1.3 Neural Networks

Neural Networks are large structured systems of equations. These systems have many

degrees of freedom and are able to adapt to the task they are supposed to do [Gupta].

Two very different types of Neura Networks exist: Backpropagation Neural
Networks and Probabilistic Neural Networks. Backpropagation Neura Networks use
equations that are connected using weighting factors. The sdlection of the weighting factors
makes these Neurd Nets so powerful. Probabilistic Neurd Nets use datistical methods to
sect the eguations within the Structure and do not weight these functions differently

[Chrekassky].

1.3.1 Backpropagation Neural Networks

1.3.1.1 Structure and Algorithm of a Backpropagation Neural
Network

The Backpropagation Neura Networks consst of neurons organized in one input
layer and one output layer and severd hidden layers of neurons (Fig. 1.3-1). Severd planes
can exis that are generaly built up like the first plane [Zurada]. Neurons perform some kind of
caculation. They use inputs to compute an output that represents the system. The outputs are
given on to a next neuron. An arc indicates to which neurons the output is given. These arcs

carry weights.
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In (Fig. 1.3-1) the structure of a backpropagation neurd network is shown. The Input
vector consists of variables that are used to predict the desired variable. The input vector,
using an example of a heat exchanger with inputs and outputs. The inputs could consist of the
meass flow rate of weter, the inlet temperature of water, the velocity of the air flowing across
the pipe and the temperature of the air. The output could be the effeciveness of the heat
exchanger. Thisinformation of the input is given to the input layer of the neura network. In the
input layer the data are normaized. A neurd network does not work in a unit system. A neurd
network looks solely at the numbers. It is therefore necessary to normdize the input. This
means if the temperature changes over the whole range from 300K-400K the range of the
temperature is normdized to a range of 0-1. The same normadization happens for each

individud input.
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Fig. 1.3-1 Fig organization of neural network
The normdized 9gnd is given on to the next neuron. Each neuron recaives sgnds from
any number of other neurons [Zurada]. The architecture of the neural network does not need
be asshownin (Fig. 1.3-1) but for now we assume the architecture of the neurd network as
shown in (Fig. 1.3-1). Each sgnd is weighted as it is given from the input layer to the first
hidden layer. As the new sgnds reaches a neuron in the hidden layer they al the sgnas that
are received by a neuron are summed up. This process can be looked at as a vector

multiplication (Egn. 1.3-1) of the weight vector w and the Signal vector Yprevious Of the previous
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layer [Zurada]. In the hidden layer new signas are computed and given on to the next hidden

layer. This process continues until the output layer is reached.

—_ *
X=W yprevious

Egn. 1.3-1
The scdlar x causes the neuron to react in a certain way. There are two very widely-
used functions that are used in backpropagation neura networks: the threshold function (Egn.

1.3-2) and the sgmoid function (Egn. 1.3-3).

Ynew i = threshold(x)

Egn. 1.3-2

Ynew, = Singid(X)

Eqgn. 1.3-3
The process going on in a neuron is shown in Fig. 1.3-2). It can be seen that the
sgmoid function has a continuous output wheress the output from the threshold function is

ether O or avaue, usudly one.
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Fig. 1.3-2 Sigmoid function and Threshold function
The following process in the neurd network is basicaly a repetition of the process that

was just described. The vaues of the signas and the weights will be different but the process

23



24

itsdf will continue amilarly. The sgnds are weighted and then summed up, they cause a
reection of the neuron and the reaction, which is the new signd, will be given on to the next

neuron.

The lagt gep is to give the sgnd to the output layer. The output layer can consst of
one or more neurons. More neurons would mean that the plane of the neurd network has
multiple outputs. In the output neuron a calculation is again necessary to yield a vaue that is

not normaized and has again a physicad meaning.

The weights on the connections are not chosen arbitrarily, but result from training.
Severd training agorithms exist. The well known backpropageation training, that actudly gave

the name for the backpropagation neural network, is discussed in Section 2.3.1.2.

1.3.1.2 Training of a Backpropagation Neural Network

Initidly the network predicts an output for one input vector for which the true output is
known. This combination of known output and input vector is cadled training sample. The
predicted output is compared to the known vaue. The weights on the arcs are adjusted
depending on how the prediction of the actua result. In (Fig. 1.3-3) the genera processin a
backpropagation neurd network is shown again. This figure is used for nomenclaure in the

process shown in (Fig. 1.3-4) for the training.



Inputs Hidden Layer Outputs

Fig. 1.3-3 Backpropagation neural network, nomenclature used for learning description

In (Fig. 1.3-4) thefird sep in the training is to assume initid weights. With these initid
weights the firgt output for one training sample, o, is caculated. The third sep in the training is
to caculate the cycle error made in the prediction. The cycle error is as shown in (Fig. 1.3-4)
the sum of the squared differences between the known result the neura network should
predict, d, and the result, o, the neura network does predict. The cycle error is computed for
each run through the training data. The cycle error is used in each cycle of the training to
compare to the maximal alowable cycle error in step eight of (Fig. 1.3-4). In the fourth step,
the training sgnds are cdculated. The weights between the different layers are changed
according to these training Sgnds, that are calculated in step four in (Fig. 1.3-4). The process
is repeated until no more training samples are available. If there are no more training samples
available the cycle error then is calculated and compared to the maximal alowable error. If the

cycle error exceeds the maximd dlowable cycle error, then the training has to sart with anew
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cycle Thisis repeated until the cycle error is smal enough. The training of Backpropagation
Neural Networks is avery time consuming process [Zurada]. Note that the error signal vector
must be determined in the output layer first and then it is propagated back toward the network

input nodes.
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28

Training of Backpropagation Neurd Nets depends on the order in which the training
samples are used [Zurada]. The dependence on order is a very critical point. It is not known
how the order influences the sdlection of the weights. A frequently used method is to randomly
choose the order of the samples and repest it severa times to see how the weights change

depending on the order of the training samples [Gupta).

1.3.1.3 Prosand Cons of Backpropagation Neural Nets

Backpropagation Neural Networks have the very desrable characteristic of being
very flexible They can be used for pattern recognition as wel as for decison making
problems. Another advantage is like for every other neurd network that the process is highly
paralel and therefore the use of parald processors is possible and cuts down the necessary

time for calculations [ Specht 91, Gupta, Cherkassky].

Backpropagation Neurd Networks have negative characterigtics. The training of the
network can need a subgtantia amount of time [Gupta]. As soon asthe training is done though
the network performs very fagt. In some respect a disqualifying aspect, is thet the size of the
training data for Backpropagation Neura Nets has to be very large. Often it is dmost
impossible to provide enough training samples [Zurada]. Examples would be when training
samples result out of very expensive experiments. Or when the data are observations of nature

and these observations can only occur very rarely.
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1.3.2 Probabilistic Neural Network

Probabilistic Neural Nets use a statistical gpproach in their prediction dgorithm. The
bases for the datisticd gpproach is given in the “The Bayes Strategy for Pettern

Classification” [Specht 90].

1.3.2.1 The Bayes Strategy for Pattern Classification

Bayes strategies are drategies used to classfy patterns. These drategies can be
gopplied to problems containing any number of categoriegParzen, Specht 90]. Consder a
gtuation for which the state of nature q is known to be eéther g, and qg. It has to be

decided in which of these two states q is. The available information is a p-dimensond input

vector X T :[Xl, D Xp]. The Bayes decison rule becomes

d(X)=aa if halafa(X)>hglgfg(X)
d(X)=ag if halafa(X)<hglgfg(X)

Egn. 1.3-4
where fa(X) and fg(X) are probability density functionsfor categories A and B. | 5 isthe
loss function associated with the decision d(X) =g when q=qg . | istheloss function
for the decision d(X) =qg when g =0, , respectively. The losses for the correct decision

are equd to zero. The ratio of the loss functions in (Egn. 1.3-6) can usudly be set to -1 (an
inverter) if there is no reason for biasing the decison. Otherwise it would mean that the

decison d(X) =qp for example cannot be trusted as much asthe decision d(X) =qg. ha
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is the prior probability of occurrence of patterns of the category A. hg =1- hp isthe prior

probability of q=qp [Parzen].

The two category decision surface according to (Egn. 1.3-4) thereforeis

fa(X) =K fg(X)
Egn. 1.3-5
with

k="8ls
hal A

Eqgn. 1.3-6
A smilar decision rule can be stated for multi-category problems [Parzen, Specht 90]. A
decision surface separdting two states of nature is shown in (Fig. 1.3-5). The decison surface
can be arbitrarily complex since there are no limitations on the densities except the redtrictions

on the probability dengty functions. Namely
non negative
integrable

integral over space equds unity.



Fig. 1.3-5 Decision surface between states of nature A and B
To be able to use Egn. 1.3-5) it is necessary to edimate the probability dendty
function accurately. The only avallable information to estimate the dengty functions are the
training samples. The loss functions require subjective evauation if the decison is biased. A

loss function is a function that subtracts a vaue of the overal vaue for a wrong decison

[Specht 90].

According to [Parzen] a class of probability dengity function estimates asymptoticaly
approaches the underlying parent dendity function. The only requirement is that the dengty

function is continuous.

Parzen [Parzen] showed how to congtruct afamily of estimates of the density function
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18 - Xai 6
f(X)=—-4 WH
i=1

Eqgn. 1.3-7
which is consgent a dl points X a which the probability dendty function is continuous.

Parzen imposes on the weighting function W(y) which are

SUP. y <y<y [W(Y)| < ¥

Eqgn. 1.3-8
where sup indicates the supremum. (Eqn. 1.3-8) says that the weights are not unbound and

cannot reach infinity. Where

¥

gW(y)|dy <¥

Egn. 1.3-9

lim [yW(y)| =0
y® ¥

Eqgn. 1.3-10



¥

OW(y)dy =1.

-¥
Egn. 1.3-11
In (Egn. 1.3-7) | ischosen asafunction of n such that

lim I(n)=0
n® ¥

Egn. 1.3-12

lim nl (n) =¥
n® ¥

Egn. 1.3-13
Parzen further proved in [Parzen] that the estimate of the dengity function is consgstent
in quadratic mean in the sense that the expected error goes to zero with the number of training

samples going to infinity

E[fa(X)- f(X)P® 0 as n® ¥.

Egn. 1.3-14
This definition of consstency says that the expected error gets smdler as the number
of traning samples gets bigger. This consstency is very important since it means that the

prediction will converge towards the underlying function with more given training samples.
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Murthy [Murthy] and Cacoullos [Cacoullos] relaxed and extended Parzen's results.

Using Gaudan digtribution for the weight function, the dengity function can be expressed as

Egn. 1.3-15
The dengty function here is smply the sum of Gaussian digtributions centered at each training

sample. Several more distributions can be used [Specht 90].

The smoothing parameter s has a very important influence on the gpproximation. The
influence will be shown later. But it is Sated dready here that this parameter needs specid

atention in the further use of Gaussian Probabilistic Neura Networks.

The gructure of the cdculaions for the Probability dengty function has driking
smilarities to a feed-forward neural network. The structure of the probabilistic approach is

very pardld, like afeed-forward neurd network.

A probabiligtic neura network has certain differences compared to a backpropagation
neura network the gpproach using. The biggest advantage is the fact that the probabilistic
approach works with a one-step-only learning. The learning of Backpropagation Nerud
Networks can be described as trid and error. This is no longer the case for the probabilistic
neura network. The experience is learned not by tria but by experience others made for the

neural network [Specht 90, Gupta].



1.3.2.2 Probabilistic Neural Network

Probabilistic Neurd networks are frequently used to classfy patterns based on
learning from examples. Probabilistic neurd nets base the dgorithm on “The Bayes Strategy
for Pettern Classfication”. Different rules determine pattern statistics from the training samples.
Backpropagation uses methods as previoudy described that are not based on datitical
methods. Backpropagation needs a long time and many iterations and feedbacks until it
gradualy approaches the underlying function [Specht 91]. It would be desirable to approach
the parameters in a one-step-only approach. “The Bayes Strategy for Pattern Classification”
extracts characterigtics from the training samples to come to knowledge about the underlying

function.
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Fig. 1.3-6 Block diagram of a Probabilistic Neural Network
The genera structure of a probabilistic neura network Fig. 1.3-6) is the same as
discussed in Section 1.3.1.1. A Probabilistic Neural Network consists of one input layer, and
two hidden layers. The first hidden layer contains the pattern units. The pattern units contain
the important functiona form that was previoudy discussed. The caculaions in the pattern unit
are shown in (Fig. 1.3-7). Each pattern unit represents information on one training sample.
Each pattern unit caculates the probability on how well the input vector fits into the pattern

unit. In the second hidden layer there is only one summation unit. Here it is decided upon the



individud results of each pattern unit in which pattern the input vector findly beongs. The
output unit performs again a cdculdion to give the output a physcad meaning. For a
probabilistic neural network it is not dways possble to have multiple outputs. A futher big
difference that exists between a backpropagation neurd network and a probabilistic neura
network is the difference in the process insde the neurons. A probabilistic neural network uses
functions that are based on knowledge resulting from “The Bayes Strategy for Pettern
Classfication”. The dsrength of a probabilistic neura network therefore is not the selection of
weights that fit the data in the best way. The strength of a probabilistic neurd network liesin

the function that is used indde the neuron.
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Fig. 1.3-7 Process in a Pattern Unit

The function used in a neuron of a pattern unit is a probability dengty function. The

probability dengty function needs the distance between the sample point and the postion



where the prediction should take place to calculate the output (Fig. 1.3-8). The output of each
pattern unit is summed up and in the summation unit and then converted to a result with

physica meaning.
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Fig. 1.3-8 Distance between the training sample and the point of prediction
“The Bayes Strategy for Pettern Classfication” is vaid as wel for continuous results

[Parzen62)]. It is therefore possble to predict outputs that are continuous.

1.3.3 Why Probabilistic Neural Networ ks and not
Backpropagation Neural Networks?

As Cherkassky, Friedman and Wechder wrote in [Cherkassky94] there is tension
between neura network researchers and statisticians because they have different backgrounds

and different objectives in desgning agorithms or andytica methods. Statistical methods tend
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to put more emphasis on the structure of the data. For Neura network methods the structure

of the data is secondary. Therefore the amount of data needed for statistica methods is a lot

smdller than the amount of data needed for artificial neural network approaches.

Most methods are asymptoticaly good [Cherkassky94] but most of them have severe
drawbacks as well. Backpropagation neural networks need a very large number of training
samples and need a lot of time to gradudly approach good vaues of the weights. Adding of
new information requires retraining and this is computationdly very expensve for
Backpropagation Neura Nets but not for Probabilistic Neural Nets. Probabilistic Neurd Nets
have the big advantage that the prediction agorithm works with only few training samples. The
other very big advantage is that they are very flexible and new informations can be added

immediately with dmost no retraining.



1.4 Chapter Summary

Different approaches to mode a system with data available have been shown. Each

one of them hasits very own qualities and therefore advantages.

The parameters in curve fitting can have physcd meaning if a physca modd is
avallable and can be used for extrapolation. On the other hand if no physical relation is being
used the function chosen to use for the fitting needs some more atention, especidly if the

problem is multi-dimensiond.

Ordinary Splines and B-Splines are very flexible tools to perform curve fitting.
Problems that occur can be severe. Ordinary spline functions deviate from the expected very
eadly as soon as the available data is not without error and would need interpolation. B-
Splines do not have this kind of problem but a minimization problem has to be performed
instead.

Probabilistic Neural Networks do not need very much additiona input but the results
are not interpretable. Probabilistic Neural Nets have a very smple structure and are therefore

very dable procedures. Probabilistic Neura Networks perform very wel for only few

available training samples, the quaity increases as the number of training samples increases.
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