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Abstract

Support vector machines (SVMs) are promising methods for the prediction of -nancial time-
series because they use a risk function consisting of the empirical error and a regularized term
which is derived from the structural risk minimization principle. This study applies SVM to
predicting the stock price index. In addition, this study examines the feasibility of applying SVM
in -nancial forecasting by comparing it with back-propagation neural networks and case-based
reasoning. The experimental results show that SVM provides a promising alternative to stock
market prediction.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Stock market prediction is regarded as a challenging task of -nancial time-series
prediction. There have been many studies using arti-cial neural networks (ANNs) in
this area. A large number of successful applications have shown that ANN can be
a very useful tool for time-series modeling and forecasting [24]. The early days of
these studies focused on application of ANNs to stock market prediction (for instance
[2,6,11,13,19,23]). Recent research tends to hybridize several arti-cial intelligence (AI)
techniques (for instance [10,22]). Some researchers tend to include novel factors in
the learning process. Kohara et al. [14] incorporated prior knowledge to improve the
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performance of stock market prediction. Tsaih et al. [20] integrated the rule-based
technique and ANN to predict the direction of the S& P 500 stock index futures on a
daily basis.
Quah and Srinivasan [17] proposed an ANN stock selection system to select stocks

that are top performers from the market and to avoid selecting under performers. They
concluded that the portfolio of the proposed model outperformed the portfolios of the
benchmark model in terms of compounded actual returns overtime. Kim and Han [12]
proposed a genetic algorithms approach to feature discretization and the determina-
tion of connection weights for ANN to predict the stock price index. They suggested
that their approach reduced the dimensionality of the feature space and enhanced the
prediction performance.
Some of these studies, however, showed that ANN had some limitations in learning

the patterns because stock market data has tremendous noise and complex dimensional-
ity. ANN often exhibits inconsistent and unpredictable performance on noisy data. How-
ever, back-propagation (BP) neural network, the most popular neural network model,
suEers from diFculty in selecting a large number of controlling parameters which
include relevant input variables, hidden layer size, learning rate, momentum term.
Recently, a support vector machine (SVM), a novel neural network algorithm, was

developed by Vapnik and his colleagues [21]. Many traditional neural network models
had implemented the empirical risk minimization principle, SVM implements the struc-
tural risk minimization principle. The former seeks to minimize the mis-classi-cation
error or deviation from correct solution of the training data but the latter searches to
minimize an upper bound of generalization error. In addition, the solution of SVM may
be global optimum while other neural network models may tend to fall into a local
optimal solution. Thus, over-tting is unlikely to occur with SVM.
This paper applies SVM to predicting stock price index. In addition, this paper

examines the feasibility of applying SVM in -nancial forecasting by comparing it with
ANN and case-based reasoning (CBR).
This paper consists of -ve sections. Section 2 introduces the basic concept of SVM

and their applications in -nance. Section 3 proposes a SVM approach to the prediction
of stock price index. Section 4 describes research design and experiments. In Section
4, empirical results are summarized and discussed. Section 5 presents the conclusions
and limitations of this study.

2. SVMs and their applications in �nance

The following presents some basic concepts of SVM theory as described by prior
research. A detailed explanation may be found in the references in this paper.

2.1. Basic concepts

SVM uses linear model to implement nonlinear class boundaries through some non-
linear mapping the input vectors x into the high-dimensional feature space. A linear
model constructed in the new space can represent a nonlinear decision boundary in
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the original space. In the new space, an optimal separating hyperplane is constructed.
Thus, SVM is known as the algorithm that -nds a special kind of linear model, the
maximum margin hyperplane. The maximum margin hyperplane gives the maximum
separation between the decision classes. The training examples that are closest to the
maximum margin hyperplane are called support vectors. All other training examples
are irrelevant for de-ning the binary class boundaries.
For the linearly separable case, a hyperplane separating the binary decision classes

in the three-attribute case can be represented as the following equation:

y = w0 + w1x1 + w2x2 + w3x3; (1)

where y is the outcome, xi are the attribute values, and there are four weights wi to
be learned by the learning algorithm. In Eq. (1), the weights wi are parameters that
determine the hyperplane. The maximum margin hyperplane can be represented as the
following equation in terms of the support vectors:

y = b+
∑

�iyix(i) · x; (2)

where yi is the class value of training example x(i), · represents the dot product. The
vector x represents a test example and the vectors x(i) are the support vectors. In this
equation, b and �i are parameters that determine the hyperplane. From the implemen-
tation point of view, -nding the support vectors and determining the parameters b and
�i are equivalent to solving a linearly constrained quadratic programming (QP).

As mentioned above, SVM constructs linear model to implement nonlinear class
boundaries through the transforming the inputs into the high-dimensional feature space.
For the nonlinearly separable case, a high-dimensional version of Eq. (2) is simply
represented as follows:

y = b+
∑

�iyiK(x(i); x): (3)

The function K(x(i); x) is de-ned as the kernel function. There are some diEerent
kernels for generating the inner products to construct machines with diEerent types of
nonlinear decision surfaces in the input space. Choosing among diEerent kernels the
model that minimizes the estimate, one chooses the best model. Common examples of
the kernel function are the polynomial kernel K(x; y)=(xy+1)d and the Gaussian radial
basis function K(x; y) = exp(−1=�2(x − y)2) where d is the degree of the polynomial
kernel and �2 is the bandwidth of the Gaussian radial basis function kernel.
For the separable case, there is a lower bound 0 on the coeFcient �i in Eq. (3). For

the non-separable case, SVM can be generalized by placing an upper bound C on the
coeFcients �i in addition to the lower bound [22].

2.2. Prior applications of SVM in 6nancial time-series forecasting

As mentioned above, the BP network has been widely used in the area of -nancial
time series forecasting because of its broad applicability to many business problems
and preeminent learning ability. However, the BP network has many disadvantages
including the need for the determination of the value of controlling parameters and
the number of processing elements in the layer, and the danger of over-tting problem.
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On the other hand, there are no parameters to tune except the upper bound C for the
non-separable cases in linear SVM [8]. In addition, over-tting is unlikely to occur with
SVM. Over-tting may be caused by too much Jexibility in the decision boundary. But,
the maximum hyperplane is relatively stable and gives little Jexibility [22].
Although SVM has the above advantages, there is few studies for the application

of SVM in -nancial time-series forecasting. Mukherjee et al. [15] showed the ap-
plicability of SVM to time-series forecasting. Recently, Tay and Cao [18] examined
the predictability of -nancial time-series including -ve time series data with SVMs.
They showed that SVMs outperformed the BP networks on the criteria of normalized
mean square error, mean absolute error, directional symmetry and weighted directional
symmetry. They estimated the future value using the theory of SVM in regression
approximation.

3. Research data and experiments

3.1. Research data

The research data used in this study is technical indicators and the direction of
change in the daily Korea composite stock price index (KOSPI). Since we attempt to
forecast the direction of daily price change in the stock price index, technical indicators
are used as input variables. This study selects 12 technical indicators to make up the
initial attributes, as determined by the review of domain experts and prior research
[12]. The descriptions of initially selected attributes are presented in Table 1.
Table 2 presents the summary statistics for each attribute.
This study is to predict the directions of daily change of the stock price index. They

are categorized as “0” or “1” in the research data. “0” means that the next day’s index
is lower than today’s index, and “1” means that the next day’s index is higher than
today’s index. The total number of sample is 2928 trading days, from January 1989 to
December 1998. About 20% of the data is used for holdout and 80% for training. The
number of the training data is 2347 and that of the holdout data is 581. The holdout
data is used to test results with the data that is not utilized to develop the model.
The original data are scaled into the range of [−1:0; 1:0]. The goal of linear scaling

is to independently normalize each feature component to the speci-ed range. It ensures
the larger value input attributes do not overwhelm smaller value inputs, then helps to
reduce prediction errors.
The prediction performance P is evaluated using the following equation:

P =
1
m

m∑
i=1

Ri (i = 1; 2; : : : ; m) (4)

where Ri the prediction result for the ith trading day is de-ned by

Ri =

{
1 if POi = AOi;

0 otherwise;
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Table 1
Initially selected features and their formulas

Feature name Description Formula Refs.

%K Stochastic %K . It compares
where a security’s price closed
relative to its price range over a
given time period.

Ct − LLt−n
HHt−n − LLt−n

×100, where LLt and HHt

mean lowest low and highest high in the
last t days, respectively.

[1]

%D Stochastic %D. Moving average
of %K .

∑n−1
i=0 %Kt−i

n
[1]

Slow %D Stochastic slow %D. Moving av-
erage of %D.

∑n−1
i=0 %Dt−i

n
[9]

Momentum It measures the amount that a se-
curity’s price has changed over a
given time span.

Ct − Ct−4 [3]

ROC Price rate-of-change. It displays
the diEerence between the cur-
rent price and the price n days
ago.

Ct
Ct−n

× 100 [16]

Williams’ %R Larry William’s %R. It is a mo-
mentum indicator that measures
overbought/oversold levels.

Hn − Ct
Hn − Ln

× 100 [1]

A/D Oscillator Accumulation/distribution oscil-
lator. It is a momentum indicator
that associates changes in price.

Ht − Ct−1

Ht − Lt
[3]

Disparity5 5-day disparity. It means the dis-
tance of current price and the
moving average of 5 days.

Ct
MA5

× 100 [5]

Disparity10 10-day disparity.
Ct
MA10

× 100 [5]

OSCP Price oscillator. It displays the
diEerence between two moving
averages of a security’s price.

MA5 −MA10
MA5

[1]

CCI Commodity channel index. It
measures the variation of a se-
curity’s price from its statistical
mean.

(Mt − SMt)
(0:015Dt)

where Mt = (Ht + Lt + Ct)=3;

SMt =

∑n
i=1 Mt−i+1

n
, and

Dt =

∑n
i=1 |Mt−i+1 − SMt |

n
.

[1,3]

RSI Relative strength index. It is a
price following an oscillator that
ranges from 0 to 100.

100− 100

1 + (
∑n−1
i=0 Upt−i=n)=(

∑n−1
i=0 Dwt−i=n)

where Upt means upward-price-change
and Dwt means downward-price-change at
time t.

[1]

Ct is the closing price at time t, Lt the low price at time t, Ht the high price at time t and, MAt the
moving average of t days.
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Table 2
Summary statistics

Feature name Max Min Mean Standard deviation

%K 100.007 0.000 45.407 33.637
%D 100.000 0.000 45.409 28.518
Slow %D 99.370 0.423 45.397 26.505
Momentum 102.900 −108.780 −0.458 21.317
ROC 119.337 81.992 99.994 3.449
Williams’ %R 100.000 −0.107 54.593 33.637
A/D Oscillator 3.730 −0.157 0.447 0.334
Disparity5 110.003 90.077 99.974 1.866
Disparity10 115.682 87.959 99.949 2.682
OSCP 5.975 −7.461 −0.052 1.330
CCI 226.273 −221.448 −5.945 80.731
RSI 100.000 0.000 47.598 29.531

POi is the predicted output from the model for the ith trading day, and AOi is the
actual output for the ith trading day, m is the number of the test examples.

3.2. SVM

In this study, the polynomial kernel and the Gaussian radial basis function are used
as the kernel function of SVM. Tay and Cao [18] showed that the upper bound C and
the kernel parameter �2 play an important role in the performance of SVMs. Improper
selection of these two parameters can cause the over-tting or the under-tting problems.
Since there is few general guidance to determine the parameters of SVM, this study
varies the parameters to select optimal values for the best prediction performance. This
study uses LIBSVM software system [4] to perform experiments.

3.3. BP

In this study, standard three-layer BP networks and CBR are used as benchmarks.
This study varies the number of nodes in the hidden layer and stopping criteria for
training. In this study, 6, 12, 24 hidden nodes for each stopping criteria because the
BP network does not have a general rule for determining the optimal number of hidden
nodes. For the stopping criteria of BP, this study allows 50, 100, 200 learning epochs
per one training example since there is little general knowledge for selecting the number
of epochs. Thus, this study uses 146 400, 292 800, 565 600 learning epochs for the
stopping criteria of BP because this study uses 2928 examples. The learning rate is 0.1
and the momentum term is 0.1. The hidden nodes use the sigmoid transfer function
and the output node uses the linear transfer function. This study allows 12 input nodes
because 12 input variables are employed.
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3.4. CBR

For CBR, the nearest-neighbor method is used to retrieve relevant cases. This method
is a popular retrieval method because it can be easily applied to numeric data such as
-nancial data. This study varies the number of nearest neighbor from 1 to 5. An eval-
uation function of the nearest-neighbor method is Euclidean distance and the function
is represented as follows:

DIR =

√√√√ n∑
i=1

wi(fI
i − fR

i )2; (5)

where DIR is a distance between fI
i and f

R
i , f

I
i and f

R
i are the values for attribute fi

in the input and retrieved cases, n is the number of attributes, and wi is the importance
weighting of the attribute fi.

4. Experimental results

One of the advantages of linear SVM is that there is no parameter to tune except the
constant C. But the upper bound C on the coeFcient �i aEects prediction performance
for the cases where the training data is not separable by a linear SVM [8]. For the
nonlinear SVM, there is an additional parameter, the kernel parameter, to tune. First,
this study uses two kernel functions including the Gaussian radial basis function and
the polynomial function. The polynomial function, however, takes a longer time in the
training of SVM and provides worse results than the Gaussian radial basis function in
preliminary test. Thus, this study uses the Gaussian radial basis function as the kernel
function of SVMs.
This study compares the prediction performance with respect to various kernel pa-

rameters and constants. According to Tay and Cao [18], an appropriate range for �2

was between 1 and 100. In addition, they proposed that an appropriate range for C
was between 10 and 100. Table 3 presents the prediction performance of SVMs with
various parameters.
In Table 3, the best prediction performance of the holdout data is recorded when

�2 is 25 and C is 78. The range of the prediction performance is between 50.0861%
and 57.8313%. Fig. 1 gives the results of SVMs with various C where �2 is -xed
at 25.
Tay and Cao [18] suggested that too small a value for C caused under--t the training

data while too large a value of C caused over--t the training data. It can be observed
that the prediction performance on the training data increases with C in this study. The
prediction performance on the holdout data increases when C increases from 1 to 78
but decreases when C is 100. The results partly support the conclusions of Tay and
Cao [18].
Fig. 2 presents the results of SVMs with various �2 where C is chosen as 78.
According to Tay and Cao [18], a small value of �2 would over--t the training data

while a large value of �2 would under--t the training data. The prediction performance
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Table 3
The prediction performance of various parameters in SVMs

C Training data Holdout data

Number of hit/total number Hit ratio Number of hit/total number Hit ratio

(a) �2 = 1
1 1358/1637 82.9566 305/581 52.4957
10 1611/1637 98.4117 296/581 50.9466
33 1634/1637 99.8167 291/581 50.0861
55 1637/1637 100 295/581 50.7745
78 1637/1637 100 293/581 50.4303
100 1637/1637 100 293/581 50.4303

(b) �2 = 25
1 966/1637 59.0104 319/581 54.9053
10 1007/1637 61.515 331/581 56.9707
33 1037/1637 63.3476 330/581 56.7986
55 1048/1637 64.0195 334/581 57.4871
78 1060/1637 64.7526 336/581 57.8313
100 1076/1637 65.73 332/581 57.1429

(c) �2 = 50
1 954/1637 58.2773 331/581 56.9707
10 970/1637 59.2547 325/581 55.938
33 993/1637 60.6597 335/581 57.6592
55 1011/1637 61.7593 324/581 55.7659
78 1017/1637 62.1258 322/581 55.4217
100 1020/1637 62.3091 326/581 56.1102

(d) �2 = 75
1 951/1637 58.0941 323/581 55.5938
10 973/1637 59.438 323/581 55.5938
33 975/1637 59.5602 325/581 55.938
55 982/1637 59.9878 331/581 56.9707
78 985/1637 60.171 333/581 57.315
100 990/1637 60.4765 333/581 57.315

(e) �2 = 100
1 938/1637 57.2999 320/581 55.0775
10 962/1637 58.766 317/581 54.5611
33 971/1637 59.3158 322/581 55.4217
55 974/1637 59.4991 324/581 55.7659
78 984/1637 60.11 325/581 55.938
100 980/1637 59.8656 329/581 56.6265

on the training data decreases with �2 in this study. But Fig. 2 shows the prediction
performance on the holdout data is stable and insensitive in the range of �2 from 25
to 100. These results also support the conclusions of Tay and Cao [18].
Figs. 3 and 4 present the results of the best SVM model for the training and the

holdout data, respectively.
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Fig. 1. The results of SVMs with various C where �2 is -xed at 25.

Fig. 2. The results of SVMs with various �2 where C is -xed at 78.

Figs. 3(a) and 4(a) represent data patterns before SVM is employed. Two diEerent
colors of circles are two classes of the training and the holdout examples. Figs. 3(b)
and 4(b) show the results after SVM is implemented. The two classes are represented
by green and red bullets.
In addition, this study compares the best SVM model with BP and CBR. Table 4

gives the prediction performance of various BP models.
In Table 4, the best prediction performance for the holdout data is produced when

the number of hidden processing elements are 24 and the stopping criteria is 146 400 or
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(a) Before SVM is implemented                                            (b) After SVM is implemented

Fig. 3. Graphical interpretation of the results of SVM for the training data: (a) before SVM is implemented
and (b) after SVM is implemented.

(a) Before SVM is implemented                                         (b) After SVM is implemented

Fig. 4. Graphical interpretation of the results of SVM for the holdout data: (a) before SVM is implemented
and (b) after SVM is implemented.

292 800 learning epochs. The prediction performance of the holdout data is 54.7332%
and that of the training data is 58.5217%.
For CBR, this study varies the number of retrieved cases for the new problem. The

range of the number of retrieved cases is between 1 and 5. However, the prediction
performances of these -ve experiments produce same results. Thus, this study uses
the prediction performance when the number of retrieved cases is 1. The prediction
accuracy of the holdout data is 51.9793%. For CBR, the performance of the training
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Table 4
The results of various BP models

Stopping criteria Number of hidden Prediction performance Prediction performance
(epoch) nodes for the training data (%) for the holdout data (%)

146 400 6 58.1552 52.8399
12 58.6439 53.3563
24 58.5217 54.7332

292 800 6 58.1552 52.8399
12 58.6439 53.3563
24 58.5217 54.7332

565 600 6 58.1552 52.8399
12 58.1552 52.8399
24 58.1552 52.8399

Table 5
The best prediction performances of SVM, BP, and CBR (hit ratio: %)

SVM BP CBR

Training data 64.7526 58.5217
Holdout data 57.8313 54.7332 51.9793

Table 6
McNemar values (p values) for the pairwise comparison of performance

BP CBR

SVM 1642 (0.200) 4.654 (0.031)
BP 0.886 (0.347)

data is ignored because the retrieved case and the new case are the same in the training
data. Table 5 compares the best prediction performances of SVM, BP, and CBR.
In Table 5, SVM outperforms BPN and CBR by 3.0981% and 5.852% for the

holdout data, respectively. For the training data, SVM has higher prediction accuracy
than BPN by 6.2309%. The results indicate the feasibility of SVM in -nancial time
series forecasting and are compatible with the conclusions of Tay and Cao [18].
The McNemar tests are performed to examine whether SVM signi-cantly outper-

forms the other two models. This test is a nonparametric test for two related samples
and may be used with nominal data. The test is particularly useful with before-after
measurement of the same subjects [7]. Table 6 shows the results of the McNemar test
to compare the prediction performance of the holdout data.
As shown in Table 6, SVM performs better than CBR at 5% statistical signi-cance

level. However, SVM does not signi-cantly outperform BP. In addition, Table 6 also
shows that BP and CBR do not signi-cantly outperform each other.
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5. Conclusions

This study used SVM to predict future direction of stock price index. In this study,
the eEect of the value of the upper bound C and the kernel parameter �2 in SVM
was investigated. The experimental result showed that the prediction performances of
SVMs are sensitive to the value of these parameters. Thus, it is important to -nd the
optimal value of the parameters.
In addition, this study compared SVM with BPN and CBR. The experimental results

showed that SVM outperformed BPN and CBR. The results may be attributable to the
fact that SVM implements the structural risk minimization principle and this leads to
better generalization than conventional techniques. Finally, this study concluded that
SVM provides a promising alternative for -nancial time-series forecasting.
There will be other research issues which enhance the prediction performance of

SVM if they are investigated. The prediction performance may be increased if the
optimum parameters of SVM are selected and this remains a very interesting topic for
further study. The generalizability of SVMs also should be tested further by applying
them to other time-series.

Acknowledgements

This work was supported by the Dongguk University Research Fund.

References

[1] S.B. Achelis, Technical Analysis from A to Z, Probus Publishing, Chicago, 1995.
[2] H. Ahmadi, Testability of the arbitrage pricing theory by neural networks, in: Proceedings of the

International Conference on Neural Networks, San Diego, CA, 1990, pp. 385–393.
[3] J. Chang, Y. Jung, K. Yeon, J. Jun, D. Shin, H. Kim, Technical Indicators and Analysis Methods,

Jinritamgu Publishing, Seoul, 1996.
[4] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, Technical Report, Department

of Computer Science and Information Engineering, National Taiwan University, 2001, Available at
http://www.csie.edu.tw/∼cjlin/papers/libsvm.pdf.

[5] J. Choi, Technical Indicators, Jinritamgu Publishing, Seoul, 1995.
[6] J.H. Choi, M.K. Lee, M.W. Rhee, Trading S& P 500 stock index futures using a neural network,

in: Proceedings of the Annual International Conference on Arti-cial Intelligence Applications on Wall
Street, New York, 1995, pp. 63–72.

[7] D.R. Cooper, C.W. Emory, Business Research Methods, Irwin, Chicago, 1995.
[8] H. Drucker, D. Wu, V.N. Vapnik, Support vector machines for spam categorization, IEEE Trans. Neural

Networks 10 (5) (1999) 1048–1054.
[9] E. GiEord, Investor’s Guide to Technical Analysis: Predicting Price Action in the Markets, Pitman

Publishing, London, 1995.
[10] Y. Hiemstra, Modeling structured nonlinear knowledge to predict stock market returns, in: R.R. Trippi

(Ed.), Chaos & Nonlinear Dynamics in the Financial Markets: Theory, Evidence and Applications,
Irwin, Chicago, IL, 1995, pp. 163–175.

[11] K. Kamijo, T. Tanigawa, Stock price pattern recognition: a recurrent neural network approach,
in: Proceedings of the International Joint Conference on Neural Networks, San Diego, CA, 1990,
pp. 215–221.

http://www.csie.edu.tw/~cjlin/papers/libsvm.pdf


K.-j. Kim /Neurocomputing 55 (2003) 307–319 319

[12] K. Kim, I. Han, Genetic algorithms approach to feature discretization in arti-cial neural networks for
the prediction of stock price index, Expert Syst. Appl. 19 (2) (2000) 125–132.

[13] T. Kimoto, K. Asakawa, M. Yoda, M. Takeoka, Stock market prediction system with modular neural
network, in: Proceedings of the International Joint Conference on Neural Networks, San Diego, CA,
1990, pp. 1–6.

[14] K. Kohara, T. Ishikawa, Y. Fukuhara, Y. Nakamura, Stock price prediction using prior knowledge and
neural networks, Int. J. Intell. Syst. Accounting Finance Manage. 6 (1) (1997) 11–22.

[15] S. Mukherjee, E. Osuna, F. Girosi, Nonlinear prediction of chaotic time series using support vector
machines, in: Proceedings of the IEEE Workshop on Neural Networks for Signal Processing, Amelia
Island, FL, 1997, pp. 511–520.

[16] J.J. Murphy, Technical Analysis of the Futures Markets: A Comprehensive Guide to Trading Methods
and Applications, Prentice-Hall, New York, 1986.

[17] T.-S. Quah, B. Srinivasan, Improving returns on stock investment through neural network selection,
Expert Syst. Appl. 17 (1999) 295–301.

[18] F.E.H. Tay, L. Cao, Application of support vector machines in -nancial time series forecasting, Omega
29 (2001) 309–317.

[19] R.R. Trippi, D. DeSieno, Trading equity index futures with a neural network, J. Portfolio Manage. 19
(1992) 27–33.

[20] R. Tsaih, Y. Hsu, C.C. Lai, Forecasting S& P 500 stock index futures with a hybrid AI system, Decision
Support Syst. 23 (2) (1998) 161–174.

[21] V.N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.
[22] I.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java

Implementations, Morgan Kaufmann Publishers, San Francisco, CA, 2000.
[23] Y. Yoon, G. Swales, Predicting stock price performance: a neural network approach, in: Proceedings

of the 24th Annual Hawaii International Conference on System Sciences, Hawaii, 1991, pp. 156–162.
[24] G. Zhang, B.E. Patuwo, M.Y. Hu, Forecasting with arti-cial neural networks: the state of the art, Int.

J. Forecasting 14 (1998) 35–62.

Kyoung-jae Kim received his M.S. and Ph.D. degrees in Management Information
Systems from the Graduate School of Management at the Korea Advanced Institute
of Science and Technology and his B.A. degree from the Chung-Ang University.
He is currently a faculty member of the Department of Information Systems at
the Dongguk University. His research interests include data mining, knowledge
management, and intelligent agents.


	Financial time series forecasting using support vector machines
	Introduction
	SVMs and their applications in finance
	Basic concepts
	Prior applications of SVM in financial time-series forecasting

	Research data and experiments
	Research data
	SVM
	BP
	CBR

	Experimental results
	Conclusions
	Acknowledgements
	References


