
19

1.3 Neural Networks

Neural Networks are large structured systems of equations. These systems have many

degrees of freedom and are able to adapt to the task they are supposed to do [Gupta].

Two very different types of Neural Networks exist: Backpropagation Neural

Networks and Probabilistic Neural Networks. Backpropagation Neural Networks use

equations that are connected using weighting factors. The selection of the weighting factors

makes these Neural Nets so powerful. Probabilistic Neural Nets use statistical methods to

select the equations within the structure and do not weight these functions differently

[Chrekassky].

1.3.1 Backpropagation Neural Networks

1.3.1.1 Structure and Algorithm of a Backpropagation Neural

Network

The Backpropagation Neural Networks consist of neurons organized in one input

layer and one output layer and several hidden layers of neurons (Fig. 1.3-1). Several planes

can exist that are generally built up like the first plane [Zurada]. Neurons perform some kind of

calculation. They use inputs to compute an output that represents the system. The outputs are

given on to a next neuron. An arc indicates to which neurons the output is given. These arcs

carry weights.

20
In (Fig. 1.3-1) the structure of a backpropagation neural network is shown. The Input

vector consists of variables that are used to predict the desired variable. The input vector,

using an example of a heat exchanger with inputs and outputs. The inputs could consist of the

mass flow rate of water, the inlet temperature of water, the velocity of the air flowing across

the pipe and the temperature of the air. The output could be the effeciveness of the heat

exchanger. This information of the input is given to the input layer of the neural network. In the

input layer the data are normalized. A neural network does not work in a unit system. A neural

network looks solely at the numbers. It is therefore necessary to normalize the input. This

means if the temperature changes over the whole range from 300K-400K the range of the

temperature is normalized to a range of 0-1. The same normalization happens for each

individual input.

21

Neurons in
first Layer

Input Vector

Hidden
Layers

Output value
can be more
than one

Other prediction plane
The planes can be
interconnected if necessary

Fixed weights
on arcs

Fig. 1.3-1 Fig organization of neural network

The normalized signal is given on to the next neuron. Each neuron receives signals from

any number of other neurons [Zurada]. The architecture of the neural network does not need

be as shown in (Fig. 1.3-1) but for now we assume the architecture of the neural network as

shown in (Fig. 1.3-1). Each signal is weighted as it is given from the input layer to the first

hidden layer. As the new signals reaches a neuron in the hidden layer they all the signals that

are received by a neuron are summed up. This process can be looked at as a vector

multiplication (Eqn. 1.3-1) of the weight vector w and the signal vector yprevious of the previous

22
layer [Zurada]. In the hidden layer new signals are computed and given on to the next hidden

layer. This process continues until the output layer is reached.

x = w yprevious*

Eqn. 1.3-1

The scalar x causes the neuron to react in a certain way. There are two very widely-

used functions that are used in backpropagation neural networks: the threshold function (Eqn.

1.3-2) and the sigmoid function (Eqn. 1.3-3).

()y xnew i, threshold=

Eqn. 1.3-2

()y xnew,i = sigmoid

Eqn. 1.3-3

The process going on in a neuron is shown in (Fig. 1.3-2). It can be seen that the

sigmoid function has a continuous output whereas the output from the threshold function is

either 0 or a value, usually one.

23

w
eight

weight
w

ei
gh

t

Σ
Summation of
stimulating
signals coming
into neuron

θ
Threshold or
other actication
function

Activating
signal for

next layer of
neurons

Y

X

Y

X

continuous signal

binary signal

Sigmoid Function

Threshold function

Neurons

Fig. 1.3-2 Sigmoid function and Threshold function

The following process in the neural network is basically a repetition of the process that

was just described. The values of the signals and the weights will be different but the process

24
itself will continue similarly. The signals are weighted and then summed up, they cause a

reaction of the neuron and the reaction, which is the new signal, will be given on to the next

neuron.

The last step is to give the signal to the output layer. The output layer can consist of

one or more neurons. More neurons would mean that the plane of the neural network has

multiple outputs. In the output neuron a calculation is again necessary to yield a value that is

not normalized and has again a physical meaning.

The weights on the connections are not chosen arbitrarily, but result from training.

Several training algorithms exist. The well known backpropagation training, that actually gave

the name for the backpropagation neural network, is discussed in Section 2.3.1.2.

1.3.1.2 Training of a Backpropagation Neural Network

Initially the network predicts an output for one input vector for which the true output is

known. This combination of known output and input vector is called training sample. The

predicted output is compared to the known value. The weights on the arcs are adjusted

depending on how the prediction of the actual result. In (Fig. 1.3-3) the general process in a

backpropagation neural network is shown again. This figure is used for nomenclature in the

process shown in (Fig. 1.3-4) for the training.

25

1

i

I

1

j

J

1

K

v11

vJI

vjI

v1I

vJi

vji

v1i

vJ1
vj1

wKj

w1j

wK1

w11

wKJ

oK

o1

yJ

y1

yj

zI

zi

z1

Inputs OutputsHidden Layer

Fig. 1.3-3 Backpropagation neural network, nomenclature used for learning description

In (Fig. 1.3-4) the first step in the training is to assume initial weights. With these initial

weights the first output for one training sample, o, is calculated. The third step in the training is

to calculate the cycle error made in the prediction. The cycle error is as shown in (Fig. 1.3-4)

the sum of the squared differences between the known result the neural network should

predict, d, and the result, o, the neural network does predict. The cycle error is computed for

each run through the training data. The cycle error is used in each cycle of the training to

compare to the maximal allowable cycle error in step eight of (Fig. 1.3-4). In the fourth step,

the training signals are calculated. The weights between the different layers are changed

according to these training signals, that are calculated in step four in (Fig. 1.3-4). The process

is repeated until no more training samples are available. If there are no more training samples

available the cycle error then is calculated and compared to the maximal allowable error. If the

cycle error exceeds the maximal allowable cycle error, then the training has to start with a new

26
cycle. This is repeated until the cycle error is small enough. The training of Backpropagation

Neural Networks is a very time consuming process [Zurada]. Note that the error signal vector

must be determined in the output layer first and then it is propagated back toward the network

input nodes.

27

Initialize weights W,V

Submit pattern z and compute
layer's response

y=ΓΓ [Vz]
o=ΓΓ [Wy]

Compute cycle error
E=E+1/2|d-o|2

Compute learning signals
δo, δy

δδ o=1/2[(dk-ok)(1-ok
2)]

δδ y=wj
tδδ of'y

f'y=1/2[1-yi
2]

Adjust weights of output layer
W=W+ηη δδ oy'

More Patterns in the
Training set?

E<Emax

E=0

Adjust weights of hidden
layer

V=V+ηη δδ yz'

Step 7

Step 8

Step 6

Step 5

Step 1

Step 2

Step 4

Step 3

Y

N

YN

Beginning of a new training cycle
Beginning of a new

training step

Stop

Fig. 1.3-4 Block Diagram for Backpropagation Learning Algorithm [Zurada]

28
Training of Backpropagation Neural Nets depends on the order in which the training

samples are used [Zurada]. The dependence on order is a very critical point. It is not known

how the order influences the selection of the weights. A frequently used method is to randomly

choose the order of the samples and repeat it several times to see how the weights change

depending on the order of the training samples [Gupta].

1.3.1.3 Pros and Cons of Backpropagation Neural Nets

Backpropagation Neural Networks have the very desirable characteristic of being

very flexible. They can be used for pattern recognition as well as for decision making

problems. Another advantage is like for every other neural network that the process is highly

parallel and therefore the use of parallel processors is possible and cuts down the necessary

time for calculations [Specht 91, Gupta, Cherkassky].

Backpropagation Neural Networks have negative characteristics. The training of the

network can need a substantial amount of time [Gupta]. As soon as the training is done though

the network performs very fast. In some respect a disqualifying aspect, is that the size of the

training data for Backpropagation Neural Nets has to be very large. Often it is almost

impossible to provide enough training samples [Zurada]. Examples would be when training

samples result out of very expensive experiments. Or when the data are observations of nature

and these observations can only occur very rarely.

29
1.3.2 Probabilistic Neural Network

Probabilistic Neural Nets use a statistical approach in their prediction algorithm. The

bases for the statistical approach is given in the “The Bayes Strategy for Pattern

Classification” [Specht 90].

1.3.2.1 The Bayes Strategy for Pattern Classification

Bayes strategies are strategies used to classify patterns. These strategies can be

applied to problems containing any number of categories[Parzen, Specht 90]. Consider a

situation for which the state of nature θ is known to be either θA and θB . It has to be

decided in which of these two states θ is. The available information is a p-dimensional input

vector []XT = X , ... X ,... X1 i p . The Bayes decision rule becomes

() () ()
() () ()

d h I f h I f

d h I f h I f
A A A B B B

A A A B B B

X X X

X X X
A

B

= >

= <

θ

θ

 if

 if

Eqn. 1.3-4

where ()fA X and ()fB X are probability density functions for categories A and B. IA is the

loss function associated with the decision ()d X A= θ when θ θ= B . IB is the loss function

for the decision ()d X B= θ when θ θ= A , respectively. The losses for the correct decision

are equal to zero. The ratio of the loss functions in (Eqn. 1.3-6) can usually be set to -1 (an

inverter) if there is no reason for biasing the decision. Otherwise it would mean that the

decision ()d X A= θ for example cannot be trusted as much as the decision ()d X B= θ . hA

30
is the prior probability of occurrence of patterns of the category A. h hB A= −1 is the prior

probability of θ θ= A [Parzen].

The two category decision surface according to (Eqn. 1.3-4) therefore is

() ()f fA BX K X=

Eqn. 1.3-5

with

K = h I
h I

B B

A A
.

Eqn. 1.3-6

A similar decision rule can be stated for multi-category problems [Parzen, Specht 90]. A

decision surface separating two states of nature is shown in (Fig. 1.3-5). The decision surface

can be arbitrarily complex since there are no limitations on the densities except the restrictions

on the probability density functions. Namely

• non negative

• integrable

• integral over space equals unity.

31

Dec
isi

on
 S

ur
fac

e

A A

A
A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

Fig. 1.3-5 Decision surface between states of nature A and B

To be able to use (Eqn. 1.3-5) it is necessary to estimate the probability density

function accurately. The only available information to estimate the density functions are the

training samples. The loss functions require subjective evaluation if the decision is biased. A

loss function is a function that subtracts a value of the overall value for a wrong decision

[Specht 90].

According to [Parzen] a class of probability density function estimates asymptotically

approaches the underlying parent density function. The only requirement is that the density

function is continuous.

Parzen [Parzen] showed how to construct a family of estimates of the density function

32

()f Wn
Ai

i

n
X

n
X X= −





=
∑1

1λ λ

Eqn. 1.3-7

which is consistent at all points X at which the probability density function is continuous.

Parzen imposes on the weighting function ()W y which are

()sup W−∞< <∞ < ∞y y

Eqn. 1.3-8

where sup indicates the supremum. (Eqn. 1.3-8) says that the weights are not unbound and

cannot reach infinity. Where

()W dyy
−∞

∞

∫ < ∞

Eqn. 1.3-9

()
y
lim y y
→∞

=W 0

Eqn. 1.3-10

and

33

()W dyy
−∞

∞

∫ = 1.

Eqn. 1.3-11

In (Eqn. 1.3-7) λ is chosen as a function of n such that

()
n
lim n
→ ∞

=λ 0

Eqn. 1.3-12

and

()
n
lim n n
→∞

= ∞λ

Eqn. 1.3-13

Parzen further proved in [Parzen] that the estimate of the density function is consistent

in quadratic mean in the sense that the expected error goes to zero with the number of training

samples going to infinity

() ()E f fn X X n− → → ∞2 0 as .

Eqn. 1.3-14

This definition of consistency says that the expected error gets smaller as the number

of training samples gets bigger. This consistency is very important since it means that the

prediction will converge towards the underlying function with more given training samples.

34
Murthy [Murthy] and Cacoullos [Cacoullos] relaxed and extended Parzen's results.

Using Gausian distribution for the weight function, the density function can be expressed as

()
()

() ()
f expA X

m

X X X X
p p

Ai
T

Ai

i

m
=

− −









=

∑1

2

1

22
2

1π σ σ
.

Eqn. 1.3-15

The density function here is simply the sum of Gaussian distributions centered at each training

sample. Several more distributions can be used [Specht 90].

The smoothing parameter σ has a very important influence on the approximation. The

influence will be shown later. But it is stated already here that this parameter needs special

attention in the further use of Gaussian Probabilistic Neural Networks.

The structure of the calculations for the Probability density function has striking

similarities to a feed-forward neural network. The structure of the probabilistic approach is

very parallel, like a feed-forward neural network.

A probabilistic neural network has certain differences compared to a backpropagation

neural network the approach using. The biggest advantage is the fact that the probabilistic

approach works with a one-step-only learning. The learning of Backpropagation Nerual

Networks can be described as trial and error. This is no longer the case for the probabilistic

neural network. The experience is learned not by trial but by experience others made for the

neural network [Specht 90, Gupta].

35
1.3.2.2 Probabilistic Neural Network

Probabilistic Neural networks are frequently used to classify patterns based on

learning from examples. Probabilistic neural nets base the algorithm on “The Bayes Strategy

for Pattern Classification”. Different rules determine pattern statistics from the training samples.

Backpropagation uses methods as previously described that are not based on statistical

methods. Backpropagation needs a long time and many iterations and feedbacks until it

gradually approaches the underlying function [Specht 91]. It would be desirable to approach

the parameters in a one-step-only approach. “The Bayes Strategy for Pattern Classification”

extracts characteristics from the training samples to come to knowledge about the underlying

function.

36

Input Units

Pattern Units

Summation
Unit

Output Unit

X 1 X2 X n-1 Xn

Y(X)

Fig. 1.3-6 Block diagram of a Probabilistic Neural Network

The general structure of a probabilistic neural network (Fig. 1.3-6) is the same as

discussed in Section 1.3.1.1. A Probabilistic Neural Network consists of one input layer, and

two hidden layers. The first hidden layer contains the pattern units. The pattern units contain

the important functional form that was previously discussed. The calculations in the pattern unit

are shown in (Fig. 1.3-7). Each pattern unit represents information on one training sample.

Each pattern unit calculates the probability on how well the input vector fits into the pattern

unit. In the second hidden layer there is only one summation unit. Here it is decided upon the

37
individual results of each pattern unit in which pattern the input vector finally belongs. The

output unit performs again a calculation to give the output a physical meaning. For a

probabilistic neural network it is not always possible to have multiple outputs. A futher big

difference that exists between a backpropagation neural network and a probabilistic neural

network is the difference in the process inside the neurons. A probabilistic neural network uses

functions that are based on knowledge resulting from “The Bayes Strategy for Pattern

Classification”. The strength of a probabilistic neural network therefore is not the selection of

weights that fit the data in the best way. The strength of a probabilistic neural network lies in

the function that is used inside the neuron.

38

()

1

2

1

2π σ
p

p m

()
()

() ()
f expA X

m

X X X X
p

p

Ai
T

Ai=
− −













1

2

1

22
2

π σ σ

Probability
Density
function

() ()D X X X Xi Ai
T

Ai= − −

Neurons in Input Layer

()
()

[]f expA X
m

Dp
p

i=
1

2

1

2π σ

() ()D X X X Xi Ai
T

Ai= − −

XAi X

Fig. 1.3-7 Process in a Pattern Unit

The function used in a neuron of a pattern unit is a probability density function. The

probability density function needs the distance between the sample point and the position

39
where the prediction should take place to calculate the output (Fig. 1.3-8). The output of each

pattern unit is summed up and in the summation unit and then converted to a result with

physical meaning.

X 2

Y

X1

Available
Data Point

Point to estimate
Value of function

Distance

Distance

Known Value

Estimated Value

Known Value

Available
Data Point

Fig. 1.3-8 Distance between the training sample and the point of prediction

 “The Bayes Strategy for Pattern Classification” is valid as well for continuous results

[Parzen62]. It is therefore possible to predict outputs that are continuous.

1.3.3 Why Probabilistic Neural Networks and not

Backpropagation Neural Networks?

As Cherkassky, Friedman and Wechsler wrote in [Cherkassky94] there is tension

between neural network researchers and statisticians because they have different backgrounds

and different objectives in designing algorithms or analytical methods. Statistical methods tend

40
to put more emphasis on the structure of the data. For Neural network methods the structure

of the data is secondary. Therefore the amount of data needed for statistical methods is a lot

smaller than the amount of data needed for artificial neural network approaches.

Most methods are asymptotically good [Cherkassky94] but most of them have severe

drawbacks as well. Backpropagation neural networks need a very large number of training

samples and need a lot of time to gradually approach good values of the weights. Adding of

new information requires retraining and this is computationally very expensive for

Backpropagation Neural Nets but not for Probabilistic Neural Nets. Probabilistic Neural Nets

have the big advantage that the prediction algorithm works with only few training samples. The

other very big advantage is that they are very flexible and new informations can be added

immediately with almost no retraining.

41

1.4 Chapter Summary

Different approaches to model a system with data available have been shown. Each

one of them has its very own qualities and therefore advantages.

The parameters in curve fitting can have physical meaning if a physical model is

available and can be used for extrapolation. On the other hand if no physical relation is being

used the function chosen to use for the fitting needs some more attention, especially if the

problem is multi-dimensional.

Ordinary Splines and B-Splines are very flexible tools to perform curve fitting.

Problems that occur can be severe. Ordinary spline functions deviate from the expected very

easily as soon as the available data is not without error and would need interpolation. B-

Splines do not have this kind of problem but a minimization problem has to be performed

instead.

Probabilistic Neural Networks do not need very much additional input but the results

are not interpretable. Probabilistic Neural Nets have a very simple structure and are therefore

very stable procedures. Probabilistic Neural Networks perform very well for only few

available training samples, the quality increases as the number of training samples increases.

