight function of e-DSVMs. In the x-axis, i represents the data sequence.
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In this case, the weights for the ¢rst half of the training data points are increased to
an in¢nite value while the weights for the second half of the training data points
are equal to 0.5.

(iii) When p 2 ½0;1� and p increases, the weights for the ¢rst half of the training data
points will become larger while the weights for the second half of the training data
points will become smaller.

In e-DSVMs, the regularized risk function has the original form but the con-
straints are changed to (8) whereby every training data point uses different tube
size ei.

Minimize
1
2
kwk2 þ C

Xl
i¼1

ðxi þ x�i Þ

subject to

yi 
 w � fðxiÞ 
 bW ei þ xi

w � fðxiÞ þ b
 yiW ei þ x�i ; i ¼ 1; . . . ; l:

xð�Þi X 0

ð8Þ

Thus, the dual function has the function form of (9) with the original constraints.

W ðað�Þi Þ ¼
Xl
i¼1

yiðai 
 a�i Þ 

Xl
i¼1

eiðai þ a�i Þ 

1
2

Xl
i¼1

Xl
j¼1

ðai 
 a�i Þðaj 
 a
�
j ÞKðxi; xjÞ

ð9Þ

subject to

Xi
i¼1

ðai 
 a�i Þ ¼ 0

0W að�Þi WC; i ¼ 1; . . . ; l:

The Sequential Minimal Optimization algorithm extended by Scholkopf and
Smola [15, 16] can be used to optimize the e-DSVMs whereby the Lagrange
multipliers are obtained according to function (9).

4. Experiment Results

4.1. TWO SIMULAED DATA SETS

Two simulated data sets studied in [4] are examined in the ¢rst series of experiment.
They are referred to as data-1 and data-2. Each data set contains seven periods
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of the sine wave which are de¢ned by the following functions:

data
 1: y ¼ m1ðnþ xÞ � sinð2pxÞ þm2 ð10Þ

data
 2: y ¼ m1ðnþ xÞ þm2ðnþ xÞ � sinð2pxÞ ð11Þ

Where m1 ¼ 0:1, m2 ¼ 0:5, x 2 ½0; 1�, n 2 f0; . . . ; 6g. Both time series are
non-stationary in the sense that the variance of data-1 and the variance and mean
of data-2 change over time. The same experimental setup used by Refenes et al.
is used here. Brie£y, the setup is as follows: in each of the seven periods, there
are 100 consecutive and equally spaced data points. The ¢rst six periods (i.e.
600 data points) are used for training and the seventh period (i.e. 100 data points)
for testing.
The purpose of the experiment is to compare the e-DSVMs with the standard

SVMs. To do this, the Gaussian function is chosen as the kernel function of SVMs.
The values of d2, C, and e are respectively chosen as 0.01, 10 and 0.05 as these values
produce the smallest NMSE on the test set in the standard SVMs. The same values of
the parameters are used in e-DSVMs for compare. The NMSE of the test set is cal-
culated as follows:

NMSE ¼
1

d2n

Xn
i¼1

ðyi 
 ŷyiÞ
2

ð12Þ

d2 ¼
1

n
 1

Xn
i¼1

ðyi 
 �yyÞ2 ð13Þ

�yy ¼
Xn
i¼1

yi ð14Þ

Where n represents the total number of data points in the test set. ŷy represents the
predicted value. �yy denotes the mean of the actual output values.
In e-DSVMs, the converged NMSE with various control rates is illustrated in

Figure 2. This ¢gure shows that in both data-1 and data-2, the NMSE ¢rstly
dramatically decreases as p increase, and then it violates when p keeps on increasing.
This indicates that the e-DSVMs could produce a smaller NMSE than the standard
SVMs corresponding to p ¼ 0. The difference in performance increases with the
incremental of p (0^10), but when p is larger than 10, there is a little overweight
to the recent training data points.
Figure 3 and Figure 4 respectively illustrate the predicted and actual values in

data-1 and data-2. In the e-DSVMs, the value of p that produces the smallest NMSE
on the test set is used. On the training set as shown in Figures 3 (a) and Figure 4 (a),
the standard SVMs forecast more closely to the actual values than the e-DSVMs
in the distant data points (about the ¢rst 400 data points), but in the recent data
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points (about the last 200 data points) the e-DSVMs forecast more closely to the
actual values than the standard SVMs. The result is consistent with the idea of
e-DSVMs. Figure 3 (b) and Figure 4 (b) show that on the test set the e-DSVMs
perform much better than the standard SVMs.
For a better understanding the e-DSVMs, the converged support vectors in the

two methods are also studied. Figure 5 gives a comparison of the support vectors
with 0 < jai 
 a�i j < C (referred to as non-error support vectors) in the e-DSVMs
and standard SVMs. It can be found that the total number of non-error support
vectors in the two methods is comparable while the corresponding data points
are mostly different. In the e-DSVMs, most of the non-error support vectors
are distributed in the recent training data points because the recent training
data points have been penalized more heavily than the distant training data
points.
Figure 6 shows the support vectors with jai 
 a�i j ¼ C (referred to as error support

vectors) which are different in the e-DSVMs and standard SVMs. Error support
vectors which are the same in the two methods are not shown in this ¢gure.
Compared to the standard SVMs, e-DSVMs have fewer error support vectors in

Figure 2. Converged NMSE with various control rates p in e-DSVMs.
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Figure 3. Predicted and actual values in data-3. (a) On the training set. (b) On the test set.
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Figure 4. Predicted and actual values in data-4. (a) On the training set. (b) On the test set.
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the distant data points than the standard SVMs, resulting from the use of larger e.
Thus, the solution of e-DSVMs is much sparser than that of the standard SVMs.

4.2. FINANCIAL DATA SETS

Five real futures contracts collated from the Chicago Mercantile Market are exam-
ined in the experiment. They are the Standard&Poor 500 stock index futures
(CME-SP), United Sates 30-year government bond (CBOT-US), Unite States
10-year government bond (CBOT-BO), German 10-year government bond
(EUREX-BUND) and French government stock index futures (MATIF-CAC40).
A subset of the available data is used to reduce the requirement of the network
design. The corresponding time periods used are listed in Table I. The daily closing
prices are used as the data sets.

Table I. Five futures contracts and their used time periods

Futures Time period

CME-SP 24/05/1989 08/10/1993
CBOT-US 23/05/1991 20/10/1995
CBOT-BO 23/05/1991 17/10/1995
EUREX-BUND 31/05/1991 25/10/1995
MATIF-CAC40 18/10/1993 09/04/1998

Figure 5. Non-error support vectors in the e-DSVMs and standard SVMs.
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Choosing a suitable forecasting horizon is the ¢rst step in data preprocessing.
From the trading aspect, the forecasting horizon should be suf¢ciently long so that
the over-trading resulting in excessive transaction costs could be avoided. From
the prediction aspect, the forecasting horizon should be short enough as the
persistence of ¢nancial markets is of limited duration. As suggested by Thomason
[17], a forecasting horizon of 5 days is a suitable choice for daily data. As the precise
values of the daily prices is often not as meaningful to trading as its relative
magnitude, and also the high-frequency components in ¢nancial data is often more
dif¢cult to successfully model, the original closing price is transformed into a
¢ve-day relative difference in percentage of price (RDP). As mentioned by
Thomason, there are four advantages in applying this transformation. The most
prominent advantage is that the distribution of the transformed data will become
more symmetrical and will follow more closely to a normal distribution as illustrated
in Figure 7. This modi¢cation to the data distribution will improve the predictive
power of the neural network.
In each futures contract, a total of 20 candidate indicators are constructed. They

are the 3 lagged transformed closing prices ðx1; x2; x3Þ, 14 lagged RDP values
ðx4; . . . x17Þ and 3 technical indicators: moving average convergence divergence
x18 (MACD), on balance volume x19 (OBV), and volatility x20. The lagged RDP
values and transformed closing price are all recommended by [18]. The MACD
is de¢ned as the difference of two exponential moving averages, and it is commonly
used to predict market trends in ¢nancial markets. The OBV moves in the same

Figure 6. Di¡erent error support vectors in the e-DSVMs and standad SVMs.
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Figure 7. Histograms. (a) Of CME-SP daily closing price. (b) Of RDP þ 5.
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direction as price. That is, as price increases, the OBV will gain magnitude. As OBV
can relate the volume into price, it is also used as input here. The volatility denotes
the range of the highest price and lowest price in one day, and it is often used
as a measure of the market risk. The calculations for all the indicators are given
in Table II. Then genetic algorithm (GA) [19] is applied to SVMs for feature
selection. The selected feature set of GA is used as the inputs of SVMs. A detailed
description about feature selection in SVMs can be referred to [20, 21]. As listed
in Table II, the output variable RDP þ 5 is obtained by ¢rst smoothening the closing
price with a 3-day exponential moving average, because the application of a smooth-
ing transform to the dependent variable generally enhances the prediction perform-
ance of neural networks [17].
The long left tail in Figure 7 (b) indicates that there are outliers in the data set.

Since outliers may make it dif¢cult or time-consuming to arrive at an effective sol-
ution for the neural networks, RDP values beyond the limits of �2 standard
deviations are selected as outliers. They are replaced with the closest marginal valu-
es. Another pre-processing technique used in this study is data scaling. All the data
points are scaled into the range of ½
0:9; 0:9� as the data points include both positive

Table II. Input and output variable

Indicator Calculation

Input variables x1 PðiÞ 
 EMA100ðiÞ

x2 Pði 
 1Þ 
 EMA100ði 
 1Þ

x3 Pði 
 2Þ 
 EMA100ði 
 2Þ
x4 ðpðiÞ 
 pði 
 5ÞÞ=pði 
 5Þ � 100
x5 ðpði 
 1Þ 
 pði 
 6ÞÞ=pði 
 6Þ � 100
x6 ðpði 
 2Þ 
 pði 
 7ÞÞ=pði 
 7Þ � 100
x7 ðpði 
 3Þ 
 pði 
 8ÞÞ=pði 
 8Þ � 100
x8 ðpði 
 4Þ 
 pði 
 9ÞÞ=pði 
 9Þ � 100
x9 ðpðiÞ 
 pði 
 10ÞÞ=pði 
 10Þ � 100
x10 ðpði 
 1Þ 
 pði 
 11ÞÞ=pði 
 11Þ � 100
x11 ðpði 
 2Þ 
 pði 
 12ÞÞ=pði 
 12Þ � 100
x12 ðpðiÞ 
 pði 
 15ÞÞ=pði 
 15Þ � 100
x13 ðpði 
 1Þ 
 pði 
 16ÞÞ=pði 
 16Þ � 100
x14 ðpði 
 2Þ 
 pði 
 17ÞÞ=pði 
 17Þ � 100
x15 ðpðiÞ 
 pði 
 20ÞÞ=pði 
 20Þ � 100
x16 ðpði 
 1Þ 
 pði 
 21ÞÞ=pði 
 21Þ � 100
x17 ðpði 
 2Þ 
 pði 
 22ÞÞ=pði 
 22Þ � 100

x18 EMA10ðiÞ 
 EMA20ðiÞ

x19
pðiÞX pði 
 1Þ obvþ ¼ volumeðiÞ
pðiÞX pði 
 1Þ obv
 ¼ volumeðiÞ

(

x20 k � sqrtð1=n �
Pn

i¼1 log
2
ðhðiÞ=lðiÞÞÞðk ¼ 80; n ¼ 5Þ

Output variable RDP þ 5 ðpði þ 5Þ 
 pðiÞÞ=pðiÞ � 100

pðiÞ ¼ EMA3ðiÞ

EMAnðiÞ is the n-day exponential moving average of the ith day.
pðiÞ, hðiÞ, lðiÞ are the closing, highest and lowest price of the ith day.
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and negative values. All of the ¢ve data sets are partitioned into three parts according
to the time sequence. The ¢rst part is used as the training set, the second part is used
as the validation set which is to select the optimal parameters of SVMs. The last part
is used as the test set. There are a total of 907 data patterns in the training set, 200
data patterns in both the validation set and the test set in all the data sets.
In this investigation, the Gaussian function is still used as the kernel function of

the SVMs. The optimal values of d2, C and e in the standard SVMs are chosen based
on the validation set. The same values of the parameters are used in the e-DSVMs.
The validation set is also used in the e-DSVMs to choose the optimal p.
The best results obtained in the e-DSVMs and standard SVMs are listed in

Table III. It can be observed that in four of the studied futures (CME-SP, CBOT-US,
EUREX-BUND and MATIF-CAC40), the e-DSVMs converge to a smaller NMSE
than the standard SVMs. In CBOT-BO, there are comparable results between
the e-DSVMs and standard SVMs. This may be explained by the fact that CBOT-BO
is more stationary than the other futures so that the e-DSVMs have no dominance
over the standard SVMs.
A paired t-test [22] is performed to determine if there is signi¢cant difference

between the two methods based on the NMSE of the test set. The calculated t-value
(Table III) shows that the e-DSVMs outperform the standard SVMs with
a ¼ 5% signi¢cance level for a one-tailed test. It can be concluded that the e-DSVMs
are more effective in modelling non-stationary ¢nancial time series.

5. Conclusions

This paper proposes the e-DSVMs to model ¢nancial time series by incorporating the
non-stationarity of ¢nancial time series into SVMs. The e-DSVMs use an adaptive
tube to place more weights on the distant training data points and less weights
on the recent training data points. The superior performance of the e-DSVMs over
the standard SVMs is demonstrated by using both simulated data sets and ¢ve real
futures contracts. Another advantage of the e-DSVMs is that their solution is sparser
than the standard SVMs.
One question may arise from the modi¢cation. When the predicted time series are

very non-stationary, a better result will be obtained when the e-DSVMs use a large
value of p. This will cause a large number of distant training data points to converge

Table III. Averaged NMSE on the test set in real ¢nancial time series

Methods Standard SVMs e-DSVMs

CME-SP 0.8407 0.8368
CBOT-US 0.9465 0.9040
CBOT-BO 0.9664 0.9608
EUREX-BUND 0.8988 0.8765
MATIF-CAC40 1.0130 0.9818

t-values 2:4334 > t0:05;4 ¼ 2:132
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to non-support vectors. Does it mean that the e-DSVMs are equivalent to deleting
the distant training data points? An experimental investigation shows that there
are two differences between the e-DSVMs and the method of purposely deleting
the distant training data points. Firstly, there are still equal tube sizes in all the
training data points in the latter method. So the recent training data points do
not get more attention than the distant training data points. Therefore, the
prediction accuracy in the deleting method is inferior to the e-DSVMs. Secondly,
as there is no prior knowledge of how many distant training points could be
eliminated, the deleting method is not very practical. If too many distant data points
are deleted, the long-term relationship between the inputs and output variable will be
distorted and thus it will lead to a poor prediction.
Future work will involve a theoretic analysis of the e-DSVMs. More sophisticated

weights function which can closely follow the dynamics of ¢nancial time series will be
explored for further improving the performance of SVMs in ¢nancial time series
forecasting.
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