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Abstract

In the context of the supervised learning problem for time series forecasting, we focus on financial
time series and use the currency pair EURUSD to highlight issues that arise when daily data are
utilized for one-day forecasts of currency exchange rate moves. In light of our results for forecast
horizons of one day or more, we take a closer look at the EURUSD time series data to get a
better understanding of typical intraday moves and their magnitude and how their potential can
be harnessed for the development of consistently profitable trading strategies. By combining the
results of our own numerical studies with published findings from the literature and illuminating
them from a practical perspective, we motivate a simple intraday trading strategy for EURUSD
that avoids some of the problems associated with longer-term forecasts.

1 Introduction

There is a sizable body of literature describing quantitative approaches to the trading of financial
instruments such as stock index futures or currencies (forex). Many existing methods employ super-
vised learning techniques, e.g., Support Vector Machines (SVMs [1]) or Artificial Neural Networks
(ANNs [2]), which utilize historical data to train a model that is subsequently used to predict the
future behavior over forecast horizons of one day or more [3, 4]. Despite their sophistication and
their inherent classification performance, the approaches described in many publications face two
serious problems whose origin lies in the nature of the financial time series data and that we discuss
in the remainder of this section.

1.1 Training window size and concept drift

Frequently, training windows of a size of one year or more are used to train a model that is then
utilized for predictions in a more recent time period ranging from days to years [5, 6, 7, 8, 9, 10,
11, 12, 13].
While it may generally be true for static data that a larger data set for training leads to better
predictive models, the concept drift [14, 15] for time-dependent problems can lead to changing rela-
tionships between the features and the target variable (as well as between the features themselves)
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as time progresses; therefore, shorter training windows, which more accurately reflect the current
relationship between the features and the target variable, can produce better results. (See Ap-
pendix A for a very simple concept drift toy problem and Appendix B for an illustrative example
involving the directional prediction of daily moves of the currency pair EURUSD.) For financial
time series, this issue has been addressed in the literature [16]; but, in our opinion, it does not seem
to be adequately reflected in many more recent publications. As for example discussed in [17], the
problem of the concept drift can be tackled by the use of adaptive techniques or by attempting to
find an optimal choice for the training window size.

1.2 Forecast horizon

In many publications, the forecast horizon is on the order of one day or more [6, 7, 8, 9, 10, 12].
If only daily data are used, this choice makes it impossible to harness detailed information about
intraday moves in order to increase the predictive performance.
One may speculate that it may be worthwhile for a practitioner to explore shorter forecast horizons
in conjunction with carefully chosen entry and exit times that — as we will show below for EURUSD
— might be advantageous for the design of profitable trading methodologies. In the following, we
would like to outline two problems with forecast horizons of one day or more that can be avoided
by performing intraday forecasts with data of finer granularity.
First, as we demonstrate in Appendix B, forecasts over horizons of one day or more based on daily
data are prone to sensitivity to small differences between sets of data from different sources. While
differences between data sets of higher frequency also lead to inconsistencies between individual
forecasts, the overall outcome for one day’s worth of data is the integral over many shorter-term
forecasts, resulting in a consistent picture. Additionally, we can focus on intraday periods of
significant moves and liquid markets instead of being limited to daily close data that may have
been recorded at inconsistent times during thin market conditions.
Second, by avoiding the use of daily data, we can bypass the problem of ambiguity with regard
to the omission of holidays; it is difficult if not impossible to decide which days should be omitted
from historical data, and the handling of holidays is not consistent between different data sources.
This is a problem because we would like consistently continuous data over the entire span of the
training and testing time frames.1 In contrast, the omission of holidays constitutes a very different
problem for the one-minute data that we utilize in our production environment: formally, the effect
of the inclusion or omission of a day’s worth of daily data corresponds to the inclusion or omission
of one minute in our intraday approach. The latter would cause a problem when markets are thin
(for example on a late Friday afternoon on the East Coast of the US): if we collected data from
several days during those times, some data points would effectively be missing from the data set
due to lack of market activity; consequently, the results would likely be erratic. As we show in the
following, however, it is possible to focus on times when the continuity of the data flow is likely to
be consistent for a currency of interest. Moreover, it turns out that there are patterns of intraday
behavior that are preserved over periods of years with dramatically varying market conditions.

1For example, it is not clear why it should matter for a prediction of the one-day change of the EURUSD close
from April 11th to 12th, 2016 that Easter Monday, March 28th, 2016 was a market holiday in Europe. And, since
many global markets (including forex) were open on Easter Monday, it is not clear why the daily data point for
that day should not be included (i) in training the model and (ii) in the feature calculations for the April 11th/12th

prediction.
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2 A case for intraday trading strategies

In the appendix, we present a further discussion of the concerns regarding the training window
size outlined in Section 1.1 above. Specifically, the numerical experiments described in Appendix
B demonstrate that the choice of an appropriate size for the training data window is a non-trivial
task. We also show that small differences between data sets from different sources can have a
dramatic effect on the results obtained by predictive methods; thus, robustness is a serious issue.
Instead of discussing possible incremental computational improvements aimed at enhancing the
accuracy of one-day predictions, however, the remainder of this section will focus on the charac-
terization of intraday behavior to get a better understanding of typical intraday moves and their
magnitude and how they could be harnessed for the execution of profitable trades.

2.1 Analysis of one-minute data for EURUSD

We have compiled data for EURUSD from July 2012 until March 2016 and will use the data to
identify patterns that consistently appear during the entire time period studied. In conjunction
with published findings from the literature for earlier years, we consider the time period of almost
four years to provide sufficient evidence to suggest that there are intraday patterns of behavior that
are preserved over periods of years with dramatically varying market conditions.
We obtained one-minute bid open-high-low-close data for EURUSD from Dukascopy Bank SA [18],
as well as from OANDA Corporation [19], leading to identical conclusions. We excluded weekends
from the data and used the Perl DateTime Module [20] to convert time stamps from Greenwich
Mean Time (GMT) to Central European Time (CET) or Central European Summer Time (CEST,
during the period of daylight saving).
For the intraday movement, we characterize volatility2 in light of the question when, regardless
of direction, we can expect a move that will be large enough to generate profit within a desired
time interval after accounting for transaction costs. As a metric for the magnitude of intraday
movement, we compute the maximum change (increase or decrease) from a given time t0 over a
k-minute interval (k = 1, 2, 3, . . .). We define the maximum increase ∆ymax of the exchange rate y
over k minutes as

∆ymax ≡ max{yt − y0} where t0 ≤ t ≤ t0 + kminutes , (1)

and, analogously, the maximum decrease ∆ymin as

∆ymin ≡ min{yt − y0} where t0 ≤ t ≤ t0 + kminutes . (2)

In order to represent the volatility as a function of the hour h of the day, we then define the mean
maximum increase ∆ymax(h, k) as in the following example for h = 10 and k = 20:

∆ymax(h = 10, k = 20) ≡ mean{∆ymax | t0 = 10:01, 10:02, . . . , 11:00 and k = 20} . (3)

The reason for t0 ranging from 10 : 01 to 11 : 00 and not from 10 : 00 to 10 : 59 is that we select
the time of the day based on the time stamps of the one-minute open-high-low-close data. For

2We use the term volatility as a loose synonym for “magnitude of variability.” This is different from the definition
of implied volatility that is derived from an option pricing model and that is the basis for the CBOE Volatility
IndexR©[21].
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each of the minutes with a given hourly time stamp, we then compute the maximum increase by
determining the maximum relative to the open of the next minute; taking the maximum relative
to the close values yields virtually identical results. The mean maximum decrease ∆ymin(h, k) is
defined analogously to Equation (3).
For data from July to December 2015, Figure 1 shows the mean maximum increase ∆ymax as a
function of both the hour h of the day (CET/CEST) and k. In the contour plot, the colors are
separated by isolines and range from blue for 0 ≤ ∆ymax < 0.0001 to red for 0.0018 ≤ ∆ymax <
0.0019. (The values at the end of the day after the close of the North American markets should
be viewed with a grain of salt: that period of the day is irrelevant for our methodology, which
focuses on the European session; therefore, we can ignore weekend gaps, early market closing days,
and other phenomena that distort the data late in the day.) We can see a monotonic increase of
∆ymax(h, k) as a function of k at a rate that is decreasing with k, and there are two ridges that
correspond to two distinct maxima as a function of the hour h of the day that we discuss below.
Analogously, the mean maximum decrease ∆ymin(h, k) (not shown) is monotonically decreasing
with k and the contour plot would feature two deep valleys. In Appendix C, we give a plausible
argument for this behavior that is based on a simple random walk model.
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Figure 1: Mean maximum increase over k-minute intervals as a function of both the hour h of the day and
k for EURUSD from July to December 2015. See text for details.

Figure 2 shows the mean (left) and median (right) maximum increase (top) and maximum decrease
(bottom) for EURUSD for k = 15 minutes; choices of smaller or larger values of k yield a similar
picture. The mean and median were computed from one-minute data for seven six-month time
periods from July 2012 to December 2015 (H212, . . . ,H215), and one time period from January
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2016 until March 25th, 2016 (H116, incomplete at the time of this writing).
We see that our findings for the years 2012–2016 are largely consistent with the detailed analysis for
1999–2001 in [22]. (Cf. specifically Figure 3 therein, which shows the intraday activity of EURUSD
for 1999–2001.) There are two distinct maxima: one that coincides with the European market
open at around the hours 8–10 local time (CET/CEST) and another one during the overlap of
the European and North American sessions at around the hours 14–16 CET/CEST. Furthermore,
there is a less pronounced maximum marking the beginning of the Asian session that follows a
trough after the North American session, and there are considerable drops during the lunch hours
in Tokyo and, to a lesser extent, in Europe. (Within the scope of the present paper, we ignore
inconsistencies due to different daylight saving schedules in North America and Europe.)
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Figure 2: Extrema of changes of EURUSD over 15-minute intervals. See text for details.

It is remarkable that, qualitatively, this intraday pattern is preserved despite quantitative differences
that reflect different market conditions during the different time periods. In Figure 2, we can for
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example see low volatility in H114 compared to higher volatility in H115. This difference in volatility
is qualitatively consistent with results that we obtained from an analysis of data of a different
granularity that was based on very different methods: the analysis of daily data with Bollinger
Bands, the Average True Range, and the Standard Deviation — standard technical indicators
used as metrics for volatility [23] — is illustrated in Figure 3 and shows low volatility in H114 in
comparison with H115.

Figure 3: The daily chart for EURUSD from July 2012 until March 2016 is shown on the top panel along
with the (14,2) Bollinger Bands. The 14-day Average True Range is shown in the center, and the 14-day
Standard Deviation in the bottom part. See text for details. Data and graphing software have been obtained
from OANDA Corporation [19].

2.2 Towards an intraday trading strategy

Based on the above findings, we can conjecture that promising trading activity of EURUSD should
be concentrated during the European session because that is when significant moves can be ex-
pected. Assuming a bid-ask spread of approximately 0.0001, which is equivalent to the transaction
costs per unit, Figures 1 and 2 suggest that holding periods of several minutes would be sufficient
to achieve an average net profit if it were not for a slight caveat: the “only” thing we would need
to figure out at any given time is if we should buy, sell, or sit still and do nothing. This is of
course an utterly non-trivial task, and, instead of discussing supervised learning approaches and
other techniques similar to the ones noted above for longer-term forecasts, we combine the results
of our own numerical studies with published findings from the literature that lend themselves to a
profitable — and surprisingly simple — trading strategy for EURUSD.
It has been shown that currencies tend to depreciate during local trading hours. To our knowledge,
this time-of-day effect was first reported in [24], and subsequent studies [25] have shown in more
detail that it appears to be stable over time. Data used in [25] range from 1997 to 2007 and show
specifically for EURUSD that there is a significant depreciation of EURUSD during the European
session that can be utilized for a trading strategy that is profitable even after accounting for
transaction costs.
These findings form the basis for the approach used in our production environment. But the ideas
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from the literature can be utilized even without further modifications: our numerical simulations
(allowing for transactions every minute) have shown that, if considering short positions3 only, a
profitable trading strategy can be pursued for EURUSD by opening a EURUSD short position just
before the start of the European session and closing the position at around the start of the North
American session. For this purpose, we conducted a number of tests that included a Wilcoxon
signed-rank test as an alternative to a paired t-test to compare the distribution of returns from
short positions against the returns from positions that were opened and closed at the same times,
but for which the trade direction had been chosen randomly.4

As we show in Appendix C, the specific times for optimal entry and exit for our short positions
vary somewhat from [25]; but, our results, which we obtained for data from 2012 to 2016, are
consistent with the results reported in [25] in the sense that, on average, we see a consistent decline
of EURUSD during the European session.

3 Conclusions and outlook

By combining the results of our own studies with published findings from the literature, we lend
support to a simple intraday trading strategy for EURUSD [25]. The strategy exploits the tendency
of EURUSD to decline during the European session and avoids some of the problems and incon-
sistencies associated with longer-term forecasts that we discuss in the appendix. While a simple
short-only strategy is at least marginally profitable on average for the time period considered in the
present paper, there are sessions that yield an upward move of EURUSD and that therefore result
in a loss. Our current work focuses on the identification of variables that can be used to characterize
the “market state” before the start of the European session and thereby provide information about
the expected directional move of EURUSD during European trading. In this manner, we have been
able to further increase the accuracy of our predictions.

4 Supplementary files

The original daily data files that were downloaded from Dukascopy Bank SA and OANDA are
available at http://www.krivan.com/wp/wp0116 along with the further processed files. Further-
more, two simple scripts to generate the latter and a script to reproduce Figure 5 (b) are available
as open-source software tools under the GNU General Public License. Please refer to the hosted
documentation for further details.

Acknowledgments

We would like to thank Dukascopy Bank SA and OANDA Corporation for granting us permission
to use their data for the purpose of this article. We would like to thank Indrė Žliobaitė for helpful
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3A short position is opened when one expects an asset’s value to decline; in this case it means selling EUR and
buying the equivalent amount of USD, motivated by the expectation that the EURUSD exchange rate will decline.

4This is analogous to a drug study when the effect of the drug is assessed by comparing certain data from the same
individuals before and after their treatment. We also conducted different numerical experiments with independent
samples and performed a two-sample Kolmogorov-Smirnov test as well as a Wilcoxon rank-sum test, yielding identical
conclusions for the optimal trade direction and time.
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Appendix A Grapefruit, oranges, and lemons: a concept drift toy
problem

Consider a citrus processing plant that receives from a specific supplier a mix of grapefruit, oranges,
and lemons that needs to be separated for further processing in three different processing lines.
The sizes of different citrus fruit vary considerably depending on variety and provenance [26]; but,
the task of separating the fruit into three classes could simply be performed by measuring their
diameter if we, based on our knowledge from previous deliveries from the specific supplier, could
assume that we know that the typical diameter of the grapefruit from the supplier is 90–150 mm,
that of the oranges 60–100 mm, and that of the lemons 45–70 mm.
Assuming normal distributions of the fruit sizes within each class, there will be some misclassified
examples if we set hard boundaries at 65 and 95 mm, but the bulk of the fruit will end up in the
correct processing line. So far, so good. Our classification scheme will work well as long as the
processing plant does not switch suppliers and the supplier keeps delivering produce of the same
typical size.
But now assume that, say over the period of one week, the deliveries from the original supplier
get gradually replaced by citrus from a different one, with the diameter of 90–150 mm for the
grapefruit, 50–75 mm for the oranges, and 70–90 mm for the lemons. By the end of the week, most
lemons will end up in the line for oranges and vice versa if we don’t retrain our model, using more
recent information about the fruit sizes.
Matters get further complicated in a case in which the diameter for all three fruit lies in the range
of 70–90 mm and we cannot separate them into three classes solely based on their diameter. In
this situation, additional features, such as color or details of their shape, would be required for an
accurate classification.
The problem of addressing the concept drift consists in maximizing the classification accuracy at
all times while the typical sizes of delivered fruit are changing; this, in turn, leads to the problem of
finding the optimal training window size in time at any given time. One way to tackle this problem
could be using Gaussian classes as described in Chapter 3 of [27].

Appendix B Predicting daily EURUSD returns

We use directional one-day forecasts for EURUSD to illustrate the dependence of the accuracy of
supervised learning forecasts for time series on the training window size. Regardless of limitations
of their practical applicability,5 we demonstrate that the best classification results are generally not
obtained for the largest training window size.
Publicly available daily EURUSD close data (reflecting the exchange rate at midnight GMT) for
the years 2004–2015 were downloaded from Dukascopy Bank SA [18]. We edited the data by first
deleting Saturdays and Sundays. (For some reason, the dates in the downloaded data were shifted
by one day, so we had to delete Fridays and Saturdays to omit weekends.) This first preprocessing
step resulted in the data set that we call “Dukascopy.” In a second preprocessing step, we compared
the data on the remaining days with proprietary data obtained through our institutional account

5As our results illustrate, a simple directional (up/down) prediction accuracy of more than 50% does not necessarily
result in profitable trades: in addition to the impact of transaction costs, it is possible that misclassifications happen
more often for forecast instances with large moves than correct classifications, resulting in an overall loss.
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with OANDA Corporation [19] and deleted a few days from the data labeled “Dukascopy” to align
the two data sets. This resulted in two data sets that each contain 3126 days and that we call
“DukascopyAligned” and “OANDAAligned.” For the 3126 days, the median absolute difference
between DukascopyAligned and OANDAAligned is 9.0 × 10−5 and the mean is 2.2 × 10−4, which
is on the order of one pip (0.0001). The standard deviation of the difference is 4.6× 10−4 and the
mean 2.1× 10−5; the largest discrepancies are occurring, not surprisingly, before and after holidays
when trading is thin and the data may also reflect the daily close recorded at inconsistent times
of the day. We also note that the difference between the data sets is smaller for more recent data.
The time series as well as the decadic logarithm of the absolute difference between the two data
sets are shown in Figure 4.

Figure 4: Daily EURUSD close for 2004–2015 for data from Dukascopy Bank SA aligned with OANDA
(top), and the decadic logarithm of the absolute difference between the two data sets (bottom). See text for
details.

We further divided OANDAAligned into eight five-year periods from 2004–2008 to 2011–2015.
For each of the five-year periods of approximately equal lengths, the portion of the five-year set
used for training ranged in 5%-steps from 5% to 80% (approximately three months to four years),
corresponding to relative training window sizes of 0.05, 0.10, . . . , 0.80. The models’ performance
was evaluated in terms of the accuracy of one-day forecasts on the most recent 20% of the data set
(one year); thus, for each of the runs with different training window sizes, the model was tested on
the same data. The model was retrained on a daily basis, using the most recent training window
for each of the one-day predictions.
Within the scope of the present article and for the purpose of illustrating the relationship between
the training window size and the accuracy, the computations were performed with GNU Octave
[28], a high-level programming language mostly compatible with MATLAB R©[29]. We made ad-hoc
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choices for the classifier, using Näıve Bayes [30] from the NaN toolbox [31], as well as for the
features (lagged log-differences) and the number of features included. We also obtained results of
numerical experiments that included the use of other feature sets (e.g., slopes of moving averages),
the use of several feature selection methods, and the use of other classifiers. This included a version
of our GNU Octave code that interacts with various tools from scikit-learn [32], a machine learning
library for Python. The results differed in details, but lead to conclusions identical to the ones
below.
The top portions of Figures 5 (a)–(d) show the up/down classification accuracy for one-day forecasts
as a function of the portion of the 2011–2015 five-year data used for training. The cumulative
returns obtained for the training window sizes resulting in the best accuracy can be seen in the
bottom parts.
Using the daily close values yd for each of the days d in the data set, we made an ad-hoc choice for
the n features given by the logarithmic differences

f(d, i) = ln yd − ln yd−i where i = 1, . . . , n . (4)

For the results presented in Figure 5 (a) and (b), we chose n = 10 to include daily close values in
the features going back 10 days.
For DukascopyAligned as well as for OANDAAligned, the best classification accuracy is achieved
when 10% of the data (six months) are used for training.
In this example, the classification accuracy as well as the cumulative return are slightly better for
the OANDAAligned data set than for DukascopyAligned; but, we need to emphasize that we are
only showing one specific time interval, and we made an ad-hoc choice for the features as well as
the classifier.
A different ad-hoc choice for the feature set was made in (c) and (d): The only difference between the
parameters used to produce the results in (a) and (b) in contrast to (c) and (d) is that the latter were
computed with n = 20. We see that using the DukascopyAligned data set yields a higher accuracy
and also a better return than OANDAAligned. For the DukascopyAligned (OANDAAligned) data
set, the best classification performance is achieved when 40% (5% or 40%) of the data, i.e., two
years (three months or two years), are used for training.
As our more comprehensive exploratory studies (data not shown) suggest, the apparent better
performance for one data set compared to another one for certain cases is entirely an artifact of
certain parameter choices; results for other parameter choices (e.g., number of features used) and
data (as we confirmed by using proprietary data from a third source; data not shown) vary widely.
As noted above, the differences between the data (DukascopyAligned vs. OANDAAligned) are on
the order of one pip. This is well over one order of magnitude less than the typical daily variations
of the exchange rate, and any meaningful predictive method for one-day forecasts would ideally be
robust with regard to such small differences between data sets.
Furthermore, our studies have shown that the presence or absence of one single daily data point
generally has a significant effect on predictions many days into the future, depending on the features
and their lag. This is problematic because it is difficult if not impossible to decide which “unusual”
days (e.g., Easter Monday, cf. footnote on page 2) should be omitted from historical data in order
to obtain a more “typical” representation of the past for training purposes.
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(a) DukascopyAligned
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(b) OANDAAligned
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(c) DukascopyAligned
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(d) OANDAAligned

Figure 5: Classification accuracy (top) as a function of the training window size and cumulative return
(bottom) obtained for the window size resulting in the best accuracy. Data from the five-year period 2011–
2015 were used. For (a) and (b), we used n = 10, and for (c) and (d) n = 20. See text for details.
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We then conducted a more comprehensive analysis for OANDAAligned and n = 20, covering
all eight five-year periods from 2004–2008 to 2011–2015. For each of the five-year periods of
approximately equal lengths, the portion of the five-year set used for training ranged in 5% steps
from 5% to 80% as described above.
For the eight data sets, the left portion of Figure 6 illustrates the distribution of training window
sizes for which the best classification accuracy is obtained, and the distribution of values of the
corresponding best accuracy is shown in the center. The panel on the right shows the mean accuracy
averaged over all eight five-year periods as a function of the relative training window size.
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Figure 6: Optimal training window size (left) and corresponding best classification accuracy (center) distri-
butions for the eight five-year periods 2004–2008 to 2011–2015. The panel on the right illustrates the mean
accuracy averaged over all eight five-year periods as a function of the relative training window size.

In Figures 7 (a)–(h), we present results analogous to the ones shown in Figure 5 (d) for 2011–2015,
but for all eight different five-year periods from 2004-2008 to 2011–2015. The up/down classification
accuracy for one-day forecasts as a function of the portion of the five-year data used for training
in shown on the top panels, and the cumulative return obtained for the window size resulting in
the best accuracy is illustrated on the bottom panels. In Figure 7 (c), e.g., the cumulative return
is shown for a relative training window size of 0.10; i.e., approximately six months’ worth of data
were used to train the models used for each of the one-day forecasts in the test set.
While the present study is by no means comprehensive and the approach has not been optimized
with regard to trading profit, our study demonstrates that the best results are not generally obtained
for the largest training window size: as shown on the left panel of Figure 6 for the eight five-year
periods we evaluated, we obtained the best classification accuracies for relative training window
sizes between 0.05 and 0.50. And, while the optimal choice depends on the specific time period
considered, the right panel of Figure 6 shows that the mean accuracy, when averaged over all eight
time periods, peaks at a relative training window size of 0.3 where it assumes a value of 0.512.
This maximum is smaller than the value of 0.536 shown on the center panel, because the latter was
computed by averaging the best results that were obtained for the eight periods individually and,
as shown on the left panel, for different training window sizes.
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(b) 2005–2009
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(c) 2006–2010
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(d) 2007–2011

Figure 7: Classification accuracy (top) as a function of the relative training window size and cumulative
return (bottom) obtained for the window size resulting in the best accuracy. Four five-year periods from
2004 to 2011 are shown on this page (continued on the next page).
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(f) 2009–2013
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(g) 2010–2014
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Figure 7: Classification accuracy (top) as a function of the relative training window size and cumulative
return (bottom) obtained for the window size resulting in the best accuracy. Four five-year periods from
2008 to 2015 are shown on this page (continued from the previous page).
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Appendix C A random walk model and its limitations

In this section, we model the behavior of EURUSD as a stochastic process to present a plausible
argument for the dependence of ∆ymax on k that is shown in Figure 1.
For a given hour h, we model the currency moves as a Gaussian random walk with normally
distributed random changes with variance σ2h and mean zero that are uniformly separated by time
intervals of length δt. (For this purpose, we could take δt = 1/ftick with the tick frequency ftick
that we assume to be constant.) Then the leading term for the expectation value of the maximum
of the walk after n steps will be given by ∆ymaxn ∼

√
n [33, 34, 35]. Per construction of our model,

we have 1 minute = α δt and therefore n = αk, with some positive constant α. Thus, if our model
assumptions are valid, we should expect

∆ymax(h, k) ≈ sh
√
k and (5)

∆ymin(h, k) ≈ −sh
√
k (6)

with a positive constant sh that depends on the hour of the day as well as on the volatility during
that time of the day.
The following numerical results are based on the same one-minute data for EURUSD from July
2012 until March 2016 that we used in Section 2.1 (H212, . . . ,H116). For H212–H116, we performed
non-linear fits of functions ± sh

√
k to the data to facilitate the comparison with fits of functions

that include additional terms [34, 35] (data not shown); the results shown in Figures 8, 9, and 11 are

consistent with those from linear fits that we performed to ∆ymax
2

and ∆ymin
2
. Figure 8 (a) shows

the mean of the 60-minute maximum increase, ∆ymax, and part (b) shows the mean decrease,
∆ymin, together with the coefficients sh from the least squares fits as well as the coefficients of
determination, R2. The behavior of sh mirrors the volatility as we had previously defined it in
Equations (1)–(3).
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Figure 8: The top panels show the extrema of changes of EURUSD over 60-minute intervals, ∆ymax(h, 60)
and ∆ymin(h, 60) (blue, left scales), and the least squares fit coefficients sh (green, right scales). The
coefficients of determination R2 are shown in the lower panels. See text for details.
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The least squares coefficients sh from the fits to ∆ymax and ∆ymin are not identical as they would be
for a symmetric Gaussian random walk; but, they only differ by at most a few percent. Furthermore,
the high R2 values indicate that the ∼ ±

√
k approximations describe the extrema rather well. This

appears astonishing, especially in light of several crude assumptions that we made and that are by
no means accurate representations of reality. (For example, we made the assumptions that, for a
given hour of the day, the tick frequency as well as the volatility are constant and that the changes
are normally distributed.)
It is notable, however, that there are two dips of R2 at around the hours 7 and 13. To gain insight
into one possible reason for the deviations from the model ∼ ±

√
k, it is instructive to realize that

both hours coincide with times of increasing volatility:
In Figure 9, we can see both ∆ymax and ∆ymin (blue) in comparison with the fitted functions (green)
for different times of the day. For the hours 5 and 9, shown in (a) and (b), the approximation by
the function ∼ ±

√
k is better than for the hours 7 and 13 that are shown in (c) and (d). For

∆ymax in part (c), for example, we see that the slope is decreasing more slowly than it would for
a square root, and for ∆ymin we observe that the slope is increasing more slowly than that of a
negative square root. This behavior is plausible, because the hours 7 and 13 fall into periods of
increasing volatility; therefore, for larger values of k, the “effective mean volatility” is larger. As a
consequence, a larger proportionality constant would be required for the square root of k to get a
good fit for larger values of k. In contrast, the volatility remains roughly unchanged following the
hours 5 and 9; hence, a better fit can be accomplished with a constant sh for those times.
But there is another observation that we make when we compare ∆ymax and ∆ymin: while the
positive and negative branches are approximately the same for the hours 5 and 9, we see that, for
the hours 7 and 13, ∆ymin is larger in magnitude than ∆ymax. Is it possible that there is a negative
bias during the hours 7 and 13? It turns out that the answer is yes; as we discuss in Section 2.2,
a negative cumulative average return for EURUSD during the European session has been reported
in the literature [25]. (See the bars on the top left graph of Figure 1 or the line on the top left
graph of Figure 3 therein.) But, based on the results published in [25], neither one of the hours 7
and 13 (hours 01–02 and 07–08 New York time in [25]) yields a return that is significantly different
from zero, and, in particular, the return is not negative; thus, it seems that we cannot utilize the
depreciation as a plausible argument for the differences between ∆ymax and ∆ymin.
However, for the period from July 2012 to March 2016 that we included in our data, we have been
able to use a stochastic approach within the framework of our production environment to identify
both hours in question as times of significant decline of EURUSD. As an alternative explanation,
we now provide a reasoning based on one-minute close data.
We define the mean hourly return in a manner analogous to the definition of the mean volatility
in Equation (3) in Section 2.1: with the k-minute return at time t0 defined as

∆y ≡ yk − y0 where yk = y(tk) with tk = t0 + kminutes , (7)

the definition of the mean hourly return for the hour h = 10, for example, is

∆yhourly(h = 10) ≡ mean{∆y | t0 = 10:01, 10:02, . . . , 11:00 and k = 60} . (8)

Analogously to the mean maximum increase and decrease, we are using 60 different values per hour
to compute the mean hourly return. (This is different from the methodology used in [25], which
is based on a comparison of midquote prices at the beginning and end of each hour.) We then
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Figure 9: ∆ymax and ∆ymin (blue) in comparison with the fitted functions ± sh
√
k (green) for different

hours h of the day. See text for details.

use the mean hourly return to compute the cumulative mean daily return, which we annualize by
multiplying it with 250 (the approximate number of trading days per year).
Figure 10 shows the annualized cumulative mean daily return. We note that the overall variation is
on the same order of magnitude as the results presented in [25] for 1997–2007, and we can confirm
the mean depreciation of EURUSD during the European session that can be utilized for a trading
strategy that is as least marginally profitable after accounting for transaction costs. (We present
the return while the log return is shown in [25]; but, since the return is small, the difference is
negligible for this comparison.) But we would like to point out that there are significant differences
between our results and the ones reported in [25]. In particular, the decline during the European
session, according to our analysis, begins earlier and ends later: mean hourly returns (as defined
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above) are negative from hour 7 until hour 13. If we take the mean for a smaller value of k, the
period of depreciation extends even further into the North American session (data not shown).
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Figure 10: Annualized cumulative mean daily return for EURUSD from July 2012 until March 2016. Like
in the results presented in Figures 1 and 2, the bars at the end of the day after the close of the North
American markets should not be taken too seriously, because we did not exclude weekend gaps and early
market closing days.

This time pattern is consistent with conclusions from statistical significance tests associated with
our production code that we mentioned in Section 2.1 and also above in this section.
Figure 11 shows ∆ymax and ∆ymin in comparison with the fitted functions for h = 16 and h = 18.
The picture is the reverse of the situation for h = 7 and h = 13 above, albeit to a lesser extent:
during h = 16, the mean return is positive, and the volatility is decreasing somewhat. This is also
the case for h = 18, but to an even lesser extent and resulting in a better fit of ±s18

√
k to the data.
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Figure 11: ∆ymax and ∆ymin (blue) in comparison with the fitted functions (green) ± sh
√
k for h = 16 and

h = 18. See text for details.
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