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Fitting trends to time 
series data
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Office for National Statistics

Introduction
Many statistical organisations around the world present trend estimates as part of 
their data releases. This is done to different extents and with a variety of different 
methods, but in all cases the overarching aim is to remove the short-term irregular 
movements in the data so that users are left with a better idea of its true underlying 
path. For many time series, especially at monthly and quarterly frequencies, 
focusing on the latest release of data can be misleading because the data are volatile. 
Instead, it is more expedient to take a slightly longer-term view and place the latest 
release in the context of other recent figures. This is what a trend estimate sets out to 
achieve.

At present the Office for National Statistics (ONS) makes limited use of trends.1 
When it comes to putting trend estimates in the National Accounts, the Australian 
Bureau of Statistics (ABS) has gone the furthest down this line.2 Not only does it fit 
trends to all its major time series, it actually headlines with the trend estimate in its 
data releases. This article considers two widely accepted methodologies used to fit 
trends, the Henderson and Kalman filters. 

Constructing a trend estimate – smoothing
Once a data series (Y

t
) has been seasonally adjusted, it is thought to consist of two 

components. The first is the trend (T
t
), and the second is short-term irregular 

movements around this trend (I
t
). Trend estimates can therefore be calculated by 

filtering out the irregular components from a series. 

Y
t
 = T

t
 + I

t
 (1)

Most filters are based on a moving-average procedure. Given that the irregular 
movements often tend to be in opposite directions, averaging will effectively allow 
them to cancel each other out. Any remaining irregularity is then smoothed by 
having its impact spread over a number of observations. Generally, the longer the 
length of a filter, the smoother the resulting trend series because irregularities are 
spread over a greater number of observations.

Figure 1 plots the quarterly percentage change in UK GDP along with a four-
period moving average. Here the current trend estimate reflects an average of the 
current and three previous observations. This produces a smoother series but also 
introduces the problem of phase shifting – that is, the trend lags behind the actual 
data. This is particularly evident where the trend estimate attempts to place turning 
points in the actual data such as the end of 1999 and the beginning of 2000. This is 
not surprising; being entirely backward-looking, the filter can only respond with a 
lag to new innovations or directions in the data. 

Trend estimates are derived 
from seasonally adjusted data 
via an averaging process which 
attempts to remove the irregular 
component of the time series. This 
allows the underlying direction of 
a time series to be identified. 

This article describes two of the 
most important and commonly 
used methods for constructing 
a trend estimate. These are the 
Henderson and Kalman filters. 

The article also outlines several of 
the issues involved in constructing 
and interpreting trend estimates. 
These include phase shifting, 
the end point problem, revisions 
and the identification of turning 
points, and assessing the degree 
of trend smoothness.
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This is a feature of all non-symmetric filters. With many of its 
monthly data releases, ONS recognises the volatility inherent 
in high frequency data and presents a smoother estimate 
based on percentage changes in three-month averages.3 As 
a backward-looking procedure this, too, is liable to phase 
shifting. The price for smoothing the data is to delay its 
reaction to new directions.

This problem can be avoided by using a symmetric filter. 
This takes a moving average of the data before and after the 
observation for which a trend estimate is required. However, 
because a symmetric filter by definition is centred in the 
middle of the data, applying a symmetric 2m+1 term filter 
would leave m observations unaccounted for at the end of 
the sample. This is referred to as the end point problem. 
With data releases, it is of particular significance, as most 
interest will be in the recent data for which trend estimates 
are missing. Producing trend estimates up to the end of 
the sample will therefore require a compromise between 
satisfying the end point problem and limiting the degree of 
phase shift. 

Henderson filters
The Henderson filter4 is the traditional workhorse of trend 
estimation and is also the method of choice applied by the 
ABS. The Henderson filter weights are designed to strike a 
compromise between two characteristics expected of trends. 
The first is that the trend can reproduce a variety of different 
curvatures, and the second is that they should be as smooth 
as possible. The first condition is satisfied by designing the 
filter so that the trends it produces can follow a local cubic 
polynomial without distortion. This would enable the trend 
to track curves, peaks and troughs fairly well. The smoothness 
of the trend reflects the smoothness of the weighting pattern. 

These two conditions specify a unique weighting pattern and 
hence a unique moving average for each possible length of 
filter considered. The general form of a Henderson filter of 
term 2m+1 is given by:

w
j
 =  315[(m+1)2–j2][(m+2)2–j2][(m+3)2–j2][3(m+2)2–11j2–16]    (2)

         8(m+2)[(m+2)2–1][4(m+2)2–1][4(m+2)2–9][4(m+2)2–25]

for j=–m,....,m

The ABS produces trend estimates for quarterly data using a 
7-term Henderson filter. These weights shown in Table 1 can 
be produced using (2) and setting m=3. 

Table 1
The Henderson 7-term filter

Period (N+j) N–3 N–2 N–1 N N+1 N+2 N+3

Weight –0.059 0.059 0.294 0.413 0.294 0.059 –0.059

In Figure 2 a trend estimate of UK GDP is constructed using 
the Henderson 7-term weights and is compared with the 
estimate produced by using a simple5 7-term moving-average 
filter. There are two things to note. The first is that both are 
symmetric filters, so avoid phase shifting, but suffer from 
the end point problem. The second is that the simple 7-term 
moving average tends to flatten out the trend line relative to 
the Henderson 7-term trend estimate. This can be clearly seen 
in the period 1999 to 2000 where the Henderson trend reflects 
the jump in measured GDP growth to a larger extent. 

Figure 1
GDP percentage change quarter on quarter (GDP) 
and 4 quarter moving average (MA4)
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Figure 2
GDP percentage change quarter on quarter (GDP), 
7-term simple moving average (MA7) and 7-term 
Henderson (HF7) filters
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This reflects one of the advantages that non-simple filters 
like the Henderson have over simple filters. A simple filter 
can at best only reproduce straight line segments to the data 
for which it is applied. More generally, this feature arises 
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when the weights are restricted to being non-negative values. 
Only with the use of negative weights can moving averages 
be constructed to track various curvatures. The weights in 
the Henderson filter are designed not only to track linear 
segments, but also quadratic and cubic segments, so will more 
accurately reflect curves and points of inflection in the data. 
In contrast, the simple moving average will suffer from several 
problems which are evident in Figure 2:

 they underestimate the height of peaks and depths of 
troughs

 they distort the shape of turning points and as a 
consequence extend the period over which a trough or a 
peak appears to exist

 they flatten out points of inflection in the series often 
resulting in their elimination

Dealing with the end point problem

There are essentially two solutions to this problem. The first 
is to forecast the original data m periods into the future and 
then apply the 2m+1 Henderson filter as before. However, the 
accuracy of the trend estimate will depend on the accuracy of 
the forecasts produced. Alternatively, a set of surrogate filters 
can be applied to the data towards the end of the sample, but 
because these will be asymmetric filters the problem of phase 
shifting is reintroduced. 

Extrapolating the GDP data forward three periods provides 
sufficient information to fit the conventional 7-term 
Henderson filter. This is plotted in Figure 3 where the end of 
sample trend estimate is represented by the dashed segment.6 

Henderson filter but introduce a minimal amount of phase 
shift. The ABS uses a procedure outlined in Doherty (2001).7 
This essentially aims to minimise the mean square revision 
between the trend estimates of the surrogate and the main 
Henderson filters. Kenny and Durbin (1982)8 observed that 
these surrogate Henderson weights are roughly what you 
achieve if you extrapolate the series by a simple linear model 
prior to smoothing. Therefore, it is not surprising that the 
surrogate filters produce a similar end of sample trend to that 
in Figure 3. 

Trend revisions and the identification of turning 
points

Trend estimates towards the end of samples are subject 
to revision as forecasts are replaced with actual data or 
asymmetric filters are replaced with symmetric ones. This 
can be seen from Figure 4, where trend estimates are derived 
recursively using the type of ARIMA forecasts shown in 
Figure 3. The surrogate filter approach produces a similar 
looking pattern. Trend revisions are usually greater around 
turning points in the data.

Figure 3
GDP percentage change quarter on quarter (GDP) 
and Henderson 7-term filter trend estimate with 
Autoregressive Integrated Moving Average 
(ARIMA) extrapolation (ARIMA HF7)

In order to develop a collection of surrogate Henderson filters 
designed to calculate trend estimates all the way to the end of 
the sample, it is necessary to consider non-symmetric moving 
averages. The preferred class of surrogate filter will be those 
that exhibit similar cycle dampening properties of the main 

Figure 4
Revisions to the ARIMA 7-term Henderson filter 
trend estimates

19
96

 Q
1

19
96

 Q
3

19
97

 Q
1

19
97

 Q
3

19
98

 Q
1

19
98

 Q
3

19
99

 Q
1

19
99

 Q
3

20
00

 Q
1

20
00

 Q
3

20
01

 Q
1

20
01

 Q
3

20
02

 Q
1

20
02

 Q
3

20
03

 Q
1

20
03

 Q
3

20
04

 Q
1

20
04

 Q
3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

GDP ARIMA HF7

Previous trend estimates

Both techniques are inherently backward-looking. Forecasts 
are generally produced by extrapolating recent trends, and a 
surrogate filter takes a moving average of past data. As a result, 
focusing on trend estimates may hamper the accurate and 
speedy detection of turning points in the data. This is one of 
the central issues concerning the use of trend estimates and is 
often cited as a justification for not using them. 

However, this argument can be overstated, for it is wrong to 
suggest that it is otherwise easy to detect turning points in 
the data.9 It must also be acknowledged that in real time data, 
the definitive existence of turning points might not emerge 
until later vintages of data are published, by which point the 
sample has moved on sufficiently to make trend estimates 
more reliable. As later vintages of the data are based on more 
information, it is a fair proposition that they will be more 
accurate in placing turning points. However, these later data 

20
00

 Q
1

20
00

 Q
3

20
01

 Q
1

20
01

 Q
3

20
02

 Q
1

20
02

 Q
3

20
03

 Q
1

20
03

 Q
3

20
04

 Q
1

20
04

 Q
3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

GDP

ARIMA HF7



Office for National Statistics66

Fitting trends to time series data Economic Trends 633 August 2006 Economic Trends 633 August 2006 Fitting trends to time series data

Office for National Statistics 67

vintages are only available with a lag. For example, Blue Book 
two estimates of National Accounts data are released around 
18 to 24 months after the preliminary estimates, so a further 
five to eight quarters of information will be available before 
we have a mature estimate of the data at any point in time.10

Different types of Henderson filter

As filter lengths become longer, it is expected that the 
resulting trend estimates become smoother, because any 
idiosyncratic movement in the data will be averaged out over 
a larger number of observations. This is shown in Figures 5 
and 6 where the central weights of the Henderson 7-, 9- and 
11-term filters along with the respective trend estimates are 
plotted.

The job of the filter is therefore to identify and isolate the 
short-term cycles while maintaining the medium- to longer-
term cycles. Spectral analysis of the original and trended 
data can therefore give an indication of what effects a filter 
has. This effect is summed up in the gain function which 
defines the length of each cycle that a filter allows to remain 
in the data.11 Table 2 reports the gain of different types of 
Henderson filter.

When applied to quarterly data, a 7-term Henderson moving 
average preserves 50 per cent or more of the strength of 
cycles at least 4.63 quarters long; cycles shorter than this are 
therefore reduced to less than 50 per cent of their strength 
in the filtered series. When the 7-term Henderson filter is 
applied to quarterly series, cycles shorter than a year will be 
largely removed from the data. For example, any cycle with 
a frequency of less than 3.49 quarters will be reduced to less 

Figure 5
Central weights for the Henderson 7-, 9- and 11-
term filters (HF7, HF9, HF11)
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A common criticism levelled at the use of trends is 
arbitrariness. For example, by selecting different lengths of 
filter it is possible to produce different trends, and who is 
to say which is the most appropriate, and why? This takes 
another dimension when there are several possible ways of 
producing trends – with Henderson and Kalman filters just 
two examples. Again, different methods will likely produce 
different trend estimates, so the practitioner has fair scope to 
make the trend look how they want.

However, spectral analysis can go some way to justifying the 
use of different types of filter. A cycle refers to a repeating 
pattern of behaviour and a time series can be thought of 
as representing the complex interaction of many different 
cycles of different behaviours, strengths and frequencies. For 
example, in GDP we might expect there to be very short-run 
cycles accounted for by shocks, medium-run cycles accounted 
for by business cycles and longer-run cycles reflecting the 
long-term growth path of the economy.

Spectral analysis plots the power of these cycles at different 
frequencies. The frequency of a cycle refers to the number 
of times that a particular cycle repeats itself in a given time 
period. So a cycle with a length of six months will have an 
annual frequency of two and a ten-year cycle will have an 

Figure 6
7-, 9-, and 11-term Henderson Filter trend 
estimates (HF7, HF9 and HF11)
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Table 2
Impact of Henderson moving averages on cycles12

Quarters

No. of terms 10% 25% 50% 75% 90%

5 2.60 2.84 3.34 4.21 5.51

7 3.49 3.88 4.63 5.88 7.74

9 4.33 4.84 5.81 7.41 9.78

11 5.15 5.78 6.95 8.89 11.73

13 5.95 6.69 8.06 10.32 13.64

23 9.89 11.16 13.49 17.31 22.90

33 13.77 15.56 18.84 24.18 31.99

annual frequency of just 0.1. The trend contributes to the 
behaviour of the spectrum around cycles of longer duration, 
so will have larger power at smaller frequencies, while the 
irregular fluctuations dominate in the shorter duration cycles, 
so will have higher power at bigger frequencies. 
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than 10 per cent of its strength. Any cycle longer than 7.74 
periods (approximately 2 years) will largely remain with at 
least 90 per cent of its strength. Consequently, the 7-term 
Henderson filter removes a substantial part of the irregularity 
in a quarterly series while retaining medium-term business 
cycles and longer cycles associated with the secular trend.

As seen in Table 2, the filters with longer terms will smooth 
out cycles of increasing lengths. The choice of filter will 
therefore depend on what length of cycles the trend estimate 
is to observe. Also, it will differ for the frequency of the data, 
where longer-term filters will be applied to higher frequency 
data. For example, the ABS uses 7-term filters with quarterly 
data, but 13-term filters on monthly data.

Kalman filters
Deriving a trend estimate is an example of a signal extraction 
problem. Signal extraction is concerned with finding the 
optimal estimate of an unobserved component (UC) of a 
data series at some point in the sample. In this case, from 
(1), the trend estimate (T

t
) can be viewed as an unobserved 

component of the measured series (Y
t
). These are common 

problems in economics where the important information 
(signal) may be embedded in more noisy measured data.13 

The Kalman filter14 is an extremely useful algorithm for 
these types of problems. It is highly flexible and enables the 
practitioner ample scope to design trend estimates with 
different properties. It also offers the further advantage of 
producing the optimal set of filter weights as we approach the 
end of the sample.

The Kalman filter works in two parts: prediction and 
updating. Prediction is simply the attempt to make a best 
guess at the state variables given our knowledge of the system 
and historical data and estimates. Updating is the process of 
combining our initial estimate of the state variable with the 
information contained in the current observed estimates.

The modelling procedure identifies two types of equations. 
The measurement equation(s) describes the process taken by 
the observed data, whereas the state equation(s) defines the 
process taken by the unobserved component.

Measurement equation  Y
t
=γ'T

t
+ε

t
 ε

t
~N(0,σε) (3)

State equation  T
t
= δ'T

t–1
+ψ

t
 ψ

t
~N(0,α2σε) (4)

This is a typical framework for estimating UC models – where 
in this case the UC is the trend estimate. The measurement 
equation describes the observed data as the sum of a trend 
and an error component which is a direct analogy to (1), 
and the state equation models the trend relative to its own 
past behaviour.15 The key factor here is the hyperparameter 
α2 which corresponds to the ratio of variances between the 
measurement and state equations. This is often referred to as 
the signal to noise ratio.

When the signal to noise ratio is low, then it implies that the 
variance of the state variable (trend) is low relative to the 
variance of the measured series. As a result, the variance of 
the measured series is considered to be largely accounted for 
by the irregular component and the trend estimate will be 

relatively smooth. However, as the hyperparameter increases, 
more of the variance in the measured data is attributed to 
the trend component. In this case the trend estimate will 
become less smooth and more reflective of the actual data. 
These parameters can either be estimated using maximum 
likelihood or imposed by the user depending on the degree of 
smoothing required.

Stochastic trends model

This is the basic workhorse of UC and trend modelling 
consisting of one measurement and two state equations:

Y
t
=T

t
+ε

t
 ε

t
~N(0,σε)

T
t
=T

t–1
+µ

t–1
+η

t
 η

t
~N(0,α

1
σε)

µ
t
=µ

t–1
+ς

t
 ς~N(0,α

2
σε)

Here the trend follows a unit root with drift or a stochastic 
trend. The effect of η

t 
is to allow the trend line to shift up and 

down, whereas ς
t 
enables its slope to change. Therefore, the 

larger the two hyperparameters α
1 
and α

2
, the more volatile 

the trend estimate. If the two hyperparameters are set to 
zero (α

1
=α

2
=0), then these equations will produce a trend 

series that increases by the fixed component µ every period. 
This will simply be a linear deterministic trend (a straight 
line) exhibiting maximum smoothness. However, as the 
hyperparameters are cranked up, the UC or trend estimate 
will form a closer fit to the measured data.

A specific form of the Kalman filter that is widely used is the 
Hodrick-Prescott16 or HP filter. The HP filter is normally 
defined in terms of a smoothness parameter λ. The trended 
series becomes smoother as this parameter becomes larger, 
with famously λ = 1,600 being the filter proposed by Hodrick 
and Prescott (1997) for quarterly observations of the level of 
US GNP. 

The HP filter is simply the stochastic trends model where 
α

1
=0. The relationship between the HP smoothing parameter 

λ and the hyperparameter α
2
 is given by:

α
2
=    (1/λ)

Therefore, if λ = 1,600 then γ = 0.025. More specifically, as 
the smoothness parameter in the HP filter increases, the 
hyperparameter in the stochastic trends model falls; in each 
case a smoother trend estimate results. It should be clear that 
by varying the hyperparameters then the estimated trend can 
be as smooth as we want it to be.

Figures 7 and 8 plot various Kalman trends where α
1
=0 and 

α
2
 can take on various degrees of smoothing behaviour. These 

hyperparameters were derived so that these stochastic trend 
models behave in a similar way to the Henderson 7-, 9- and 
11-term filters in Figures 5 and 6.17 The gain function can also 
be calculated for Kalman filters in order to identify their cycle 
dampening characteristics.

Other Kalman filter models

The flexibility of the Kalman filter approach does not just 
lie in the choice of smoothing parameters, but also in the 

2

2 2

2 2

√

2

2

2

2
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Conclusions 
There are various ways in which users can fit a trend to 
time series data. This article has described two of the 
most common in the Henderson and Kalman filters. Both 
approaches allow the user a degree of flexibility. Although 
Henderson filters are widely used, Kalman filters arguably 
offer the practitioner a more comprehensive tool for fitting 
trends to time series data. 

Notes
1. Currently trend estimates are used in some labour market 

statistics, UK trade, and the index of production.

2. See Trewin (2003).

3. For example, retail sales, index of production, consumer price 
indices and UK trade.

4.  See Henderson (1916). Henderson filters are also commonly 
used to seasonally adjust data and are incorporated into the 
US Bureau Census X-11 and Statistics Canada X-11 ARIMA 
programs.

5.  A simple filter is where each term is given the same weight (w
j
=1/

7 for j=–3,...,3).

6. In this case the GDP data were extrapolated using an ARIMA 

(0,1,1) process where y
t
=y

t–1
+ε

t
+θε

t–1
.

7. See Doherty (2001) which formalises the methodology of 
Musgrave (1964). 

8. See Kenny and Durbin (1982). 

9. The Business Cycle Dating Committee at the National Bureau 
of Economic Research waits a relatively long time before dating 
peaks and troughs in the United States. This is because it wishes 
to avoid making premature judgements based on relatively 
immature data that are likely to be revised.

10. Chamberlin (2005) argues that trend revisions are relatively 
minor compared with revisions to the underlying data. 

11. For a moving-average filter, the filter gain can be calculated using 
the formula

 G(θ)=           w
j
cos(θj)

12. This table is taken from Trewin (2003).

13. Such as the natural rate of unemployment or the level of 
permanent income.

14. See Kalman (1960).

15. For example, any ARIMA type model could be used here.

16. See Hodrick and Prescott (1997).

17. Koopman and Harvey (2003) explain how the central weights of 
the Kalman filter can be calculated. A numeric method can then 
be used to find α

2
 so that the squared difference between the 

Kalman filter weights and that of the respective Henderson filter 
is minimised. 

18. The stochastic trends model is generally a good representation 
of I(1) data such as log(GDP) but a local trends model might be 
more appropriate for I(0) data such as the GDP growth rate

 Y
t
=T

t
+ε

t
 ε

t
~N(0,σε)

 T
t
=T

t–1
+η

t
 η

t
~N(0,α2σε)

For I(2) processes, like nominal GDP levels, you might like to 

consider an accelerationist model where the rate of change in 
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Figure 7
Kalman filter central weights with hyperparameter 
1.5657 (KF (1.5657)), 0.7559 (KF (0.7559)) and 
0.4094 (KF (0.4094))

Figure 8
GDP percentage change quarter on quarter 
(GDP) and Kalman filter trend estimates with 
hyperparameter 1.5657 (KF 1.5657), 0.7559           
(KF 0.7559) and 0.4094 (KF 0.4094)
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underlying models that constitute the measurement and state 
equations. By contrast, the Henderson filter is limited to just 
fitting trends that follow a cubic process. This filter might 
therefore over-fit a trend line if the data are best described 
by a linear or quadratic process, and likewise will under-fit 
higher order models. On the other hand, the Kalman filter 
state equations can be designed to fit a large number of 
different underlying processes.18 

Kalman filters can also be modelled explicitly to achieve 
certain objectives. If the measured data have been affected 
by outliers, then dummy variables can be added to the 
measurement equation in order to limit their effect on the 
trend estimate. Also, other deterministic variables can be 
incorporated into the measurement and state equations 
in order to form richer models. In each case, the statistical 
significance of the model parameters can actually be tested by 
maximum likelihood techniques. 

i=–m

m

∑
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the slope of the trend can vary so as to track accelerations or 
decelerations in the data. This form of Kalman filter is similar to 

the cubic processes mapped by the Henderson filter.

Y
t
=T

t
+ε

t
 ε

t
~N(0,σε)

T
t
=T

t–1
+µ

t–1
+η

t
 η

t
~N(0,α

1
σε)

u
t
=u

t–1
+ø

t–1
+ς

t
 ς~N(0,α

2
σε)

ø
t
=ø

t–1
+v

t
 v~N(0,α

3
σε)
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