
72 JUNE 2001 Embedded Systems Programming

f
e

a
t

u
r

e

D A N S I M O N

iltering is desirable in many situations in engineering and
embedded systems. For example, radio communication signals
are corrupted with noise. A good filtering algorithm can remove
the noise from electromagnetic signals while retaining the useful
information. Another example is power supply voltages.
Uninterruptible power supplies are devices that filter line volt-

ages in order to smooth out undesirable fluctuations that might otherwise
shorten the lifespan of electrical devices such as computers and printers.

The Kalman filter is a tool that can estimate the variables of a wide range
of processes. In mathematical terms we would say that a Kalman filter esti-
mates the states of a linear system. The Kalman filter not only works well in
practice, but it is theoretically attractive because it can be shown that of all
possible filters, it is the one that minimizes the variance of the estimation
error. Kalman filters are often implemented in embedded control systems
because in order to control a process, you first need an accurate estimate
of the process variables.

This article will tell you the basic concepts that you need to know to
design and implement a Kalman filter. I will introduce the Kalman filter
algorithm and we’ll look at the use of this filter to solve a vehicle navigation
problem. In order to control the position of an automated vehicle, we first
must have a reliable estimate of the vehicle’s present position. Kalman fil-
tering provides a tool for obtaining that reliable estimate.

Linear systems
In order to use a Kalman filter to remove noise from a signal, the process
that we are measuring must be able to be described by a linear system.
Many physical processes, such as a vehicle driving along a road, a satellite
orbiting the earth, a motor shaft driven by winding currents, or a sinusoidal

Kalman Filtering
Originally developed for use in spacecraft navigation, the Kalman filter

turns out to be useful for many applications. It is mainly used to estimate
system states that can only be observed indirectly or inaccurately by the

system itself.

F

Embedded Systems Programming JUNE 2001 73

radio-frequency carrier signal, can be
approximated as linear systems. A lin-
ear system is simply a process that can
be described by the following two
equations:

State equation:

Output equation:

In the above equations A, B, and C
are matrices; k is the time index; x is
called the state of the system; u is a
known input to the system; y is the
measured output; and w and z are the
noise. The variable w is called the
process noise, and z is called the mea-
surement noise. Each of these quanti-
ties are (in general) vectors and there-
fore contain more than one element.
The vector x contains all of the infor-
mation about the present state of the
system, but we cannot measure x
directly. Instead we measure y, which is
a function of x that is corrupted by the
noise z. We can use y to help us obtain
an estimate of x, but we cannot neces-
sarily take the information from y at
face value because it is corrupted by
noise. The measurement is like a politi-
cian. We can use the information that
it presents to a certain extent, but we
cannot afford to grant it our total trust.

For example, suppose we want to
model a vehicle going in a straight
line. We can say that the state consists
of the vehicle position p and velocity v.
The input u is the commanded accel-
eration and the output y is the mea-
sured position. Let’s say that we are
able to change the acceleration and
measure the position every T seconds.
In this case, elementary laws of physics
say that the velocity v will be governed
by the following equation:

That is, the velocity one time-step
from now (T seconds from now) will
be equal to the present velocity plus
the commanded acceleration multi-
plied by T. But the previous equation
does not give a precise value for vk+1.
Instead, the velocity will be perturbed
by noise due to gusts of wind, pot-
holes, and other unfortunate realities.
The velocity noise is a random variable
that changes with time. So a more real-
istic equation for v would be:

where is the velocity noise. A simi-
lar equation can be derived for the
position p:

where is the position noise. Now
we can define a state vector x that con-
sists of position and velocity:

Finally, knowing that the measured
output is equal to the position, we can
write our linear system equations as
follows:

zk is the measurement noise due to
such things as instrumentation errors.
If we want to control the vehicle with
some sort of feedback system, we need
an accurate estimate of the position p
and the velocity v. In other words, we

need a way to estimate the state x. This
is where the Kalman filter comes in.

The Kalman filter theory
and algorithm
Suppose we have a linear system model
as described previously. We want to use
the available measurements y to esti-
mate the state of the system x. We know
how the system behaves according to
the state equation, and we have mea-
surements of the position, so how can
we determine the best estimate of the
state x? We want an estimator that gives
an accurate estimate of the true state
even though we cannot directly mea-
sure it. What criteria should our esti-
mator satisfy? Two obvious require-
ments come to mind.

First, we want the average value of
our state estimate to be equal to the
average value of the true state. That is,
we don’t want our estimate to be biased
one way or another. Mathematically, we
would say that the expected value of
the estimate should be equal to the
expected value of the state.

Second, we want a state estimate
that varies from the true state as little
as possible. That is, not only do we
want the average of the state estimate
to be equal to the average of the true
state, but we also want an estimator
that results in the smallest possible
variation of the state estimate.
Mathematically, we would say that we
want to find the estimator with the
smallest possible error variance.

It so happens that the Kalman filter
is the estimator that satisfies these two
criteria. But the Kalman filter solution
does not apply unless we can satisfy
certain assumptions about the noise
that affects our system. Remember
from our system model that w is the
process noise and z is the measure-
ment noise. We have to assume that
the average value of w is zero and the

x
T

x
T

T
u w

y x z

k k k k

k k k

+ =

+

 +

= [] +

1

21

0 1

2

1 0

x
p

vk
k

k

=

pk
~

p p Tv T u pk k k k k+ = + + +1
21

2
~

vk
~

v v Tu vk k k k+ = + +1
~

v v Tuk k k+ = +1

y Cx zk k k= +

x Ax Bu wk k k k+ = + +1

The Kalman filter not only works well in practice, but it is theoretical-

ly attractive because it can be shown that of all possible filters, it is

the one that minimizes the variance of the estimation error.

H
A

N
N

A
H

B

L
A

I
R

average value of z is zero. We have to
further assume that no correlation
exists between w and z. That is, at any
time k, wk, and zk are independent ran-
dom variables. Then the noise covari-
ance matrices Sw and Sz are defined as:

Process noise covariance

Measurement noise covariance

where wT and zT indicate the transpose
of the w and z random noise vectors,
and E(·) means the expected value.

Now we are finally in a position to
look at the Kalman filter equations.
There are many alternative but equiva-

lent ways to express the equations. One
of the formulations is given as follows:

That’s the Kalman filter. It consists
of three equations, each involving
matrix manipulation. In the above
equations, a –1 superscript indicates
matrix inversion and a T superscript
indicates matrix transposition. The K
matrix is called the Kalman gain, and
the P matrix is called the estimation
error covariance.

The state estimate () equation is
fairly intuitive. The first term used to
derive the state estimate at time k + 1 is
just A times the state estimate at time k,
plus B times the known input at time k.
This would be the state estimate if we
didn’t have a measurement. In other
words, the state estimate would propa-
gate in time just like the state vector in
the system model. The second term in
the equation is called the correction
term and it represents the amount by
which to correct the propagated state
estimate due to our measurement.

Inspection of the K equation shows
that if the measurement noise is large,
Sz will be large, so K will be small and
we won’t give much credibility to the
measurement y when computing the
next . On the other hand, if the mea-
surement noise is small, Sz will be
small, so K will be large and we will
give a lot of credibility to the measure-
ment when computing the next .

Vehicle navigation
Now consider the vehicle navigation
problem that we looked at earlier. A
vehicle is traveling along a road. The
position is measured with an error of
10 feet (one standard deviation). The
commanded acceleration is a constant
1 foot/sec2. The acceleration noise is
0.2 feet/sec2 (one standard devia-
tion). The position is measured 10
times per second (T = 0.1). How can

x̂

x̂

x̂

x̂

K AP C CP C S

x Ax Bu K y Cx

P AP A S AP C S CP A

k k
T

k
T

z

k k k k k k

k k
T

w k
T

z k
T

= +()
= +() + −()
= + −

−

+ +

+
−

1

1 1

1
1

ˆ ˆ ˆ

S E z zz k k
T= ()

S E w ww k k
T= ()

74 JUNE 2001 Embedded Systems Programming

kalm
an filters

FIGURE 2 Position measurement error and position estimation error

FIGURE 1 Vehicle position (true, measured, and estimated)

Time (sec)

Po
sit

io
n

Er
ro

r (
fe

et
)

0

-20

-10

10

20

30

0 10 20 30 40 50 60
-30

Time (sec)

Po
sit

io
n

(fe
et

)

800

1800

0 10 20 30 40 50 60
-200

0

200

400

600

1000

1200

1400

1600

we best estimate the position of the
moving vehicle? In view of the large
measurement noise, we can surely do
better than just taking the measure-
ments at face value.

Since T = 0.1, the linear model that
represents our system can be derived
from the system model presented ear-
lier in this article as follows:

Because the standard deviation of the
measurement noise is 10 feet, the Sz

matrix is simply equal to 100.
Now we need to derive the Sw

matrix. Since the position is propor-
tional to 0.005 times the acceleration,
and the acceleration noise is 0.2
feet/sec2, the variance of the position
noise is (0.005)2· (0.2)2 = 10-6.
Similarly, since the velocity is propor-
tional to 0.1 times the acceleration,
the variance of the velocity noise is
(0.1)2· (0.2)2 = 4· 10-4. Finally, the
covariance of the position noise and
velocity noise is equal to the standard
deviation of the position noise times
the standard deviation of the velocity
noise, which can be calculated as
(0.005· 0.2)· (0.1· 0.2) = 2· 10-5. We
can combine all of these calculations
to obtain the following matrix for Sw:

Now we just initialize as our best
initial estimate of position and veloci-
ty, and we initialize P0 as the uncer-
tainty in our initial estimate. Then we
execute the Kalman filter equations
once per time step and we are off and
running.

I simulated the Kalman filter for
this problem using Matlab. The results
are shown in the accompanying fig-
ures. Figure 1 shows the true position

of the vehicle, the measured position,
and the estimated position. The two

smooth curves are the true position
and the estimated position, and they

x̂0

S E xx E
p

v
p v

E
p pv

vp v

w
T= () =

[]

=

 =

×
× ×

− −

− −

2

2

6 5

5 4

10 2 10

2 10 4 10

x x u w

y x z

k k k k

k k k

+ =

+

+

= [] +

1

1 0 1

0 1

0 005

0 1

1 0

. .

.

Embedded Systems Programming JUNE 2001 75

ka
lm

an
 f

ilt
er

s

FIGURE 3 Velocity (true and estimated)

Time (sec)

Ve
lo

cit
y

(fe
et

/s
ec

)

30

10

20

50

40

60

70

0 10 20 30 40 50 60
0

are almost too close to distinguish
from one another. The noisy-looking
curve is the measured position.

Figure 2 shows the error between
the true position and the measured
position, and the error between the
true position and the Kalman filter’s
estimated position. The measurement
error has a standard deviation of about
10 feet, with occasional spikes up to 30
feet (3 sigma). The estimated position
error stays within about two feet.

Figure 3 shows a bonus that we get
from the Kalman filter. Since the vehi-
cle velocity is part of the state x, we get
a velocity estimate along with the posi-
tion estimate. Figure 4 shows the error
between the true velocity and the
Kalman filter’s estimated velocity.

The Matlab program that I used to
generate these results is shown in
Listing 1. Don’t worry if you don’t
know Matlab—it’s an easy-to-read lan-
guage, almost like pseudocode, but
with built-in matrix operations. If you
use Matlab to run the program you
will get different results every time
because of the random noise that is
simulated, but the results will be simi-
lar to the figures shown here.

Practical issues and
extensions
The basic ideas of Kalman filtering are
straightforward, but the filter equations
rely heavily on matrix algebra. Listing 2
shows the Kalman filter update equa-
tions in C. The matrix algebra listings
referenced in Listing 2 can be found at
www.embedded.com/code.html.

These listings are very general and,
if the problem is small enough, could
probably be simplified considerably.
For example, the inverse of the 2-by-2
matrix:

is equal to:

D
d d d d

d d

d d
− =

−
−

−

1

1 4 2 3

4 2

3 1

1

D
d d

d d
=

1 2

3 4

76 JUNE 2001 Embedded Systems Programming

kalm
an filters

LISTING 1 Kalman filter simulation

function kalman(duration, dt)

% function kalman(duration, dt)

%

% Kalman filter simulation for a vehicle travelling along a road.

% INPUTS

% duration = length of simulation (seconds)

% dt = step size (seconds)

measnoise = 10; % position measurement noise (feet)

accelnoise = 0.2; % acceleration noise (feet/seĉ 2)

a = [1 dt; 0 1]; % transition matrix

b = [dt̂ 2/2; dt]; % input matrix

c = [1 0]; % measurement matrix

x = [0; 0]; % initial state vector

xhat = x; % initial state estimate

Sz = measnoisê 2; % measurement error covariance

Sw = accelnoisê 2 * [dt̂ 4/4 dt̂ 3/2; dt̂ 3/2 dt̂ 2]; % process noise cov

P = Sw; % initial estimation covariance

% Initialize arrays for later plotting.

pos = []; % true position array

poshat = []; % estimated position array

posmeas = []; % measured position array

vel = []; % true velocity array

velhat = []; % estimated velocity array

for t = 0 : dt: duration,

% Use a constant commanded acceleration of 1 foot/seĉ 2.

u = 1;

% Simulate the linear system.

ProcessNoise = accelnoise * [(dt̂ 2/2)*randn; dt*randn];

x = a * x + b * u + ProcessNoise;

% Simulate the noisy measurement

MeasNoise = measnoise * randn;

y = c * x + MeasNoise;

% Extrapolate the most recent state estimate to the present time.

xhat = a * xhat + b * u;

% Form the Innovation vector.

Inn = y - c * xhat;

% Compute the covariance of the Innovation.

s = c * P * c’ + Sz;

% Form the Kalman Gain matrix.

K = a * P * c’ * inv(s);

% Update the state estimate.

xhat = xhat + K * Inn;

% Compute the covariance of the estimation error.

Listing 1 continued on p. 78.

So if you need to invert a 2-by-2
matrix you can use the above equa-
tion. Some additional C code for
matrix manipulation and Kalman fil-
tering can be found at http://wad.
www.media.mit.edu/people/wad/mas864
/proj_src.html.

Systems with more than three states
could exceed your budget for program
size and computational effort. The
computational effort associated with
matrix inversion is proportional to n3

(where n is the size of the matrix). This
means that if the number of states in
the Kalman filter doubles, the compu-
tational effort increases by a factor of
eight. It’s not too hard to see how you
could run out of throughput pretty
quickly for a moderately sized Kalman
filter. But never fear! The so-called
“steady state Kalman filter” can greatly
reduce the computational expense
while still giving good estimation per-
formance. In the steady state Kalman
filter the matrices Kk and Pk are con-
stant, so they can be hard-coded as
constants, and the only Kalman filter
equation that needs to be implement-
ed in real time is the equation,
which consists of simple multiplies and
addition steps (or multiply and accu-
mulates if you’re using a DSP).

We have discussed state estimation
for linear systems. But what if we want
to estimate the states of a nonlinear sys-
tem? As a matter of fact, almost all real
engineering processes are nonlinear.
Some can be approximated by linear
systems but some cannot. This was rec-
ognized early in the history of Kalman
filters and led to the development of
the “extended Kalman filter,” which is
simply an extension of linear Kalman
filter theory to nonlinear systems.

Up to this point we have talked
about estimating the state one step at
a time as we obtain measurements. But
what if we want to estimate the state as
a function of time after we already
have the entire time-history of mea-
surements? For example, what if we
want to reconstruct the trajectory of
our vehicle after the fact? Then it
seems that we could do better than the
Kalman filter because to estimate the

state at time k we could use measure-
ments not only up to and including
time k, but also after time k. The

Kalman filter can be modified for this
problem to obtain the so-called
Kalman smoother.

x̂

Embedded Systems Programming JUNE 2001 77

ka
lm

an
 f

ilt
er

s

FIGURE 4 Velocity estimation error

Time (sec)

Ve
lo

cit
y

Er
ro

r (
fe

et
/s

ec
)

-0.1

-0.3

-0.2

0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60
-0.4

The Kalman filter not only works
well but is theoretically attractive. It
can be shown that the Kalman filter
minimizes the variance of the esti-
mation error. But what if we have a
problem where we are more con-
cerned with the worst case estima-
tion error? What if we want to mini-
mize the “worst” estimation error

rather than the “average” estimation
error? This problem is solved by the
H¥ filter. The H¥ filter (pronounced
“H infinity” and sometimes written
as H¥) is an alternative to Kalman
filtering that was developed in the
1980s. It is less widely known and
less commonly applied than the
Kalman filter, but it has advantages

that make it more effective in cer-
tain situations.

Kalman filter theory assumes that
the process noise w and the measure-
ment noise z are independent from
each other. What if we have a system
where these two noise processes are
not independent? This is the correlat-
ed noise problem, and the Kalman fil-
ter can be modified to handle this
case. In addition, the Kalman filter
requires that the noise covariances Sw

and Sz be known. What if they are not
known? Then how can we best esti-
mate the state? Again, this is the prob-
lem solved by the H¥ filter.

Kalman filtering is a huge field
whose depths we cannot hope to begin
to plumb in these few pages.
Thousands of papers and dozens of
textbooks have been written on this
subject since its inception in 1960.

Historical perspective
The Kalman filter was developed by
Rudolph Kalman, although Peter
Swerling developed a very similar algo-
rithm in 1958. The filter is named after
Kalman because he published his results
in a more prestigious journal and his
work was more general and complete.
Sometimes the filter is referred to as the
Kalman-Bucy filter because of Richard
Bucy’s early work on the topic, conduct-
ed jointly with Kalman.

The roots of the algorithm can be
traced all the way back to the 18-year-
old Karl Gauss’s method of least squares
in 1795. Like many new technologies,
the Kalman filter was developed to solve
a specific problem, in this case, space-
craft navigation for the Apollo space
program. Since then, the Kalman filter
has found applications in hundreds of
diverse areas, including all forms of nav-
igation (aerospace, land, and marine),
nuclear power plant instrumentation,
demographic modeling, manufactur-
ing, the detection of underground
radioactivity, and fuzzy logic and neural
network training. esp

Dan Simon is a professor in the electrical
and computer engineering department at

78 JUNE 2001 Embedded Systems Programming

kalm
an filters

LISTING 1, continued Kalman filter simulation

P = a * P * a’ - a * P * c’ * inv(s) * c * P * a’ + Sw;

% Save some parameters for plotting later.

pos = [pos; x(1)];

posmeas = [posmeas; y];

poshat = [poshat; xhat(1)];

vel = [vel; x(2)];

velhat = [velhat; xhat(2)];

end

% Plot the results

close all;

t = 0 : dt : duration;

figure;

plot(t,pos, t,posmeas, t,poshat);

grid;

xlabel(‘Time (sec)’);

ylabel(‘Position (feet)’);

title(‘Figure 1 - Vehicle Position (True, Measured, and Estimated)’)

figure;

plot(t,pos-posmeas, t,pos-poshat);

grid;

xlabel(‘Time (sec)’);

ylabel(‘Position Error (feet)’);

title(‘Figure 2 - Position Measurement Error and Position Estimation Error’);

figure;

plot(t,vel, t,velhat);

grid;

xlabel(‘Time (sec)’);

ylabel(‘Velocity (feet/sec)’);

title(‘Figure 3 - Velocity (True and Estimated)’);

figure;

plot(t,vel-velhat);

grid;

xlabel(‘Time (sec)’);

ylabel(‘Velocity Error (feet/sec)’);

title(‘Figure 4 - Velocity Estimation Error’);

Cleveland State University and a consul-
tant to industry. His teaching and research
interests include filtering, control theory,
embedded systems, fuzzy logic, and neural
networks. He is presently trying to imple-
ment a DSP-based motor controller using a
Kalman filter. You can contact him at
d.j.simon@csuohio.edu.

For further reading
Gelb, A. Applied Optimal Estimation.

Cambridge, MA: MIT Press, 1974. This
is what you call an “oldie but goodie.”
And don’t worry that it’s published by
MIT Press; it’s a simple and straightfor-
ward book that starts with the basics
and is heavy on practical issues.

Anderson, B. and J. Moore. Optimal

Filtering. Englewood Cliffs, NJ:

Prentice-Hall, 1979. This is very math-

ematical and difficult to read, but I

have relied heavily on it for obtaining

a fundamental theoretical understand-

ing of Kalman filtering and related

issues.

Grewal, M. and A. Andrews. Kalman

Filtering Theory and Practice.

Englewood Cliffs, NJ: Prentice-Hall,

1993. This is a happy medium between

the first two references, a nice balance

between theory and practice. One good

feature of this book is that it includes

Kalman filtering source code on a floppy

disk. One not-so-nice feature is that the

source code is written in Fortran.

Sorenson, H. Kalman Filtering: Theory and

Application. Los Alamitos, CA: IEEE

Press, 1985. This is a collection of some

of the classic papers on Kalman filtering,

starting with Kalman’s original paper in

1960. The papers are academically ori-

ented, but someone who likes theory

will obtain an interesting historical per-

spective from this book.

http://ourworld.compuserve.com/home-

pages/PDJoseph/—This is Peter Joseph’s
Web site, and a useful resource on the

topic of Kalman filtering. Dr. Joseph has

worked with Kalman filters since their

inception in 1960, and coauthored per-

haps the earliest text on the subject (in

1968). His Web page includes lessons

for the beginning, intermediate, and

advanced student.

Embedded Systems Programming JUNE 2001 79

ka
lm

an
 f

ilt
er

s

LISTING 2 Kalman filter equations

// The following code snippet assumes that the linear system has n states, m
// inputs, and r outputs. Therefore, the following variables are assumed to
// already be defined.
// A is an n by n matrix
// B is an n by m matrix
// C is an r by n matrix
// xhat is an n by 1 vector
// y is an r by 1 vector
// u is an m by 1 vector
// Sz is an r by r matrix
// Sw is an n by n matrix
// P is an n by n matrix

float AP[n][n]; // This is the matrix A*P
float CT[n][r]; // This is the matrix CT

float APCT[n][r]; // This is the matrix A*P*CT

float CP[r][n]; // This is the matrix C*P
float CPCT[r][r]; // This is the matrix C*P*CT

float CPCTSz[r][r]; // This is the matrix C*P*CT+Sz
float CPCTSzInv[r][r]; // This is the matrix (C*P*CT+Sz)-1

float K[n][r]; // This is the Kalman gain.
float Cxhat[r][1]; // This is the vector C*xhat
float yCxhat[r][1]; // This is the vector y-C*xhat
float KyCxhat[n][1]; // This is the vector K*(y-C*xhat)
float Axhat[n][1]; // This is the vector A*xhat
float Bu[n][1]; // This is the vector B*u
float AxhatBu[n][1]; // This is the vector A*xhat+B*u
float AT[n][n]; // This is the matrix AT

float APAT[n][n]; // This is the matrix A*P*AT

float APATSw[n][n]; // This is the matrix A*P*AT+Sw
float CPAT[r][n]; // This is the matrix C*P*AT

float SzInv[r][r]; // This is the matrix Sz-1

float APCTSzInv[n][r]; // This is the matrix A*P*CT*Sz-1

float APCTSzInvCPAT[n][n]; // This is the matrix A*P*CT*Sz-1*C*P*AT

// The following sequence of function calls computes the K matrix.
MatrixMultiply((float*)A, (float*)P, n, n, n, (float*)AP);
MatrixTranspose((float*)C, r, n, (float*)CT);
MatrixMultiply((float*)AP, (float*)CT, n, n, r, (float*)APCT);
MatrixMultiply((float*)C, (float*)P, r, n, n, (float*)CP);
MatrixMultiply((float*)CP, (float*)CT, r, n, r, (float*)CPCT);
MatrixAddition((float*)CPCT, (float*)Sz, r, r, (float*)CPCTSz);
MatrixInversion((float*)CPCTSz, r, (float*)CPCTSzInv);
MatrixMultiply((float*)APCT, (float*)CPCTSzInv, n, r, r, (float*)K);

// The following sequence of function calls updates the xhat vector.
MatrixMultiply((float*)C, (float*)xhat, r, n, 1, (float*)Cxhat);
MatrixSubtraction((float*)y, (float*)Cxhat, r, 1, (float*)yCxhat);
MatrixMultiply((float*)K, (float*)yCxhat, n, r, 1, (float*)KyCxhat);
MatrixMultiply((float*)A, (float*)xhat, n, n, 1, (float*)Axhat);
MatrixMultiply((float*)B, (float*)u, n, r, 1, (float*)Bu);
MatrixAddition((float*)Axhat, (float*)Bu, n, 1, (float*)AxhatBu);
MatrixAddition((float*)AxhatBu, (float*)KyCxhat, n, 1, (float*)xhat);

// The following sequence of function calls updates the P matrix.
MatrixTranspose((float*)A, n, n, (float*)AT);
MatrixMultiply((float*)AP, (float*)AT, n, n, n, (float*)APAT);
MatrixAddition((float*)APAT, (float*)Sw, n, n, (float*)APATSw);
MatrixTranspose((float*)APCT, n, r, (float*)CPAT);
MatrixInversion((float*)Sz, r, (float*)SzInv);
MatrixMultiply((float*)APCT, (float*)SzInv, n, r, r, (float*)APCTSzInv);
MatrixMultiply((float*)APCTSzInv, (float*)CPAT, n, r, n,
(float*)APCTSzInvCPAT);
MatrixSubtraction((float*)APATSw, (float*)APCTSzInvCPAT, n, n, (float*)P);

