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QuantCloud: Big Data Infrastructure  

for Quantitative Finance on the Cloud 
Peng Zhang, Member, IEEE, Kai Yu, Jessica J. Yu and Samee U. Khan, Senior Member, IEEE 

Abstract—In this paper, we present the QuantCloud infrastructure, designed for performing big data analytics in modern 

quantitative finance. Through analyzing market observations, quantitative finance (QF) utilizes mathematical models to search for 

subtle patterns and inefficiencies in financial markets to improve prospective profits. To discover profitable signals in anticipation 

of volatile trading patterns amid a global market, analytics are carried out on Exabyte-scale market metadata with a complex 

process in pursuit of a microsecond or even a nanosecond of data processing advantage. This objective motivates the 

development of innovative tools to address challenges for handling high volume, velocity, and variety investment instruments. 

Inspired by this need, we developed QuantCloud by employing large-scale SSD-backed datastore, various parallel processing 

algorithms, and portability in Cloud computing. QuantCloud bridges the gap between model computing techniques and financial 

data-driven research. The large volume of market data is structured in an SSD-backed datastore, and a daemon reacts to provide 

the Data-on-Demand services. Multiple client services process user requests in a parallel mode and query on-demand datasets 

from the datastore through Internet connections. We benchmark QuantCloud performance on a 40-core, 1TB-memory computer 

and a 5-TB SSD-backed datastore. We use NYSE TAQ data from the fourth quarter of 2014 as our market data. The results 

indicate data-access application latency as low as 3.6 nanoseconds per message, sustained throughput for parallel data 

processing as high as 74 million messages per second, and completion of 11 petabyte-level data analytics within 53 minutes. Our 

results demonstrate that the aggregated contributions of our infrastructure, parallel algorithms, and sophisticated implementations 

offer the algorithmic trading and financial engineering community new hope and numeric insights for their research and 

development. 

Index Terms—Big Data, Cloud computing, Quantitative Finance, Parallel Processing 

——————————      —————————— 

1 INTRODUCTION

UANTITATIVE finance relies on data to provide vital 

and actionable information for all aspects of the indus-

try [1-4]. Financial organizations gain numeric insights from 

ever-growing structured and unstructured data provided by 

a variety of sources including global markets and media [5, 

6]. The financial industry encompasses diverse asset-man-

aging businesses, including commercial and investment 

banks, stock brokers, hedge funds, and government-run in-

stitutions. Businesses are operated by organizations rang-

ing from large corporations such as JPMorgan Chase to 

proprietary trading shops consisting of a few individuals. 

However, the essential goals remain to: (i) maximize prof-

its, and (ii) minimize risks by gaining subtle insights into 

market opportunities. Understanding market data is vital for 

understanding the financial market in the big data era [3, 4, 

7]. 

Mathematical modeling plays a key role in quantitatively 

understanding markets [4, 8, 9]. Over time, increasingly so-

phisticated models such as stochastic calculus have arisen 

to obtain corresponding values and relations between com-

plex events. Greater volumes of analyzed data and in-

creased model sophistication have led to a more accurate 

understanding of market patterns. As capital markets step 

into the big data era, processing constraints for large 

amounts of data has challenged model development. 

Petabyte or even exabyte-level data, such as NYSE (New 

York Stock Exchange) TAQ (Trade and Quota), need to be 

processed efficiently. To some extent this process requires 

extensive repetition under different model parameters in 

response to volatile global markets [10, 11]. 

Algorithmic trading (algo-trading) is the process of pro-

gramming computers to place electronic trades according 

to predefined strategies [12, 13]. Algo-trading handles not 

only high-volume big data, but also high-velocity data pro-

cessing. In today’s markets, a stock can experience 500 

quote changes and 150 trades in one microsecond [14]. 

Consequently, prices fluctuate by the milli- or even micro-

second [15]. Placing a large number of orders at high 

speeds based on programmed strategies is crucial for 

profit generation. In particular, the rate of market data ac-

cess and data-driven strategy processing closely deter-

mines algo-trading development [16]. In other words, more 

efficient big data infrastructure can create profitable oppor-

tunities. 

Considering on the aforementioned issues, the data ex-

plosion is a significant challenge and opportunity for to-

day’s quantitative finance. The ever-growing volume, vari-

ety, and velocity of data from global markets and trade vol-

atility constitute an unprecedented challenge for computing 
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efficiency. Once properly structured and analyzed, big data 

solutions can provide differentiating signals that translate 

into prospective profits. To achieve this end, the big data 

infrastructure in quantitative finance must combine scala-

ble data storage with an ultrafast data processing system 

to support big data analytics [17-19]. 

The performance of data processing systems such as 

this big data analytics system is often limited by infrastruc-

ture components, such as the CPU, memory, network, and 

storage. While CPU, memory, and network performance 

has seen dramatic improvement over time, advancements 

in storage have lagged due to limitations presented by la-

tency and throughput. Modern techniques, such as in-

memory databases, which rely on main memory for a 

datastore medium, are faster than disk-optimized database 

systems [20], but are still limited by today’s memory capa-

bility. In addition, in-memory database still lack a non-vola-

tile storage medium to provide long-term persistent stor-

age. To handle QF big data, SSD (solid state disks)-backed 

storage could be more efficient than HDD (hard disk drive)-

backed storage [21, 22]. The SSD based storage system 

has been widely used for performance-critical business 

data processing applications such as commercial data-

bases running on the Relational Database System 

(RDBMS). For instance, a study has shown that an SSD 

storage appliance based on 8 flash SSD cards can deliver 

17 times the I/O throughput for OLTP relational database 

access and 2.7 times for OLAP relational database access 

at 10% the latency that 96 X 15k rpm conventional HDDs 

can provide [23]. By leveraging SSD storage, we can sig-

nificantly reduce the I/O bottleneck, leading to improve-

ment in overall database performance. Hence, we adopt 

this SSD storage as the datastore medium and explore 

how much this SSD storage can enhance big data analyt-

ics by comparing the performance of an SSD-backed sys-

tem with that of an HDD-backed system. 

Parallel processing is an elegant way to improve the 

data-processing speed, but the process for analyzing mar-

ket data is complex. In particular, the market data need to 

be parsed and grouped by their symbols and sorted by time 

before they are ready for use by algorithmic traders. Often, 

the data in datastore are compressed and hashed for stor-

age economy and data security, which in turn necessitate 

a time-consuming data decompression and dehashing pro-

cedure. However, these essential steps should be imple-

mented and examined to provide a result repeatable by 

practitioners. 

Lastly, cloud computing must be incorporated in the de-

velopment of big data infrastructure [24-26]. Computing ca-

pability nearly doubles every 18 months [27-29]. Computer 

hardware upgrades take place almost every quarter, not to 

mention corresponding software updates. Thus, building 

local or personal computing systems is increasingly finan-

cially inefficient in the face of rapidly advancing state-of-

the-art computing technologies. The emerging cloud com-

puting paradigm allows the users to quickly deploy on-de-

mand applications on converged infrastructure and shared 

 

1 url: https://aws.amazon.com/financial-services/ 

services [25]. In this regard, it can provision scalable com-

puting resources while lowering operational costs, drawing 

attention to financial computing service. 

Contribution synopsis: The main contribution of this 

work is to integrate a data-on-demand database system, 

parallel processing, and Cloud computing in the Quant-

Cloud toolchain. Through conducting application perfor-

mance testing on commodity hardware, we characterize all 

essential aspects of performance such as latencies and 

sustained throughputs of typical applications, the speedup 

and parallel efficiency for infrastructure, and the quality of 

service under the saturation condition. In particular, the de-

velopment of the QuantCloud tool consists of the following: 

 A scalable database system is designed and im-

plemented for high-volume data storage. The market data 

is stored in a compressed and encrypted format for space 

efficiency and data security purposes. At runtime, the fre-

quently used data persist in memory, together with the in-

dices for other disk-backed data. 

 A parallel pipeline system is designed and imple-

mented for a high-velocity data processor. Any user re-

quest is executed in a parallel mode. In particular, we over-

lap data transfer with the data decompression process, re-

ducing network latency. Meanwhile, we perform data de-

compression, reorganization and reformation in a multi-

threaded mode, exploiting the parallelism. 

 Cloud computing is incorporated. We develop 

communication protocol upon TCP/IP and describe the 

user request in XML format. We show the potential for ex-

tending the infrastructure onto the cloud network. 

 Most importantly, we developed and tested our 

tool on state-of-the-art commodity hardware including a 

TB-level SSD-backed datastore system and a 40-core, 

1TB-memory computer. This benchmark showed the la-

tency, sustained throughput, and quality of service for data-

oriented research in quantitative finance. The results pro-

vide algorithmic traders and financial engineers with nu-

meric insights. 

The reminder of paper is organized as follows: Section 

2 presents related works about Cloud infrastructures for 

Big Data finance services. Section 3 presents the Quant-

Cloud infrastructure, organized into overviews followed by 

technical details for each key component. Section 4 pre-

sents the implementation details and hardware configura-

tion. Performance targets are presented in Section 5. Re-

sults are summarized in Section 6 and discussed in Sec-

tion 7. We draw our conclusions in Section 8.  

2 RELATED WORKS 

Big data is often closely connected with Cloud compu-

ting in the industry. Advantages of Cloud computing include 

high scalability, ubiquitous availability, and low mainte-

nance cost. These qualities attract small finance firms that 

have limited funds and time for IT investment. Instead, the 

culture is changing [30]. For instance, Amazon Web Ser-

vices (AWS) offer a platform for financial services in the 

Cloud1. On this platform, AWS works with third parties by 
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providing data source, storage, analytics and virtualization 

tools. However, it is difficult to build an integrated big data 

tool to cope with diversified components from different pro-

viders. In practice, offering an integrated big data infra-

structure is more useful for the financial engineers than 

simply offering assorted high-performance building blocks. 

With an integrated infrastructure, financial engineers easily 

adopt well-developed solutions. Thus, with this work, we 

not only offer a scalable database using high-performance 

hardware SSD but also build a parallel pipeline system in-

tegrated with the database. Altogether, the integrated big 

data infrastructure supports high-speed analytics for big 

data.  

In addition, Oracle offers Big Data Cloud usage for the 

financial services2. On this platform, Oracle Big Data Appli-

ance presents Hadoop-oriented big data infrastructure in-

tegrated with Oracle database. Often, the MapReduce pro-

gramming model is deployed, but MapReduce lacks sup-

port for these data-dependent, low-latency processes. 

However, in this work, we not only support data-on-de-

mand services for fetching historical data but also experi-

mentally demonstrate the latency is as low as 3.6 ns per 

tick message. 

Unlike the general big data infrastructure, our financial 

big data infrastructure offers an integrated solution for 

quantitative finance. This solution not only provides a big 

data management approach but also incorporates efficient 

solutions to meet big data requirements unique to the area 

of quantitative finance. For instance, we optimize the data-

base for the NYSE intraday transactions data, reorganize 

raw data by days and symbols, and store these reor-

ganized data for symbols in the SSD-backed system. In the 

client, we develop a complete toolchain for data acquisi-

tion, decompression, dehashing and finally convert the 

streamlined transactions into a user-defined data structure. 

In practice, this is the best implementation for a financial 

engineer making big data tools with a big data infrastruc-

ture. However, traditional approaches did not incorporate 

so integrated a toolchain. Moreover, we develop our infra-

structure alongside a portability solution embedded in the 

Cloud. To use our financial big data infrastructure, the 

Quants need only compose and send scripts to deploy the 

tasks in the Cloud – this requires very limited knowledge of 
 

2 url: https://cloud.oracle.com/en_US/financial-services-cloud 

programming. This approach helps to build high user re-

tention and alleviate integration challenges for big data 

techniques in finance. 

3 QUANTCLOUD INFRASTRUCTURE 

3.1 Overview 

QuantCloud includes a hybrid database system to support 

scalable data access and a parallel platform to support fast 

data processes. The Server refers to the database system, 

which manages the datastore and responds to data-on-de-

mand queries. The Client refers to the parallel platform, 

which accepts and processes user requests in parallel and 

queries the metadata from Server based on each request’s 

needs. The communication between Server, Client and 

User is entirely based on Internet connections. The mes-

sage between Server and Client is coded in a compressed 

and hashed format for space efficiency and data security 

purposes. Messages between Client and User are coded 

in custom XML format for portability across diverse sys-

tems. Table 1 presents short terms and their explanations. 

3.2 Design Components 

Fig. 1 presents an overview of the QuantCloud infrastruc-

ture, in which Server and Client are two key components. 

Server and Client are responsible for data management 

and data processing for user requests, respectively. The 

key technical details are provided in following sections. 

3.2.1 High-Volume Data Storage 

The Server is built based on a high-volume SSD-backed 

datastore system. In the system, we store the intraday 

transactions data (TAQ or trades and quotes) listed on the 

NYSE which report the US equities trades (Trade) and best 

bid/offer (BBO). The TAQ data total 15~30 GB per day on 

average. Estimating that research and data analysis re-

quire a year of historical data, a single year’s data total 4~5 

TB of storage. If execution analysis for high frequency trad-

ing analysis requires level-2 data, the storage amount may 

easily quadruple. Options data are usually one order of 

magnitude greater than equities. 

 

By learning user habits and routines, we reorganize the 

 

Fig. 1: Overview of QuantCloud Infrastructure 
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metadata using days and symbols, and then index the 

time-series data for symbols. In particular, the market data 

are stored in separate data files labeled by weekdays. The 

intraday data are grouped by symbols and then ordered by 

message timestamps. One timeseries data per symbol is 

keyed by stock symbol for each single day. In total, there 

are two indexing systems: one big table for all per-day data 

files and one table for per-symbol timeseries data for each 

day. 

In the datastore, we use one-way hashing to encrypt 

data for security purposes [31]. The hashed timeseries 

data are compressed by a customer-specified algorithm 

(such as zlib) and stored in a disk-backed file system. We 

store encrypted data and their hashtables, separately. 

When providing services, Server daemonizes and re-

sponds to two message types: registration and data query. 

Registration allows Client to register at Server through au-

thentication. After authentication, Server establishes a se-

curity channel to transfer hashtables to the Client. Data 

query allows a registered Client to send the data-on-de-

mand queries to Server. Afterwards, the Server assigns a 

task processor to return a response for this query. Here, we 

use data-on-demand (DoD), a flexible and efficient format 

for providing a subset of large amounts of metadata. A DoD 

query specifies a set of stock symbols and a time period. 

The task processor only retrieves the data specified by this 

query. This query functions as a SQL SELECT statement 

to return data from a database. 

To better utilize network bandwidth, the system consoli-

dates multiple small results into a larger packet and splits 

very large messages into smaller packets of certain size. 

In this way, our system can effectively control the size of 

network packets within a certain range and help avoid net-

work congestion. In our tests, we use 10MB as our thresh-

old that is obtained through experimentation. 

Multiple task processors in Server share disk-backed 

storage and handle multiple requests concurrently. This ef-

ficiently improves the throughput for market data access. 

Performance is presented in Section 6.1. 

3.2.2 High-Velocity Data Processor 

The Client is built for fast processing user requests. Upon 

starting, Client registers at given Server(s) and then waits 

for a user request. When a request arrives, Client first ver-

ifies the user identity and then queues his request. At Cli-

ent, the next available task processor dequeues a request. 

For this request, the task processor communicates with a 

Server to fetch any necessary data and corresponding 

hashtables. As the network packets stream into the Client 

from a Server, the task processor starts to decompress and 

dehash the network packets into the market data. Finally, 

the system stores restored market data in a user-defined 

data structure for friendly use by the user function calls. 

The whole process is referred to as the data decompres-

sion and process (DDP). 

This DDP process operates in a multithreading mode, in 

which the communication part (data transfers) and the 

computation part (task processor) can run in parallel. The 

“data transfers” module streams the metadata into the pri-

vate buffer that is attached to a given “task processor”. As 

soon as enough data arrive, the task processor starts to 

decompress and dehash the incoming metadata on a sep-

arate worker thread. We provide a detailed discussion on 

performance in Sections 6.2 and 6.3. 

3.2.3 High-Variety Data Management 

In our datastore, we consider two data types: Trade and 

BBO (Best Bid/Offer). In general, the amount of BBO data 

is approximately one order of magnitude greater than that 

of Trade data. Trade data are often used in research in-

volving historical data. Therefore, in data management, we 

build the database for Trades purely in memory and the 

database for BBO on the disk-backed medium. However, 

we pre-load the index structures for BBO data and store 

them in shared memory. This provides easy access to fre-

quently used data while accelerating access to disk files. 

3.2.4 High-Throughput Data Analytics 

The conventional technique for analyzing TAQ data strictly 

focuses on large amounts of data such as tick data from a 

month-long period. For example, single-year level-1 mar-

ket data requires 4~5 TB of storage. Currently, loading all 

of the data at once always overwhelms the physical 

memory. Therefore, to perform such big-data analytics, we 

design a parallel-pipelined procedure. Fig. 2 shows a sche-

matic flowchart for the parallel pipeline procedure. In this 

procedure, we take for example that a user requests 1-hour 

data. This user request for 1-hour market data is first split 

into a sequence of six requests each for 10-minute data 

and marked as: Req0~Req5. Correspondingly, we need to 

retrieve six returned data packets labeled Data0~Data5. 

Job Submitter of Client enqueues all of the requests and 

sends them to Job Dispenser of Server as long as there 

are no more than two data packets at Private Buffer of the 

Task Processor. Fig. 2 shows a scenario: as Task Proces-

sor of a Client processes Data1, Data2 transfers over the 

network to the Client and Data3 is assembled at Server. 

This pattern of overlapping communication and computa-

tion helps to reduce network latency. Memory for used data 

packets is recycled for incoming packets. This aims to re-

duce network latency and minimize the memory require-

ment for big data analytics development and supporting 

high-throughput targeted data processing. 

3.2.5 Cloud Computing Considerations 

Recent years have seen rapid growth of Cloud computing 

to provide adequate quality of computing services. Con-

sider a small proprietary trading company consisting of a 

couple of individuals. Unlike giant finance enterprises, 

small companies can hardly afford investment in IT infra-

structures. Instead, they resort to the ‘pay-as-you-go’ 

model for cloud services [3, 4]. 

A Cloud is used as a platform in which data, software, and 

hardware are shared. The benefits of using Cloud compu-

ting include ubiquitous availability and high scalability. A 

trader needs only a smartphone or a laptop to access big 

data and can launch data-intensive computing from any lo-

cation with an Internet connection. Technically, cloud com-

puting often uses a client-server architecture, in which a 

user client interacts with a cloud server. This diagram 
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greatly improves the user experience by providing portable 

computing through the Cloud service. 

This trend motivated us to employ a client-server model as 

our framework (Fig. 1) using a TCP/IP connection between 

modules. An XML format is employed between client and 

user for portability. Fig. 3 shows an example of such a re-

quest script in which a user requires data access service 

for the trade and BBO metadata for S&P500 symbols from 

Oct 1 2014 to Jan 1 2015. These symbols are stored in the 

file /home/user/spx500.txt. 

We assume two communication channels exist between 

a Server and its Client. One channel is established as the 

Private channel. This channel is used for client authentica-

tion, such as registration. Hashtable transfer also makes 

use of this channel. The other channel is established as the 

Public channel. Any registered Client can send its requests 

to Server and receive requested data from Server. Here, 

the returned data are hashed and compressed. Producing 

hashed data aids in data security and compressing hashed 

data allows for space efficiency. 

In consideration of their functions, the Private channel 

requires security but not a high-speed network since it only 

transfers small amounts of data. On the other hand, the 

Public channels should be established over a high-speed 

network since they handle massive data transfers. 

 

 

Fig. 2: Schematic flowchart for a parallel pipelined procedure 

 

 
TABLE 1: 

SHORT TERMS AND THEIR EXPLANATIONS 

Short Terms Explanations 

BBO Best bid/offer 

DDP data decompression and process 

DoD Data-on-Demand 

FC Fibre channel 

HDD Hard disk drive 

QF Quantitative Finance 

QC QuantCloud 

QoS Quality of Service 

NYSE New York Stock Exchange 

S&P 500 Standard & Poor’s 500 

SSD Solid state disk 

TAQ Trade and Quote 

WCT WallClock Time 

 

 

 

 

<message type=”3” priority=”0”> 
  <service name=”DataAccess” /> 
  <db_name value=“TaqDaily” /> 
  <universe_file name=“spx500.txt” loca-
tion=“/home/user/” /> 
  <msg_types value=“Trade,BBO” /> 
  <time_range from=“20141001 00:00:00.000 to=“ 
20150101 00:00:00.000 /> 
</ message>   

Fig. 3: Request script from User to Client. 

 

4 QUANTCLOUD IMPLEMENTATIONS 

4.1 Software Stack 

The QuantCloud is implemented in C++. User APIs are 
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provided in XML and help users submit their requests. Re-

quest and data transfer between Server and Client take 

place through TCP/IP protocol. “Shared Memory” is acces-

sible among all of the participating threads at the Server or 

Client. All Task Processors at Server may share disks. The 

Job Dispenser employs a first-in, first-served strategy to 

process the incoming requests. A thread pool pattern is 

used to execute Task Processors at Server/Client. The 

main thread manages a thread pool for Task Processors. 

We implement thread pools using the Boost thread library. 

Each Task Processor uses the same thread pool pattern to 

run its subtasks. That is, a Task Processor initiates its own 

thread pool to decompress and dehash the market data 

packets. As for memory management, a Task Processor 

possesses its private heap through which it can recycle lo-

cal memory without frequently using global storage re-

sources. This characteristic effectively prevents the poten-

tial interference caused by other worker threads. 

4.2 Hardware Components 

The QuantCloud’s hardware stack consists of the following 

components: 

1. Two host machines: Server Host and Client Host, 

which host QuantCloud’s server tier and client tier, respec-

tively. 

2. Two storage systems: SSD storage and HDD stor-

age, between which we compare efficiency. 

3. Two networks: 10GbE Ethernet network for com-

munication between server and client tiers,   and 

16Gbps Fibre Channel (FC) network between the server 

tier and the two storage systems. Multiple links provide 

greater communication bandwidth and availability. 

 

 
 

Fig. 4: Hardware Architecture and Components 

 

The two host machines use Dell PowerEdge R910, a 

scalable four-socket server. Each host machine has four 

ten-core 3.20GHz Intel Xeon CPU E7-8891, totaling 40 

processor cores, and it is equipped with 1TB DDR3 RAM. 

To promote client-server communication, each host ma-

chine has two dual-port 10GbE Ethernet network cards in-

stalled. To access FC-based storage, the server host has 

two dual port 16 Gb Host Bus Adapters (HBAs). 

The two storage systems we compare are SSD based 

storage and HDD based storage. The SSD based storage 

is based on a flash storage appliance called Dell Accelera-

tion Appliances for Databases (DAAD) [22, 23], which has 

two storage nodes, each containing 4×3 TB Flash SSD 

cards. In total, SSD based storage provides 24 TB of flash 

capacity. The HDD based storage system is hosted by Dell 

Compellent SC 8000 FC storage. This storage consists of 

two storage nodes (controllers) and two disk enclosures 

with total 48×15k rpm 250 GB hard disks. Across the two 

storage systems, each of the four storage nodes connects 

to the FC channel network via two dual ports 16 Gb HBAs.  

A 2×10 GbE Ethernet switch network enables Quant-

Cloud’s client-server communication. Meanwhile, the FC 

storage network links the server host with both SSD based 

storage and the HDD based flash storage. Both of these 

dual switch networks provide necessary redundancy and 

double network bandwidth. The FC storage network con-

nects the server host from its two dual ports 16 Gb to the 

Fibre channel (FC) switches. These links between the 

server host and FC switches provide a 64 Gb/s network 

bandwidth. On the storage end, each of the two storage 

systems connect to the FC switches with a total of four dual 

port 16 Gb HBAs, totaling 128 Gb/s in bandwidth. 

This storage network configuration presents two storage 

volumes to the server: 

/dev/ssd: based on 8 × 3.0 TB SSD flash storage. 

/dev/hdd: based on 48 × 15k rpm 250 GB hard disks. 

These two volumes were used to create the following 

Linux file systems backing the QuantCloud database, re-

spectively: /SSD_ACFS and /HDD_ACFS. 

 

With this design, a user sends specified XML formatted 

requests to a given client (Fig. 1), and the networking load 

between them is very small. Additionally, the user may 

send the requests from any location with an Internet con-

nection. Thus, there is no hardware requirement for the 

networking between the user and the client. 

5. PERFORMANCE TARGETS 

We aim to build a Cloud-based solution for providing high-

performance DoD access and scalable task processes in 

the field of QF. To this end, we benchmark the system using 

the NYSE daily TAQ data (October to December 2014). 

Our tests specifically measure DoD access and process 

speeds, the scalability of our infrastructure, and the quality 

of service from a user perspective. Our results present first-

hand numerical results for algorithmic traders and financial 

engineers. 

5.1. Data Access and Process Speeds 

WallClock time measures a test’s completion time with a 

temporal resolution of microseconds. The results with re-

gard to response time, latency and throughput are calcu-

lated at the client module. Data volume is measured in 

units of daily TAQ message. For a demand pattern, we 

study a user request for daily resolution data for the S&P 

500 (i.e., Standard & Poor’s 500), representing general 
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analysis on historical marking data. 

In results, we present two speed metrics: throughput 

(million messages per second) and latency (nanosecond 

per tick message). Throughput measures the specified in-

frastructure’s capacity for data-transfer and data-process 

media. Latency measures the average process time on a 

message basis, indicating the capability of such critical big 

data analytics as high and medium frequency trading strat-

egies. 

5.2 Scalability 

Speedup and parallel efficiency are calculated to show the 

scalability of our infrastructure. Our scalability tests vary 

the number of task processors at Server and Client. To this 

end, we use a single task processor’s performance as a 

baseline. Then, we fix the application size and increase the 

number of task processors. We thus calculate the speedup 

and show the scaling efficiency for an application. After this 

assessment, we also calculate the parallel efficiency 

measures. The purpose of scalability testing is to identify 

bottlenecks that can impede the scalability of major appli-

cations and to provide numerical insights for building goal-

driven infrastructure. 

5.3 Quality of Service 

Cloud computing is a model that allows sharing of a cen-

tralized datastore, data-process tasks, and access to com-

puter resources. Though it is a more efficient solution for 

sharing competitive computing resources, utilizing per-

sonal machines to handle on-demand tasks, the Cloud also 

needs to treat concurrent user requests fairly [32]. To ad-

dress this, we compute the standard deviation values of 

speeds for massive user requests in addition to the aver-

age values. Together, the average and standard deviation 

measures demonstrate the quality of service for a large 

number of big data analytics, characterizing a typical appli-

cation in a Cloud environment. 

6. RESULTS 

We present results ranging from straightforward data ac-

cess to sophisticated data decomposition and process. In 

each test, we present the wallclock time and speeds, follow 

with scalability and quality of service, and finally analyze 

and discuss possible bottlenecks. 

In the tests, we simulate a user request demand for 

NYSE TAQ data including Trade and BBO for the S&P 500 

symbols. The NYSE TAQ (trade and quote) data3 was pre-

sented in timesteps of seconds when it was introduced in 

1997. Now the highest frequency of the TAQ data is at the 

millisecond level. Our database covers a volume of data 

from October 1, 2014 to December 31, 2014 and it has 64 

weekdays. Data is stored in a compressed and hashed for-

mat in the datastore. Fig. 5 shows the data size distribution 

over weekdays and unveils an uneven distribution for the 

daily trading volume. 

 

 

3 Daily TAQ data: http://www.nyxdata.com/Data-Products/Daily-TAQ 

 
Fig. 5: Metadata size (in GB) distribution for 64 weekdays 

(Oct 1, 2014 ~ Dec 31, 2014) 

 
6.1 Data-on-Demand Access 

For this test, we use eight task processors at Server and vary 

the number of task processors at Client from one to ten. We 

create a total of 10 requests. Each request targets TAQ data 

for the 3 months and 100 symbols. Ten such requests require 

a total of 25.24 billion tick messages. The requests are con-

currently submitted and enqueued at Client. Here, the access 

operation includes the request parsing and data packing at 

server, data transfer from datastore to a specified client, and 

data consolidation at the destination client. Comparative tests 

are performed between the SSD and HDD media. 

Fig. 6 shows the wallclock time (in seconds) vs. different 

number of task processors at Client using different specified 

big data-storage media: (i) SSD and (ii) HDD. Fig. 7 and Fig. 

8 display the throughput and latency measures, respectively. 

These results show that: (i) The SSD is consistently supe-

rior to HDD as a datastore medium (Fig. 6); (ii) The parallel-

ization of data access between server and client efficiently ex-

ploits the throughput and lowered latency, as shown in Fig. 7 

and Fig. 8, respectively. In absolute speeds, our proposed in-

frastructure achieved a throughput of 276 million tick mes-

sages per second and a latency of 3.6 nanoseconds per tick 

message. This demonstrates a hallmark of accessing a large 

volume of on-demand data down to nanosecond-scale la-

tency. To be reproducible, we achieved this record by design-

ing parallel algorithms on commodity products. 

Fig. 9 and Fig. 10 show speedup and parallel efficiency, 

respectively. This comparison result shows that SSD has a 

stronger speedup than HDD (Fig. 9). Multiple server-client 

connections help exploit the network bandwidth while lower-

ing latency for data transfer over Internet connections. How-

ever, at the datastore server, moving data from a primary stor-

age medium to the main memory is determined by the datas-

tore medium. In this process, SSD outperforms HDD. SSD 

demonstrates stronger speedup and parallel efficiency as 
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compared with HDD. This suggests that a fast datastore me-

dium is requisite for supporting the parallelized infrastructure. 

Second, the latency is calculated at the client module, 

which means the total time includes not only the data read but 

also the data packing at server and transfer over the network. 

When the number of task processors is small e.g. 1 or 2, the 

data packing and transfer strongly impact latency. Hence, alt-

hough the SSD is faster than the HDD on the read, the total 

latency difference may be insignificant (Fig. 8). However, as 

the number of task processors increase, SSD demonstrates 

a clear advantage (Figs 7-8). 

Fig. 11 shows the quality of service on a request basis, dis-

playing a small standard deviation from the average. The 

smaller standard deviation indicates higher quality service. 

There is no prolonged request, and our infrastructure can eas-

ily predict the service. 

 

 

  

Fig. 6: Wallclock time (in seconds) vs. number of task pro-
cessor at Client for the SSD and HDD media 

Fig. 7: Throughput (in million messages per second) vs. 
number of task processors at Client for SSD and HDD  

  

Fig. 8: Latency (nanosecond per message) vs. number of 
task processors at Client for the SSD and HDD media 

Fig. 9: Speedup for different number of task processors at 
client for the SSD and HDD media 
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Fig. 10: Parallel efficiency for different number of task pro-
cessors at client for the SSD and HDD media 

Fig. 11: Quality of Service: wallclock time (in seconds) per 
request vs. number of task processors at client for SSD 

and HDD 

 

 

 

6.2 Data Decompression and Process 

Extending previous efforts in the data access operation, we 

continue by testing the data decompression and process 

(DDP) operation. Here, data decompression refers to the pro-

cess of decompressing zipped data at Client. The decom-

pressed data are further processed: they are first restored to 

individual tick messages where certain fields need to be 

dehashed, and then they are categorized by symbols and 

sorted by time. After this process concludes, the original com-

pressed and hashed metadata can be conveniently utilized 

and programmed by algorithmic traders for their strategies 

and research. This process involves many time-consuming 

and interdependent steps. The challenges include handling a 

variety of data structures for diversified fields in message, re-

grouping and sorting a big volume of data, and building user-

friendly data structures that will be used by algorithmic traders. 

Our test employs SSD as the datastore medium due to its 

superior performance. We start by varying the number of task 

processors at Client and Server, respectively, and studying 

their impacts and characteristics. Finally, we study the impact 

of multithreading on performance. The results can character-

ize performance from a real-world application standpoint. 

 

6.2.1 Task Processors at Client 

In this test, we use eight task processors at Server and vary 

the number of task processors at Client from one to eight. At 

Client, we use 32 threads per task processor. We create a to-

tal of 128 requests. Each request is for a single-day TAQ data 

of 100 symbols listed in the S&P 500. This represents an ap-

plication pattern for querying and processing the daily market 

data. 128 requests require a total of 25.24 billion messages. 

These requests are concurrently submitted and enqueued at 

Client. 

 

Figs 12 to 17 present results and analysis. Within legends 

in these figures, “Comm” refers to the access operation with 

no DDP. “Comm & Compt” means a combination of the ac-

cess and the DDP. The horizontal axis represents the number 

of task processors at Client; and the vertical axes represent 

the measures and their units. 

 

These results show that the DDP is a very time-consuming 

operation compared to the access operation (Fig. 12). The 

throughput drops to 74 million messages per second, which 

is only ¼ of the access-only throughput (Fig. 13). In addition, 

latency increases to 13.5 nanoseconds per message (Fig. 

14). Multiple task processors help increase performance (Fig. 

15). A superlinear speedup appears at 2 task processors (Fig. 

16). Thus, parallelism is a favorable way of improving market 

data processing toward high-throughput analytics. Lastly, in 

terms of QoS, the average latency per request increases and 

so does the standard deviation as the number of task proces-

sors increases (Fig. 17). This is because more processes es-

calate the contention over limited computer resources. This 

contention, though improving overall performance, prolongs 

per-request processing time. 
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Fig. 12: Wallclock time (in seconds) vs. different number 

of Task Processor at Client 
Fig. 13: Throughput (in million messages per second) vs. 

number of task processors at Client 

  
Fig. 14: Latency (nanosecond per message) vs. number 

of task processors at Client 
Fig. 15: Speedup for different number of task processors 

at client 

  
Fig. 16: Parallel efficiency for different number of task pro-

cessors at client 
Fig. 17: Quality of Service: wallclock time (in seconds) per 

request vs. number of task processors at client 

 

0

200

400

600

800

1,000

1,200

0 2 4 6 8

W
al

lC
lo

ck
 T

im
e

 in
 S

e
co

n
d

s

Number of Task Processors at Client

Comm

Comm & Compt

277.44

74.26

0

50

100

150

200

250

300

0 2 4 6 8

Th
ro

u
gh

p
u

t:
 M

ill
io

n
 o

f 
Ti

ck
s/

Se
co

n
d

Number of Task Processors at Client

Comm

Comm & Compt

3.6

13.5

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8

La
te

n
cy

: 
N

an
o

se
co

n
d

/T
ic

k

Number of Task Processors at Client

Comm

Comm & Compt

0

1

2

3

4

5

0 2 4 6 8

SP
e

e
d

u
p

Number of Task Processors at Client

Comm

Comm & Compt

0%

20%

40%

60%

80%

100%

120%

0 2 4 6 8

P
ar

al
le

l E
ff

ic
ie

n
cy

Number of Client TaskProcessor

Comm

Comm & Compt

0

5

10

15

20

25

30

35

40

45

1 2 4 8

W
al

lC
lo

ck
 t

im
e

 (
in

 s
e

co
n

d
s)

 p
e

r 
R

e
q

u
e

st

Number of Client TaskProcessor

Comm Comm & Compt



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2649544, IEEE Transactions on Big Data

ZHANG, P. ET AL.:  QUANTCLOUD: BIG DATA INFRASTRUCTURE FOR QUANTITATIVE FINANCE ON THE CLOUD 11 

 

6.2.2 Task Processors at Server 

In this test, we vary the number of task processors at server 

while keeping eight task processors at client. Other configura-

tion details are identical to those in Section 6.2.1. 

Fig. 18 shows the wallclock time for different numbers of 

task processors at server, and Fig. 19 shows the per-request 

quality of service. The communication is between the server 

and client, but computation mainly takes place on the client. 

The results show that the number of task processors at 

server impacts the Access performance (Comm) greatly, 

since more network connections can improve the data trans-

fer between server and client. On the other hand, the DDP 

performance (Comm & Compt) depends more on the compu-

ting capability at client. This also demonstrates that the SSD-

based datastore is an efficient platform. 

 

  
Fig. 18: Wallclock time (in seconds) vs. number of Task 

Processor at Server 
Fig. 19: Quality of Service: wallclock time (in seconds) per 

request vs. number of task processors at server 

 

6.2.3 Multithreading at Client 

In this test, we continue to study the impact of multithreading 

at client. We use eight task processors at server and client. 

Other configuration details are identical to those in Section 

6.2.1. 

Fig. 20 shows processing accelerates considerably be-

tween 1 and 4, but from 4 onwards differences are negligible. 

The optimum number of threads appears at 4. Meanwhile, the 

quality of per-request service demonstrates a similar trend 

(Fig. 21). 

 
 

Fig. 20: Wallclock time (in seconds) vs. number of threads 
per task processor at Client 

Fig. 21: Quality of Service: wallclock time (in seconds) per 
request vs. number of task processors at server 
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6.3 Petabyte-Scale Data Processing 

In this test, we study QuantCloud performance in handling 

petabyte-level diversified requests. Request type includes 

those for daily, weekly, monthly and quarterly marketing data. 

Each request is for S&P 500 symbols. Table 2 shows the re-

quest configuration. In total, we handle over 200 billion mes-

sages, 4 different request types, and 328 requests. In general, 

BBO and Trade message structures have 59 and 38 bytes, 

respectively. The amount of BBO data is approximately one 

order of magnitude larger than that of Trade data, so the total 

size of data is over 11 petabytes. Thus, this test represents a 

petabyte-scale data processing challenge. 

In Server, we initiate eight task processors. In Client, we 

initiate ten task processors, each using eight threads for data 

decompression and processing. 

Fig. 22 shows the response time (in seconds) histogram 

for user requests. For this test, wallclock time is 3,192 sec-

onds, the average latency is 15.8 nanoseconds per message, 

and the aggregate throughput is 63.3 million messages per 

second. That is, the 11-petabyte application consisting of 

widely differentiated requests completes in 53 minutes. This 

record implies that petabyte-level big data analytics can be 

completed in only a few minutes. 

 

Fig. 22: Response time histogram for user requests 

TABLE 2: 
CONFIGURATION FOR TRILLION-SCALE DATA PROCESSING 

TEST 

Request Type: # of Requests Billions of Messages 

Daily 256 50.495 

Weekly 56 50.495 

Monthly 12 50.495 

Quarterly 4 50.495 

TOTAL: 328 201.979 

7. DISCUSSION 

We examine the performance of QuantCloud infrastructure 

for conducting big data analytics in the field of quantitative 

finance. The evaluation environment is built using today’s 

commodity components. The results provide the commu-

nity of algorithmic traders and financial engineers with nu-

merical insights and exemplify the significance of parallel-

ism in development. 

 SSD is superior to HDD in providing disk-backed 

storage system (Section 6.1).  In particular, SSD performs 

faster than HDD when more task processors of the client 

require data concurrently. In terms of latency, the SSD-

backed and HDD-backed approaches feed market data at 

3.6 and 5.3 nanoseconds per message, respectively – the 

former is 32% faster than the latter (Fig. 8). In addition, re-

garding aggregate throughput, the SSD-backed and HDD-

backed approaches provide a sustained throughput at 276 

and 173 million messages per second, respectively. In 

other words, an SSD-backed approach only needs 3.6 sec-

onds to offer the service for 1 billion TAQ messages. In our 

study, SSD-backed storage demonstrates superiority in 

terms of speedup and parallel efficiency, which determine 

scalability. As predicted, utilizing the faster SSD storage 

system significantly increases throughput and reduces la-

tency, resulting in dramatic improvements in database IO 

performance and database performance as a whole. 

 Data decompression and process (DDP) is a more 

time-consuming procedure than the data access procedure 

(Section 6.2). We greatly accelerate DDP by adopting the 

parallel processing pattern (Section 6.2). In particular, mul-

tithreading is very effective in improving computing effi-

ciency (Section 6.2.3). 

 Lastly, we demonstrate the petabyte-level data an-

alytics can be processed within only a few minutes (Section 

6.3). In particular, an 11-petabyte application that consists 

of diverse data requests is completed in 53 minutes. 

To summarize, these performance results demonstrate the 

applicability of QuantCloud infrastructure for processing 

Petabyte and Terabyte-level data analytics within an afforda-

ble computational timeframe (the minute timescale). 

In the future, we would like to deploy this infrastructure 

on public cloud platforms. Furthermore, we would add an 

on-demand computing module for optimizing performance 

within a given operational budget. We would enhance data 

protection and privacy policies by hashing and encrypting 

user-defined trading strategies and parameters. This is a 

first step towards a high-performance big data infrastruc-

ture for quantitative finance. 

8. CONCLUSION 

In this paper, we present the QuantCloud design for han-

dling the big data applications in the field of quantitative 

finance. We perform experiments and compare results on 

SSD and HDD datastore mediums. The results show that 

our design achieves a record of processing a billion tick 

messages in the second timescale, and that we require a 

parallel scheme for efficiently exploiting infrastructural ben-

efits. 

We provided computational insights for performing big 

data analytics in quantitative finance. We demonstrated the 

computational abilities of modern commodity products for 

processing a billion-scale problem in a second timescale. 

Specifically, our design exemplified the impact of parallel-

ization on boosting performance. The aggregate impacts of 
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design, parallel algorithms, and sophisticated implementa-

tions offer the community of algorithmic traders and devel-

opers’ new hope and state-of-the-art insights for their re-

search and development.  
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