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1 Introduction

Accurate estimates of the current term structure of interest are of crucial importance in many

areas of finance. Equally important is the ability to forecast the future term structure. It

is not surprising therefore that substantial research effort has been devoted to the questions

of how to optimally estimate, model and forecast the term structure of interest rates. One

class of models that has the potential of providing satisfactory answers to these questions is

that of the Nelson-Siegel models.

Nelson and Siegel (1987) proposed to fit the term structure using a flexible, smooth

parametric function. They demonstrated that their advocated model is capable of capturing

many of the typically observed shapes that the yield curve assumes over time. Since then

various extensions have been proposed that incorporate additional flexibility with a popular

extension being the Svensson (1994) model. Despite the drawback that they lack theoretical

underpinnings, the Bank of International Settlements (BIS, 2005) reports that currently nine

out of thirteen central banks which report their curve estimation methods to the BIS use

either the Nelson-Siegel or the Svensson model to construct zero-coupon yield curves. As the

Nelson-Siegel model is also widely used among practitioners, this ranks it among the most

popular term structure estimation methods.

Recently, Diebold and Li (2006) have shown that the three-factor Nelson-Siegel model

can also be used to construct accurate term structure forecasts. By using a straightforward

two-step estimation procedure they demonstrate that the model performs well, relative to

competing models, especially for longer forecast horizons. Mönch (2006a) partially confirms

these results and Fabozzi, Martellini, and Priaulet (2005) show that the Nelson-Siegel model

produces forecasts that are not only statistically accurate but also economically meaningful

by showing how these can be used to generate substantial investment returns.

Due to these successes it is not surprising that the Nelson-Siegel model is increasingly

being used in other applications as well. For example, Diebold, Rudebusch, and Aruoba

(2006b) use the model to study the interactions between the macro economy and the yield

curve (see also Diebold, Piazzesi, and Rudebusch, 2005) whereas Diebold, Ji, and Li (2006a)

apply it to identify systematic risk sources and to construct a generalized duration measure.

Much of this research focuses, however, solely on the original three-factor Nelson-Siegel

model. Extensions such as the Svensson model have not yet been investigated for their out-

of-sample performance whereas extensions like those of Björk and Christensen (1999) have

been left nearly unexamined altogether. This paper tries to fill this gap. In particular, I
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examine several models within the Nelson-Siegel class for their in-sample fitting and out-of-

sample forecasting performance. Diebold and Li (2006) show that the dynamic three-factor

Nelson-Siegel model had the potential of performing well in both areas. This motivates a

closer examination of the various extended Nelson-Siegel models. It is unclear, however, if,

or to what extent, models that are capable of parsimoniously fitting the term structure in-

sample should also necessarily render accurate out-of-sample forecasts. No-arbitrage models

for example typically fit the term structure quite accurately but forecast poorly (Duffee,

2002). An important task is therefore to try and evaluate the trade-off between in-sample

fit and out-of-sample forecasting performance. More flexible models will most likely improve

the in-sample fit but the question thus is if and to what extent these can also produce

better out-of-sample results. In order to address this question for the class of Nelson-Siegel

models I use a sample of U.S. Treasury zero-coupon bond yields consisting of twenty years of

monthly data. I determine which features of the extended models help to improve the term

structure fit. To gauge the out-of-sample performance I construct yield forecasts for short

and long-term horizons and compare these with forecasts from several competitor models.

In addition to looking at different Nelson-Siegel specifications I also examine in detail the

benefits of alternative model estimation techniques, discuss several potential estimation and

identification issues and propose solutions on how to tackle these.

The results can be summarized as follows. First of all I show that the more flexible

models fit the term structure more accurately than the three-factor Nelson and Siegel (1987)

model. This is not a surprising result in itself. What is interesting though is that a similar fit

can be obtained as that of the popular Svensson (1994) model by extending the three-factor

model with a second slope factor as in Björk and Christensen (1999). The advantage of this

particular four-factor model is that it is easier to estimate than the Svensson model as it is

less hampered by potential non-identification issues when estimating the factors.

In addition to an improved in-sample fit, I also demonstrate that the four-factor model

produces accurate out-of-sample forecasts. In fact, the four-factor model outperforms the

random walk benchmark and AR and VAR competitor models as well as all other Nelson-

Siegel specifications, including the three-factor model. The best results are obtained by

simultaneously taking into account cross-sectional and time-series information about yields

when estimating the model and using an AR specification for the factor dynamics. The four-

factor model forecasts increasingly well for all maturities when the forecast horizon lengthens.

The outperformance relative to the random walk is substantial as it reduces the RMSPE by

often as much as 10% or more. Subsample analysis shows that, unlike the performance of
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for example the three-factor model, the four-factor model is consistently producing highly

accurate forecasts.

The remainder of this paper is structured as follows. In Section 2 I give a short review

of term structure estimation methods. Section 3 discusses the various Nelson-Siegel models

in detail and Section 4 is devoted to the estimation of these models. Section 5 describes

the data. The in-sample results are presented in Section 6 whereas Section 7 shows the

out-of-sample forecast results. Section 8 concludes and offers some directions for further

research.

2 Term structure estimation methods

The term structure of interest rates describes the relationship between interest rates and

time to maturity. The standard way of measuring the term structure of interest rates is by

means of the spot rate curve, or yield curve1, on zero-coupon bonds. The reason behind this

is that yields-to-maturity on coupon-bearing bonds suffer from the ‘coupon-effect’ (see Caks,

1977) which implies that two bonds which are identical in every respect except for bearing

different coupon-rates can have a different yield-to-maturity. The problem with zero-coupon

yields on the other hand, is that these can only be directly observed from Treasury Bills

which have maturities of twelve months or less. Longer maturity zero-coupon yields need to

be derived from coupon-bearing Treasury Notes and Bonds. In practice, we can therefore

not observe the entire term structure of interest rates directly. We need to estimate it using

approximation methods2. Term structure estimation methods are designed for the purpose

of approximating one of three equivalent representations of the term structure: the spot

rate curve, discount curve and forward rate curve. Once we have a representation for one of

these we can automatically derive the other representations. In the remainder of this section

I briefly discuss the three curves and fix notation3. For convenience, I assume throughout

that all rates are continuously compounded.

1The yield-to-maturity and the spot rate on a zero-coupon bond are the same. Because in this paper I
focus solely on zero-coupon bond interest rates I use both terms interchangeably.

2In the U.S. zero-coupon rates are to a certain extent more directly available through the use of STRIPS.
The Treasury STRIPS program, which started in 1985, allows an investor to split coupon-bearing Treasury
Notes and Bonds into a basket of zero-coupon securities, see Sack (2000) for a discussion. Due to a limited
investor demand for short- and medium-term zero-coupon securities there are some concerns, however, about
the liquidity of shorter-term STRIPS and it is therefore still more common practice to estimate the yield
curve using coupon-bearing bonds.

3For a more elaborate discussion see, e.g., Svensson (1994).
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The forward rate curve characterizes forward rates as a function of maturity. A forward

rate ft(τ, τ
∗) is the interest rate of a forward contract on an investment which is initiated τ

periods in the future and which matures τ ∗ periods beyond the start date of the contract.

We obtain the instantaneous forward rate ft(τ) by letting the maturity of such a forward

contract go to zero:

lim
τ∗↓0

ft(τ, τ
∗) = ft(τ) (1)

The instantaneous-maturity forward rate curve represent forward rates on infinitesimal-

maturity forward contracts which are initiated τ periods in the future for τ ∈ [0,∞).

Given the forward rate curve, we can determine the spot rate (or yield) on a zero-coupon

bond with τ periods to maturity, denoted by yt(τ), by taking the equally weighted average

over the forward rates:

yt(τ) =
1

τ

∫ τ

0

ft(m)dm (2)

The discount curve, Pt(τ), which denotes the present value of a zero-coupon bond that

pays out a nominal amount of $1 after τ periods, can in turn be obtained from the spot rate

curve by

Pt(τ) = exp [−τyt(τ)] (3)

The final relationship we have links forward rates directly to the discount curve and is given

by

ft(τ) = −
1

Pt(τ)

dPt(τ)

dτ
= yt(τ) + τ

dyt(τ)

dτ
(4)

We can move from one curve to the other by using the relationships specified in (2)-(4).

Various methods have been proposed to estimate the term structure from (quoted) bond

prices. A popular approach is the bootstrapping procedure by Fama and Bliss (1987) which

consists of sequentially extracting forward rates from bond prices with successively longer

maturities. The Fama and Bliss (1987) approach exactly prices all bonds included in the

procedure and assumes that the forward rate between observed maturities is constant. The

dataset I analyze in this paper consists of Fama-Bliss interest rates. Other term structure

estimation methods use for example cubic splines (McCulloch, 1975), exponential splines

(Vasicek and Fong, 1982), polynomials functions (Chambers et al., 1984), parametric meth-

ods (Nelson-Siegel, see e.g. Bliss, 1997) or non-parametric methods (Linton et al., 2001).

Studies such as Bliss (1997), Ferguson and Raymar (1998) and Jeffrey et al. (2006) com-

pare several different estimation methods and demonstrate the pros and cons of the various

methods.
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Once the decision has been made as to which method to use to construct an estimate

of the term structure, the next step is to build a model to describe the evolution of the

term structure over time. Popular models are no-arbitrage affine models, e.g. the one-factor

models by Vasicek (1977) and Cox et al. (1985) or multi-factor models as specified and

analyzed in Duffie and Kan (1996), Dai and Singleton (2000) and De Jong (2000). In this

study I focus solely on the class of Nelson-Siegel models. Diebold and Li (2006) show that

the Nelson-Siegel model not only provides a good in-sample fit of the term structure but

also produces accurate out-of-sample interest rate forecasts for a 6- and 12-month forecast

horizon. Diebold and Li (2006) only consider the original three-factor Nelson and Siegel

(1987) model, however. The purpose of this paper is to examine a broader class of Nelson-

Siegel models. This includes for example the four-factor specifications proposed by Svensson

(1994) and Björk and Christensen (1999).

3 Nelson-Siegel class of models

3.1 Three-factor base model

Nelson and Siegel (1987) suggest to fit the forward rate curve at a given date with a mathe-

matical class of approximating functions. The functional form they advocate uses Laguerre

functions which consist of the product between a polynomial and an exponential decay term.

The resulting Nelson-Siegel approximating forward curve can be assumed to be the solution

to a second order differential equation with equal roots for spot rates4

ft(τ) = β1,t + β2,t exp

(
−

τ

λt

)
+ β3,t

(
τ

λt

)
exp

(
−

τ

λt

)
(5)

The parameters βt,1, βt,2 and βt,3 are determined by initial conditions and λt is a constant

associated with the equation. By averaging over forward rates, as in (2), we obtain the spot

rate curve

yt(τ) = β1,t + β2,t




1 − exp

(
− τ

λt

)

(
τ
λt

)



 + β3,t




1 − exp

(
− τ

λt

)

(
τ
λt

) − exp

(
−

τ

λt

)

 (6)

There are several reasons why the Nelson-Siegel model is such a popular term structure

estimation method. First of all, it provides a parsimonious approximation of the yield curve

4For the specification of the Nelson-Siegel model I follow Fabozzi et al. (2005), Diebold and Li (2006)
and Diebold, Rudebusch, and Aruoba (2006b) although I specify the decay parameter(s) the same way as in
Nelson and Siegel (1987).
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using only a small number of parameters (contrary to for example spline methods). Together,

the three components [1, 1−exp(−τ/λt)
(τ/λt)

, 1−exp(−τ/λt)
(τ/λt)

− exp (−τ/λt)], give the model enough

flexibility to capture a range of monotonic, humped and S-type shapes typically observed in

yield curve data. Second of all, the model produces forward and yield curves which have the

desirable property of starting off from an easily computed instantaneous short rate value of

β1,t + β2,t and levelling off at a finite infinite-maturity value of β1,t which is constant5:

lim
τ↓0

yt(τ) = β1,t + β2,t; lim
τ→∞

yt(τ) = β1,t (7)

Finally, the three Nelson-Siegel components have a clear interpretation as short, medium

and long-term components. These labels are the result of each element’s contribution to

the yield curve. Figure 1[a] depicts the value of each component as a function of maturity.

The long-term component is the component on β1,t because it is constant at 1 and therefore

the same for every maturity. The component on β2,t is
[

1−exp(−τ/λt)
(τ/λt)

]
and is designated as

the short-term component. It starts at 1 but then decays to zero at an exponential rate.

The rate of decay is determined by the parameter λt. Smaller values for λt induce a faster

decay to zero. The medium-term component is
[

1−exp(−τ/λt)
(τ/λt)

− exp (−τ/λt)
]

which starts at

0, increases for medium maturities and then decays to zero again thereby creating a hump-

shape. The decay parameter λt determines at which maturity this component reaches its

maximum.

- Insert Figure 1 around here -

Although the Nelson-Siegel model was in essence designed to be a static model which does

not account for the intertemporal evolution of the term structure, Diebold and Li (2006) show

that the coefficients β1,t, β2,t and β3,t can be interpreted as three latent dynamic factors6.

Moreover, the authors show that the labels level, slope and curvature are appropriate for

these factors. The long-term factor β1,t governs the level of the yield curve whereas β2,t and

β3,t govern its slope and curvature respectively.

By casting the Nelson-Siegel model into a dynamic framework, Diebold and Li (2006)

further show that the model is capable of replicating the main empirical facts of the term

5The limiting behavior of the spot curve and the forward curve are the same. The Nelson-Siegel discount
curve, which follows from combining (6) with (3), is given by

Pt(τ) = exp
{
(−β1,tτ − β2,tλt[1 − exp (−λtτ)] − β3,tλt[1 − exp (−λtτ) − τ exp (−λtτ)]

}
,

The discount curve starts at 1 and converges to zero when maturity goes to infinity as required.
6The short, medium and long-term components can therefore also be interpreted as factor loadings.

6



structure of interest rates over time: the average curve is upward sloping and concave, yield

dynamics are highly persistent with long maturity rates being more persistent than short-

maturity rates, and interest rate volatility is decreasing for longer maturities. Due to its

attractive properties and its widespread use by central banks and practitioners I regard the

three-factor model in (6) as the Nelson-Siegel base model. Note that Diebold and Li (2006)

as well as for example Dolan (1999), Fabozzi et al. (2005) and Mönch (2006a) first fix λt to a

pre-specified value and then proceed with analyzing the three-factor model. Here, I estimate

λt as well as fixing it.

Although the base model can already capture a wide range of shapes, it cannot handle all

the shapes that the term structure assumes over time. As an attempt to remedy this problem,

several more flexible Nelson-Siegel specifications have been proposed in the literature to

better fit more complicated shapes, mainly shapes with multiple minima and/or maxima.

These extended Nelson-Siegel models achieve the increase in flexibility by introducing either

additional factors, further decay parameters, or by a combination of both. In the remainder

of this section I discuss which of these specifications I will examine for their in-sample fit

and out-of-sample predictive accuracy.

3.2 Alternative Nelson-Siegel specifications

3.3 Two-factor model

The first model I consider is a restriction rather than an extension of the three-factor model.

Litterman and Scheinkman (1991), among many other studies, show that the variation in

interest rates can be explained by only a small number of underlying common factors. Typi-

cally, the first three principal component factors are already sufficient since these explain the

bulk of interest rate variance but also because they have the intuitive interpretation as level,

slope and curvature factors from the manner in which these factors affect the yield curve. The

third factor has usually very little to add, however, (typically only a few percentage points)

to the amount of interest rate variance that is already captured by the first two factors7.

For this reason, authors such as Bomfim (2003) and Rudebusch and Wu (2003) consider

two-factor affine models to explain interest rate dynamics whereas Diebold, Piazzesi, and

Rudebusch (2005) examine a two-factor Nelson-Siegel model. Compared to the three-factor

7For the dataset I use here, the first and second factor explain 95.6% and 4% each of the variance in yield
levels. The third factor explains only an additional 0.23%.
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Nelson-Siegel model, the two-factor model only contains the level and slope factor:

yt(τ) = β1,t + β2,t




1 − exp

(
− τ

λt

)

(
τ
λt

)



 (8)

Diebold, Piazzesi, and Rudebusch (2005) argue that since the first two principal compo-

nents explain nearly all variation in interest rates, a two-factor model may suffice to forecast

the term structure. They also argue, however, that two factors will most likely not be enough

to accurately fit the entire yield curve8.

3.4 Björk and Christensen (1999) four-factor model

The three-factor Nelson-Siegel model can be extended in various ways to increase its flex-

ibility. From an estimation point of view, the easiest approach is to introduce additional

factors. Björk and Christensen (1999) propose to add a fourth factor to the approximating

forward curve in (5):

ft(τ) = β1,t + β2,t exp

(
−

τ

λt

)
+ β3,t

(
τ

λt

)
exp

(
−

τ

λt

)
+ β4,t exp

(
−

2τ

λt

)
(9)

The four-factor Nelson-Siegel yield curve is then given by

yt(τ)=β1,t + β2,t




1−exp

(
−τ

λt

)

(
τ
λt

)



 + β3,t




1−exp

(
−τ

λt

)

(
τ
λt

) − exp

(
−

τ

λt

)

 + β4,t




1−exp

(
−2τ

λt

)

(
2τ
λt

)





(10)

The fourth component,
[

1−exp(−2τ/λt)
(2τ/λt)

]
, resembles the second component as it also mainly

affects short-term maturities. The difference is that it decays to zero at a faster rate which

can be seen from Figure 1[b]. The factor β4,t can therefore be interpreted as a second

slope factor. As a result, the four-factor Nelson-Siegel model captures the slope of the term

structure by the (weighted) sum of β2,t and β4,t. The instantaneous short rate in (7) is for

the four-factor model therefore equal to yt(0) = β1,t + β2,t + β4,t. Diebold, Rudebusch, and

Aruoba (2006b) report that the four-factor model marginally improves the in-sample fit of

the term structure but they do not consider out-of-sample forecasting.

8Diebold, Piazzesi, and Rudebusch (2005) show how to impose no-arbitrage restrictions on this two-
factor Nelson-Siegel model. As argued by Diebold et al. (2006b) no-arbitrage restrictions are likely to be,
at least approximately, satisfied in the U.S. Treasury data analyzed here. Therefore, imposing no-arbitrage
restrictions are unlikely to improve the performance of the two-factor model reported in Section 6 and 7. Its
poor performance seems primarily due to the limited number of only two factors.
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Björk and Christensen (1999) also consider a five-factor model:

ft(τ) = β1,t + β2,t

(
τ

λt

)
+ β3,t exp

(
−

τ

λt

)
+ β4,t

(
τ

λt

)
exp

(
−

τ

λt

)
+ β5,t exp

(
−

2τ

λt

)

yt(τ) = β1,t + β2,t

(
τ

2λt

)
+ β3,t

[
1−exp

(
− τ

λt

)

(
τ
λt

)

]
+ β4,t

[
1−exp

(
− τ

λt

)

(
τ
λt

) − exp
(
− τ

λt

)]
+ β5,t

[
1−exp

(
−2τ

λt

)

(
2τ
λt

)

]

and Diebold, Rudebusch, and Aruoba (2006b) report that adding two additional factors

again only leads to a negligible improvement in in-sample fit. The problem with the five-

factor model, however, is that it contains a component which is linear in τ . Consequently, the

model implies linearly increasing long-maturity spot and forward rates. This is problematic

and I therefore do not consider the five-factor model here.

3.5 Bliss (1997) three-factor model

A second option to make the Nelson-Siegel more flexible is through relaxing the restriction

that the slope and curvature component are governed by the same decay parameter λt.

Bliss (1997) estimates the term structure of interest rates with the three-factor Nelson-Siegel

model but allows for two different decay parameters λ1,t and λ2,t
9. The forward curve and

spot rate curves are then given by

ft(τ) = β1,t + β2,t exp

(
−

τ

λ1,t

)
+ β3,t

(
τ

λ2,t

)
exp

(
−

τ

λ2,t

)
(11)

and

yt(τ) = β1,t + β2,t




1 − exp

(
− τ

λ1,t

)

(
τ

λ1,t

)



 + β3,t




1 − exp

(
− τ

λ2,t

)

(
τ

λ2,t

) − exp

(
−

τ

λ2,t

)

 (12)

Obviously, the Bliss Nelson-Siegel model will only be different from the base model if λ1,t 6=

λ2,t.

Nelson and Siegel (1987) also consider an approximating forward curve with different

decay parameters10. The forward curve is again derived as the solution to a second-order

9Bliss (1997) calls this the ‘Extended Nelson-Siegel’ but as several more extensions are considered here
as well I simply refer to it as the ‘Bliss’ model.

10Nelson and Siegel (1987) try to fit this model to their sample of yields which only consists of maturities
up until one year. They report that the model is over-parameterized and therefore use the forward curve in
(5). Bliss (1997) remarks that over-parametrization should not pose any problem when also longer-maturity
yields are fitted, which is also the case here.
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differential equation but now with real and unequal roots. Their forward rate curve is given

by

ft(τ) = β1,t + β2,t exp

(
−

τ

λ1,t

)
+ β3,texp

(
−

τ

λ2,t

)

We need the additional factor
(

τ
λ2,t

)
in (11) to obtain the curvature factor. Otherwise,

the model contains two slope factors which are different only if the decay parameters are

different. The model would then closely resemble the two-factor model.

3.6 Svensson (1994) four-factor model

A popular term-structure estimation method among central banks (see BIS, 2005) is the

four-factor Svensson (1994) model. Svensson (1994) proposes to increase the flexibility and

fit of the Nelson-Siegel model by adding a second hump-shape factor with its own separate

decay parameter. The resulting four-factor forward curve is given by:

ft(τ) = β1,t + β2,t exp

(
−

τ

λ1,t

)
+ β3,t

(
τ

λ1,t

)
exp

(
−

τ

λ1,t

)
+ β4,t

(
τ

λ2,t

)
exp

(
−

τ

λ2,t

)
(13)

The resulting equation for the zero-coupon yield curve is then

yt(τ)=β1,t + β2,t




1−exp

(
− τ

λ1,t

)

(
τ

λ1,t

)



 + β3,t




1−exp

(
− τ

λ1,t

)

(
τ

λ1,t

) −exp
(
− τ

λ1,t

)


 + β4,t




1−exp

(
− τ

λ2,t

)

(
τ

λ2,t

) −exp
(
− τ

λ2,t

)




(14)

The fourth component,
[

1−exp(−τ/λ2,t)

(τ/λ2,t)
−exp(−τ/λ2,t)

]
, introduces a second medium-term com-

ponent to the model which is depicted by the dash-dotted line in Figure 1[c]. The Svensson

Nelson-Siegel model can more easily fit term structure shapes with more that one local max-

imum or minimum along the maturity spectrum. As the fourth component mainly affects

medium-term maturities, the limiting results in (7) also hold for the Svensson model.

3.7 Adjusted Svensson (1994) four-factor model

A potential problem with the Svensson model is that it is highly non-linear which can

make the estimation of the model difficult, see Bolder and Stréliski (1999) for a discussion.

A multicolinearity problem arises when the decay parameters λ1,t and λ2,t assume similar

values. When this happens, the Svensson model reduces to the three-factor base model but

with a curvature factor equal to the sum of β3,t and β4,t. Only the sum of these parameters
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can then still be estimated efficiently, not the individual parameters11.

One way to try and cure this multicolinearity problem is to make sure that the two

medium-term components are different when λ1,t ' λ2,t. I therefore propose an ‘Adjusted’

Svensson model which is given by the following forward and zero curves:

ft(τ) = β1,t + β2,t exp
(
− τ

λ1,t

)
+ β3,t

(
τ
λt

)
exp

(
− τ

λ1,t

)
+ β4,t

[
exp

(
− τ

λ2,t

)
+

(
2τ
λ2,t

− 1
)

exp
(
− 2τ

λ2,t

)]

(15)

and

yt(τ)=β1,t + β2,t




1−exp

(
− τ

λ1,t

)

(
τ

λ1,t

)



 + β3,t




1−exp

(
− τ

λ1,t

)

(
τ

λ1,t

) −exp
(
− τ

λ1,t

)


 + β4,t




1−exp

(
− τ

λ2,t

)

(
τ

λ2,t

) −exp
(
− 2τ

λ2,t

)




(16)

The adjustment to the second curvature component ensures that multicolinearity is no longer

an issue. The adjusted component also starts at 0 but then increases for medium maturities

at a faster rate than the first curvature component and returns to zero faster as well. The

dash-dotted line in Figure 1[d] depicts the fourth component as a function of maturity. The

difference between the two additional curvature components in the Svensson and Adjusted

Svensson model can be seen by comparing Figure 1[c] with Figure 1[d].

3.8 General specification

The different Nelson-Siegel specifications that I examine are all nested and can therefore

be captured in one general model set-up. In particular, consider the following state-space

representation:

Yt = Xtβt + εt (17)

βt = µ + Φβt−1 + νt (18)

The measurement equations in (17) specify the vector of yields, which contains N different

maturities, Yt = [yt(τ1) . . . yt(τN)]′, as the sum of a Nelson-Siegel spot rate curve, Xtβt, plus

a vector of yield errors which are assumed to be independent across maturities but with

11One example of this multicolinearity effect can be seen in Gimeno and Nave (2006). When applying the
Svensson model to estimate the zero-yield curve from Spanish Treasury Bonds, Gimeno and Nave report
that β3,t and β4,t display clear structural streaks and often take on large values but with opposite signs. The
sum of the two parameters is stable across time, however (see Figure 3[a] in Gimeno and Nave, 2006). The
reason for this becomes apparent from their Figure 2 in which it is shown that the extreme factor estimates
correspond to samples for which the estimated values for λ1,t and λ2,t are very similar.
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different variance terms, σ2(τi). The Nelson-Siegel spot rate curves are those discussed in

the previous sections with βt being the (K × 1) vector of factors and Xt the (N ×K) matrix

of factor loadings which are potentially time-varying if the decay parameter(s) are estimated

alongside the factors. Each of the Nelson-Siegel models in sections 3.1-3.7 is a special case of

(17) with a different number of factors and/or a different specification for the factor loadings.

If we are only interested in fitting the term structure then the measurement equations

are sufficient. However, in order to construct term structure forecasts we also need a model

for the factor dynamics. I follow the dynamic frame-work of Diebold and Li (2006) and

Diebold, Rudebusch, and Aruoba (2006b) by specifying first-order autoregressive processes

for the factors as in the state equations (18). These can be either individual AR(1) processes

or one multivariate VAR(1) process12. The vector µ and matrix Φ have dimensions (K × 1)

and (K × K) respectively. The model is completed by assuming that the measurement

equation and state equation error vectors are orthogonal and normally distributed:

[
εt

νt

]
∼ N

([
0N×1

0K×1

]
,

[
H 0
0 Q

])
(19)

where H is a N × N matrix which I assume to be diagonal throughout the analysis. For

the state equation covariance matrix Q I make the assumption that it is either a diagonal

(K × K) matrix or a full matrix, depending on the estimation procedure which I discuss

next.

4 Estimation procedures

There are several approaches to estimating the latent factors and parameters in the Nelson-

Siegel state-space representation. These approaches depend crucially on whether the mea-

surement and state equations are estimated separately or simultaneously and on the assump-

tions regarding the decay parameters13.

The most straightforward approach is used in for example Fabozzi et al. (2005) and

Diebold and Li (2006) and consists of a two-step procedure. In the first step the measurement

equations are treated as a cross-sectional model and Least Squares is used to estimate the

12Here I use a straightforward linear specification of the measurement and state equations. More complex
specifications, such as a Markov Switching approach, are used in for example Bernadell et al. (2005).

13I only use frequentist maximum likelihood techniques to estimate parameters. Mönch (2006b) and
De Pooter et al. (2007) consider Bayesian estimation of the three-factor model. Whereas a Bayesian approach
would also account for parameter uncertainty, I do not pursue it here and leave this for further research.
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parameters for every month separately. In the second step time series models are specified

and fitted for the factors. A second, somewhat more demanding estimation approach is

a one-step procedure in which all the parameters in the state-space system are estimated

simultaneously. This approach uses the Kalman filter to estimate the factors and is proposed

in Diebold, Rudebusch, and Aruoba (2006b). Here I use the one-step as well as the two-step

estimation procedures and in this section I discuss both techniques in detail. Specific details

regarding the estimation are given in Appendix A.

4.1 Two-step approach with a fixed decay parameter

Diebold and Li (2006) suggest to fix λt in the three-factor model to a pre-specified value

which is the same for every t, instead of treating it as an unknown parameter. By doing

so, the nonlinear measurement equations become linear in the state vector which can then

be estimated using straightforward cross-sectional OLS. The decay parameter λt determines

the (medium-term) maturity at which the factor loading on the curvature factor β3,t is at

its maximum. The value of 16.42 that Diebold and Li (2006) use for λt is such that this

maximum is reached at a 30-month maturity. Larger values for λt produces slower decaying

factor loadings with the curvature factor achieving it maximum at a longer maturity and

vice versa. Although other authors have used different values as well, I follow Diebold and

Li (2006) and set λt equal to 16.42.

The first step of the estimation procedure produces time-series of estimated values for

each of the K factors; {βi,t}
T
t=1 for i = 1, . . . , K. The next step is to estimate the factor

dynamics of the state equations. I estimate separate AR(1) models for each factor, thus

assuming that Φ and Q are both diagonal, as well as a joint VAR(1) by assuming that Φ

and Q are full matrices instead.

I apply the two-step estimation approach with a fixed decay parameter only to estimate

the two, three and four-factor Nelson-Siegel specifications. The remaining models have two

decay parameters and would therefore require finding two appropriate values to choose for

λ1,t and λ2,t, which is difficult. I use the notation ‘NS2’ to indicate the two-step estimation

procedure. I denote the two, three and four-factor models by NS2-2, NS2-3 and NS2-4

respectively and add suffixes ‘-AR’ and ‘-VAR’ to indicate the time-series model specification

for the state equations.
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4.2 Two-step approach with estimated decay parameters

When the decay parameters are estimated alongside the factors, the estimation of the now

nonlinear measurement equations in the first step becomes more challenging and requires

nonlinear least squares. However, the increased flexibility of the model as a result of the

additional parameter(s) can nevertheless make this a worthwhile exercise to undertake. I

therefore also estimate the two, three and four-factor models when treating λt as a parameter

and I denote these by NS2-2-λ, NS2-3-λ and NS2-4-λ with suffixes ‘-AR’ and ‘-VAR’.

The Bliss and (Adjusted) Svensson models all have two decay parameters, λ1,t and λ2,t,

which should even further improve the fit of the Nelson-Siegel model due to the increased

flexibility of the factor loadings. The two-step estimation procedure can also be applied to

these models and I use the notation NS2-B, NS2-S and NS2-AS for the Bliss, Svensson

and Adjusted Svensson model respectively. Note that in the second step I do not model the

dynamics of the decay parameters explicitely. Instead, in order to construct forecasts I use

the median of their in-sample estimated values, see Section 7.1 for further details.

4.3 Restrictions on the decay parameters

The nonlinear estimation procedure can result in factor estimates which can sometimes be

very extreme. An example is shown and discussed in Gimeno and Nave (2006) for the

Svensson model. Gimeno and Nave report extreme (and often offsetting) values for factor

estimates. Bolder and Stréliski (1999) also address numerical problems and estimation issues

when estimating the Svensson model.

The nonlinear model structure seems to pose serious difficulties for optimization pro-

cedures to arrive at reasonable estimates. An additional reason, which to the best of my

knowledge seems to have been overlooked in the literature surprisingly, is the behavior of

the factor loadings when the decay parameters take on extreme values. When this happens

multicolinearity problems can occur and some of the factors are then no longer uniquely

identified. To understand why this is the case we need to examine the factor loadings as

functions of λt. We have the following straightforward limiting results

lim
λt↓0

[
1 − exp(−τ/λt)

(τ/λt)

]
= 0; lim

λt↓0

[
1 − exp(−τ/λt)

(τ/λt)
− exp(−τ/λt)

]
= 0 (20)

lim
λt→∞

[
1 − exp(−τ/λt)

(τ/λt)

]
= 1; lim

λt→∞

[
1 − exp(−τ/λt)

(τ/λt)
− exp(−τ/λt)

]
= 0 (21)
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The results in (20) imply that for very small values of λt the slope and curvature factors will

be near non-identification which can result in extreme estimates14. For large values of λt,

as indicated by (21), curvature factors are nearly non-identified. Furthermore, the level and

slope factors are jointly identified, but no longer identified separately and can therefore take

on extreme, offsetting, values15.

If we are only interested in fitting the term structure at a given point in time in step

one, these non-identification issues do not necessarily cause problems. Although the factor

estimates can be extreme, the models still accurately fit the term structure. The real problem

occurs when estimating dynamics in step two as the time-series of the factors can potentially

be plagued by outliers. In order to prevent extreme factor estimates, I impose restrictions on

the decay parameters. By only allowing the curvature factor loading to reach its maximum

for maturities between one and five years, the decay parameters are restricted to lie in the

interval [6.69, 33.46]16. I impose one additional restriction on the Svensson and Adjusted

Svensson models separately.

For the Svensson model I restrict the loading on the second curvature factor, β4,t, to reach

its maximum for a maturity which is at least twelve months shorter than the corresponding

maturity for the first curvature loading. Specifically it comes down to the following minimum

distance restriction: λ1,t ≥ λ2,t + 6.69. This restriction prevents the case where β3,t and β4,t

are only jointly identified but not individually. Note that the two curvature components in

the Svensson model, and therefore λ1,t and λ2,t, as well as their role in the restriction, are

interchangeable. In the Adjusted Svensson model the curvature factor loadings are different

so there is no need to impose any minimum distance between the two decay parameters. I

do, however, again force the first curvature hump to be to the right of the second curvature

hump by imposing the restriction λ1,t ≥ λ2,t.

14Note that in the Bliss and (Adjusted) Svensson models non-identification issues arise when either λ1,t

or λ2,t tends to zero and even more so when both parameters tend to zero.
15This explains the peaks with opposite signs in the level and slope estimates in Figure 1 of Gimeno and

Nave (2006).
16Recall that Diebold and Li (2006) fix the decay parameter such that the maximum is reached at a

maturity of two and a half years. Note that Gürkanyak, Sack, and Wright (2006) do not impose restrictions
on the Svensson model when estimating the U.S. Treasury yield curve. They find that the second hump is
located at much longer maturities (beyond twenty years). However, Gürkanyak et al. (2006) estimate the
term structure using bonds with maturities up to thirty years. I only use maturities up to ten years and
the domain of the curvature humps of one to five years seems therefore reasonable and sufficiently wide in
order not to be too restrictive. Some experimentation with using wider domains indeed resulted in factor
estimates that were more ‘extreme’.
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4.4 One-step state-space approach

The alternative to the two-step approach is to estimate all parameters simultaneously. By

using the prediction-error decomposition of the likelihood we can estimate parameters by

maximum likelihood and apply the Kalman filter to obtain optimal factor estimates. The

likelihood for the state-space system in (17)-(18) is given by

L(Θ) =
T∑

t=1

[
−

1

2
ln (2Π) −

1

2
ln (|ft|t−1|) −

1

2
η′

t|t−1f
−1
t|t−1ηt|t−1

]
(22)

which is a function of the parameter set Θ = (λ1, λ2, βt, µ, Φ, H,Q). The likelihood is com-

prised of the (N × 1) yield prediction error vector; ηt|t−1 ≡ yt − yt|t−1 where yt|t−1 is the

vector of in-sample yield forecasts given information up to time t − 1, and of the (N × N)

conditional covariance matrix of the prediction errors; ft|t−1 ≡ E[ηt|t−1η
′
t|t−1], see Kim and

Nelson (1999) for further details. Note that the decay parameters are assumed to be constant

over time17. As these can now be estimated using information from both the cross-section as

well as the time-series of yields it is much less likely that they will take on extreme values.

Furthermore, because the dynamics of the factors are explicitly taken into account when op-

timizing the likelihood, it does not seem necessary anymore to impose the earlier restrictions

on the decay parameters. I estimate all the models using this one-step procedure with the

decay parameters being estimated alongside the factors and the remaining parameters and

allowing for Q to be a full matrix. I denote the results for the different models using this

approach by NS1-2, NS1-3, NS1-4, NS1-B, NS1-S and NS1-AS.

Diebold, Rudebusch, and Aruoba (2006b) favor the one-step over the two-step estimation

approach because parameters are estimated simultaneously which ensures that the uncer-

tainty of all parameters is taken into account at the same time. The drawback, however, is

that the number of parameters to estimate is substantial in the state-space model. For exam-

ple, for the four-factor Svensson model with a VAR(1) specification for the state equations,

the total number of parameters for the dataset used here equals 49 (two decay parameters,

four parameters in µ, 16 parameters in Φ, N = 17 parameters in H, four variance and six

covariance terms in Q). In order to reduce the number of parameters I therefore also try

two alternative specifications for the system of state equations in (18). Apart from spec-

ifying VAR(1) dynamics for the factors by assuming Φ to be a full matrix as in Diebold,

17Huse (2007), on the contrary, argues that for the three-factor model the decay parameter should also
be treated as a dynamic factor and that it should be modelled accordingly. I do not consider this approach
here.
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Rudebusch, and Aruoba (2006b) I also consider AR(1) dynamics using a diagonal Φ. Addi-

tionally I specify random walk factor dynamics by setting µ equal to zero and Φ equal to the

identity matrix18. I distinguish the different dynamics by using the suffixes ‘-VAR’, ‘-AR’

and ‘-RW’ for respectively VAR(1), AR(1) and random walk dynamics. An overview of all

model abbreviations used is given in Table 1.

- Insert Table 1 around here -

5 Data

The dataset available here consists of end-of-month continuously compounded U.S. zero-

coupon bond forward rates. I compute constant maturity spot rates by averaging these

forwards rates as in (2). The forward rates are constructed from filtered average bid-ask

price quotes on U.S. Treasury securities using the Fama and Bliss (1987) bootstrap method

as outlined in Bliss (1997)19. The price quotes are taken from the CRSP government bond

files. CRSP filters the available quotes by taking out illiquid bonds and bonds with option

features. Similar to Diebold and Li (2006), Diebold, Rudebusch, and Aruoba (2006b) and

Mönch (2006a), I use unsmoothed Fama-Bliss yields20.

I estimate the class of Nelson-Siegel models using data for the sample period 1984:1 -

2003:12 (T = 240 observations) and I use the following N = 17 maturities in the estimation:

τ = 3, 6, 9, 12, 15, 18, 21, 24 and 30 months as well as 3, 4,..., 10 years. I start my

dataset after the Volcker period to allow for a fair comparison with the results in Diebold

and Li (2006) and Mönch (2006a). Note that the forecasting results reported by De Pooter

et al. (2007) for the three-factor Nelson-Siegel model with both the two-step and one-step

estimation procedure are based on a much longer span of data (1970:1 - 2003:12).

Figure 2 shows time-series plots for a subset of the maturities and illustrates how yield

levels and spreads vary substantially throughout the sample. For example, for the period

from 1994 onwards, which is the period I use to evaluate the models’ forecasting performance,

18Diebold and Li (2006) find for the three-factor model that the null of a unit root in the factor dynamics
cannot be rejected for β1,t and β2,t. Fabozzi et al. (2005) find similar results and therefore model first
differences of the level and slope factors.

19I kindly thank Robert Bliss for providing me with the unsmoothed Fama-Bliss forward rates and the
programs to construct the spot rates.

20The reason for using unsmoothed Fama-Bliss yields is that Bliss (1997) finds, using parametric and
nonparametric tests, that the Fama-Bliss method does best overall in terms of estimating the term structure
in comparison with other popular estimation methods.
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we can distinguish a stable period (mid 1990s till the end of 2000) but also a period where

short term interest rates fell by roughly 4%, resulting in a sharp increase in the term spread

(the last three years of the sample). It is clear from Figure 3 that not only the level of the

term structure fluctuates over time but also its slope and curvature. The curve takes on

- Insert Figures 2, 3 and Table 2 around here -

various forms ranging from nearly flat to (inverted) S-type shapes. Table 2 reports summary

statistics for yield levels for various maturities. The stylized facts common to yield curve

data are clearly present: the sample average curve is upward sloping and concave, volatility

is decreasing with maturity, autocorrelations are very high and increasing with maturity.

The null of normality is rejected for medium and longer term maturities due to positive

skewness and excess kurtosis but cannot be rejected for shorter maturities. Correlations

between yields of different maturities are high (80% or above), especially for close-together

maturities.

6 In-sample fit results

6.1 In-sample fit

In this section I discuss the results of fitting the term structure using the class of Nelson-

Siegel models. I only focus on the fit from step one of the two-step estimation procedure due

to the fact that the one-step procedure potentially also uses (future) time-series information

which is unavailable if we want to fit the term structure at a given point in time. We can

expect that more flexible models result in a better fit. However, as the increased flexibility

can be obtained both by additional decay parameters as well as by additional factors, the

question is which of the two modelling options improves the fit more.

Figure 4 shows that all models accurately fit the average curve. The only exception is

the two-factor model with fixed decay parameter, shown in Panel [a], most likely because it

lacks a curvature component. Nevertheless, freeing up the decay parameter seems to provide

- Insert Figure 4 around here -

sufficient additional flexibility as the two-factor average curve now becomes virtually indis-

tinguishable from the three and four-factor models (Panel [b]).

Whereas the average fit may be nearly identical across the different models, Figure 5 on

the other hand shows that the fit in individual months can be quite different. Shown in
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- Insert Figure 5 around here -

Figure 5 are the actual term structures in four specific months of the sample. These four

months are an example of the various different term structure shapes that occur in the data.

Whereas for November 1995 and September 2000 the shape is respectively S-shaped and

downward sloping, for June 1989 and August 1998 the shapes are more difficult to describe.

The lines in each panel show the fit of various models. The two-factor model in particular has

difficulties fitting the more complex curves, but the three-factor model also does not seem

flexible enough judging from, for example, Panel [c]. Graphically, the best fit is obtained

with the four-factor model and the (Adjusted) Svensson models which give very similar fitted

curves.

Table 3 reports detailed in-sample results for all models, which have been estimated with

the restrictions on the decay parameters in place. The best fitting models, as judged by a

- Insert Table 3 around here -

number of standard criteria given in the table (standard deviation of yield errors, root mean

squared fit error, mean absolute fit error, minimum and maximum fit error) are represented

by the bold numbers. The results can be summarized by making the following observations.

The models that achieve the best fit overall are indeed the most flexible models, in par-

ticular the (Adjusted) Svensson model. For nearly every maturity shown in the table, the

Svensson models are the most accurate on all criteria, including having the lowest persis-

tence in yield errors. Except from the two-factor model, all models perform relatively sim-

ilar, however, which agrees with the results in Dahlquist and Svensson (1996) and Diebold,

Rudebusch, and Aruoba (2006b) who demonstrate that the three-factor model fits the term

structure well compared to more elaborate models. It is nonetheless interesting to examine

how the results of the remaining models compare to those of the Svensson models, but in

particular how they compare amongst each other. For the two and three-factor models we

can judge which extension yields the largest gain; estimating λt or adding a factor. From

columns two to six in Table 3 it becomes clear that for the two-factor model adding a (cur-

vature) factor improves the in-sample fit much more than by estimating λt alongside the

level and slope factors. The results for the three-factor model lead to the same conclusion

although the improvement when going from the three to the four-factor model is much less

substantial than going from the two to the three-factor model. Estimating λt instead of

using the fixed value of 16.42 improves the fit for each model although in absolute terms

the benefits are minor (tens of basis points). Another comparison to make is that between
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the three-factor model with estimated λt and the Bliss model as the latter does not impose

that the slope and curvature factor are determined by the same decay parameter. For every

maturity the Bliss model marginally improves the fit. However, the four-factor model with

estimated λt is always more accurate than the Bliss model, showing that it is more beneficial

to introduce the second slope factor than separate decay parameters.

In fact, the four-factor model with an estimated λt fits the term structure only marginally

worse than the best fitting model with the maximum overall difference being no larger than

0.6 basis points (for a 3-month maturity based on both the root mean squared error and the

mean absolute error). This means that, compared to the three-factor base model, it does

not seem to make much difference whether a second curvature factor with a separate decay

parameter is added (the Svensson model) or just a second slope factor which has the same

λt as the first three factors. Comparing the Svensson model with its Adjusted alternative

shows that the latter fits marginally better.

To summarize, the best fitting models in an absolute sense are indeed the models which

allow for the most amount of flexibility which are the Svensson and Adjusted Svensson

models. However, the four-factor model provides a fit which is nearly as accurate and has

the benefit of being easier to estimate because the nonlinearities in the model are due to

only one decay parameter instead of two. The interesting question now is whether the

additional slope factor, in addition to improving the in-sample fit, can also help to improve

the out-of-sample performance.

Before I turn to discussing the forecast results I first address the effect of imposing the

restrictions on the decay parameters. Restricting these will most likely mean that some of the

in-sample fit performance is sacrificed. The question is, however, to what extent this actually

is the case. To assess the effect on in-sample fit I report in Table 4 the in-sample fit of those

specifications that require estimating one or two decay parameters when no restrictions are

- Insert Table 4 around here -

imposed. Comparing Table 3 and Table 4 shows that in absolute terms the unrestricted

models indeed fit the term structure more accurately. However, the differences are only

substantial for the two-factor model which is explainable as with only two factors, having an

additional parameter can make quite a difference. For example, for the 3-month maturity,

the root mean squared error goes down from 18 to 12 basis points. For all other models,

differences are, however, marginal with criteria such as standard deviation and mean absolute

error being only 0.5 basis points worse for the restricted models. Furthermore, the bold
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numbers in each panel, which highlight the best fitting models per maturity, show almost

negligible differences.

The results indicate that whether or not imposing restrictions does not matter much

in terms of in-sample fit. Nevertheless, the reason why the restrictions are useful becomes

apparent when we examine the time-series of the estimated factors. As these are modelled in

the second step of the two-step procedure it is important that these series are relatively ‘well-

behaved’. That this not necessarily needs to be the case using the unrestricted estimation

procedure is due to potential non-identification issues, as discussed earlier. Not imposing

restrictions can result in extreme factor estimates. An example is given in Figure 6 in which

- Insert Figure 6 around here -

the solid and dotted lines represent respectively the restricted and unrestricted estimates

of the level, slope and curvature factors in the three-factor model. For most of the sample

the restricted and unrestricted estimates are all but identical, except for a small number of

months. For each of these months the unrestricted λt is substantially higher than the upper

limit of 33.46. In particular for May 1986 this is the case with λ̂t equaling 65.61 as a result

of which the level and slope factors are estimated at β̂1,t = 2.94 and β̂2,t = 3.26. Only the

sum of these is somewhat close to the true level of the curve of 7.86% (using as proxy the

10-year yield) whereas with the restrictions in place the level estimate is β̂1,t = 7.34.

6.2 Factor estimates

Time-series of the factor estimates, obtained with the two-step procedures are represented by

the solid lines in Figures 7-9. Comparing the subgraphs within each row and across figures

shows that the different models all give rather similar estimates for the level, slope and

curvature factors. The estimates differ nevertheless in magnitude, mainly for the four-factor

model. The time-series for the latter seems to suffer somewhat from outliers, in particular

- Insert Figures 7 - 9 around here -

when the decay parameter is fixed (Figure 7) with some of the spikes in the slope and

curvature factors disappearing when the decay parameter is estimated as well (Figure 8).

Panels [h]-[k] of Figure 9 show that the two curvature factor estimates for the Adjusted

Svensson model are more stable than those for the Svensson model. The latter still exhibit

severe spikes, despite the restrictions on λ1,t and λ2,t.
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As an indication of the differences in the resulting factor estimates between the one and

two-step estimation methods, Figures 8 and 9 also show the Kalman filter factor estimates

for the full sample by means of the dotted lines. Whereas in general the time-series are quite

close, there are certainly differences, mainly for the more complex models like the Svensson

models. Using cross-sectional yield data as well as information concerning the evolution of

yields over time smoothes out the factor estimates.

Table 5 presents detailed full-sample summary statistics for the two-step factor estimates.

Statistics for empirical level, slope, curvature estimates, which have been constructed from

the yields directly, are shown in the last rows of the table. The estimated factors mimic the

empirical factors quite closely which is also clear from the italicized numbers in the last

- Insert Table 5 around here -

three columns showing the correlations between the estimated and empirical factors. All fac-

tors are highly autocorrelated and there is also substantial cross-correlation across factors21.

The importance of accounting for this cross correlation from a forecasting perspective will

be assessed by comparing the results between the AR and VAR specifications for the factor

dynamics.

7 Out-of-sample forecasting results

For the out-of-sample performance I run a similar horse-race between the different models as

for the in-sample fit. However, now there is no clear-cut conjecture how models will perform

as there may be a trade-off between in-sample and out-of-sample performance. The models

that provide a better in-sample do not necessary have to perform well out-of-sample because

of the risk of overfitting. This will especially be the case when the models are estimated

with the two-step procedure as the fitting process in the first step does not take into account

the dynamics of the factors in the second step, the latter being crucial for the out-of-sample

performance.

21Especially the two slope factors in the four-factor model are very strongly, negatively, correlated. Panels
[f] and [i] of Figures 7 and 8 also indicate that to a certain extent the slope factors seem to offset each
other, giving rise to a potential multicolinearity problem. However, the results in this and the following
section show that adding the second slope factor helps to improve not only the in-sample fit but also the
out-of-sample forecasting accuracy.
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7.1 Forecast procedure

I assess the forecasting performance of the Nelson-Siegel models by dividing the full data

sample into the initial estimation period 1984:1 - 1993:12 (120 observations) and the fore-

casting period 1994:1 - 2003:12 (120 observations). Next to gauging the models’ predictive

accuracy over the full sample I also consider two subsamples: 1994:1 - 2000:12 (84 obser-

vations) and 2001:1 - 2003:12 (36 observations). The first subsample is the out-of-sample

period used by Diebold and Li (2006) and allows me to directly compare the performance of

the alternative Nelson-Siegel specifications with that of the three-factor factor model results

of Diebold and Li (2006). The second subsample starts in 2001 when the Federal Reserve

lowered the target rate from 6.5% to 6% in a first of eleven subsequent decreases, resulting in

a drop of short-term interest rates by 4% and a strong widening of spreads. Mönch (2006a)

and De Pooter et al. (2007) both show that predictability is scarce in 2001-2003 and it will

be interesting to see how the Nelson-Siegel models perform in this period.

All the models are estimated recursively with an expanding data window. Interest rate

forecasting is carried out by constructing factor predictions using the state equations and

subsequently substituting these predictions in the measurement equations to obtain the

interest rate forecasts. I consider four forecast horizons, h = 1 month as well as 3, 6 and

12 months ahead. The h-month ahead factor forecasts, β̂T+h, are iterated forecasts which

follow from forward iteration of the state equations in (18) as follows

β̂T+h =
[
IK − Φ̂h

] [
IK − Φ̂

]−1

µ̂ + Φ̂hβT

where IK is the (K × K) identity matrix, µ̂ and Φ̂ the state equation parameter estimates

and βT the last available factor estimates. With the one-step estimation method I use the

in-sample decay parameter estimates to compute the factor loadings. With the two-step

method I use the median value of the time-series of decay parameter estimates22.

22Experimentation with alternative choices (using the most recent decay parameter estimate and using
the mean estimate) revealed that using the median gives more stable results. Note that Nelson and Siegel
(1987) who estimate λt alongside the factors in the three-factor model also report fit results when imposing
the median λt estimate. They find that the in-sample fit is not degraded much when doing so.
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7.2 Competitor models

Random walk

I consider three competitor models against which to judge the predictive accuracy of the

Nelson-Siegel models. The first is the benchmark Random Walk model

yt(τi) = yt−1(τi) + εt(τi), εt(τi) ∼ N
(
0, σ2(τi)

)
(23)

Many other studies that consider interest rate forecasting all show that consistently outper-

forming the random walk is difficult. The Random Walk h-month ahead forecast is equal to

the last observed value; ŷ
T+h

(τi) = y
T
(τi).

AR(1) model

The second competitor model is a first-order univariate autoregressive model which allows

for mean-reversion

yt(τi) = µ(τi) + φ(τi)yt−1(τi) + εt(τi), εt(τi) ∼ N
(
0, σ2(τi)

)
(24)

VAR(1) model

The third and final competitor model is an unrestricted VAR(1) model for yield levels. A

well-known shortcoming of using VAR models for yield forecasting is that only maturities

that are included in the model can be forecasted. To keep down the number of parameters I

therefore estimate a VAR(1) model in which the lagged yields are replaced by their first three

common factors. The reason is that these factors explain over 99% of the total variation and

also because of their Litterman and Scheinkman (1991) interpretation as level, slope and

curvature factors. I extract the factor matrix, denoted by Ft−1, by applying static principal

component analysis on the panel of lagged yields (using data up until month t−1) which

consist of 13 maturities: τ = 1, 3 and 6 months and 1, 2, . . . , 10 years23. The VAR(1) model

is then given by

Yt = µ + ΦFt−1 + εt, εt ∼ N (0, Σ) (25)

with Yt = [y
(1m)
t , ..., y

(10y)
t ]′, µ a (13 × 1) vector, Φ a (13 × 3) matrix and Σ a full (13 × 13)

matrix.

23Note that similar to Diebold and Li (2006), I do not use the 1-month maturity in the Nelson-Siegel
models. I do include it here in order to also assess the forecasts for this short maturity.
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One important difference between the Nelson-Siegel and VAR models is that the latter

does not impose a specific parametric form on the right hand side of the measurement

equations. The VAR(1) model can therefore be used to determine whether the exponential

factor loading structure of the Nelson-Siegel class of model is beneficial for forecasting yields.

For the AR and VAR model I similarly construct iterated forecasts.

7.3 Forecast evaluation

I use a number of standard forecast error evaluation criteria to assess the quality of the

out-of-sample forecasts. In particular, I report the Root Mean Squared Prediction Error

(RMSPE) for the individual maturities as well as the Trace Root Mean Squared Prediction

Error (TRMSPE). The latter combines the forecast errors of all maturities and summarizes

the performance per model, thereby allowing for a direct comparison between models24.

Significant differences between the forecast performance of the random walk and each of the

models are tested for using the White (2000) ‘reality check’ test which I implement using

the stationary bootstrap method of Politis and Romano (1994) with 1000 block-bootstraps

of the forecast error series and an average block-length of 12 months.

7.4 Forecast results

The results for the full sample period 1994:1 - 2003:12 are presented in Tables 6-9. The first

line in each table show the (T)RMSPEs for the random walk. All other entries are relative

(T)RMSPEs with respect to the random walk, including those in lines two and three which

show the results for the competitor AR(1) and VAR(1) models. Bold numbers indicate

outperformance with respect to the random walk. The results for this sample are directly

comparable to those of Mönch (2006a) as he uses an almost identical forecasting sample

(1994:1 - 2003:9) and also reports results for the NS2-3-AR and NS2-3-VAR specifications.

Although the random walk statistics are all but identical, for the Nelson-Siegel three factor

model I find somewhat better statistics for longer forecast horizons than Mönch. This is

most likely caused by my use of iterated forecasts whereas Mönch uses direct forecasts,

24Results of other evaluation criteria such as the Mean Prediction Error (MPE), Mean Absolute Prediction
Error (MAPE) and forecast regression R2-s are not reported here but are available upon request. For more
details regarding the TRMSPE, see Christoffersen and Diebold (1998). I compute the TRMSPE over the
following maturities for which I compute forecasts: τ = 1, 3, 6 and 12 months and 2,. . . ,10 years. Tables
6-13 show results for individual maturities for only a subset of these thirteen maturities.
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the different sets of maturities used and by the small differences in estimation and forecast

periods.

For a 1-month horizon there only seems to be a certain degree of predictability for matu-

rities of less than one year. With the two-step estimation method it is mainly the four-factor

model that does well for the one and three-month maturities. The 19% outperformance for

the one-month maturity relative to the random walk is significant at the 5% level according

to the White reality check test. A VAR(1) specification for the factor dynamics clearly works

better than separate AR(1) models per factor. For the one-step models, it is in terms of

- Insert Tables 6 - 9 around here -

TRMSPE less clear which specification for the factor dynamics is to be preferred. How-

ever, allowing for a full coefficient matrix clearly produces the most accurate short-maturity

forecasts, although the best model is NS1-4-AR with a TRMSPE of 0.98.

Table 7 shows for the 3-month horizon that for all models the best results are obtained

for short maturities using a VAR specification for the factors, instead of using an AR or RW

specification. The second and third line of the table shows this to hold also for the VAR model

using yield levels directly. From Panel B is it clear that the one-step estimation procedure

yields the most accurate results. It is interesting that the four-factor and (Adjusted) Svensson

models not only fit the term structure very well, but that they also produce accurate short-

maturity forecasts. For the one, three, six and twelve-month maturity they all outperform

the random walk by 30%, 23%, 13% and 6% respectively. The four-factor model yields the

most accurate results with the one-step procedure. The four-factor model is also the most

accurate using the two-step procedure, with NS2-4-λ-VAR doing marginally better than

NS2-4-VAR due to being more accurate for long maturities. The TRMSPEs of NS2-4-λ-

VAR and NS1-4-AR are very similar but the latter model outperforms the random walk also

for long maturities. In fact, from Panel B it seems that whereas the VAR specification works

well for short maturities, the AR specification in general produces better forecasts for long

maturities.

This pattern becomes more evident for the 6-month horizon. For the one-step procedure

the VAR specification outperforms the random walk for short maturities, with the outperfor-

mance being strongly statistically significant, but for long maturities the performance is poor

whereas the exact opposite pattern is visible for the AR specification. The NS1-4-AR again

is the only model that forecasts well across the entire maturity spectrum, clearly giving it

the lowest TRMSPE of 0.93. The closest competitor with the two-step procedure is still the
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NS2-4-λ-VAR model although the NS2-3-λ-VAR is a close second with a relative TRMSPE

with is only 1% lower.

Finally, for the 12-month horizon, shown in Table 9, all the two-step VAR specifications

outperform the random walk by up to 15% for short maturities but at the same time produce

very poor forecasts for long maturities. Only the NS2-3-λ-VAR model is more accurate than

the random walk for all maturities except the 10-year maturity. The VAR model for yield

levels has an increasingly worse performance for longer maturities and the relative RMSPEs

I report in the third row of the table are higher than those given in Mönch (2006a). This

is most likely due to my use of a larger set of maturities and because I construct iterated

forecasts. The Svensson and Adjusted Svensson models are again able to forecast both short

and long maturities with the one-step estimation procedure, although not consistently with

either AR or VAR factor dynamics. The NS1-4-AR model is still the most accurate model

with a relative TRMSPE of 0.90 and significant outperformance for individual maturities up

to ten years.

Overall the full-sample results can be summarized as follows. With both the one-step

and two-step estimation procedures, using VAR factor dynamics is typically optimal for

constructing short-maturity forecasts, irrespective of the forecast horizon. It is, however,

only the one-step estimation procedure that also produces increasingly accurate forecasts

when the forecast horizon lengthens, more specifically with the assumption of AR factor

dynamics. With the two-step procedure such an improvement is lacking. This strongly

suggests to simultaneously use cross-sectional and time-series information when the purpose

of using the Nelson-Siegel model is that of forecasting the term structure. The best overall

performing model is the four-factor model which is the only model that accurately forecasts

the entire maturity spectrum, especially for the 6 and 12-month horizons. It is interesting

that adding a second slope factor not only improves the in-sample fit but also the out-

of-sample performance. In fact, adding factors in general seems to benefit the forecasting

performance as the (Adjusted) Svensson model also predicts reasonably well compared to

for the example the three-factor model. Whether freeing up decay parameters is helpful is

somewhat ambiguous for the three and four-factor model. The Bliss model, however, does

not forecast well.

Although in general it holds that imposing the Nelson-Siegel exponential structure on the

factor loadings certainly helps compared to the AR(1) and VAR(1) yield level models, the

three-factor model, and in particular the two-factor model, forecasts rather disappointingly.

As Diebold and Li (2006) report very accurate forecasts for the NS2-AR model it will be
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interesting to see how well the performance of the four-factor model holds up for the 1994-

2000 period.

7.5 Subsample results

Sample 1994:1 - 2000:12

Except from an initial surge during 1994, interest rates are fairly stable during this period

which is characterized by a substantial amount of predictability as shown in Tables 10 and

11. Although for a one-month horizon this is not case, it is certainly true for longer horizons.

The results I find for the NS2-AR and NS2-VAR are very similar to those reported in Diebold

and Li (2006) and Mönch (2006b). For the 3-month horizon, the two-step NS2-3-AR model

produces accurate forecasts and performs better than the NS2-3-VAR model. Although

NS2-2-λ-AR, NS2-3-λ-AR and NS2-AS-AR have a lower TRMSPEs (0.91 vs 0.94) all these

- Insert Tables 10 and 11 around here -

models forecast well mainly for medium and long maturities whereas the NS2-3-AR model

outperforms the random walk for all maturities. The same holds for the NS1-3-AR model

which for short maturities is outperformed by the NS1-4-AR model which is the best one-

step model. The VAR specifications still deliver the more accurate short-maturity forecasts

but the AR specifications now also do well for short maturities as well as reasonably well for

longer maturities.

The relative TRMSPE numbers for the 6 and 12-month horizons in Table 11 show that

AR dynamics, either in the two-step or one-step estimation approach, clearly outperform

VAR dynamics. The two-step three-factor model with the Diebold and Li (2006) approach

of fixing λt indeed forecasts well. However, estimating the decay parameter alongside the

factors seems worthwhile. The results for the NS2-3-λ-AR show that doing so improves

forecasts for short and medium maturities, with strong statistical outperformance relative to

the random walk, but that is also leads to a decrease in accuracy for long maturities. With

the one-step approach, however, the random walk is outperformed fairly evenly for each

maturity. The results for the one-step four-factor, Bliss and (Adjusted) Svensson models are

all very similar.

Sample 2001:1 - 2003:12

Mönch (2006b) examines the performance of the NS2-AR and NS2-VAR models for the

sample 2000:1 - 2003:9 and finds that it is much worse than for the Diebold and Li (2006)
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out-of-sample period 1994:1 - 2000:12. This leads him to conclude that “...some of the strong

forecast performance of the Nelson-Siegel model documented by Diebold and Li may be due

to their choice of forecast period”. The results for the second subsample that I examine shed

more light on this claim. In fact, the results in Tables 12 and 13 support Mönch’s conclusion

- Insert Tables 12 and 13 around here -

as the NS2-AR and NS2-VAR models are shown to forecast poorly for all horizons25. For the

1 and 3-month horizon there is some predictability again for short maturities using the one-

step estimation methods with VAR dynamics for the factors. The four-factor performance

is reasonable for the 3-month horizon with RMSPEs below one for short and long maturities

although medium maturities are predicted poorly. For the 6 and 12-month horizon the VAR

specification again beats the AR specification due to accurate short-maturity forecasts.

The only model that forecasts well in this period with its downward trend in short term

interest rates and strong increase in interest spreads is the NS1-4-AR model. For the 1

and 3-month horizon the model has difficulties forecasting the two and five-year maturities.

However, for longer horizons, the model produces increasingly accurate forecasts and does

so consistently across all maturities. Especially for the 12-month horizon NS1-4-AR reduces

RMSPEs relative to the random walk by at least 11% for maturities up to seven years

resulting in an overall relative TRMSPE of 0.85. Mönch (2006a) compares the forecasting

performance of a number of competing models, among which are the NS2-3-AR and NS2-3-

VAR specifications, for a very similar period (2000:1 - 2003:9) and finds that his proposed

Factor Augmented VAR model is the only model capable of accurately forecasting the term

structure for longer forecast horizons. However, Table 13 shows that the four-factor model

is a strong competitor for Mönch’s FAVAR model.

8 Conclusion

In this paper I compare the in-sample fit and out-of-sample performance of a range of different

Nelson-Siegel specifications. The in-sample results show that more elaborate models which

incorporate multiple decay parameters and additional slope or curvature factors improve the

fit of the original Nelson and Siegel (1987) three-factor functional form. The four-factor

model performs qualitatively similar as the popular Svensson (1994) model but has the

25See also the subsample analysis in De Pooter et al. (2007) who arrive at the same conclusion that the
forecasting performance of the three-factor Nelson-Siegel varies substantially across subperiods.
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advantage that it is easier to estimate as is it less affected by potential multicolinearity

problems.

Besides an improved in-sample fit relative to the three-factor model I also document a

better out-of-sample performance with the four-factor model. More specifically, using the

Kalman filter to estimate the latent factors over time and assuming AR(1) factor dynamics

produces forecasts which consistently outperform those of benchmark models such as the

random walk and unrestricted VAR models. This outperformance holds across the maturity

spectrum and is most prominent for longer forecast horizons.

The analysis of this paper can be extended in a number of ways. Firstly, I have only

judged the forecast performance of the various Nelson-Siegel models by considering statistical

accuracy by means of the (T)RMSPE. Fabozzi et al. (2005) use the slope and curvature

forecasts of the three-factor model to implement systematic trading strategies and assess the

returns of these strategies. It will be interesting to conduct a similar type of analysis for the

models used here to evaluate forecasts from an economic point of view. Secondly, the use of

Bayesian inference techniques will be interesting to examine. Mönch (2006a) and De Pooter

et al. (2007) both use MCMC methods to draw inference on the parameters and latent

factors in the three-factor model. Explicitly taking into account parameter uncertainty may

further improve the predictive accuracy of especially the more complex models. Finally, the

use of macroeconomic variables and/or macroeconomic factors as in Diebold, Rudebusch,

and Aruoba (2006b) can potentially further improve forecasts compared to the yields-only

approach that I have used here. All these topics are part of ongoing research.
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Appendix A: Estimation details

A.1 Estimation details

General specification

The general specification which captures all the different Nelson-Siegel specifications is given by

Yt = Xtβt + εt (A-26)

βt = µ + Φβt−1 + νt (A-27)

with Yt the (N × 1) vector of yields, Xtβt the Nelson-Siegel spot rate curve, βt the (K × 1) vector of factors
and Xt the (N × K) matrix of factor loadings. The latter are time-varying if the decay parameter(s) are
estimated alongside the factors in the two-step procedure.

Two-step procedure

I estimate the parameters in step one of the two-step estimation procedure by minimizing the sum of squared
yield errors,

∑N

i=1
[yt(τi) − ŷt(τi)]

2
. When the decay parameter is fixed in the two, three and four-factor

models I apply OLS. When decay parameters are estimated alongside the factors I use NLS to find optimal
parameter estimates. In the latter case, the parameters of the two, three and four-factor models are initialized
at the Diebold and Li (2006) value for λt and the OLS estimates for the factors. For the Bliss model both λ1,t

and λ2,t are initialized at 16.42. Determining starting values for the (Adjusted) Svensson model is somewhat
more complex as there is the additional restriction on λ1,t and λ2,t. As starting values for the level, slope,
curvature factor and λ1,t I use the optimal factor estimates and the λt estimate from the three-factor model.

The fourth factor, β4,t, is initialized to zero. If λ̂1,t is larger than twice the minimum allowed value of 6.69

then λ2,t is initialized to 0.5λ̂1,t. When λ̂1,t is smaller than 13.38 then λ1,t and λ2,t are initialized to 13.38
and 6.69 respectively. By doing so all the restrictions on λ1,t and λ2,t are satisfied. Because the minimum
distance restriction is only imposed for the Svensson model, I initialize λ2,t in the Adjusted Svensson model

to 1

2
(6.69+ λ̂1,t). As the two-step estimation procedure is numerically challenging because of the nonlinearity

in the factor loadings, whenever possible I use the analytical gradient and hessian which are given in the
web appendix to this paper26.

One-step procedure

For the one-step state-space estimation method, which is only used to construct forecasts, I maximize the
likelihood given in (22). It is of particular importance to start the optimization procedure with accurate
starting values because of the large number of parameters. For the two, three and four-factor and Bliss
models I initialize the parameters as follows. The decay parameters are set to 16.42 and the factors to their
two-step OLS estimates. The equation parameters µ and Φ in the state equations are initialized with the
estimates from either a VAR model or AR models for the factors. The variance parameters in H and Q are
initialized to one and the optimization is performed using standard deviations to ensure positive variance
estimates. The covariance parameters in Q are initially set to zero. The Kalman filter is started with the
unconditional mean and variance of the factor estimates and the first twelve observations are discarded when
computing the likelihood in (22). The approach for the (Adjusted) Svensson model is the same except for
the fact that I use the optimal factor estimates from the two-step procedure as starting values. Furthermore,
λ1,t and λ2,t are initialized by using the median of the two-step estimates.

26The web appendix is available on http://www.depooter.net
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Table 1: Model abbreviations

Two-step models model description factor dynamics

NS2-2-AR 2-factor NS model with λ fixed to 16.42 AR(1) per factor
NS2-2-VAR 2-factor NS model with λ fixed to 16.42 VAR(1) for factors
NS2-3-AR 3-factor NS model with λ fixed to 16.42 AR(1) per factor
NS2-3-VAR 3-factor NS model with λ fixed to 16.42 VAR(1) for factors
NS2-4-AR 4-factor NS model with λ fixed to 16.42 AR(1) per factor
NS2-4-VAR 4-factor NS model with λ fixed to 16.42 VAR(1) for factors
NS2-2-λ-AR 2-factor NS model treating λ as parameter AR(1) per factor
NS2-2-λ-VAR 2-factor NS model treating λ as parameter VAR(1) for factors
NS2-3-λ-AR 3-factor NS model treating λ as parameter AR(1) per factor
NS2-3-λ-VAR 3-factor NS model treating λ as parameter VAR(1) for factors
NS2-4-λ-AR 4-factor NS model treating λ as parameter AR(1) per factor
NS2-4-λ-VAR 4-factor NS model treating λ as parameter VAR(1) for factors
NS2-B-AR 3-factor Bliss NS model treating λ1, λ2 as parameters AR(1) per factor
NS2-B-VAR 3-factor Bliss NS model treating λ1, λ2 as parameters VAR(1) for factors
NS2-S-AR 4-factor Svensson NS model treating λ1, λ2 as parameters AR(1) per factor
NS2-S-VAR 4-factor Svensson NS model treating λ1, λ2 as parameters VAR(1) for factors
NS2-AS-AR 4-factor Adjusted Svensson model treating λ1, λ2 as parameters AR(1) per factor
NS2-AS-VAR 4-factor Adjusted Svensson model treating λ1, λ2 as parameters VAR(1) for factors

One-step models model description factor dynamics

NS1-2-RW 2-factor NS model random walk per factor
NS1-2-AR 2-factor NS model AR(1) per factor
NS1-2-VAR 2-factor NS model VAR(1) for factors
NS1-3-RW 3-factor NS model random walk per factor
NS1-3-AR 3-factor NS model AR(1) per factor
NS1-3-VAR 3-factor NS model VAR(1) for factors
NS1-4-RW 4-factor NS model random walk per factor
NS1-4-AR 4-factor NS model AR(1) per factor
NS1-4-VAR 4-factor NS model VAR(1) for factors
NS1-B-RW 3-factor Bliss NS model random walk per factor
NS1-B-AR 3-factor Bliss NS model AR(1) per factor
NS1-B-VAR 3-factor Bliss NS model VAR(1) for factors
NS1-S-RW 4-factor Svensson NS model random walk per factor
NS1-S-AR 4-factor Svensson NS model AR(1) per factor
NS1-S-VAR 4-factor Svensson NS model VAR(1) for factors
NS1-AS-RW 4-factor Adjusted Svensson NS model random walk per factor
NS1-AS-AR 4-factor Adjusted Svensson NS model AR(1) per factor
NS1-AS-VAR 4-factor Adjusted Svensson NS model VAR(1) for factors

Notes: The table gives model abbreviations used in the subsequent tables and graphs. ‘NS’ stands
for Nelson-Siegel model. For the two-step models (top panel), the factors are estimated in a first
step using least squared applied to the cross-section of yields in each month. In the second step, the
dynamics of the estimated factors from the first step are estimated. For the one-step models (bottom
panel), all parameters are estimated simultaneously as a state-space model using the Kalman filter.
The table shows model abbreviations in the first column, model descriptions in the second column and
the specification for the factor dynamics in the third column.



Table 2: Summary statistics

maturity mean stdev skew kurt min max JB-p ρ1 ρ12 ρ24

1-month 5.051 2.090 0.045 2.864 0.794 10.727 0.845 0.968 0.552 0.121
3-month 5.286 2.175 -0.005 2.843 0.876 10.905 0.849 0.977 0.563 0.148
6-month 5.434 2.226 0.024 2.951 0.958 11.169 0.962 0.977 0.559 0.162

1-year 5.707 2.290 0.051 3.056 1.040 11.928 0.946 0.976 0.562 0.190
2-year 6.083 2.281 0.234 3.351 1.299 12.777 0.201 0.974 0.555 0.229
3-year 6.365 2.211 0.357 3.465 1.618 13.115 0.031 0.973 0.561 0.268
4-year 6.589 2.168 0.481 3.524 1.999 13.268 0.003 0.972 0.572 0.297
5-year 6.711 2.125 0.599 3.613 2.351 13.410 0.000 0.972 0.574 0.319
6-year 6.878 2.108 0.666 3.574 2.663 13.493 0.000 0.973 0.589 0.335
7-year 6.967 2.061 0.761 3.727 3.003 13.554 0.000 0.972 0.577 0.333
8-year 7.058 2.019 0.751 3.650 3.221 13.596 0.000 0.972 0.590 0.359
9-year 7.106 2.001 0.753 3.584 3.389 13.529 0.000 0.973 0.599 0.371

10-year 7.102 1.982 0.783 3.598 3.483 13.595 0.000 0.973 0.600 0.373

Notes: The table shows summary statistics for end-of-month unsmoothed continuously compounded
U.S. zero-coupon yields. The results shown are for annualized yields (expressed in precentages). The
sample period is January 1984 - December 2003 (240 observations). Reported are the mean, standard
deviation, skewness, kurtosis, minimum, maximum, the p-value of the Jarque-Bera test statistic for
normality and the 1st, 12th and 24th sample autocorrelation.



Table 3: In-sample fit: restricted decay parameters

maturity NS2-2 NS2-3 NS2-4 NS2-2-λ NS2-3-λ NS2-4-λ NS2-B NS2-S NS2-AS

Mean Error

3-month 6.55 -0.97 1.47 5.06 -0.26 1.65 1.09 1.50 1.36
6-month 3.06 -0.93 -0.86 1.67 -0.75 -0.97 -0.86 -0.92 -0.93

1-year -0.23 0.50 -0.98 -0.52 0.22 -1.07 -0.70 -0.98 -0.87
2-year -6.52 -2.17 -2.34 -4.30 -2.42 -2.23 -2.34 -2.31 -2.28
5-year -5.50 -4.36 -2.86 -3.55 -4.13 -2.95 -3.10 -2.92 -3.12

10-year 2.53 -2.40 -3.97 -2.82 -2.44 -3.87 -3.75 -3.94 -3.69

Standard Deviation

3-month 32.06 8.59 3.12 17.09 5.25 2.74 3.98 2.59 2.23

6-month 15.88 4.12 4.11 9.07 4.20 3.94 4.05 3.96 3.91

1-year 9.23 8.11 5.49 8.26 6.70 5.46 6.17 5.42 5.33

2-year 16.53 4.72 4.70 8.57 4.77 4.45 4.57 4.40 4.45
5-year 7.21 5.90 4.74 6.14 5.40 4.62 5.11 4.67 4.60

10-year 20.07 7.12 5.15 10.26 6.08 4.93 5.30 4.73 4.89

Root Mean Squared Error

3-month 32.72 8.64 3.45 17.82 5.26 3.20 4.12 3.00 2.62

6-month 16.17 4.23 4.19 9.22 4.27 4.06 4.14 4.07 4.02

1-year 9.24 8.12 5.58 8.28 6.70 5.56 6.21 5.51 5.40

2-year 17.77 5.20 5.25 9.59 5.35 4.98 5.14 4.96 5.00
5-year 9.07 7.34 5.54 7.09 6.80 5.48 5.98 5.50 5.55

10-year 20.23 7.52 6.50 10.64 6.55 6.27 6.50 6.16 6.12

Mean Absolute Error

3-month 25.56 6.39 2.76 12.64 3.71 2.55 3.06 2.34 1.93

6-month 12.19 3.06 3.03 6.19 3.10 2.95 3.00 2.94 2.97
1-year 7.45 6.37 4.51 6.58 5.24 4.42 4.84 4.35 4.25

2-year 13.71 3.70 3.75 6.81 3.75 3.58 3.63 3.56 3.64
5-year 7.45 6.13 4.33 5.88 5.53 4.21 4.75 4.19 4.29

10-year 15.71 5.91 5.25 8.31 5.21 5.06 5.14 4.98 4.94

Minimum Error

3-month -86.81 -34.51 -11.65 -49.15 -22.38 -7.83 -16.67 -5.98 -4.13

6-month -40.00 -14.11 -13.82 -20.69 -13.29 -12.66 -13.02 -12.63 -12.72
1-year -20.74 -18.33 -17.91 -20.75 -16.61 -20.70 -20.31 -20.07 -19.69

2-year -46.90 -19.05 -20.10 -27.83 -21.67 -18.32 -19.22 -17.15 -16.75

5-year -27.39 -19.89 -20.23 -18.38 -17.20 -23.54 -17.20 -23.59 -23.46
10-year -37.58 -25.57 -18.38 -41.31 -18.39 -18.37 -18.39 -19.09 -19.28

Maximum Error

3-month 75.52 21.75 10.60 54.67 12.43 9.03 12.44 8.97 8.97

6-month 44.64 21.81 22.10 34.28 22.16 22.09 22.20 21.22 18.55

1-year 28.83 26.69 13.48 22.14 21.99 12.03 17.86 11.96 11.89

2-year 36.97 16.64 16.97 22.28 18.98 16.98 18.67 18.91 18.33
5-year 20.39 18.62 12.37 19.48 13.39 10.20 13.39 10.87 11.53

10-year 53.93 16.41 7.96 24.75 17.02 7.97 9.25 8.05 7.45

ρ̂1

3-month 0.907 0.754 0.483 0.817 0.689 0.483 0.473 0.417 0.435
6-month 0.875 0.276 0.270 0.688 0.248 0.278 0.271 0.244 0.322

1-year 0.659 0.582 0.386 0.615 0.510 0.390 0.417 0.378 0.369
2-year 0.913 0.649 0.628 0.759 0.613 0.615 0.625 0.597 0.622
5-year 0.805 0.740 0.644 0.746 0.696 0.642 0.606 0.602 0.609

10-year 0.889 0.627 0.488 0.706 0.550 0.442 0.408 0.405 0.438

ρ̂12

3-month 0.347 0.087 0.102 0.281 0.023 0.192 0.052 0.174 0.119
6-month 0.430 0.203 0.188 0.304 0.159 0.239 0.215 0.220 0.240

1-year 0.347 0.296 0.370 0.311 0.338 0.356 0.330 0.353 0.356
2-year 0.295 0.129 0.132 0.091 0.129 0.100 0.104 0.102 0.108
5-year 0.099 0.046 -0.092 -0.060 -0.099 -0.112 -0.116 -0.122 -0.121

10-year 0.394 0.297 0.305 0.190 0.205 0.298 0.215 0.264 0.250

Notes: The table show in-sample fit error statistics for the full sample 1984:1-2003:12
(240 observations). The statistics are expressed in basis points. Results are shown for
the models with λt fixed to 16.42 [NS2-2, NS2-3, NS-4], with λ estimated (but restricted)
[NS-2-λ, NS-3-λ, NS-4-λ], the Bliss extension [NS2-B] and the adjusted Svensson model
[NS2-(A)S]. The statistics ρ̂1 and ρ̂12 represent the 1st and 12th autocorrelation of the yield
errors. For selected statistics, bold numbers indicate the best performing model.



Table 4: In-sample fit: unrestricted decay parameters

maturity NS2-2-λ NS2-3-λ NS2-4-λ NS2-B NS2-S NS2-AS

Mean Error

3-month 4.36 -0.41 1.67 1.52 1.33 0.85
6-month 0.34 -0.82 -0.98 -0.88 -0.37 0.10

1-year -1.30 0.27 -1.10 -0.99 -1.15 -1.10
2-year -3.45 -2.33 -2.23 -2.31 -2.31 -2.43
5-year -1.95 -4.32 -2.91 -2.91 -2.94 -2.83

10-year -5.42 -2.15 -3.93 -3.82 -3.49 -3.63

Standard Deviation

3-month 11.18 5.12 2.82 2.96 2.32 2.29

6-month 6.03 4.14 3.97 3.93 3.70 3.45

1-year 8.14 6.57 5.41 5.65 5.33 5.15

2-year 6.43 4.67 4.55 4.40 4.40 4.37

5-year 6.37 5.11 4.55 4.52 4.37 4.39
10-year 8.63 5.67 4.94 4.38 4.20 4.33

Root Mean Squared Error

3-month 12.00 5.13 3.28 3.33 2.67 2.45

6-month 6.04 4.22 4.09 4.03 3.72 3.45

1-year 8.25 6.58 5.52 5.73 5.45 5.27

2-year 7.30 5.22 5.06 4.96 4.96 5.00
5-year 6.66 6.69 5.41 5.38 5.26 5.22

10-year 10.19 6.07 6.31 5.81 5.46 5.65

Mean Absolute Error

3-month 8.72 3.58 2.62 2.58 1.91 1.58

6-month 4.54 3.03 2.97 2.90 2.75 2.59

1-year 6.73 5.16 4.46 4.57 4.24 4.14

2-year 5.42 3.67 3.65 3.56 3.56 3.67
5-year 5.40 5.39 4.21 4.16 3.95 3.96

10-year 7.89 4.88 5.12 4.79 4.45 4.63

Minimum Error

3-month -41.06 -22.44 -8.14 -7.63 -3.96 -12.38
6-month -19.68 -13.33 -12.80 -12.90 -12.72 -12.77

1-year -20.75 -16.69 -20.78 -20.40 -20.32 -20.27
2-year -21.66 -21.67 -18.01 -17.15 -17.15 -17.17
5-year -17.24 -17.25 -23.13 -16.94 -23.46 -23.31

10-year -41.02 -17.03 -16.49 -17.09 -15.66 -18.51

Maximum Error

3-month 36.29 11.32 9.15 9.58 9.02 9.17
6-month 17.93 22.18 22.03 22.19 15.79 9.46

1-year 21.98 22.00 11.81 12.01 19.90 11.90
2-year 18.08 18.89 17.32 18.91 18.91 19.20
5-year 19.47 9.32 8.84 9.37 8.62 8.66

10-year 20.54 16.97 7.79 7.86 7.93 8.32

ρ̂1

3-month 0.748 0.654 0.477 0.505 0.385 0.346
6-month 0.483 0.242 0.270 0.283 0.241 0.245

1-year 0.609 0.510 0.393 0.389 0.399 0.416
2-year 0.688 0.607 0.617 0.603 0.618 0.614
5-year 0.769 0.692 0.644 0.638 0.601 0.608

10-year 0.668 0.551 0.483 0.402 0.389 0.398

ρ̂12

3-month 0.305 0.010 0.139 0.146 0.100 0.122
6-month 0.266 0.154 0.216 0.236 0.241 0.230

1-year 0.343 0.339 0.358 0.349 0.354 0.360
2-year 0.058 0.127 0.109 0.090 0.061 0.080
5-year 0.136 -0.133 -0.099 -0.175 -0.181 -0.182

10-year 0.231 0.217 0.264 0.243 0.241 0.215

Notes: The table show in-sample fit error statistics for the full sample
1984:1-2003:12 (240 observations). The statistics are expressed in basis
points. Results are shown for models with unrestricted decay parame-
ter(s) [λ(s)]. Error statistics are given for the two, three and four-factor
specification [NS2-2-λ, NS2-3-λ, NS-4-λ], the Bliss extension [NS2-B] and
the adjusted Svensson model [NS2-(A)S]. The statistics ρ̂1 and ρ̂12 rep-
resent the 1st and 12th autocorrelation of the yield errors. For selected
statistics, bold numbers indicate the best performing model.



Table 5: Factor summary statistics

correlations correlations

summary statistics estimated factors yield factors

factor mean stdev ρ1 ρ12 β1 β2 β3 β4 L S C

NS2-2 β1 7.403 2.115 0.970 0.571 1 - - - 0.996 -0.195 0.544
β2 -2.387 1.625 0.966 0.420 -0.144 1 - - -0.089 0.990 0.472

NS2-3 β1 7.531 1.896 0.972 0.635 1 - - - 0.973 -0.324 0.353
β2 -2.394 1.639 0.967 0.426 -0.280 1 - - -0.079 0.988 0.485
β3 -0.571 2.171 0.923 0.376 0.347 0.510 1 - 0.539 0.415 0.992

NS2-4 β1 7.599 1.911 0.971 0.620 1 - - - 0.978 -0.312 0.390
β2 -1.103 4.774 0.857 0.291 0.022 1 - - 0.063 0.409 0.470
β3 -1.536 3.199 0.831 0.178 0.136 -0.615 1 - 0.264 0.204 0.335

β4 -1.426 4.591 0.816 0.202 -0.125 -0.942 0.763 1 -0.104 -0.080 -0.348

NS2-2-λ β1 7.610 1.944 0.969 0.616 1 - - - 0.974 -0.326 0.379
β2 -2.585 1.766 0.965 0.446 -0.253 1 - - -0.050 0.983 0.509

NS2-3-λ β1 7.534 1.861 0.962 0.632 1 - - - 0.968 -0.318 0.351
β2 -2.414 1.599 0.944 0.445 -0.280 1 - - -0.074 0.981 0.467
β3 -0.686 2.362 0.856 0.454 0.349 0.515 1 - 0.534 0.441 0.861

NS2-4-λ β1 7.586 1.871 0.969 0.613 1 - - - 0.969 -0.318 0.380
β2 -1.115 4.505 0.868 0.306 0.045 1 - - 0.080 0.431 0.490
β3 -1.420 3.284 0.796 0.185 0.140 -0.558 1 - 0.304 0.199 0.339

β4 -1.412 4.348 0.828 0.197 -0.156 -0.933 0.724 1 -0.115 -0.082 -0.358

NS2-B β1 7.599 1.888 0.961 0.627 1 - - - 0.967 -0.326 0.363
β2 -2.519 1.649 0.937 0.405 -0.315 1 - - -0.103 0.978 0.413
β3 -0.412 2.685 0.880 0.352 0.394 0.349 1 - 0.571 0.307 0.937

NS2-S β1 7.596 1.864 0.955 0.605 1 - - - 0.962 -0.321 0.366
β2 -2.530 1.634 0.931 0.382 -0.294 1 - - -0.074 0.966 0.412
β3 -0.961 2.818 0.746 0.288 0.236 0.450 1 - 0.449 0.270 0.586

β4 0.679 1.968 0.721 0.199 0.172 -0.132 -0.474 1 0.113 0.042 0.345

NS2-AS β1 7.585 1.883 0.962 0.617 1 - - - 0.963 -0.321 0.358
β2 -2.515 1.643 0.937 0.381 -0.298 1 - - -0.083 0.968 0.409
β3 -0.895 2.593 0.805 0.329 0.284 0.500 1 - 0.487 0.372 0.703

β4 0.277 0.946 0.715 0.099 0.113 -0.221 -0.330 1 0.077 -0.073 0.250

yield factors L 7.102 1.982 0.973 0.600 - - - - - - -
S -1.815 1.217 0.958 0.387 - - - - - - -
C -0.222 0.823 0.922 0.417 - - - - - - -

Notes: The table shows summary statistics of estimated factors for different Nelson-Siegel specifications.
Statistics are shown for the two, three and four-factor model specification with λt fixed to 16.42 [NS2-2,
NS2-3, NS-4], with λt estimated (but restricted) [NS-2-λ, NS-3-λ, NS-4-λ], the Bliss extension [NS2-B]
and the adjusted Svensson model [NS2-(A)S]. Columns 1-4 represent the mean and standard deviation
of the factors and their 1st and 12th order sample autocorrelation. Columns 5-8 show the correlation
matrix of the factors within a given model whereas the final columns give the correlation of each factor
with the empirical level (L, [10-year yield]), (negative of the) slope (S, -[10-year yield - 3-month yield])
and curvature (C, [2*2-year yield-10-year yield-3-month yield]). Statistics are calculated over the sample
1984:1 - 2003:12 (240 observations).



Table 6: Forecast results for the sample 1994:1 - 2003:12, 1-month horizon

TRMSPE RMSPE

Maturity all 1-m 3-m 6-m 1-y 2-y 5-y 7-y 10-y

RW 101.59 30.12 21.18 21.82 25.71 29.12 30.48 29.30 27.95

AR 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00 1.00
VAR 1.01 0.81 0.9510 0.99 1.03 1.07 1.01 1.02 1.07

Panel A: two-step models

NS2-2-AR 1.18 1.55 1.44 1.05 1.07 1.27 1.04 1.05 1.26
NS2-2-VAR 1.19 1.62 1.55 1.12 1.05 1.24 1.03 1.07 1.28

NS2-3-AR 1.02 0.97 0.98 1.07 1.07 1.07 1.02 1.01 1.03
NS2-3-VAR 1.01 0.955 0.875 0.9710 1.02 1.06 1.03 1.03 1.03

NS2-4-AR 1.07 0.97 1.26 1.23 1.18 1.13 1.04 1.03 1.01
NS2-4-VAR 0.99 0.815 0.85 0.94 0.98 1.06 1.02 1.03 1.03

NS2-2-λ-AR 1.68 1.00 1.01 1.38 1.88 2.17 1.85 1.58 1.45
NS2-2-λ-VAR 1.66 1.05 1.05 1.34 1.83 2.12 1.82 1.57 1.44

NS2-3-λ-AR 1.23 1.01 1.26 1.41 1.36 1.33 1.25 1.19 1.15
NS2-3-λ-VAR 1.21 0.8710 1.05 1.26 1.30 1.33 1.26 1.21 1.19

NS2-4-λ-AR 1.10 0.97 1.26 1.26 1.20 1.18 1.09 1.06 1.06
NS2-4-λ-VAR 1.00 0.835 0.90 0.97 1.00 1.08 1.03 1.02 1.06

NS2-B-AR 1.18 1.04 1.30 1.36 1.23 1.16 1.22 1.20 1.19
NS2-B-VAR 1.14 0.90 1.06 1.16 1.12 1.12 1.19 1.20 1.21

NS2-S-AR 1.30 1.04 1.36 1.53 1.47 1.40 1.32 1.27 1.30
NS2-S-VAR 1.11 0.845 0.98 1.12 1.12 1.13 1.14 1.16 1.22

NS2-AS-AR 1.29 1.08 1.42 1.52 1.45 1.40 1.31 1.25 1.20
NS2-AS-VAR 1.24 0.92 1.18 1.30 1.30 1.33 1.28 1.25 1.22

Panel B: one-step models

NS1-2-RW 1.29 2.22 2.31 1.67 1.06 1.05 1.00 1.02 1.09
NS1-2-AR 1.30 2.23 2.31 1.68 1.09 1.09 1.04 1.03 1.11
NS1-2-VAR 1.32 2.25 2.35 1.72 1.10 1.08 1.05 1.04 1.13

NS1-3-RW 1.01 1.07 1.00 0.99 1.01 1.04 1.01 1.01 1.01
NS1-3-AR 1.02 1.09 1.04 1.05 1.06 1.07 1.02 1.01 1.02
NS1-3-VAR 1.04 1.07 0.975 0.985 1.01 1.07 1.07 1.05 1.07

NS1-4-RW 1.00 0.93 1.01 1.01 0.97 1.04 1.01 1.01 1.02
NS1-4-AR 0.98 0.89 0.97 0.97 0.96 1.03 1.00 1.00 1.02
NS1-4-VAR 0.99 0.8210 0.86 0.9010 0.9410 1.04 1.02 1.03 1.08

NS1-B-RW 1.01 1.05 1.05 1.01 0.98 1.03 1.01 1.01 1.04
NS1-B-AR 1.02 1.05 1.07 1.04 1.01 1.05 1.02 1.01 1.04
NS1-B-VAR 1.02 0.925 0.885 0.965 1.00 1.06 1.06 1.05 1.10

NS1-S-RW 1.01 1.01 1.06 1.01 0.97 1.04 1.01 1.02 1.01
NS1-S-AR 1.02 1.02 1.10 1.04 1.00 1.07 1.02 1.02 1.04
NS1-S-VAR 0.99 0.84 0.87 0.9010 0.9410 1.03 1.02 1.03 1.07

NS1-AS-RW 1.00 1.00 1.06 1.01 0.97 1.04 1.01 1.02 1.01
NS1-AS-AR 1.02 1.01 1.09 1.03 0.99 1.06 1.02 1.01 1.03
NS1-AS-VAR 0.99 0.84 0.87 0.9010 0.9410 1.03 1.02 1.03 1.07

Notes: Bold numbers indicate outperformance relative to the random walk (RW) whereas ()10, ()5

and ()1 indicate significant outperformance at the 90%, 95% and 99% level respectively according to
the White (2000) reality check using 1000 block-bootstraps and an average block-length of 12.



Table 7: Forecast results for the sample 1994:1 - 2003:12, 3-month horizon

TRMSPE RMSPE

Maturity all 1-m 3-m 6-m 1-y 2-y 5-y 7-y 10-y

RW 197.03 54.05 48.59 51.06 55.68 60.20 57.56 53.78 50.08

AR 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
VAR 1.01 0.7410 0.89 0.98 1.05 1.07 1.03 1.03 1.08

Panel A: two-step models

NS2-2-AR 1.03 0.901 0.891 0.975 1.05 1.10 1.02 1.03 1.13
NS2-2-VAR 1.04 0.975 0.965 0.9910 1.03 1.08 1.03 1.05 1.16

NS2-3-AR 1.01 0.93 1.01 1.07 1.08 1.06 1.02 1.00 1.00
NS2-3-VAR 1.00 0.801 0.851 0.9610 1.03 1.06 1.04 1.03 1.03

NS2-4-AR 1.08 1.05 1.22 1.20 1.18 1.13 1.04 1.01 1.00
NS2-4-VAR 0.99 0.721 0.815 0.9210 0.99 1.04 1.03 1.03 1.05

NS2-2-λ-AR 1.20 0.821 0.95 1.13 1.29 1.38 1.27 1.17 1.15
NS2-2-λ-VAR 1.18 0.861 0.9610 1.11 1.25 1.33 1.25 1.17 1.16

NS2-3-λ-AR 1.07 1.04 1.17 1.22 1.20 1.13 1.05 1.01 1.02
NS2-3-λ-VAR 0.99 0.821 0.93 1.03 1.06 1.03 0.99 1.00 1.05

NS2-4-λ-AR 1.08 1.01 1.16 1.17 1.17 1.14 1.06 1.03 1.02
NS2-4-λ-VAR 0.95 0.715 0.79 0.89 0.96 1.01 0.99 0.99 1.04

NS2-B-AR 1.11 1.06 1.19 1.23 1.19 1.13 1.11 1.09 1.10
NS2-B-VAR 1.03 0.8210 0.91 1.00 1.03 1.03 1.06 1.08 1.14

NS2-S-AR 1.27 1.14 1.32 1.41 1.43 1.37 1.25 1.20 1.22
NS2-S-VAR 1.00 0.771 0.8510 0.95 0.99 1.02 1.02 1.05 1.14

NS2-AS-AR 1.16 1.11 1.26 1.31 1.29 1.22 1.13 1.08 1.08
NS2-AS-VAR 1.00 0.84 0.94 1.01 1.04 1.03 1.01 1.02 1.08

Panel B: one-step models

NS1-2-RW 1.03 1.20 1.11 1.04 0.99 1.02 1.00 1.01 1.06
NS1-2-AR 1.07 1.25 1.15 1.10 1.04 1.06 1.04 1.04 1.10
NS1-2-VAR 1.09 1.26 1.18 1.11 1.04 1.06 1.06 1.06 1.13

NS1-3-RW 0.99 0.915 0.9410 0.99 1.00 1.02 1.01 1.00 1.00
NS1-3-AR 1.00 0.95 0.99 1.05 1.06 1.05 1.01 0.99 0.99

NS1-3-VAR 1.05 0.851 0.891 0.995 1.04 1.09 1.11 1.10 1.12

NS1-4-RW 1.00 0.94 0.99 1.00 0.99 1.02 1.01 1.01 1.01
NS1-4-AR 0.96 0.81 0.88 0.93 0.95 0.99 0.99 0.98 0.99

NS1-4-VAR 0.99 0.681 0.765 0.875 0.9410 1.02 1.05 1.06 1.11

NS1-B-RW 1.00 0.98 1.00 1.00 0.99 1.02 1.00 1.00 1.02
NS1-B-AR 1.01 0.99 1.03 1.05 1.03 1.04 1.00 1.00 1.02
NS1-B-VAR 1.04 0.781 0.841 0.965 1.03 1.09 1.10 1.10 1.14

NS1-S-RW 1.00 0.99 1.01 1.00 0.99 1.02 1.01 1.01 1.00
NS1-S-AR 1.01 1.01 1.04 1.04 1.02 1.05 1.02 1.00 1.01
NS1-S-VAR 0.99 0.695 0.775 0.875 0.9410 1.02 1.05 1.06 1.10

NS1-AS-RW 1.00 0.99 1.01 1.00 0.99 1.02 1.01 1.01 1.00
NS1-AS-AR 1.01 1.00 1.04 1.03 1.01 1.04 1.01 0.99 1.00
NS1-AS-VAR 0.99 0.70 0.77 0.87 0.94 1.02 1.05 1.06 1.11

Notes: Bold numbers indicate outperformance relative to the random walk (RW) whereas ()10, ()5

and ()1 indicate significant outperformance at the 90%, 95% and 99% level respectively according to
the White (2000) reality check using 1000 block-bootstraps and an average block-length of 12.



Table 8: Forecast results for the sample 1994:1 - 2003:12, 6-month horizon

TRMSPE RMSPE

Maturity all 1-m 3-m 6-m 1-y 2-y 5-y 7-y 10-y

RW 295.47 84.53 82.84 84.95 87.81 90.76 84.03 77.10 70.68

AR 1.01 1.02 1.00 1.00 1.01 1.01 1.01 1.01 1.02
VAR 1.12 0.92 1.03 1.10 1.17 1.16 1.11 1.12 1.19

Panel A: two-step models

NS2-2-AR 1.02 0.891 0.921 1.00 1.05 1.06 1.03 1.03 1.11
NS2-2-VAR 1.03 0.915 0.935 0.99 1.03 1.05 1.05 1.06 1.15

NS2-3-AR 1.02 0.99 1.02 1.07 1.08 1.05 1.01 0.99 1.01
NS2-3-VAR 1.02 0.861 0.891 0.9810 1.05 1.07 1.05 1.04 1.06

NS2-4-AR 1.04 1.02 1.09 1.10 1.13 1.09 1.02 0.99 1.00
NS2-4-VAR 0.99 0.781 0.845 0.9310 1.00 1.04 1.04 1.04 1.08

NS2-2-λ-AR 1.09 0.921 0.99 1.08 1.16 1.18 1.12 1.08 1.10
NS2-2-λ-VAR 1.08 0.931 0.98 1.06 1.13 1.15 1.11 1.09 1.12

NS2-3-λ-AR 1.09 1.06 1.12 1.17 1.18 1.13 1.06 1.04 1.07
NS2-3-λ-VAR 0.97 0.851 0.92 0.99 1.02 0.99 0.96 0.99 1.08

NS2-4-λ-AR 1.05 0.98 1.05 1.08 1.12 1.10 1.05 1.03 1.06
NS2-4-λ-VAR 0.96 0.751 0.8110 0.89 0.95 0.98 0.99 1.02 1.09

NS2-B-AR 1.13 1.07 1.13 1.17 1.19 1.15 1.13 1.12 1.16
NS2-B-VAR 1.02 0.8210 0.89 0.97 1.02 1.02 1.05 1.09 1.18

NS2-S-AR 1.27 1.14 1.24 1.32 1.38 1.34 1.26 1.23 1.28
NS2-S-VAR 1.02 0.801 0.8610 0.95 1.01 1.02 1.04 1.09 1.20

NS2-AS-AR 1.15 1.10 1.18 1.24 1.27 1.21 1.12 1.09 1.12
NS2-AS-VAR 0.97 0.85 0.91 0.97 1.00 0.98 0.96 0.99 1.09

Panel B: one-step models

NS1-2-RW 1.00 0.971 0.951 0.981 1.00 1.00 0.99 1.01 1.06
NS1-2-AR 1.06 1.07 1.04 1.07 1.08 1.07 1.05 1.05 1.12
NS1-2-VAR 1.08 1.06 1.02 1.06 1.06 1.07 1.08 1.10 1.19

NS1-3-RW 1.00 0.965 0.965 0.9910 1.01 1.01 1.01 1.00 1.01
NS1-3-AR 1.00 1.00 1.01 1.05 1.06 1.03 0.98 0.97 0.98

NS1-3-VAR 1.10 0.921 0.941 1.03 1.09 1.13 1.16 1.16 1.21

NS1-4-RW 1.00 0.99 0.99 1.00 1.00 1.01 1.01 1.00 1.02
NS1-4-AR 0.93 0.8310 0.86 0.91 0.93 0.95 0.95 0.95 0.98

NS1-4-VAR 1.01 0.731 0.791 0.885 0.97 1.03 1.08 1.10 1.18

NS1-B-RW 1.00 1.01 1.00 1.00 1.00 1.01 1.00 1.00 1.03
NS1-B-AR 1.01 1.03 1.03 1.05 1.05 1.03 0.99 0.99 1.02
NS1-B-VAR 1.10 0.861 0.901 1.01 1.09 1.14 1.16 1.17 1.24

NS1-S-RW 1.01 1.02 1.00 1.00 1.00 1.01 1.01 1.01 1.01
NS1-S-AR 1.00 1.04 1.03 1.03 1.03 1.02 0.98 0.97 0.99

NS1-S-VAR 1.01 0.741 0.791 0.885 0.96 1.03 1.08 1.10 1.18

NS1-AS-RW 1.00 1.02 1.00 1.00 1.00 1.01 1.01 1.01 1.01
NS1-AS-AR 0.99 1.03 1.02 1.02 1.01 1.01 0.97 0.96 0.99

NS1-AS-VAR 1.01 0.741 0.791 0.885 0.96 1.03 1.08 1.10 1.18

Notes: Bold numbers indicate outperformance relative to the random walk (RW) whereas ()10, ()5

and ()1 indicate significant outperformance at the 90%, 95% and 99% level respectively according
to the White (2000) reality check using 1000 block-bootstraps and an average block-length of 12.



Table 9: Forecast results for the sample 1994:1 - 2003:12, 12-month horizon

TRMSPE RMSPE

Maturity all 1-m 3-m 6-m 1-y 2-y 5-y 7-y 10-y

RW 435.08 138.26 140.53 142.35 140.73 133.83 114.30 103.36 94.12

AR 1.01 1.00 0.99 0.99 0.99 1.01 1.03 1.03 1.05
VAR 1.37 1.17 1.23 1.26 1.32 1.36 1.41 1.47 1.60

Panel A: two-step models

NS2-2-AR 1.04 0.995 0.99 1.02 1.05 1.06 1.06 1.06 1.11
NS2-2-VAR 1.04 0.975 0.975 0.99 1.02 1.04 1.07 1.09 1.15

NS2-3-AR 1.03 1.01 1.01 1.03 1.05 1.06 1.04 1.02 1.04
NS2-3-VAR 1.05 0.965 0.97 1.01 1.05 1.08 1.08 1.07 1.10

NS2-4-AR 1.00 0.88 0.92 0.95 1.01 1.04 1.03 1.02 1.06
NS2-4-VAR 1.02 0.891 0.925 0.97 1.01 1.04 1.05 1.07 1.13

NS2-2-λ-AR 1.08 0.99 1.00 1.03 1.07 1.11 1.11 1.10 1.14
NS2-2-λ-VAR 1.06 0.995 0.99 1.02 1.05 1.07 1.10 1.10 1.15

NS2-3-λ-AR 1.09 1.01 1.02 1.05 1.09 1.11 1.12 1.12 1.17
NS2-3-λ-VAR 0.96 0.9110 0.93 0.95 0.97 0.95 0.945 0.985 1.08

NS2-4-λ-AR 1.03 0.86 0.90 0.94 1.00 1.05 1.09 1.10 1.17
NS2-4-λ-VAR 0.98 0.851 0.885 0.92 0.96 0.99 1.02 1.06 1.16

NS2-B-AR 1.14 1.00 1.03 1.06 1.11 1.15 1.20 1.21 1.29
NS2-B-VAR 1.05 0.90 0.94 0.97 1.02 1.05 1.10 1.14 1.25

NS2-S-AR 1.24 1.06 1.10 1.15 1.22 1.26 1.30 1.32 1.41
NS2-S-VAR 1.04 0.905 0.92 0.97 1.01 1.03 1.08 1.13 1.25

NS2-AS-AR 1.13 1.02 1.05 1.09 1.13 1.15 1.16 1.16 1.22
NS2-AS-VAR 0.97 0.90 0.92 0.95 0.98 0.97 0.9710 1.01 1.12

Panel B: one-step models

NS1-2-RW 1.00 1.01 0.99 1.01 1.01 1.00 0.99 1.01 1.06
NS1-2-AR 1.10 1.12 1.09 1.10 1.10 1.10 1.08 1.09 1.17
NS1-2-VAR 1.11 1.08 1.05 1.07 1.07 1.08 1.13 1.16 1.27

NS1-3-RW 1.00 1.00 0.99 1.00 1.00 1.01 1.00 1.00 1.01
NS1-3-AR 1.00 1.02 1.01 1.02 1.03 1.02 0.98 0.96 0.98

NS1-3-VAR 1.16 1.03 1.03 1.07 1.12 1.17 1.22 1.24 1.32

NS1-4-RW 1.00 1.02 1.00 1.00 1.00 1.01 1.00 1.00 1.02
NS1-4-AR 0.90 0.855 0.865 0.885 0.9010 0.9010 0.915 0.925 0.98

NS1-4-VAR 1.06 0.861 0.881 0.945 1.00 1.06 1.14 1.19 1.31

NS1-B-RW 1.00 1.03 1.00 1.00 1.00 1.01 0.99 1.00 1.03
NS1-B-AR 1.02 1.03 1.02 1.03 1.04 1.04 1.00 0.99 1.02
NS1-B-VAR 1.18 1.00 1.02 1.08 1.14 1.21 1.26 1.28 1.37

NS1-S-RW 1.01 1.03 1.00 1.00 1.00 1.01 1.01 1.00 1.01
NS1-S-AR 0.98 1.02 1.00 0.99 1.00 0.99 0.95 0.94 0.98

NS1-S-VAR 1.05 0.851 0.871 0.935 0.99 1.05 1.13 1.18 1.30

NS1-AS-RW 1.01 1.03 1.00 1.00 1.00 1.01 1.00 1.00 1.01
NS1-AS-AR 0.96 1.01 0.99 0.98 0.98 0.97 0.94 0.9310 0.97

NS1-AS-VAR 1.05 0.851 0.871 0.935 0.99 1.05 1.13 1.18 1.30

Notes: Bold numbers indicate outperformance relative to the random walk (RW) whereas ()10, ()5 and
()1 indicate significant outperformance at the 90%, 95% and 99% level respectively according to the
White (2000) reality check using 1000 block-bootstraps and an average block-length of 12.



Table 10: Forecast results for the sample 1994:1 - 2000:12, 1 & 3-month horizons

h = 1 h = 3

TRMSPE RMSPE TRMSPE RMSPE

Maturity all 1-m 3-m 6-m 1-y 2-y 5-y 7-y 10-y all 1-m 3-m 6-m 1-y 2-y 5-y 7-y 10-y

RW 92.65 29.82 17.87 19.30 23.95 26.84 27.48 26.40 25.31 184.76 45.82 36.70 41.99 50.42 57.46 55.79 53.25 49.22
AR 1.00 0.99 1.01 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 1.02 1.01 0.99 0.99 0.99 0.99 1.00
VAR 1.00 0.82 1.01 0.93 0.97 1.07 1.04 1.03 1.06 0.97 0.69 0.86 0.90 0.95 0.99 1.00 1.00 1.06

Panel A: two-step models

NS2-2-AR 1.08 1.30 1.25 1.00 0.98 1.04 1.02 1.06 1.20 0.98 0.855 0.9210 0.97 0.95 0.94 0.99 1.03 1.13
NS2-2-VAR 1.08 1.28 1.25 1.03 1.01 1.05 1.03 1.07 1.21 1.01 0.865 0.99 1.03 1.00 0.97 1.01 1.05 1.15
NS2-3-AR 0.98 0.90 0.91 1.00 0.99 1.02 1.02 1.02 1.00 0.94 0.735 0.90 0.97 0.96 0.96 0.96 0.96 0.97

NS2-3-VAR 1.01 0.99 0.93 0.96 0.98 1.06 1.05 1.04 1.02 1.00 0.8010 0.88 0.98 1.01 1.04 1.04 1.02 1.02
NS2-4-AR 1.01 0.88 1.33 1.20 1.07 1.02 0.97 1.03 0.99 1.00 1.07 1.41 1.23 1.07 0.96 0.925 0.955 0.9510

NS2-4-VAR 0.99 0.80 0.91 0.96 0.99 1.07 1.02 1.04 1.04 1.00 0.681 0.89 0.99 1.02 1.05 1.02 1.02 1.04
NS2-2-λ-AR 1.16 0.93 1.11 1.30 1.41 1.37 1.16 1.12 1.10 0.91 0.735 0.93 1.00 0.98 0.93 0.91 0.92 0.97

NS2-2-λ-VAR 1.17 0.93 1.14 1.33 1.43 1.38 1.17 1.12 1.10 0.95 0.781 1.02 1.08 1.04 0.97 0.93 0.94 0.99

NS2-3-λ-AR 1.15 0.87 1.22 1.41 1.35 1.25 1.17 1.16 1.15 0.91 0.75 0.96 1.00 0.95 0.88 0.91 0.93 0.97

NS2-3-λ-VAR 1.16 0.85 1.17 1.41 1.40 1.30 1.16 1.14 1.19 0.99 0.75 1.00 1.09 1.09 1.02 0.97 0.99 1.07
NS2-4-λ-AR 1.02 0.90 1.34 1.23 1.06 1.02 1.01 1.04 1.05 0.96 1.00 1.29 1.14 0.99 0.91 0.92 0.95 0.97

NS2-4-λ-VAR 0.99 0.85 1.01 1.01 0.98 1.04 1.01 1.02 1.08 0.96 0.69 0.86 0.93 0.95 0.98 0.98 1.00 1.06
NS2-B-AR 1.17 0.87 1.17 1.15 1.01 1.05 1.28 1.30 1.28 0.96 0.77 0.97 0.94 0.86 0.85 1.00 1.04 1.09
NS2-B-VAR 1.20 0.87 1.08 1.11 1.07 1.12 1.30 1.34 1.35 1.05 0.75 0.92 0.98 0.99 0.98 1.08 1.13 1.21
NS2-S-AR 1.18 0.81 1.11 1.25 1.15 1.14 1.24 1.30 1.36 0.97 0.78 0.92 0.93 0.88 0.89 1.00 1.05 1.14
NS2-S-VAR 1.12 0.81 1.08 1.21 1.14 1.10 1.13 1.19 1.31 0.99 0.7410 0.90 0.97 0.97 0.97 1.00 1.04 1.17
NS2-AS-AR 1.20 0.90 1.37 1.40 1.31 1.25 1.22 1.25 1.23 0.91 0.84 1.02 0.97 0.89 0.86 0.91 0.94 0.98

NS2-AS-VAR 1.19 0.90 1.35 1.39 1.34 1.28 1.18 1.20 1.23 0.94 0.80 0.99 0.98 0.98 0.95 0.93 0.96 1.04

Panel B: one-step models

NS1-2-RW 1.28 2.14 2.40 1.61 1.01 1.05 1.01 1.02 1.08 1.04 1.28 1.23 1.09 0.99 1.00 1.00 1.01 1.05
NS1-2-AR 1.33 2.21 2.51 1.71 1.05 1.07 1.06 1.04 1.13 1.08 1.42 1.37 1.18 1.02 1.02 1.03 1.03 1.11
NS1-2-VAR 1.32 2.18 2.47 1.68 1.05 1.08 1.07 1.05 1.14 1.09 1.36 1.33 1.17 1.03 1.03 1.05 1.05 1.13
NS1-3-RW 1.00 1.01 0.99 0.98 0.99 1.03 1.02 1.02 1.01 0.99 0.761 0.92 0.99 1.00 1.01 1.01 1.01 1.01
NS1-3-AR 1.01 1.04 1.01 1.01 1.01 1.04 1.02 1.02 1.01 0.96 0.7810 0.92 0.99 0.98 0.98 0.97 0.97 0.98

NS1-3-VAR 1.06 1.15 1.11 1.00 0.96 1.05 1.10 1.08 1.08 1.06 0.90 0.97 1.02 1.01 1.05 1.11 1.09 1.13
NS1-4-RW 0.99 0.87 1.05 0.99 0.96 1.04 1.00 1.02 1.04 0.99 0.811 1.00 1.00 0.9810 1.01 1.00 1.01 1.02
NS1-4-AR 0.98 0.84 0.99 0.95 0.94 1.02 1.00 1.03 1.05 0.95 0.7010 0.90 0.93 0.93 0.96 0.97 0.98 1.01
NS1-4-VAR 1.01 0.84 0.94 0.93 0.95 1.05 1.04 1.06 1.13 1.02 0.685 0.86 0.94 0.97 1.03 1.05 1.07 1.15
NS1-B-RW 1.00 0.91 1.03 1.00 0.95 1.04 1.03 1.02 1.02 0.99 0.821 1.00 1.00 0.9810 1.01 1.01 1.00 1.02
NS1-B-AR 0.99 0.90 1.02 1.00 0.95 1.03 1.03 1.02 1.02 0.97 0.791 0.97 0.98 0.96 0.98 0.98 0.99 1.00
NS1-B-VAR 1.03 0.92 0.96 0.96 0.94 1.07 1.11 1.08 1.10 1.06 0.7910 0.92 1.00 1.01 1.07 1.11 1.10 1.14
NS1-S-RW 1.00 0.91 1.09 0.99 0.95 1.04 1.00 1.02 1.03 0.99 0.851 1.02 1.00 0.985 1.01 1.01 1.01 1.01
NS1-S-AR 1.01 0.89 1.08 1.00 0.97 1.05 1.02 1.04 1.06 0.98 0.825 1.00 0.98 0.97 0.99 0.99 0.99 1.01
NS1-S-VAR 1.01 0.83 0.95 0.93 0.95 1.05 1.04 1.07 1.12 1.02 0.685 0.87 0.95 0.98 1.02 1.05 1.07 1.14
NS1-AS-RW 1.00 0.91 1.09 0.99 0.96 1.04 1.00 1.02 1.03 0.99 0.851 1.02 1.00 0.985 1.01 1.01 1.01 1.01
NS1-AS-AR 1.00 0.89 1.08 0.99 0.96 1.05 1.02 1.04 1.05 0.98 0.825 1.00 0.98 0.96 0.99 0.99 0.99 1.01
NS1-AS-VAR 1.01 0.83 0.95 0.93 0.95 1.05 1.04 1.07 1.12 1.02 0.685 0.87 0.95 0.98 1.02 1.05 1.07 1.14

Notes: . Bold numbers indicate outperformance relative to the random walk (RW) whereas ()10, ()5 and ()1 indicate significant outperformance at the 90%, 95% and 99% level respectively
according to the White (2000) reality check using 1000 block-bootstraps and an average block-length of 12.



Table 11: Forecast results for the sample 1994:1 - 2000:12, 6 & 12-month horizons

h = 6 h = 12

TRMSPE RMSPE TRMSPE RMSPE

Maturity all 1-m 3-m 6-m 1-y 2-y 5-y 7-y 10-y all 1-m 3-m 6-m 1-y 2-y 5-y 7-y 10-y

RW 271.12 63.55 59.67 65.57 74.29 83.88 82.10 77.99 73.00 366.08 94.51 93.83 97.71 101.96 108.91 107.22 102.70 98.50
AR 0.98 0.95 1.03 1.01 0.98 0.97 0.97 0.98 1.00 0.97 0.921 1.02 1.00 0.961 0.941 0.955 0.97 1.00
VAR 0.97 0.685 0.79 0.8510 0.91 0.92 0.99 1.02 1.12 1.08 0.701 0.731 0.771 0.811 0.88 1.13 1.24 1.42

Panel A: two-step models

NS2-2-AR 0.96 0.811 0.891 0.945 0.93 0.9010 0.97 1.01 1.09 0.95 0.875 0.901 0.911 0.891 0.881 0.9610 0.99 1.05
NS2-2-VAR 1.01 0.881 1.00 1.04 1.01 0.96 1.01 1.04 1.12 1.01 1.01 1.06 1.05 1.01 0.941 0.99 1.02 1.08
NS2-3-AR 0.92 0.805 0.90 0.94 0.93 0.905 0.935 0.931 0.94 0.90 0.855 0.885 0.901 0.891 0.861 0.911 0.921 0.955

NS2-3-VAR 1.01 0.831 0.915 1.00 1.04 1.04 1.03 1.02 1.03 1.03 0.95 1.00 1.04 1.06 1.04 1.03 1.03 1.05
NS2-4-AR 0.98 1.15 1.28 1.17 1.06 0.935 0.901 0.931 0.955 0.99 1.06 1.11 1.07 1.02 0.945 0.941 0.961 1.01
NS2-4-VAR 1.01 0.781 0.945 1.01 1.05 1.03 1.02 1.02 1.05 1.03 0.96 1.02 1.05 1.06 1.03 1.01 1.02 1.06
NS2-2-λ-AR 0.90 0.785 0.90 0.94 0.91 0.86 0.905 0.9310 0.98 0.89 0.835 0.865 0.861 0.831 0.801 0.901 0.931 0.99

NS2-2-λ-VAR 0.95 0.881 1.02 1.04 0.99 0.91 0.93 0.96 1.01 0.94 0.98 1.01 0.99 0.931 0.851 0.911 0.945 1.00
NS2-3-λ-AR 0.87 0.73 0.86 0.88 0.85 0.805 0.885 0.9210 0.98 0.88 0.721 0.771 0.791 0.781 0.771 0.921 0.975 1.06
NS2-3-λ-VAR 0.98 0.781 0.97 1.03 1.03 0.96 0.96 1.00 1.10 0.95 0.901 0.9810 0.9910 0.98 0.891 0.901 0.95 1.06
NS2-4-λ-AR 0.95 1.03 1.14 1.04 0.96 0.875 0.925 0.9610 1.01 0.98 0.92 0.97 0.95 0.925 0.881 0.975 1.02 1.10
NS2-4-λ-VAR 0.98 0.721 0.86 0.93 0.96 0.96 0.99 1.02 1.10 0.99 0.855 0.92 0.94 0.9510 0.941 0.99 1.03 1.12
NS2-B-AR 0.93 0.76 0.86 0.85 0.8110 0.801 0.96 1.01 1.09 0.96 0.721 0.771 0.781 0.781 0.811 1.02 1.08 1.18
NS2-B-VAR 1.03 0.721 0.895 0.955 0.9810 0.961 1.05 1.11 1.22 1.07 0.905 1.00 1.02 1.03 0.99 1.06 1.12 1.24
NS2-S-AR 0.96 0.76 0.83 0.84 0.83 0.845 1.00 1.06 1.17 1.01 0.701 0.731 0.771 0.791 0.861 1.08 1.15 1.29
NS2-S-VAR 1.04 0.771 0.895 0.96 0.99 0.99 1.05 1.10 1.22 1.06 0.91 0.96 0.99 1.00 0.98 1.06 1.12 1.24
NS2-AS-AR 0.88 0.81 0.90 0.87 0.83 0.791 0.885 0.9310 1.00 0.91 0.741 0.785 0.781 0.781 0.781 0.951 1.01 1.11
NS2-AS-VAR 0.94 0.791 0.92 0.93 0.93 0.9010 0.93 0.98 1.08 0.95 0.895 0.945 0.935 0.921 0.871 0.921 0.98 1.09

Panel B: one-step models

NS1-2-RW 1.01 1.00 1.00 1.02 1.01 0.99 0.99 1.01 1.04 1.01 1.00 1.01 1.02 1.02 0.985 0.9910 1.01 1.03
NS1-2-AR 1.05 1.19 1.13 1.10 1.03 1.00 1.03 1.04 1.10 1.04 1.13 1.08 1.06 1.01 0.97 1.01 1.03 1.11
NS1-2-VAR 1.06 1.12 1.10 1.09 1.05 1.02 1.05 1.06 1.14 1.06 1.09 1.07 1.07 1.03 0.99 1.04 1.07 1.16
NS1-3-RW 0.99 0.841 0.955 1.00 1.01 1.00 1.01 1.00 1.00 1.00 0.95 0.99 1.00 1.01 1.00 1.01 1.00 0.99

NS1-3-AR 0.93 0.86 0.94 0.98 0.97 0.93 0.93 0.94 0.95 0.91 0.93 0.95 0.96 0.935 0.881 0.891 0.901 0.935

NS1-3-VAR 1.10 0.9410 0.99 1.05 1.06 1.07 1.13 1.13 1.18 1.13 1.04 1.06 1.08 1.08 1.07 1.15 1.17 1.25
NS1-4-RW 1.00 0.921 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 0.99 1.01 1.00 1.00 1.00 1.00 1.00 1.00
NS1-4-AR 0.95 0.795 0.91 0.94 0.96 0.95 0.95 0.96 0.99 0.94 0.91 0.95 0.96 0.96 0.941 0.931 0.941 0.97

NS1-4-VAR 1.07 0.771 0.8910 0.98 1.03 1.05 1.09 1.12 1.20 1.13 0.95 0.99 1.04 1.07 1.08 1.14 1.19 1.29
NS1-B-RW 1.00 0.935 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00
NS1-B-AR 0.95 0.8910 0.97 0.97 0.96 0.955 0.9610 0.96 0.98 0.93 0.9210 0.9510 0.945 0.941 0.921 0.921 0.931 0.94

NS1-B-VAR 1.11 0.885 0.96 1.05 1.08 1.10 1.15 1.15 1.21 1.18 1.04 1.06 1.11 1.13 1.15 1.21 1.23 1.29
NS1-S-RW 1.00 0.955 1.02 1.00 1.00 1.00 1.01 1.01 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00
NS1-S-AR 0.95 0.9010 0.98 0.97 0.97 0.96 0.95 0.95 0.97 0.92 0.9310 0.96 0.9510 0.955 0.921 0.901 0.911 0.94

NS1-S-VAR 1.07 0.781 0.9010 0.99 1.04 1.05 1.09 1.12 1.19 1.13 0.95 1.00 1.05 1.08 1.08 1.14 1.19 1.28
NS1-AS-RW 1.00 0.955 1.01 1.00 1.00 1.00 1.01 1.01 1.01 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00
NS1-AS-AR 0.96 0.90 0.98 0.97 0.97 0.96 0.95 0.96 0.98 0.93 0.9310 0.96 0.9510 0.955 0.921 0.911 0.911 0.94

NS1-AS-VAR 1.07 0.781 0.9010 0.99 1.04 1.05 1.09 1.12 1.19 1.13 0.95 1.00 1.05 1.08 1.09 1.15 1.19 1.29

Notes: . Bold numbers indicate outperformance relative to the random walk (RW) whereas ()10, ()5 and ()1 indicate significant outperformance at the 90%, 95% and 99% level respectively
according to the White (2000) reality check using 1000 block-bootstraps and an average block-length of 12.



Table 12: Forecast results for the sample 2001:1 - 2003:12, 1 & 3-month horizons

h = 1 h = 3

TRMSPE RMSPE TRMSPE RMSPE

Maturity all 1-m 3-m 6-m 1-y 2-y 5-y 7-y 10-y all 1-m 3-m 6-m 1-y 2-y 5-y 7-y 10-y

RW 119.88 30.79 27.39 26.81 29.40 33.84 36.55 35.16 33.31 222.46 69.23 68.35 67.30 66.12 66.01 61.41 54.99 51.99
AR 1.02 1.04 1.01 1.01 1.03 1.02 1.01 1.01 1.01 1.03 1.06 1.00 1.01 1.03 1.05 1.04 1.04 1.02
VAR 1.02 0.76 0.90 1.06 1.12 1.07 0.98 1.01 1.08 1.08 0.78 0.92 1.04 1.17 1.20 1.09 1.09 1.11

Panel A: two-step models

NS2-2-AR 1.31 1.98 1.60 1.11 1.20 1.55 1.06 1.05 1.34 1.09 0.94 0.88 0.97 1.17 1.33 1.09 1.04 1.13
NS2-2-VAR 1.33 2.18 1.80 1.22 1.12 1.48 1.04 1.07 1.37 1.09 1.07 0.94 0.95 1.07 1.24 1.08 1.06 1.17
NS2-3-AR 1.06 1.10 1.03 1.15 1.19 1.14 1.03 1.01 1.06 1.12 1.10 1.07 1.16 1.22 1.21 1.11 1.08 1.08
NS2-3-VAR 1.00 0.85 0.81 0.98 1.08 1.06 1.00 1.01 1.06 1.00 0.80 0.82 0.95 1.05 1.09 1.05 1.05 1.06
NS2-4-AR 1.14 1.13 1.19 1.27 1.32 1.28 1.13 1.04 1.04 1.19 1.03 1.06 1.17 1.31 1.38 1.24 1.14 1.09
NS2-4-VAR 0.98 0.83 0.80 0.90 0.96 1.03 1.02 1.01 1.02 0.96 0.75 0.75 0.86 0.95 1.04 1.05 1.04 1.05
NS2-2-λ-AR 2.21 1.15 0.91 1.46 2.44 2.98 2.47 2.04 1.81 1.54 0.90 0.97 1.23 1.61 1.91 1.75 1.58 1.45
NS2-2-λ-VAR 2.17 1.28 0.95 1.35 2.31 2.89 2.43 2.01 1.79 1.48 0.93 0.93 1.13 1.49 1.80 1.69 1.54 1.43
NS2-3-λ-AR 1.32 1.28 1.30 1.41 1.37 1.44 1.36 1.22 1.16 1.30 1.27 1.29 1.40 1.47 1.45 1.27 1.17 1.11
NS2-3-λ-VAR 1.28 0.91 0.91 1.06 1.12 1.37 1.38 1.30 1.20 1.00 0.88 0.88 0.98 1.03 1.07 1.03 1.02 0.99

NS2-4-λ-AR 1.19 1.10 1.17 1.29 1.39 1.39 1.19 1.08 1.08 1.23 1.02 1.07 1.20 1.37 1.44 1.28 1.17 1.11
NS2-4-λ-VAR 1.02 0.79 0.78 0.92 1.03 1.15 1.05 1.02 1.03 0.94 0.72 0.74 0.86 0.97 1.06 1.01 0.98 0.99

NS2-B-AR 1.21 1.34 1.42 1.58 1.51 1.31 1.13 1.04 1.04 1.33 1.29 1.32 1.44 1.53 1.49 1.29 1.19 1.14
NS2-B-VAR 1.05 0.97 1.03 1.22 1.20 1.11 1.03 1.00 0.98 1.00 0.88 0.91 1.02 1.09 1.10 1.02 0.98 0.96

NS2-S-AR 1.45 1.43 1.58 1.81 1.85 1.71 1.41 1.24 1.22 1.63 1.41 1.53 1.73 1.93 1.93 1.62 1.47 1.37
NS2-S-VAR 1.10 0.88 0.87 1.02 1.09 1.18 1.14 1.11 1.08 1.01 0.80 0.82 0.94 1.03 1.09 1.06 1.06 1.08
NS2-AS-AR 1.41 1.39 1.48 1.65 1.64 1.59 1.42 1.25 1.16 1.46 1.32 1.40 1.56 1.68 1.67 1.46 1.34 1.26
NS2-AS-VAR 1.30 0.98 0.98 1.16 1.23 1.41 1.39 1.31 1.19 1.09 0.88 0.91 1.03 1.11 1.16 1.15 1.14 1.14

Panel B: one-step models

NS1-2-RW 1.30 2.39 2.22 1.74 1.13 1.06 0.98 1.01 1.10 1.02 1.11 1.02 1.00 0.99 1.04 0.99 1.01 1.06
NS1-2-AR 1.27 2.26 2.09 1.65 1.13 1.11 1.01 1.01 1.10 1.05 1.04 0.98 1.02 1.07 1.13 1.05 1.04 1.08
NS1-2-VAR 1.32 2.40 2.23 1.76 1.16 1.10 1.02 1.03 1.13 1.09 1.15 1.06 1.06 1.06 1.12 1.08 1.09 1.14
NS1-3-RW 1.02 1.19 1.01 1.01 1.03 1.04 0.99 0.99 1.01 1.00 1.04 0.96 0.99 1.01 1.04 1.01 1.00 0.995

NS1-3-AR 1.05 1.20 1.06 1.10 1.13 1.11 1.02 1.00 1.02 1.07 1.08 1.04 1.10 1.15 1.15 1.07 1.02 1.01
NS1-3-VAR 1.02 0.89 0.80 0.96 1.09 1.10 1.03 1.02 1.06 1.04 0.80 0.83 0.96 1.08 1.15 1.12 1.10 1.10
NS1-4-RW 1.00 1.04 0.97 1.02 0.99 1.03 1.01 1.00 0.985 1.01 1.04 0.98 1.01 1.00 1.03 1.02 1.00 0.985

NS1-4-AR 0.99 1.00 0.95 0.99 0.99 1.04 1.00 0.97 0.98 0.97 0.90 0.87 0.93 0.97 1.05 1.02 0.98 0.97

NS1-4-VAR 0.97 0.79 0.77 0.86 0.93 1.02 1.01 0.99 1.00 0.94 0.69 0.68 0.79 0.90 1.02 1.05 1.03 1.03
NS1-B-RW 1.03 1.30 1.07 1.02 1.02 1.03 0.98 0.99 1.06 1.01 1.12 1.00 1.01 1.00 1.03 0.99 1.00 1.03
NS1-B-AR 1.05 1.31 1.11 1.10 1.10 1.07 1.00 0.99 1.06 1.07 1.15 1.07 1.10 1.12 1.12 1.04 1.02 1.04
NS1-B-VAR 1.01 0.92 0.80 0.95 1.08 1.06 1.01 1.02 1.10 1.03 0.77 0.79 0.93 1.06 1.12 1.09 1.10 1.15
NS1-S-RW 1.02 1.19 1.03 1.02 0.98 1.04 1.01 1.00 0.99 1.01 1.11 1.00 1.01 0.99 1.03 1.02 1.01 0.9710

NS1-S-AR 1.04 1.26 1.11 1.09 1.05 1.09 1.02 0.98 1.01 1.07 1.17 1.07 1.08 1.09 1.13 1.06 1.01 1.01
NS1-S-VAR 0.97 0.86 0.79 0.86 0.92 1.02 1.00 0.99 1.00 0.94 0.71 0.69 0.79 0.89 1.02 1.04 1.03 1.04
NS1-AS-RW 1.02 1.18 1.03 1.02 0.98 1.04 1.01 1.00 0.99 1.01 1.11 1.00 1.01 0.99 1.03 1.02 1.01 0.9710

NS1-AS-AR 1.04 1.25 1.10 1.08 1.04 1.08 1.01 0.98 1.00 1.05 1.16 1.06 1.07 1.07 1.11 1.04 1.00 0.99

NS1-AS-VAR 0.97 0.85 0.79 0.86 0.92 1.02 1.00 0.99 1.00 0.94 0.71 0.69 0.79 0.89 1.02 1.04 1.03 1.04

Notes: . Bold numbers indicate outperformance relative to the random walk (RW) whereas ()10, ()5 and ()1 indicate significant outperformance at the 90%, 95% and 99% level respectively
according to the White (2000) reality check using 1000 block-bootstraps and an average block-length of 12.



Table 13: Forecast results for the sample 2001:1 - 2003:12, 6 & 12-month horizons

h = 6 h = 12

TRMSPE RMSPE TRMSPE RMSPE

Maturity all 1-m 3-m 6-m 1-y 2-y 5-y 7-y 10-y all 1-m 3-m 6-m 1-y 2-y 5-y 7-y 10-y

RW 342.90 118.17 118.78 116.69 111.89 104.27 88.12 75.10 65.31 548.98 199.40 204.79 204.91 197.20 173.72 127.44 104.69 84.53
AR 1.05 1.05 0.99 1.00 1.03 1.06 1.08 1.07 1.06 1.05 1.04 0.97 0.98 1.01 1.06 1.13 1.15 1.18
VAR 1.29 1.04 1.15 1.24 1.38 1.43 1.32 1.33 1.38 1.59 1.33 1.39 1.43 1.53 1.64 1.73 1.84 2.00

Panel A: two-step models

NS2-2-AR 1.09 0.93 0.94 1.03 1.16 1.25 1.12 1.07 1.16 1.12 1.03 1.03 1.06 1.12 1.19 1.19 1.18 1.27
NS2-2-VAR 1.06 0.93 0.89 0.95 1.05 1.16 1.12 1.11 1.23 1.07 0.941 0.931 0.96 1.02 1.11 1.18 1.21 1.34
NS2-3-AR 1.15 1.10 1.09 1.15 1.21 1.24 1.16 1.12 1.16 1.14 1.07 1.06 1.08 1.13 1.19 1.20 1.19 1.27
NS2-3-VAR 1.03 0.87 0.88 0.97 1.06 1.12 1.10 1.08 1.14 1.06 0.97 0.96 1.00 1.05 1.12 1.14 1.15 1.25
NS2-4-AR 1.13 0.92 0.96 1.05 1.19 1.29 1.20 1.13 1.12 1.01 0.79 0.82 0.89 1.00 1.11 1.15 1.14 1.20
NS2-4-VAR 0.97 0.77 0.79 0.87 0.96 1.04 1.07 1.08 1.16 1.01 0.8610 0.87 0.92 0.98 1.05 1.11 1.15 1.31
NS2-2-λ-AR 1.31 1.00 1.03 1.17 1.36 1.53 1.45 1.38 1.37 1.22 1.05 1.05 1.10 1.18 1.30 1.37 1.38 1.48
NS2-2-λ-VAR 1.24 0.9610 0.97 1.07 1.24 1.42 1.39 1.34 1.36 1.17 0.99 0.99 1.03 1.10 1.22 1.33 1.36 1.49
NS2-3-λ-AR 1.33 1.22 1.24 1.33 1.43 1.48 1.34 1.27 1.27 1.25 1.12 1.12 1.16 1.23 1.32 1.36 1.36 1.45
NS2-3-λ-VAR 0.96 0.89 0.89 0.96 1.00 1.02 0.96 0.96 1.03 0.96 0.91 0.90 0.93 0.96 1.00 0.995 1.02 1.14
NS2-4-λ-AR 1.18 0.95 1.00 1.10 1.25 1.36 1.26 1.19 1.19 1.07 0.84 0.87 0.94 1.05 1.17 1.23 1.24 1.33
NS2-4-λ-VAR 0.93 0.77 0.78 0.87 0.95 1.01 1.00 1.00 1.09 0.98 0.85 0.86 0.90 0.96 1.02 1.06 1.11 1.26
NS2-B-AR 1.36 1.22 1.25 1.35 1.46 1.52 1.39 1.33 1.33 1.29 1.11 1.12 1.17 1.25 1.37 1.43 1.44 1.54
NS2-B-VAR 1.01 0.88 0.90 0.98 1.06 1.10 1.05 1.03 1.08 1.04 0.91 0.91 0.95 1.01 1.09 1.15 1.18 1.30
NS2-S-AR 1.60 1.33 1.41 1.57 1.76 1.84 1.64 1.56 1.54 1.42 1.19 1.22 1.29 1.40 1.51 1.56 1.59 1.71
NS2-S-VAR 0.99 0.82 0.85 0.94 1.02 1.06 1.04 1.06 1.16 1.03 0.89 0.91 0.96 1.02 1.07 1.10 1.15 1.30
NS2-AS-AR 1.45 1.25 1.32 1.44 1.58 1.64 1.47 1.39 1.38 1.29 1.12 1.14 1.20 1.29 1.38 1.40 1.41 1.49
NS2-AS-VAR 1.00 0.89 0.91 1.00 1.06 1.08 1.02 1.02 1.10 0.99 0.90 0.92 0.96 1.01 1.04 1.03 1.05 1.17

Panel B: one-step models

NS1-2-RW 0.98 0.95 0.92 0.96 0.99 1.02 0.99 1.01 1.12 1.00 1.02 0.99 1.00 1.00 1.02 0.99 1.01 1.13
NS1-2-AR 1.08 0.99 0.98 1.05 1.11 1.16 1.09 1.09 1.18 1.16 1.12 1.10 1.12 1.15 1.19 1.18 1.21 1.34
NS1-2-VAR 1.10 1.01 0.98 1.03 1.08 1.14 1.14 1.18 1.31 1.16 1.07 1.05 1.07 1.10 1.15 1.24 1.32 1.54
NS1-3-RW 1.00 1.02 0.97 0.99 1.00 1.03 1.01 1.00 1.04 1.00 1.03 0.99 0.99 1.00 1.02 1.00 0.99 1.06
NS1-3-AR 1.08 1.07 1.05 1.10 1.14 1.16 1.07 1.03 1.06 1.07 1.06 1.04 1.05 1.08 1.11 1.09 1.07 1.12
NS1-3-VAR 1.11 0.90 0.92 1.02 1.12 1.21 1.21 1.21 1.27 1.19 1.03 1.03 1.07 1.14 1.24 1.32 1.36 1.50
NS1-4-RW 1.01 1.03 0.98 1.00 1.00 1.02 1.02 1.00 1.02 1.01 1.03 1.00 1.00 1.00 1.02 1.01 1.00 1.05
NS1-4-AR 0.91 0.85 0.84 0.88 0.91 0.96 0.94 0.92 0.97 0.85 0.82 0.81 0.84 0.86 0.87 0.87 0.89 1.00
NS1-4-VAR 0.93 0.71 0.72 0.81 0.90 1.01 1.06 1.06 1.14 1.00 0.8110 0.83 0.89 0.96 1.04 1.12 1.19 1.36
NS1-B-RW 1.01 1.06 0.99 1.00 1.00 1.02 0.99 0.99 1.09 1.01 1.04 1.00 1.00 1.00 1.02 0.985 0.99 1.10
NS1-B-AR 1.09 1.11 1.07 1.10 1.13 1.14 1.06 1.05 1.12 1.09 1.07 1.05 1.06 1.09 1.13 1.09 1.09 1.20
NS1-B-VAR 1.09 0.84 0.87 0.98 1.10 1.19 1.19 1.22 1.33 1.19 0.98 1.00 1.06 1.15 1.25 1.33 1.39 1.57
NS1-S-RW 1.01 1.06 1.00 1.00 1.00 1.02 1.02 1.01 1.02 1.01 1.04 1.00 1.00 1.00 1.02 1.01 1.00 1.04
NS1-S-AR 1.06 1.11 1.05 1.07 1.08 1.10 1.04 1.00 1.04 1.03 1.05 1.01 1.01 1.02 1.04 1.02 1.01 1.08
NS1-S-VAR 0.93 0.71 0.72 0.80 0.89 1.00 1.05 1.05 1.13 0.98 0.8010 0.81 0.87 0.94 1.02 1.10 1.17 1.34
NS1-AS-RW 1.01 1.06 1.00 1.00 1.00 1.02 1.02 1.01 1.02 1.01 1.04 1.00 1.00 1.00 1.02 1.01 1.00 1.04
NS1-AS-AR 1.03 1.10 1.04 1.05 1.06 1.08 1.01 0.97 1.01 1.00 1.04 1.00 0.99 1.00 1.01 0.97 0.9710 1.04
NS1-AS-VAR 0.93 0.71 0.72 0.80 0.89 1.00 1.05 1.05 1.14 0.98 0.8010 0.81 0.87 0.94 1.02 1.10 1.17 1.34

Notes: . Bold numbers indicate outperformance relative to the random walk (RW) whereas ()10, ()5 and ()1 indicate significant outperformance at the 90%, 95% and 99% level respectively
according to the White (2000) reality check using 1000 block-bootstraps and an average block-length of 12.



Figure 1: Nelson-Siegel factor loadings
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[a] three-factor model [b] four-factor model
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[c] Svensson model [d] Adjusted Svensson model

Notes: The graph depicts the factor loadings for β1 (dotted line), β2 (dashed line), β3 (solid line)
and β4 (dash-dotted line) for the [a] three-factor, [b] four-factor, [c] Svensson and [d] Adjusted
Svensson Nelson-Siegel model. The factor loadings are plotted using λt = 16.42 for the 3-factor
and 4-factor models. For the (Adjusted) Svensson model it holds that λ1,t = 16.42 and λ2,t = 9.73
which ensures that the maturities at which the two curvature factors reach their maximum is at
least twelve months apart.



Figure 2: U.S. zero-coupon yields
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Notes: The figure shows time-series plots for a subset of maturities of end-of-month U.S.
zero coupon yields constructed using the unsmoothed Fama and Bliss (1987) bootstrap method.
Sample period is January 1984 - December 2003 (240 observations). The solid vertical line
indicates the start of the forecasting sample (January 1994 - December 2003). The dotted line
divides the forecast sample into two subsamples (January 1994 - December 2000 and January 2001
- December 2003).

Figure 3: U.S. zero-coupon yields
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Notes: The figure shows a 3-dimension plot of the panel of end-of-month U.S. zero coupon yields
constructed using the unsmoothed Fama and Bliss (1987) bootstrap method. Sample period is
January 1984 - December 2003 (240 observations).



Figure 4: Fitted average yield curve
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[a] NS2-2, NS2-3, NS2-4
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Notes: The graph shows the average fitted curve for different Nelson-Siegel models. Panel [a] shows
the estimated average curve for the two-factor, three-factor and four-factor. Panel [b] shows the
average curve for the same models but where now λt is estimated alongside (β1 β2 β3 β4). Finally,
Panel [c] depicts the average curve for the three-factor Bliss model, the four-factor model Svensson
extension (second column) and the Adjusted Svensson model. The dots in each graph are the actual
sample averages. The solid and (dash-)dotted lines depict the fitted lines. The sample period is
1984:1 - 2003:12 (240 observations).



Figure 5: Fitted yield curve for specific months
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Notes: The graph depicts the actual yield curve (black dots) and the fitted yield curve for
a subset of models. Shown are four months from the full sample 1984:1 - 2003:12 (240 observa-
tions): [a] June 30, 1989, [b] November 30, 1995, [c] August 31, 1998 and [d] September 29, 2000.
The fitted curve is shown for the two-factor, three-factor and four-factor model with fixed λt, the
two-factor model where λt is estimated alongside β1 and β2, the Svensson model and the Adjusted
Svensson model.



Figure 6: Nelson-Siegel factors with and without restrictions on λt
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Notes: The graph shows time-series plots of the estimated Nelson-Siegel factors for the
three-factor base model where λt is estimated alongside the factors (β1,t β2,t β3,t). Shown are the
estimate of the first factor in Panel [a], the second factor in Panel [b] and the third and last factor
in Panel [c]. The solid line is the factor estimate when λt is restricted to the domain [6.69, 33.46].
The dotted line represented each factor when estimated without the restriction on λt. The sample
period is 1984:1 - 2003:12 (240 observations).



Figure 7: Time-series of Nelson-Siegel factors with a fixed value for λt
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Notes: The graph shows time-series plots of the estimated Nelson-Siegel factors for the two-factor
model (first column), the three-factor model (second column) and the four-factor model (fourth
column). The factors are estimated using OLS given a fixed λt which is set to 16.42. The sample
period is 1984:1 - 2003:12 (240 observations).



Figure 8: Time-series of Nelson-Siegel factors with estimated λ
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Notes: The graph shows time-series plots of the estimated Nelson-Siegel factors for the two-factor
model (first column), the three-factor model (second column) and the four-factor model (fourth
column) where λt is estimated alongside (β1 β2 β3 β4). Shown are the factors estimates from the
two-step NLS (solid lines) and the one-step Kalman Filter (dotted lines) estimation methods. The
sample period is 1984:1 - 2003:12 (240 observations).



Figure 9: Time-series of Nelson-Siegel factors with estimated λs
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Notes: The graph shows time-series plots of the estimated Nelson-Siegel factors for the three-factor
Bliss model (first column), the four-factor model Svensson extension (second column) and the
four-factor model Adjusted Svensson model (fourth column) where λ1,t and λ2,t are estimated
alongside (β1 β2 β3 β4). Shown are the factors resulting from the two-step NLS and the one-step
Kalman Filter estimation methods. The sample period is 1984:1 - 2003:12 (240 observations).


