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Abstract. We study the optimal dynamic trading strategy between a riskless
asset and a risky asset with momentum (momentum asset). The most salient
characteristic of momentum is that positive price shocks predict positive future
returns. This characteristic leads to big swings in returns over multiple periods.
Investors with relative risk aversion greater than one dislike such big swings. We
show that it is optimal for such investors to reverse momentum by holding less
or even shorting the momentum asset. We find that the optimal portfolio weight
also depends on the historical price path, in addition to momentum. Different
historical price paths, even if they have the same momentum, lead to different
optimal portfolio weights. In particular, with rebound path (a historical price
path that decreases at the beginning and then rebounds later to have a positive
momentum), it is optimal for investors to hold less or may short the momentum
asset and hence suffer less or even benefit from momentum crashes.
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2 LI AND LIU

1. Introduction

This paper studies the optimal dynamic trading strategy between a riskless asset

and a risky asset which has momentum (we term it momentum asset). Because

future returns are predictable by past returns, momentum assets tend to have big

swings in returns over multiple periods. Investors with relative risk aversion greater

than one dislike these big swings. We show that it is optimal for such investors

to reverse the momentum by holding less momentum asset over longer horizons.

In fact, they may even short the asset with positive momentum, while the myopic

strategy has long position. Effectively, the investors home-make their own asset with

return reversal.

We find that the optimal portfolio weight also depends on historical price paths,

not just on momentum which is determined by the beginning and end prices of

the ‘look-back period’. In general, there can be rebound paths that decrease at

the beginning and then rebound later to have a positive momentum. Price paths

can be also generally trending up to have a positive momentum. The optimal

portfolio weights are different for different historical price paths (such as rebound and

upward-trend price paths) even if the paths have the same momentum. In particular,

the optimal strategy tends to have negative positions in the momentum asset with

rebound paths, while has positive positions with upward-trend price paths. The

myopic strategy widely used in academic literature and in practice only utilizes the

momentum variable. Our paper shows that the optimal strategy also exploits the

path dependence for a momentum asset, especially after sharp market rebounds.

Momentum is one of the most prominent empirical regularity in financial markets.

Jegadeesh and Titman (1993) document cross-sectional momentum when ‘look-back

period’ and ‘holding period’ are less than one year. Recently, Moskowitz, Ooi and

Pedersen (2012) investigate time series momentum that characterizes strong positive

predictability of a security’s own past returns. The salient feature of momentum is

the predictability of future return by the moving average of historical returns, which

necessarily introduces time delays into price dynamics.

Stochastic processes with time delays are just recently studied in mathematics

literature and are inherently non-Markovian. Stochastic control problems with

time delays are quite involved because they give rise to infinite-dimensional non-

Markovian systems, and the standard dynamic programming method cannot be

used in this case. We solve the optimal dynamic portfolio strategy by applying the

Cox and Huang (1989) approach. This approach makes the problem tractable. In

particular, when horizon is shorter than the length of the look-back period, we can

derive closed-form solutions.
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Daniel and Moskowitz (2016) document momentum crashes after sharp market

rebounds, which makes momentum strategy less appealing to risk-averse investors.

They study optimal momentum portfolio by maximizing the Sharpe ratio to im-

prove the performance of the standard momentum trading strategy. Their optimal

portfolio weights are the mean-variance portfolio weights. Cujean and Hasler (2015)

document a similar phenomenon in time series momentum. In these studies, the

trading strategies are myopic. When the risky asset has positive momentum, the

myopic portfolio weights are always positive because of the positive risk premium.

Our dynamic optimal strategy suffers less or even benefits from the momentum

crashes, because the dynamic portfolio weight is less than the myopic weight, and

can be even negative for rebound price path. This is due to the fact that the momen-

tum effect leads to long-lasting response of returns to a historical price shock, and

makes the hedging demand strongly reacts to the historical price path, in addition

to the momentum. Koijen, Rodŕıguez and Sbuelz (2009) study the optimal portfo-

lio when the look-back period of momentum is infinite. In this case, the problem

is much more tractable and the optimal weight becomes independent of historical

price path.

The optimal portfolio weight also has other interesting features. For example,

there are many bumps in the portfolio weight as a function of horizon, which is

caused by the joint impact of momentum and the time-varying expected returns in-

troduced by the path dependence. In contrast, the dynamic strategies with Markov

state variables typically have monotonically smooth horizon dependence. In addi-

tion, the path dependence leads to big fluctuations in portfolio weights, which imply

that market timing is important for momentum strategy.

The paper is organized as follows. We first provide an illustrative example in

Section 2 to describe the intuition of reversing momentum. Section 3 discusses a

formal model of momentum in continuous time. In Section 4, we analyze the return

characteristics implied by the momentum model. The optimal portfolio selection

problem is solved using the Cox-Huang approach in Section 5. Section 6 examines

the properties of the optimal dynamic momentum strategy. More general momentum

models are discussed in Section 7. Section 8 concludes. All the proofs are included

in the appendices.

2. An Illustrative Example

This section discusses a two-period binomial-tree model of momentum to illustrate

the intuition of reversing momentum in the paper. We study a financial market with

two assets, a riskless asset with constant gross return Rf and a risky asset, whose

gross return is characterized by a two-period binomial tree. The gross return over

period 1 can be either U with probability P or D (< U) with probability 1−P . The
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return over period 2 is either U +∆S with probability P or D+∆S with probability

1 − P , where S = U or D is the state at time 1. This setup keeps conditional

volatility constant. When ∆S 6= 0, return becomes past-dependent. To model the

momentum, we assume ∆S is positive (negative) when S = U (D). So the expected

return over period 2 increases by ∆U if period 1 realizes positive excess return, while

decreases by ∆D otherwise. The conditional volatility is a constant P (1−P )(U−D)2

at each node of the tree.

The optimization problem for an investor with expected CRRA utility over ter-

minal wealth at time 2 is given by

max
φ0,φ1

E0

[
W̃ 1−γ

2

1− γ

]
= max

φ0,φ1

E0

[(
W0R̃

p
1R̃

p
2

)1−γ

1− γ

]
, (2.1)

where φ is the portfolio weight invested in the momentum asset, W̃ is the wealth,

R̃p is the portfolio return and γ > 1 is the constant relative risk aversion coefficient.

Backward deduction implies that the above problem is equivalent to

max
φ0

E0

[
W 1−γ

0

1− γ
(R̃p

1)
1−γ max

φ1

E1

[
(R̃p

2)
1−γ

]]

= max
φ0

E0

[
W 1−γ

0

1− γ
(R̃p

1)
1−γE1

[
(R̃∗

2)
1−γ

]]
,

(2.2)

where R̃∗
2 is the optimal portfolio return over period 2. By defining ς̃ = E1

[
(R̃∗

2)
1−γ

]
,

(2.2) becomes

max
φ0

E0

[
W 1−γ

0

1− γ
(R̃p

1)
1−γ ς̃

]
. (2.3)

To rewrite (2.3) in terms of a standard portfolio problem, we need to define a new

probability to eliminate ς̃,
dP∗

dP
= ς̃ .

Then the original dynamic portfolio selection problem under the physical measure

becomes a myopic problem under the new measure P∗,

max
φ0

E∗
[W 1−γ

0

1− γ
(R̃p

1)
1−γ

]
.

We choose ∆S to guarantee both no arbitrage (i.e., D + ∆S < Rf < U + ∆S) and

positive risk premium, so that any negative demand is not caused by negative risk

premium. Appendix A.1 shows that the up state probability P ∗ under the new

measure is smaller than P , and decreases as ∆U −∆D increases. This reduces the

optimal stock position at time 0 comparing with the myopic strategy which only

cares about the utility one period ahead. When ∆U − ∆D is big enough, we have

E∗[R̃1] = P ∗U + (1− P ∗)D < Rf , which is equivalent to φ0 < 0, a negative optimal

demand at time 0.
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Figure 2.1. The portfolio returns for the optimal strategy (R∗) and

the myopic strategy (Rm); and the terminal utilities for the optimal

strategy (V ∗) and the myopic strategy (V m) at each market state.

Here Rf = 1, U = 1.5, D = 0.7, P = 0.5, γ = 5, W0 = 1, ∆U =

∆ = 0.3 and ∆D = ∆ = −0.1. At time 0, the optimal demand

φ∗0 = −0.05 < 0, while the myopic demand φm
0 = 0.13 > 0. The

expected terminal utilities are V̄ ∗ = −0.19 and V̄ m = −0.20 (< V̄ ∗)
for the optimal and myopic strategies respectively.

Fig. 2.1 illustrates an example where the optimal position in momentum asset at

time 0 is negative, while a myopic strategy always holds positive position whenever

the risk premium is positive. For the optimal strategy, the short position at time 0

leads to smaller (greater) portfolio return at state U (D) over period 1 relative to the

myopic strategy. The two strategies have the same returns at each state over period

2. Because ς̃ reduces the ‘probability’ of up state, the expected terminal utility for

the optimal strategy is, however, greater than that for the myopic strategy.

We complete this section with the following remark. When ∆S = 0, the risky

asset has a standard i.i.d return process. Then P ∗ = P and the optimal strategy

always takes long position in the risky asset. Therefore, the short position in the

risky asset illustrated in Fig. 2.1 is caused by the momentum ∆S 6= 0.
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3. A Continuous-time Model of Momentum

In this section, we specify the price dynamics of the momentum asset. The un-

certainty is represented by a filtered probability space (Ω,F ,P, {Ft}t≥0), on which a

one-dimensional Brownian motion Bt is defined. The price of the risky momentum

asset at time t satisfies

dSt

St

=
[
αmt + (1− α)µ + r

]
dt + σdBt, (3.1)

where mt is the momentum variable, r is the short rate which is assumed to be

constant, µ is a constant which can be shown later to be the average risk premium,

and α measures the fraction of momentum in the expected returns. When α = 0,

the stock price (3.1) reduces to a standard geometric Brownian motion.

The time series momentum across different asset classes and markets documented

in Moskowitz et al. (2012) shows that “the past 12-month excess return of each

instrument is a positive predictor of its future return.”1 Accordingly, the momentum

variable mt is defined as an equally-weighted moving average (MA) of historical

excess returns over a past time interval [t− τ, t],

mt =
1

τ

∫ t

t−τ

(dSu

Su

− rdu
)
, (3.2)

where τ ≥ 0 is the ‘look-back period’ of the momentum. So mt is determined by

ln St − ln St−τ . The equally-weighted MA (3.2) is mostly used in practice. For ex-

ample, Neely, Rapach, Tu and Zhou (2014) show that this MA indicator displays

statistically and economically significant predictive power to the equity risk pre-

mium. We focus on this momentum variable in our paper. We will also discuss

other types of MA later in Section 7.

When τ = 0, the momentum becomes the current rate of excess return, mtdt =

dSt/St − rdt, and (3.1) reduces to the price with a standard geometric Brownian

motion type. When τ = dt, then the momentum variable becomes the last period

excess return and hence stock return in (3.1) becomes a first order autoregressive

(AR(1)) process. DeMiguel, Nogales and Uppal (2014) find that, by exploiting serial

dependence, the arbitrage portfolios based on a first order autoregressive return

model attains positive out-of-sample returns after adjusting for transaction costs.

The greater the look-back period τ is, the less volatile the momentum variable is.

1For a large set of futures and forward contracts, Moskowitz et al. (2012) provide strong evidence
for time series momentum based on the moving average of look-back excess returns. This effect
based purely on a security’s own past returns is related to, but different from, the cross-sectional
momentum. Through return decomposition, Moskowitz et al. (2012) show that positive auto-
covariance between a security’s excess return next month and it’s lagged 1-year return is the main
driving force for both time series momentum and cross-sectional momentum.
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In all, our model not only includes the autoregressive models as special cases, but

also can well capture the time series momentum effect documented in the literature.

We will show later that a more general form of (3.2) can also include the mean-

reverting Ornstein-Uhlenbeck process as its special case.

The MA of historical returns (3.2) uses latest past information and necessarily

introduces into price dynamics time delays,2 an inherent non-Markovian feature.

The resulting asset price model (3.1)-(3.2) is path-dependent and is characterized by

a non-Markovian system of stochastic delay differential equations (SDDEs), which

is relatively new to the finance literature. Let C([−τ, 0], R) be the space of all

continuous functions ϕ : [−τ, 0] → R. The following proposition shows that, for a

given initial condition St = ϕt, t ∈ [−τ, 0], the system (3.1)-(3.2) admits a unique

solution such that St > 0 almost surely for all t ≥ 0 whenever ϕt > 0 for t ∈ [−τ, 0]

almost surely.

Lemma 3.1. The system (3.1)-(3.2) has an almost surely continuously adapted

unique solution S for a given F0-measurable initial process ϕ : Ω → C([−τ, 0], R).

Furthermore, if ϕt > 0 for t ∈ [−τ, 0] almost surely, then St > 0 for all t ≥ 0 almost

surely.

Two observations follow Lemma 3.1. First, although (3.2) implies that

mt =
1

τ
(ln St − ln St−τ )− r +

σ2

2

only depends on two prices at time t and t− τ respectively, Lemma 3.1 states that,

to define the price process, we need the whole path of prices during [t− τ, t]. This is

because the historical price Su for u ∈ (t− τ, t) will be used to determine the future

price at time u + τ (> t). As time increases from t to t + τ , all the historical prices

during [t− τ, t] will be used successively. After this period, the prices over [t, t + τ ]

then become realized and will be used to form the prices over [t + τ, t + 2τ ]... We

will show later that the path-dependent feature is important for optimal dynamic

momentum strategy. Second, notice C([−τ, 0], R) is an infinite-dimensional space of

initial conditions. So Lemma 3.1 shows that the system (3.1)-(3.2) also has infinite

dimensions. The corresponding portfolio selection problem is conceptually much

more difficult than in the no-delay case, which has finite dimensions.

Although the continuous-time processes with time delays are relatively new in the

theoretical finance literature, the MA rules have been widely used empirically. In

addition to the papers cited above, various MA indicators are widely used among

practitioners (Schwager, 1989 and Lo and Hasanhodzic, 2010), and have significant

forecasting powers to equity risk premium. Brock, Lakonishok and LeBaron (1992)

2This is due to the fact that the lower limit of the integral, or the low boundary of the MA, is
a function of time t.
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find strong evidence of profitability of MA trading rules for Dow Jones Index. Zhu

and Zhou (2009) demonstrate that, when stock returns are predictable or when

parameter (or model) uncertainty exists, MA trading rules can well exploit the serial

correlations of returns and hence significantly improve the portfolio performance.

4. Return Characteristics of the Momentum Model

In this section, we examine the return characteristics implied by the momentum

model. Define st = ln St. Notice that the solutions to (3.1) are given piecewisely

as demonstrated in Appendix A.2. The expected values and variances of stock

returns, and hence the Sharpe ratios, should also have different forms in different

time intervals with length of τ . Proposition 4.1 confirms the conjectures.

Proposition 4.1. For $ ∈ [nτ, (n + 1)τ ], n = 0, 1, 2, · · · , the cumulative returns of

the stock over [t, t + $] are given by

st+$ − st =
τ

α
(1− α)

(
r + µ− σ2

2

)[ n∑
i=0

( i∑
j=0

(−α
τ
)j($ − iτ)j

j!

)
e

α
τ

($−iτ) − n− 1

]

+

[ n∑
i=0

(−α
τ
)i($ − iτ)i

i!
e

α
τ

($−iτ) − 1

]
st

− α

τ

∫ 0

−τ

[ n∑
i=1

(−α
τ
)i−1($ − iτ − u− t)i−1

(i− 1)!
e

α
τ

($−iτ−u−t)

]
st+udu

− α

τ

∫ $−(n+1)τ

−τ

[
(−α

τ
)n[$ − (n + 1)τ − u− t]n

n!
e

α
τ

[$−(n+1)τ−u−t]

]
st+udu

+ σ
n∑

i=0

∫ $−iτ

0

(−α
τ
)i($ − iτ − u− t)i

i!
e

α
τ

($−iτ−u−t)dBt+u,

(4.1)

and the conditional mean and variance of the cumulative returns are given, respec-

tively, by

Et

[
st+$ − st

]
=

τ

α
(1− α)

(
r + µ− σ2

2

)[ n∑
i=0

( i∑
j=0

(−α
τ
)j($ − iτ)j

j!

)
e

α
τ

($−iτ) − n− 1

]

+

[ n∑
i=0

(−α
τ
)i($ − iτ)i

i!
e

α
τ

($−iτ) − 1

]
st

− α

τ

∫ 0

−τ

[ n∑
i=1

(−α
τ
)i−1($ − iτ − u− t)i−1

(i− 1)!
e

α
τ

($−iτ−u−t)

]
st+udu

− α

τ

∫ $−(n+1)τ

−τ

[
(−α

τ
)n[$ − (n + 1)τ − u− t]n

n!
e

α
τ

[$−(n+1)τ−u−t]

]
st+udu,

(4.2)
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and

Vart

[
st+$ − st

]
=σ2

[ ∫ 0

−τ

e−
2α
τ

udu +

∫ −τ

−2τ

( 1∑
i=0

(−α
τ
)i(−iτ − u)i

i!
e

α
τ

(−iτ−u)

)2

du

+ · · ·

+

∫ −(n−1)τ

−nτ

( n−1∑
i=0

(−α
τ
)i(−iτ − u)i

i!
e

α
τ

(−iτ−u)

)2

du

∫ −nτ

−$

( n∑
i=0

(−α
τ
)i(−iτ − u)i

i!
e

α
τ

(−iτ−u)

)2

du

]
.

(4.3)

There are several observations from Proposition 4.1. First, the stock returns over

[t, t + $] in (4.1) are given piecewisely. In (4.1), the first term is a deterministic

function of horizon $; the second, third and fourth terms are weighted sum of the

historical prices su over u ∈ [t − τ, t]. The last term is a weighted sum of the

innovations dBu for u ∈ [t, t + $) with the weights decreasing with u. Therefore,

Proposition 4.1 states that the return process crucially depends on historical price

realizations, not just on the beginning and end prices of the look-back period.

Second, the weights on all initial values su, u ∈ [t− τ, t] in the second, third and

fourth terms of (4.1) sum up to zero. Therefore, the price level does not affect the

returns of momentum asset. In particular, when the historical prices are chosen as

the same constant value s̄ (i.e., su = s̄ for u ∈ [t − τ, t]), then the expected return

reduces to

Et

[
st+$−st

]
=

τ

α
(1−α)

(
r+µ− σ2

2

)[ n∑
i=0

( i∑
j=0

(−α
τ
)j($ − iτ)j

j!

)
e

α
τ

($−iτ)−n−1

]
,

for $ ∈ [nτ, (n + 1)τ ], n = 0, 1, 2, · · · .
Third, when α = 0, the returns in (3.1) becomes an i.i.d. process dSt/St =

(µ + r)dt + σdBt. Proposition 4.1 implies

Corollary 4.2. When α = 0,

st+$ − st =
(
µ + r − σ2

2

)
$ + σB$,

Et

[
st+$ − st

]
=

(
µ + r − σ2

2

)
$,

Vart

[
st+$ − st

]
= σ2$,

Sharpe ratio =
(µ

σ
− σ

2

)√
$.

(4.4)

Fourth, we look at the case of $ ≤ τ in the following corollary and then numeri-

cally examine the case for $ > τ .
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Corollary 4.3. For $ ≤ τ ,

st+$ − st =
τ

α
(1− α)

(
r + µ− σ2

2

)(
e

α
τ

$ − 1
)

+
(
e

α
τ

$ − 1
)
st

− α

τ

∫ $−τ

−τ

e
α
τ

($−τ−u−t)su+tdu + σ

∫ $

0

e
α
τ

($−u−t)dBt+u,

Et

[
st+$ − st

]
=

τ

α
(1− α)

(
r + µ− σ2

2

)(
e

α
τ

$ − 1
)

+
(
e

α
τ

$ − 1
)
st

− α

τ

∫ $−τ

−τ

e
α
τ

($−τ−u−t)su+tdu,

Vart

[
st+$ − st

]
=

σ2τ

2α

(
e

2α
τ

$ − 1
)
.

(4.5)

Especially, when the initial values are chosen as the same constant value s̄ (i.e.,

su = s̄ for u ∈ [t − τ, t]), the expected cumulative return and the Sharpe ratio are

given, respectively, by

Et

[
st+$ − st

]
=

τ

α
(1− α)

(
r + µ− σ2

2

)(
e

α
τ

$ − 1
)
,

Sharpe ratio = (1− α)

(
r + µ− σ2

2

)√
2τ

σ
√

α

√
e

α
τ

$ − 1

e
α
τ

$ + 1
−

√
2αr$

σ
√

τ(e
α
τ

$ − 1)
.

(4.6)

Interestingly, the Sharpe ratio in (4.6) depends on the riskless rate r. This is

different from the standard geometric Brownian motion case in Corollary 4.2. By

comparing the first and the second equalities in (A.13), we can see that the riskless

rate in the Sharpe ratio is introduced by the momentum variable mt, which is defined

as a moving average of historical excess returns.

The expressions are more involved for the case $ > τ in Proposition 4.1. In

order to examine the tradeoff between payoff and risk over longer time horizons,

we numerically study how the expectations and variances of the cumulative returns

and the Sharpe ratios evolve with respect to the horizon $. We set the parameters

according to the calibrations described in Section 6.1, and the historical prices are

chosen as the same constant number su = s̄ for u ∈ [t− τ, t]. Fig. 4.1 illustrates the

mean values and standard deviations of returns and the Sharpe ratios over a five-year

horizon. Although the means and variances of the returns and the Sharpe ratios in

Proposition 4.1 are given piecewisely, they are continuous in time as illustrated in

Fig. 4.1.

To exploit the impact of momentum, we examine two values of the momentum

fraction parameter: α = 1 (the blue solid line) and α = 0 (the red dash-dotted line).

When α = 0, the stock process (3.1) reduces to a standard geometric Brownian

motion, and the mean and variance become linear functions of horizon $. Fig. 4.1

shows that both the mean value and standard deviation of the returns of momentum
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Figure 4.1. (a) The mean value R̄$ = Et

[
st+$ − st

]
and (b) stan-

dard deviation σ(R$) = Stdt

[
st+$−st

]
of cumulative returns and (c)

the Sharpe ratios SR$ = (R̄$ − r)/σ(R$) conditional on a constant

historical price path su = s̄ for u ∈ [t − τ, t]) as functions of horizon

$. Here τ = 1, r = 3%, µ = 2.38%, σ = 13.3% and the parameter of

momentum fraction α = 0 or 1.

asset are convex functions of horizon $. The greater α is, the more convex they are

and the greater their growth rates are. The Sharpe ratios for the momentum asset

is smaller (greater) than in the standard geometric Brownian motion case for short

(long) horizons $.

Notice that the historical price path can also affect the mean value and Sharpe

ratio, while cannot affect the variance. For example, if there is an increasing (de-

creasing) pattern in the historical path, then the growth rate of the mean value

becomes bigger (smaller) because the weights on more recent past returns are rel-

atively bigger in (4.1), implying that the initial trend has a positive impact on

expected return and hence Sharpe ratio. This path effect on portfolio selection will

be further explored in next two sections.

Corollary 4.4. For $ ∈ [nτ, (n+1)τ ], n = 0, 1, 2, · · · , the impulse-response function

for the log price and return are given, respectively, by

Dt[st+$] = σ
n∑

i=0

(− α
τ

)i
($ − iτ)i

i!
e

α
τ

($−iτ), (4.7)



12 LI AND LIU

and

Dt[dst+$] = σ

[ n∑
i=1

(− α
τ

)i
($ − iτ)i−1

(i− 1)!
e

α
τ

($−iτ)−
n∑

i=0

(− α
τ

)i+1
($ − iτ)i

i!
e

α
τ

($−iτ)

]
dt.

(4.8)

Finally, to further exploit the path dependence property, we examine the response

of returns to an innovation. The impulse-response function can be examined via the

Malliavin derivatives (Detemple, Garcia and Rindisbacher, 2003). Corollary 4.4

states that the cumulative returns of momentum asset react to an initial shock

piecewisely. For long horizons $, the response decreases in horizon. However it is

easy to check that the returns have no response to the shock when replacing mt by

an Ornstein-Uhlenbeck process, which is frequently used to model time-varying risk

premium in the finance literature. This long-lasting response to a historical price

shock is inherent with momentum, and we will see later that it generates a new type

of hedging demand associated with the historical price path.

5. The Optimal Dynamic Momentum Strategy

We study the optimal dynamic trading strategy for an investor with expected

utility over terminal wealth at time T and constant relative risk aversion γ > 0.

The optimization problem of the investor is given by

sup
(φt)t∈[0,T ]

E0

[
W 1−γ

T

1− γ

]
, (5.1)

where φt is the fraction of wealth invested in the risky momentum asset.

Two approaches are most frequently used to solve the stochastic control prob-

lems: the dynamic programming method and the maximum principle (Yong and

Zhou, 1999). Since the stochastic delay differential equations (SDDEs) are not Mar-

kovian, the dynamic programming method results in an infinite dimensional partial

differential equation, which is difficult to be solved even numerically.3 However,

the maximum principle for the optimal control problem of SDDEs results in a full-

coupled forward-backward stochastic delay differential system (Chen and Wu, 2010),

and currently no algorithm exists for solving it numerically.

In this paper, we solve the optimization problem using the Cox and Huang (1989,

1991) approach, which is originated from finance literature and can be applied to the

3Larssen and Risebro (2001) show that the stochastic control problem for SDDEs can be reduced
to a finite dimensional problem under the special conditions that time delays do not appear in
both control variables and the value function, and parameters are also required to satisfy certain
equalities (Theorem 5.1 in Larssen and Risebro, 2001). Their methods cannot be applied to the
portfolio selection problems with past-dependent underlying stock processes, because in this case,
the time delays affect the control variables.
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non-Markov price models. The market is complete, and then there exists a unique

state price density, which is given by

πt = exp
{
−

∫ t

0

rdu− 1

2

∫ t

0

θ2
udu−

∫ t

0

θudBu

}
, (5.2)

where

θt =
αmt + (1− α)µ

σ
, (5.3)

is the market price of risk. The process πt can be interpreted as a system of Arrow-

Debreu prices. Because θt is path-dependent, the price of a dollar at time t in each

state is affected by the historical price path over [t− τ, t]. The standard Cox-Huang

approach leads to W ∗
T = (yπT )−1/γ, where y is the Lagrange multiplier. Define

ξt = exp
{
− 1

2

∫ t

0

θ2
udu−

∫ t

0

θudBu

}
,

which is a martingale. Let $ = T − t be the investment horizon and ξ̄0 =

E0

[
ξ

(γ−1)/γ
T

]
. The following proposition provides the general results on the opti-

mal dynamic momentum strategy and the value function.

Proposition 5.1. For an investor with an investment horizon $ = T − t and

constant coefficient of relative risk aversion γ, the optimal wealth fraction invested

in the risky asset is given by

φ∗t =
αmt + (1− α)µ

σ2
+

ψt

σπtW ∗
t

, (5.4)

where ψt is governed by

πtW
∗
t = W0 +

∫ t

0

ψudBu. (5.5)

and the remainder, 1−φ∗t , is invested in the cash account. The corresponding optimal

wealth process satisfies

W ∗
t = W0ξ̄

−1
0 π−1

t Et

[
ξ

(γ−1)/γ
T

]
, (5.6)

and the value function satisfies

V =
1

1− γ
W 1−γ

0 ξ̄γ
0 e(1−γ)rT . (5.7)

We show the details of the Cox-Huang approach in Appendix A.4. In order to

derive the optimal portfolio weight, we need to compute

Et[ξ
γ−1

γ

T ] = ξ
γ−1

γ

t Et

[
exp

{
− γ − 1

γ

(∫ T

t

θudBu +
1

2

∫ T

t

θ2
udu

)}]
, (5.8)

where the market price of risk θt is path-dependent. Unlike the Markovian system,

we cannot apply the Feynman-Kac formula to the infinite dimensional SDDEs sys-

tem in general. Due to the path dependence, the solution has to be given piecewisely.
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In the following analysis, we mainly focus on the case when investment horizon is

shorter than the length of the look-back period 0 ≤ $ ≤ τ . Subsection 5.1 provides

closed-form solutions in this case. This investment problem with investment horizon

shorter than look-back period are more important than with longer horizons for the

following three reasons. First, for investment horizons longer than 1 year, returns

observed in the data have reversals (Fama and French, 1988 and Poterba and Sum-

mers, 1988), which is not modelled in this paper. Second, in practice, momentum

strategies are implemented only for holding periods shorter than 1 year (Jegadeesh

and Titman, 1993, and Moskowitz et al., 2012). Third, the optimization problem

for the case $ > τ is much more involved technically, however, we can solve it

numerically.

5.1. Closed-Form Solutions.

Corollary 5.2. When 0 ≤ $ ≤ τ , the optimal wealth fraction invested in the risky

asset is given by

φ∗t = φm
t + φMH

t + φPH
t , (5.9)

where

φm
t =

αmt + µ(1− α)

γσ2
,

φMH
t = τA1,$mt,

φPH
t = A2,$ +

(
st−τ + rτ − σ2τ

2

)
A1,$,

(5.10)

and the corresponding optimal wealth process is given by

W ∗
t = W0ξ̄

−1
0 ertξ

−1/γ
t exp

{A1,$

2
s2

t + A2,$st + A3,$

}
, (5.11)

where

A1,$ =
α(γ − 1)

(
1− e

2α√
γτ

$)

γσ2τ
[
(
√

γ − 1)e
2α√
γτ

$
+ (
√

γ + 1)
] ,

A2,$ =

∫ $

0

e
∫ $

u (σ2A1,v+ α
γτ

)dv

[((
r − σ2

2

)(
1− α

γ

)
+ (1− α)

µ

γ
− α

γτ
sT−τ−u

)
A1,u

+
1− γ

γ2

α

σ2τ

(
(1− α)µ− α

(
r − σ2

2

)
− α

τ
sT−τ−u

)]
du,

A3,$ =

∫ $

0

[
σ2

2
A2

2,u +
σ2

2
A1,u +

((
r − σ2

2

)(
1− α

γ

)
+ (1− α)

µ

γ
− α

γτ
sT−τ−u

)
A2,u

+
1− γ

2γ2σ2

(
(1− α)µ− α

(
r − σ2

2

)
− α

τ
sT−τ−u

)2]
du.

(5.12)
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When γ > 1, we have Ā1 ≤ A1,$ ≤ 0, where Ā1 = −α(
√

γ+1)

γσ2τ
< 0 is a stable

steady state of A1,$. That is, A1,$ will converge to Ā1 as $ increases. When

γ < 1, A1,$ ≥ 0 and goes to positive infinity as $ increases. Interestingly, the

historical price realizations su for u ∈ [t − τ, t] can affect A2 and A3. This makes

the optimal portfolio weight depend on the infinite-dimensional space of historical

path. So investors need (and only need) the realized prices over the time period

[t−τ, t] when making decision at time t. This is different from the portfolio selection

problems under Markov prices, where investors make decisions only based on the

current values of state variables.

The optimal weight (5.9) invested in the momentum asset consists of three com-

ponents: φm
t , which is the myopic demand, φMH

t and φPH
t . We will call the last two

components momentum hedging demand and path hedging demand respectively.

The myopic demand φm
t follows a myopic momentum strategy studied in the empir-

ical literature and depends only on the momentum variable at time t, which is the

difference of the log prices at t and t − τ . The second and the third components

constitute the intertemporal hedging demand (Merton, 1971). Because A1,$ is a

monotonic and deterministic function of time t, the momentum hedging demand

φMH
t is linear in the state variable mt and monotonic in investment horizon. In-

terestingly, although the historical path is not a state variable, it can still affect

portfolio weight via the path hedging demand φPH
t . This is due to the fact that the

historical price path leads to time-varying expected returns and further affects the

time-varying coefficients in the intertemporal hedging demand. In particular, when

$ < τ , (5.12) states that A2 only picks up the information of the historical path

during [t − τ, T − τ ]
(
⊂ [t − τ, t]

)
, and hence the path during [T − τ, t) cannot

affect the portfolio weight. As investment horizon increases, more and more past

information is taken into account by the path hedging demand. When $ ≥ τ , all

the path [t− τ, t] will be considered.

When γ < 1, there is a finite critical horizon

$̂ =

√
γτ

2α
ln

(1 +
√

γ

1−√γ

)
, (5.13)

with which both the optimal portfolio weight and the expected utility approach

infinity. It follows from (5.13) that small enough γ can make this infinite expected

utility occur for the case $ ≤ τ .

When $ > τ , because θt is path-dependent, it is difficult to solve the conditional

expectation Et

[
ξ

(γ−1)/γ
T

]
in closed form. We numerically solve it in next section.
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6. Properties of the Optimal Dynamic Momentum Strategy

In this section, we first provide three lemmas on the properties of the portfolio

weight, then calibrate the model and further examine the properties of the optimal

momentum strategy numerically.

Because momentum is defined in terms of returns, the price level does not affect

the future returns as shown in Proposition 4.1. It is natural to expect that the price

level should also not affect the portfolio weights. The following lemma verifies this.

Lemma 6.1. When the historical price path su is changed to su + c for all u ∈
[t − τ, t], where c is a constant, φm

t , φMH
t and φPH

t do not change. So the three

demand components depend on historical returns.

It is easy to see that a change in the historical price path from su to su + c for

all u ∈ [t− τ, t], where c is a constant, cannot affect both myopic demand and mo-

mentum hedging demand because they depend only on momentum variable, which

is determined by the log price difference st− st−τ . Although φPH
t has different load-

ings on different historical prices, Lemma 6.1 states that the impacts on A2,$ and

A1,$st−τ in φPH
t cancel out each other and hence the path hedging demand is also

independent of a change in the historical price level. In other words, Lemma 6.1 im-

plies that the total weights on historical prices sum up to zero in the myopic demand

and the two types of hedging demands. However, all three demand components do

depend on historical returns.

Lemma 6.2. Assume α ∈ [0, 1]. When the risky asset has a positive momentum

(mt ≥ 0), the sum of myopic demand and momentum hedging demand is always

positive (φm
t + φMH

t > 0) for investment horizon $ ≤ τ .

Lemma 6.2 shows that in the bull market, the demands are always positive when

ignoring the path effect no matter γ > 1 or < 1. However, we will see that the total

demands can be negative (Fig. 6.3), that is, φm
t +φMH

t < −φPH
t , even when mt ≥ 0.

The path hedging puts different loadings on different historical prices in A2,$. Let

g(u) be the loading of −A2,$/A1,$ on su over u ∈ [t− τ, t]. Lemma 6.1 implies that

g(u) ≥ 0 and
∫

g(u)du = 1, and hence g(u) can be regarded as a density function of

the historical prices in A2,$. The following lemma characterizes the reaction of the

path hedging demand to historical price realizations.

Lemma 6.3. The density function g(u), defined on [t−τ, t], is a decreasing function

of u for u ∈ [t− τ, T − τ ] and becomes zero for u ∈ [T − τ, t].

Lemma 6.3 shows that the path hedging reacts to st−τ the most and the reaction

becomes smaller for the more recently historical prices during [t− τ, T − τ) and no

reaction to [T − τ, t). When γ > 1, A1 < 0. Lemma 6.3 implies that the hedging
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demand reacts to the historical log price sT−τ−u positively via A2,$ and hence an

increase in a historical price increases the path hedging demand. However, when

γ < 1, A1 > 0 and the loading of path hedging on historical prices becomes negative.
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Figure 6.1. The distribution function g(u) over u ∈ [t− τ, t]. Here

τ = 1 and γ = 5.

Fig. 6.1 illustrates the loadings of −A2,$/A1,$ on su over u ∈ [t−τ, t] for α = 0.32

(the upper panel) and α = 1 (the lower panel) with different investment horizons.

It verifies Lemma 6.3. We find that the loadings decrease faster for greater α by

comparing the cases α = 0.32 and α = 1.

6.1. Calibration. We calibrate the momentum model in this subsection and then

numerically examine the portfolio weights in next subsection. To be consistent

with the momentum literature, we discretize the continuous-time model (3.1)-(3.2)

at a monthly frequency. This results in an autoregressive model of return, whose

order depends on τ . We use monthly S&P 500 data over the period January 1871—

December 2015 from the home page of Robert Shiller (www.econ.yale.edu/∼shiller/data.htm).
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The total return index is constructed by using the price index series and the dividend

series. We set the instantaneous short rate r = 3% annually and µ = 2.38% as the

sample risk premium of the S&P 500 index. We estimate the autoregressive model

using the maximum likelihood method and conduct the estimations separately for

different look-back periods ranging from one month to 5 years. We find that the

momentum fraction coefficient α is significantly positive for small look-back period,

indicating a significant short-run momentum effect, but becomes negative and in-

significant for large look-back period, indicating the long-run reversal. Empirically,

Moskowitz et al. (2012) show that the time series momentum strategy based on a

12-month look-back period better predicts the next month’s return than other look-

back periods. When τ = 1, we have the estimates α = 32% and σ = 13% in annual

terms, which are statistically significantly positive. The numerical results in this

paper are based on this set of parameters, unless specified otherwise. Sometimes,

we may choose α = 1 to examine the impact of different momentum level.

6.2. Portfolio Dynamics. We first examine some simple cases with deterministic

historical paths of log prices in Fig. 6.2 to provide basic understanding of the impact

of historical price path. Fig. 6.2 (d) studies the impact of the non-price component

in the optimal portfolio weight by choosing a constant level of historical path. When

α = 0, the stock returns become i.i.d. with constant risk premium of µ and hedging

demands reduce to zero (the red dotted line). When α = 0.32 (as estimated in

Section 6.1), because the myopic demand corresponds to the value at $ = 0, the

decreasing total demands imply that the hedging demands are negative and the level

increases with investment horizon (the blue solid line). This is because momentum

is conditionally positively correlated with returns, the hedging demands tend to be

negative (positive) when γ > 1 (γ < 1). This observation is consistent with Koijen

et al. (2009). When α = 1, the historical excess returns in this case are negative,

so the myopic demand is negative. The green dash-dotted line illustrates that the

hedging demands become positive and increasing.

When there is a linear positive momentum, Fig. 6.2 (e) illustrates that the myopic

demand follows a short-run momentum strategy with big positive stock holdings.

The bigger α is, the stronger the momentum is and hence the more stocks are held by

the investors in the bull market. The hedging demands are negative in the presence

of positive momentum. For a linear decreasing trend, Fig. 6.2 (f) illustrates a hump-

shaped demand function in this case. This implies that, in a bear market, investors

can even hold positive hedging demands for small investment horizon, while negative

hedging demands for longer horizons. Therefore, the optimal portfolio weights can

be the same for certain two different horizons. When the historical path is nonlinear

or stochastic, the portfolio weight becomes much more involved.
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Figure 6.3. (a) A typical stochastic historical price path (the blue

solid line) and a linear path connecting the beginning and the end of

the stochastic path (the red dash-dotted line). The three components

of the optimal portfolios are plotted against investment horizon in

(b) and (c) for the stochastic historical path and the corresponding

deterministic path respectively. Here τ = 1, α = 1 and γ = 5.
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Next we study a typical stochastic path generated from the model, and the port-

folio weights are illustrated in Fig. 6.3. There are several observations. First,

because momentum and stock price have the same shock, and they are condition-

ally positively correlated, the intertemporal hedging demand is negative. This leads

to negative portfolio weight for large horizons even the historical price paths have

positive momentum as illustrated in Panels (b) and (c).

Second, Panel (b) of Fig. 6.3 shows that the path hedging, which strongly reacts

to the historical path, has a non-trivial effect and cannot be ignored. To study

the impact of it, we compare two paths with the same momentum, while the first

with rebounds path as illustrated by the blue solid line in Panel (a) and the second

with a linear increasing path (the red dash-dotted line). Under the two market

environments, investors hold the same myopic and momentum hedging demands for

the two paths, but hold negative (positive) path hedging demand under the first

(second) path. After sharp market rebounds, the investors tend to have negative

total demands as shown in Fig. 6.3 (b). However, under this market condition,

Cujean and Hasler (2015) show that the myopic time series momentum strategy may

crash. Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016) document

a similar phenomenon in the cross-section of stocks. So the optimal strategy can

successfully benefit from the momentum crashes.

The reason for the negative demands is as follows. The momentum effect leads to

long-lasting response to a historical price shock. Lemma 6.3 shows that historical

price path has positive contribution to the path hedging demand when γ > 1, and

the contribution becomes smaller for the more recent historical prices. So the path

hedging strongly reacts to the historical path, especially to the beginning of it. When

the beginning of the path has the opposite pattern to momentum, the path hedging

demand, which dominates the total demand, tends to have an opposite sign to the

myopic demand. This leads to negative total demand after sharp market rebounds.

Our paper is the first to show that the path hedging demand plays an important

role in momentum trading. In general, it fits in with the myopic demand when the

price path is generally trending up (or down), while opposes the myopic demand after

a rebound (or hump-shaped) price path. Similarly, after a hump-shaped historical

path, the optimal dynamic momentum strategy tends to have positive position in

the momentum asset even in the presence of a negative momentum.

Third, Fig. 6.3 illustrates a ‘smooth’ portfolio dynamics even A2 in (5.12) is

stochastic. If we re-write φt with investment horizon $ at time t as φ$
t , then

dφ$

d$
= stȦ1,$ + Ȧ2,$,

implying that φ$
t is not a diffusion process with respect to the investment horizon.
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There are other interesting features. For example, there are many bumps in the

portfolio weight as a function of horizon as illustrated in Fig. 6.3 (b). In fact,

the path dependence introduces time variations in expected returns. They, coupled

with momentum, lead to the bumps in horizon dependence. In contrast, the dynamic

strategies with Markov state variables typically have monotonically smooth horizon

dependence. In addition, the big fluctuation in the portfolio weights shown in Fig.

6.3 (b) implies market timing is important for momentum trading.

6.3. Horizon longer than look-back period ($ > τ). When $ > τ , we do

not have closed-form solutions, while we can numerically solve the optimal portfolio

weights based on the least squares Monte Carlo approach. The numerical method is

described in Appendix B. Fig. 6.4 illustrates the optimal portfolio dynamics with

investment horizon up to $ = 5τ . We verify that the numerical solutions using

the Monte Carlo estimations are the same as the closed-form solutions (5.9) for

$ ≤ τ . As horizon $ increases, Fig. 6.4 illustrates that the path impact becomes

less important and the optimal portfolio weights approach a constant level. With

the same set of parameters, we also find the same pattern over horizon $ > τ with

different historical price paths (not reported here). This observation can provide

guidance for analytically deriving optimal solutions over longer horizons. We leave

this to future research.

6.4. The Impacts of Momentum and Look-back Period. Now we examine the

impact of momentum mt. In order to eliminate the effect of the historical path, we

choose a constant path su = s̄ for u ∈ [t− τ, t). Fig. 6.5 plots the optimal portfolio

weights with investment horizon of $ = τ against mt. The optimal portfolio weights

are positively linear in mt. By comparing the three plots, less risk-averse investors

will have greater momentum asset holdings.

Fig. 6.6 illustrates the impact of τ with a fixed 1-year investment horizon and

the looking-back period τ varying from one to 50 years. Intuitively, momentum is a

short-run property and long look-back period makes the momentum variable unable

to capture trend. So the portfolio weight becomes less sensitive to momentum and

becomes stable over longer look-back period.

7. Model Extensions and More Discussions

7.1. Exponentially Decaying Weighted Moving Average. Alternative MA

rules are also used in empirical studies. For example, the momentum variable mt

can be more generally defined as an exponentially decaying weighted MA of historical

excess returns over a past time interval [t− τ, t]

mt =
λ

1− e−λτ

∫ t

t−τ

e−λ(t−u)
(dSu

Su

− rdu
)
, (7.1)
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(b) Portfolio weights when γ = 5
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(c) Portfolio weights when γ = 0.9

Figure 6.4. A typical stochastic path (a) and the corresponding

optimal portfolio dynamics with investment horizon $ ∈ [0, 5] years

for (b) γ = 5 and (c) γ = 0.9. The results are based on Monte Carlo

simulations with τ = 1. We choose the historical price path at a

monthly frequency. (High frequencies are less practical for the Monte

Carlo simulations.)

where τ ≥ 0 is the look-back period of the momentum, and λ is the decaying rate.

Cox-Huang approach still applies. Especially, when λ = 0, the momentum variable

becomes an equally-weighted MA of past excess returns in (3.2).
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Figure 6.5. The optimal portfolio weights as a function of momen-

tum. Here τ = 1 and investment horizon is $ = τ . The historical log

prices are chosen as constant su = s̄ during u ∈ [t− τ, t) to eliminate

their impact.

Interestingly, when τ →∞,

mt = λ

∫ t

−∞
e−λ(t−u)

(dSu

Su

− rdu
)
, (7.2)

and hence

dmt = λ̄(µ−mt)dt + σmdBt, (7.3)

where λ̄ = λ(1 − α) and σm = λσ. In this case, mt follows an Ornstein-Uhlenbeck

process. The stock process with mean-reverting drift has been studied in Kim and

Omberg (1996) and Liu (2007), among others. In this case, mt is a Markov process,

and the optimal portfolio weights are monotonically increasing with both horizon

$ and state variable mt when γ > 1, no matter what the historical path is. This is

quite different from the optimal portfolio weights under momentum illustrated by

Fig. 6.3, which exhibit big fluctuations with small bumps.

The exponentially decaying weighted MA with infinite look-back period (7.2)

has been frequently used to model momentum in the theoretical finance literature

because of its tractability. However, as we shown above, this variable cannot capture

the short-run momentum, while becomes a long-run reversal indicator (Fama and

French, 1988 and Poterba and Summers, 1988).

7.2. Autoregressive Models. Alternatively, if we instead consider the momentum

variable as a historical excess return over a single time step, then the stock price is
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(b) The portfolio weight as a function of the length of the look-back period

Figure 6.6. A typical historical path over 50 years [t − 50, t] (the

upper panel) and the corresponding portfolio weight as a function of

the length of the look-back period (the lower panel). Here γ = 5. We

fix the investment horizon as $ = 1 year and let the looking-back

period τ of momentum vary from 1 year to 50 years.

given by4

dSt

St

= α
dSt−τ

St−τ

+ (1− α)(µ + r)dt + σdBt. (7.4)

The coefficient α in this case measures the (τ/dt)-th order autocorrelation of the

excess returns. However, (7.4) cannot well characterize the momentum effect. As

emphasized in Moskowitz et al. (2012), “The studies of autocorrelation examine,

by definition, return predictability where the length of the “look-back period” is the

same as the “holding period” over which returns are predicted. This restriction

masks significant predictability that is uncovered once look-back periods are allowed

to differ from predicted or holding periods. In particular, our result that the past

4The stock price in this case is characterized by a stochastic neutral differential equation (Az-
belev, Maksimov and Rakhmatullina, 2007).
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12 months of returns strongly predicts returns over the next one month is missed by

looking at one-year autocorrelations.”

7.3. Separating Current Price and Historical Price Path. To provide further

understanding of the roles of momentum hedging and path hedging, we rewrite

system (3.1) as

dst =
[1

τ
(α1st − α2st−τ ) + (1− α)

(
r + µ− σ2

2

)]
dt + σdBt, (7.5)

where st = ln St and α1 and α2 are parameters. When α1 = α2 = α, (7.5) reduces to

our momentum model (3.1)-(3.2). When α2 = 0, (7.5) becomes the Markov process

studied in Kim and Omberg (1996).

By setting α1 = 0, we ‘turn off’ momentum, leaving with only path dependence,

dst =
[
− α2

τ
st−τ + (1− α)

(
r + µ− σ2

2

)]
dt + σdBt. (7.6)

Then the optimal portfolio weight corresponding to (7.6) with investment horizon

$ ≤ τ is given by

φ∗t =
α
(
r − σ2/2

)
+ (1− α)µ− α2st−τ/τ

γσ2
.

In this case, the hedging demand disappears. This is because the path is not a state

variable and is uncorrelated with the innovation of stock price at time t. Therefore,

the path hedging demand for the system (3.1)-(3.2) is caused by the joint impact of

both st and st−τ in the expected returns.

8. Conclusion

We solve the optimal dynamic momentum strategy between a riskless asset and

a momentum asset using the Cox-Huang approach.

We show that investors with relative risk aversion greater than one home-make

their own reversal asset by holding less than the myopic investors or even shorting the

asset with positive momentum over longer horizons. The optimal portfolio weight

tends to be negative after sharp market rebounds, and hence can benefits from the

momentum crashes.

Our model can be easily extended to the case with multiple risky assets or with

time-varying momentum fractions. We leave this to the future research.
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Appendix A. Proofs

A.1. Details of the Illustrative Example. To better provide the intuition, we

first study a one-period portfolio selection problem. In this case, the expected utility

is given by

E
[W̃ 1−γ

1− γ

]
= E

[W 1−γ
0

1− γ
(R̃p)1−γ

]
, (A.1)

where

R̃p = Rf + φ(R̃−Rf )

is the gross return of the portfolio, and φ is the fraction of wealth invested in the

risky momentum asset. Define

A =
Rf + φ(U −Rf )

Rf + φ(D −Rf )
=

[ P (U −Rf )

(1− P )(Rf −D)

] 1
γ
,

where the second equality is derived via the first order condition. No arbitrage

condition implies D < Rf < U . Assume positive risk premium, then A > 1. The

optimal portfolio weight can be given by

φ =
(A− 1)Rf

U −Rf + A(Rf −D)
> 0. (A.2)

Now we go back to the two-period model. No arbitrage condition implies that

D + ∆U < Rf < U + ∆D. Assume positive risk premium to guarantee any negative

demand is not caused by the negative risk premium, which implies P (U + ∆D) +

(1− P )(D + ∆D) > Rf . Then we have

∆ ≤ ∆D ≤ 0 ≤ ∆U ≤ ∆,

where ∆ = P (Rf − U) + (1− P )(Rf −D) and ∆ = Rf −D. It follows from (A.2)

that the optimal portfolio weight given information at time 1 is given by

φU =
(AU − 1)Rf

U + ∆U −Rf + AU(Rf −D −∆U)
> 0,

φD =
(AD − 1)Rf

U + ∆D −Rf + AD(Rf −D −∆D)
> 0,

(A.3)

where

AU =
[ P (U + ∆U −Rf )

(1− P )(Rf −D −∆U)

] 1
γ

> 1, AD =
[ P (U + ∆D −Rf )

(1− P )(Rf −D −∆D)

] 1
γ

> 1.
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At time 0, the optimization problem becomes

max
φ0,φ1

E0

[W 1−γ
2

1− γ

]

= max
φ0,φ1

E0

[(
W0R̃

p
1R̃

p
2

)1−γ

1− γ

]

= max
φ0

E0

[W 1−γ
0

1− γ
(R̃p

1)
1−γ max

φ1

E1

[
(R̃p

2)
1−γ

]]

= max
φ0

E0

[W 1−γ
0

1− γ
(R̃p

1)
1−γE1

[
(R̃∗

2)
1−γ

]]
,

(A.4)

where R̃∗
2 is the return of the optimal portfolio over period 2. Define ς̃ = E1[(R̃

∗
2)

1−γ].

By substituting φ1 derived in (A.2) and replacing U and D by the corresponding

gross return at different states, we have

ςU =
[ Rf (U −D)

U + ∆U −Rf + AU(Rf −D −∆U)

]1−γ[
PA1−γ

U + (1− P )
]

> 0,

ςD =
[ Rf (U −D)

U + ∆D −Rf + AD(Rf −D −∆D)

]1−γ[
PA1−γ

D + (1− P )
]

> 0.

(A.5)

It is easy to verify that ∂ς/∂∆ < 0, which implies that

ςU < ςD.

Then (A.4) becomes

W 1−γ
0

1− γ

[
PςU + (1− P )ςD

]
max

φ0

E0

[
(R̃p

1)
1−γ ς̃

P ςU + (1− P )ςD

]
. (A.6)

Therefore, the problem finally reduces to the standard one-period optimization prob-

lem in (A.1) except that the probabilities of up and down states are changed, re-

spectively, to

P ∗ =
ςUP

ςUP + ςD(1− P )
< P, 1− P ∗ =

ςD(1− P )

ςUP + ςD(1− P )
> 1− P.

So the new measure P∗ under-weight the up state and over-weight the down state.

The optimal portfolio weight at time 0 is then given by

φ0 =
(A∗

0 − 1)Rf

U −Rf + A∗
0(Rf −D)

, (A.7)

where

A∗
0 =

[ P ∗(U −Rf )

(1− P ∗)(Rf −D)

] 1
γ
.
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The optimal portfolio returns at different states are given by

R̃U = U − (U −Rf )(A
∗
0D − U)

U −Rf + A∗
0(Rf −D)

,

R̃D = D +
(Rf −D)(U − A∗

0D)

U −Rf + A∗
0(Rf −D)

,

R̃UU = U + ∆U +
(Rf − U −∆U)

[
U + ∆U − AU(D + ∆U)

]

U + ∆U −Rf + AU(Rf −D −∆U)
,

R̃UD = D + ∆U +
(Rf −D −∆U)

[
U + ∆U − AU(D + ∆U)

]

U + ∆U −Rf + AU(Rf −D −∆U)
,

R̃DU = U + ∆D +
(Rf − U −∆D)

[
U + ∆D − AD(D + ∆D)

]

U + ∆D −Rf + AD(Rf −D −∆D)
,

R̃DD = D + ∆D +
(Rf −D −∆D)

[
U + ∆D − AD(D + ∆D)

]

U + ∆D −Rf + AD(Rf −D −∆D)
.

(A.8)

To show why it can be optimal to have negative portfolio weight at time 0, we

examine a special case when ∆D = ∆ and ∆U = ∆. In this case,

P ∗ =
P

1 + P
, A∗

0 =
[P (U −Rf )

Rf −D

] 1
γ
,

and

R̃U = Rf + φo
0(U −Rf ) < Rf ,

R̃D = Rf + φo
0(D −Rf ) > Rf ,

R̃UU = +∞,

R̃UD = R̃o
DU = R̃o

DD = Rf .

(A.9)

The terminal utilities is given by

ṼUU = −a
(
RURUU

)1−γ
= 0,

ṼUD = −a
(
RURUD

)1−γ
= −a

[
Rf + φ0(U −Rf )

]1−γ
R1−γ

f ,

ṼDU = −a
(
RDRDU

)1−γ
= −a

[
Rf + φ0(D −Rf )

]1−γ
R1−γ

f ,

ṼDD = −a
(
RDRDD

)1−γ
= −a

[
Rf + φ0(D −Rf )

]1−γ
R1−γ

f ,

(A.10)

for the myopic strategy when φ0 is chosen as (A.2), and for the optimal strategy

when φ0 is chosen as (A.7).

We compare the optimal strategy with the myopic strategy which only cares about

the expected utility one period ahead. The two strategies hold the same portfolio

weights at time 1. So we only need to study the first period. The myopic portfolio

weight is given by (A.2), which is based on the probabilities of market going up and

down as P and 1 − P respectively. However, the optimal strategy is based on the

probabilities of P ∗ = P/(1+P ) and 1−P ∗ = 1/(1+P ) respectively. For the optimal
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strategy, the probability of up market becomes ‘smaller’ (P ∗ < P ) after adjusted

for ς̃ and hence it holds less risky asset than the myopic strategy. Especially, when

Rf −D > P (U −Rf ), (A.11)

A∗
0 < 1. It follows from (A.7) that φ0 < 0, that is, the optimal strategy shorts the

momentum asset in this case.

A.2. Proof of Lemma 3.1. The solution can be found by using forward induction

steps of length τ . Let t ∈ [0, τ ]. Then the general system (3.1)-(7.1) becomes
{

dSt = StdNt, t ∈ [0, τ ],

St = ϕt for t ∈ [−τ, 0] a.s.
(A.12)

where

Nt =

∫ t

0

[
αλ

1− e−λτ

∫ s

s−τ

e−λ(s−u)
(dϕu

ϕu

− rdu
)

+ (1− α)µ + r

]
ds + σBt

is a semimartingale. Then the system (A.12) has a unique solution

St = ϕ0 exp
{

Nt − σ2t

2

}
,

for t ∈ [0, τ ]. This implies that St > 0 for all t ∈ [0, τ ] almost surely, when ϕt > 0

for t ∈ [−τ, 0] a.s. By a similar argument, it follows that St > 0 for all t ∈ [τ, 2τ ] a.s.

Therefore St > 0 for all t ≥ 0 a.s., by induction. Note that the above argument also

implies existence and piecewise-uniqueness of the solution to the system (3.1)-(7.1).

A.3. Proof of Proposition 4.1. Let st = ln St. Then we have

mt =
1

τ
(st − st−τ )−

(
r − σ2

2

)
,

and hence

dst =

[
(1− α)

(
r + µ− σ2

2

)
+

α

τ
(st − st−τ )

]
dt + σdBt, (A.13)

which implies

d
(
e−

α
τ

tst

)
= e−

α
τ

t

[(
(1− α)

(
r + µ− σ2

2

)
− α

τ
st−τ

)
dt + σdBt

]
,

and

st =
τ

α
(1−α)

(
r+µ−σ2

2

)[
e

α
τ

t−1
]
+e

α
τ

tP0−α

τ

∫ t−τ

−τ

e
α
τ

(t−τ−v)svdv+σ

∫ t

0

e
α
τ

(t−v)dBv.

(A.14)

We want to separate st into two parts, one determined by the initial values and

another collecting all innovations. Notice the third term in (A.14) comprises the
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information of price s during [−τ, t−τ ]. When t ∈ [0, τ ], the third term is completely

determined by the initial values and hence we have

st =
τ

α
(1−α)

(
r+µ−σ2

2

)[
e

α
τ

t−1
]
+e

α
τ

ts0−α

τ

∫ t−τ

−τ

e
α
τ

(t−τ−v)svdv+σ

∫ t

0

e
α
τ

(t−v)dBv.

(A.15)

When t ∈ [τ, 2τ ], (A.14) becomes

st =
τ

α
(1− α)

(
r + µ− σ2

2

)[
e

α
τ

t − 1
]
+ e

α
τ

ts0

− α

τ

∫ t−τ

0

e
α
τ

(t−τ−v)svdv − α

τ

∫ 0

−τ

e
α
τ

(t−τ−v)svdv + σ

∫ t

0

e
α
τ

(t−v)dBv.

(A.16)

Notice when v ∈ [0, t−τ ] ⊆ [0, τ ], sv is given by (A.15). By replacing sv in the third

term of (A.16) by (A.15), we have

st =
τ

α
(1− α)

(
r + µ− σ2

2

)(
e

α
τ

t + [1− α

τ
(t− τ)]e

α
τ

(t−τ) − 2
)

+
[
e

α
τ

t − α

τ
(t− τ)e

α
τ

(t−τ)
]
s0

− α

τ

∫ 0

−τ

e
α
τ

(t−τ−v)svdv +
α2

τ 2

∫ t−2τ

−τ

(t− 2τ − v)e
α
τ

(t−2τ−v)svdv

+ σ

∫ t

0

e
α
τ

(t−v)dBv − σα

τ

∫ t−τ

0

(t− τ − v)e
α
τ

(t−τ−v)dBv.

(A.17)

After st’s are expressed as the sum of a term with initial values and a term with

Brownian motions for t ∈ [iτ, (i + 1)τ ], i = 0, 1, · · · , n − 1, we can re-write (A.14)

for t ∈ [nτ, (n + 1)τ ] as

st =
τ

α
(1− α)

(
r + µ− σ2

2

)[
e

α
τ

t − 1
]
+ e

α
τ

ts0 + σ

∫ t

0

e
α
τ

(t−v)dBv

− α

τ

(∫ 0

−τ

+

∫ τ

0

+ · · ·+
∫ t−τ

(n−1)τ

)
e

α
τ

(t−τ−v)svdv.

(A.18)

By substituting sv, v ∈ [iτ, (i + 1)τ ], i = 0, 1, · · · , n− 1 into the last term of (A.18),

we can separate st for t ∈ [nτ, (n + 1)τ ] into an initial values component and a



32 LI AND LIU

Brownian motions component. Therefore, mathematical induction implies

st =
τ

α
(1− α)

(
r + µ− σ2

2

)[ n∑
i=0

( i∑
j=0

(−α
τ
)j(t− iτ)j

j!

)
e

α
τ

(t−iτ) − n− 1

]

+
n∑

i=0

(−α
τ
)i(t− iτ)i

i!
e

α
τ

(t−iτ)s0

− α

τ

∫ 0

−τ

[ n∑
i=1

(−α
τ
)i−1(t− iτ − v)i−1

(i− 1)!
e

α
τ

(t−iτ−v)

]
svdv

− α

τ

∫ t−(n+1)τ

−τ

[
(−α

τ
)n[t− (n + 1)τ − v]n

n!
e

α
τ

[t−(n+1)τ−v]

]
svdv

+ σ

n∑
i=0

∫ t−iτ

0

(−α
τ
)i(t− iτ − v)i

i!
e

α
τ

(t−iτ−v)dBv, t ∈ [nτ, (n + 1)τ ].

The mean value of ln(St/S0) = st − s0 is just the first four terms minus s0. The

variance is given by

Var0

[
ln(St/S0)

]
=Var0

[
σ

n∑
i=0

∫ t−iτ

0

(−α
τ
)i(t− iτ − v)i

i!
e

α
τ

(t−iτ−v)dBv

]

=σ2Var0

[ ∫ t−nτ

0

( n∑
i=0

(−α
τ
)i(t− iτ − v)i

i!
e

α
τ

(t−iτ−v)

)
dBv

+

∫ t−(n−1)τ

t−nτ

( n−1∑
i=0

(−α
τ
)i(t− iτ − v)i

i!
e

α
τ

(t−iτ−v)

)
dBv

+ · · ·

+

∫ t−τ

t−2τ

( 1∑
i=0

(−α
τ
)i(t− iτ − v)i

i!
e

α
τ

(t−iτ−v)

)
dBv

+

∫ t

t−τ

e2α
τ

(t−v)dBv

]

=σ2

[ ∫ t−nτ

0

( n∑
i=0

(−α
τ
)i(t− iτ − v)i

i!
e

α
τ

(t−iτ−v)

)2

dv

+

∫ t−(n−1)τ

t−nτ

( n−1∑
i=0

(−α
τ
)i(t− iτ − v)i

i!
e

α
τ

(t−iτ−v)

)2

dv

+ · · ·

+

∫ t−τ

t−2τ

( 1∑
i=0

(−α
τ
)i(t− iτ − v)i

i!
e

α
τ

(t−iτ−v)

)2

dv

+

∫ t

t−τ

e2α
τ

(t−v)dv

]
.

(A.19)
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By changing of variable u = v − t, the variance is given by

Var0

[
st − s0

]
=σ2

[ ∫ 0

−τ

e−
2α
τ

udu +

∫ −τ

−2τ

( 1∑
i=0

(−α
τ
)i(−iτ − u)i

i!
e

α
τ

(−iτ−u)

)2

du

+ · · ·

+

∫ −(n−1)τ

−nτ

( n−1∑
i=0

(−α
τ
)i(−iτ − u)i

i!
e

α
τ

(−iτ−u)

)2

du

∫ −nτ

−t

( n∑
i=0

(−α
τ
)i(−iτ − u)i

i!
e

α
τ

(−iτ−u)

)2

du

]
.

A.4. Proof of Proposition 5.1. It follows from (3.1) that the market price of risk

is given by

θt =
αmt + (1− α)µ

σ
,

which satisfies the Novikov’s condition

E
[
exp

{1

2

∫ T

0

θ2
t dt

}]
< ∞. (A.20)

So the state price density is given by

πt = exp
{
−

∫ t

0

rdu− 1

2

∫ t

0

θ2
udu−

∫ t

0

θudBu

}
. (A.21)

Define

ξt = exp
{
− 1

2

∫ t

0

θ2
udu−

∫ t

0

θudBu

}
,

which is a martingale under the objective probability measure P.

The wealth process follows

dWt = Wt(r + σθtφt)dt + σWtφtdBt,

where φt is the fraction of wealth invested in the risky asset. Define the martingale

measure Q by dQ
dP = ξT . Under the martingale measure, the wealth process Wt

follows

e−rtWt = W0 + σ

∫ t

0

e−ruWuφudBQ
u , 0 ≤ t ≤ T, (A.22)

where BQ
t = Bt +

∫ t

0
θudu is a Brownian motion under Q. The budget constraint

can be given by

E0[πT WT ] ≤ W0.

Then the problem reduces to the unconstrained maximization of

E0

[
W 1−γ

T

1− γ

]
+ y

(
W0 − E0[πT WT ]

)
,
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where y is the Lagrange multiplier. Proofs of this well-known result can be found in

Harrison and Kreps (1979), Cox and Huang (1989) and Karatzas and Shreve (1998).

The first order condition leads to the following optimal terminal wealth

WT = (yπT )−1/γ. (A.23)

Define ξ̄0 = E0

[
ξ

(γ−1)/γ
T

]
. Then

W0 = E0[πT WT ] = E0[π
(γ−1)/γ
T ]y−1/γ = ξ̄0e

(1−γ)rT/γy−1/γ,

and hence the Lagrange multiplier is given by

y = ξ̄γ
0W−γ

0 e(1−γ)rT . (A.24)

It follows from (A.23) and (A.24) that the value function satisfies

V = E0

[
W 1−γ

T

1− γ

]
=

1

1− γ
W 1−γ

0 ξ̄γ
0 e(1−γ)rT . (A.25)

The optimal wealth process is then given by

Wt = π−1
t Et[πT WT ] = W0ξ̃

−1
0 ertξ−1

t Et

[
ξ

(γ−1)/γ
T

]
. (A.26)

It follows from (A.22) that

d(e−rtWt) = σe−rtφtWtdBQ
t .

In addition, Ito’s formula implies

d(e−rtWt) = d(πtξ
−1
t Wt) = ξ−1

t (πtθtWt + ψt)dBQ
t ,

where ψt is governed by

πtWt = W0 +

∫ t

0

ψudBu. (A.27)

By matching the volatility, the optimal portfolio weight is given by

φt =
θt

σ
+

ψt

σπtWt

=
αmt + (1− α)µ

σ2
+ σ−1W−1

0 ξ̄0ψt

(
Et

[
ξ

(γ−1)/γ
T

])−1

.

A.5. Proof of Corollary 5.2. We rewrite (3.1) as

dst =

[
(1− α)

(
r + µ− σ2

2

)
+

α

τ
(st − st−τ )

]
dt + σdBt, (A.28)

where st = ln St, and

θt =
1

σ

[
(1− α)µ− α

(
r − σ2

2

)]
+

α

τσ
(st − st−τ ). (A.29)

We define a new measure

dP∗

dP
= exp

{
−

∫ T

t

γ − 1

γ
θudBu −

∫ T

t

(γ − 1)2

2γ2
θ2

udu

}
, (A.30)
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and under the new measure,

dst =

[(
r − σ2

2

)(
1− α

γ

)
+ (1− α)

µ

γ
+

α

γτ
(st − st−τ )

]
dt + σdB∗

t ,

Et[ξ
γ−1

γ

T ] = ξ
γ−1

γ

t E∗t
[

exp

{
1− γ

2γ2σ2

∫ T

t

[
(1− α)µ− α

(
r − σ2

2

)
+

α

τ
(su − su−τ )

]2

du

}]
.

(A.31)

Let Xu = su and Xτ
u = su−τ for u ∈ [t, T ]. We rewrite process st as

dXt =

[(
r − σ2

2

)(
1− α

γ

)
+ (1− α)

µ

γ
+

α

γτ
(Xt −Xτ

t )

]
dt + σdB∗

t . (A.32)

When 0 ≤ T − t ≤ τ , Xτ
u is the realized log price and is known at t and hence Xt

in (A.32) can be considered as a Markov process. Denote

f(X, t) = E∗t
[

exp

{
1− γ

2γ2

∫ T

t

1

σ2

[
(1− α)µ− α

(
r − σ2

2

)
+

α

τ
(Xu −Xτ

u)

]2

du

}]
.

(A.33)

Feynman-Kac formula implies

∂f

∂t
+

[(
r − σ2

2

)(
1− α

γ

)
+ (1− α)

µ

γ
+

α

γτ
(X −Xτ )

]
∂f

∂X
+

σ2

2

∂2f

∂X2

+
1− γ

2γ2σ2

[
(1− α)µ− α

(
r − σ2

2

)
+

α

τ
(X −Xτ )

]2

f = 0.

(A.34)

By guessing and substituting

f(Xt, $) = exp
{A1,$

2
X2

t + A2,$Xt + A3,$

}
, (A.35)

into (A.34), where $ = T − t is the investment horizon, and replacing Xτ
T−$ by

sT−τ−$, we have

Ȧ1,$ = σ2A2
1,$ +

2α

γτ
A1,$ +

1− γ

γ2

α2

τ 2σ2
,

Ȧ2,$ =
(
σ2A1,$ +

α

γτ

)
A2,$ +

[
(1− α)

µ

γ
+

(
r − σ2

2

)(
1− α

γ

)
− α

γτ
sT−τ−$

]
A1,$

+
1− γ

γ2

α

σ2τ

[
(1− α)µ + α

(σ2

2
− r

)
− α

τ
sT−τ−$

]
,

Ȧ3,$ =
σ2

2
A2

2,$ +
σ2

2
A1,$ +

[
(1− α)

µ

γ
+

(
r − σ2

2

)(
1− α

γ

)
− α

γτ
sT−τ−$

]
A2,$

+
1− γ

2γ2σ2

[
(1− α)µ + α

(σ2

2
− r

)
− α

τ
sT−τ−$

]2

,

(A.36)

with initial condition A1,0 = A2,0 = A3,0 = 0. The realized price sT−τ−$ in A2

and A3 is continuous but non-differentiable. So (A.36) is a non-autonomous ordi-

nary differential equation system. This is different from the dynamic strategies with
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Markov state variables, where Feynman-Kac formula results in an autonomous par-

tial differential equation, which can be further reduced to an autonomous system of

Riccati equations. The solution to (A.36) is given by (5.12) by applying the method

of variation of constants.

By substituting (A.35) into (A.26), we have

dWt

Wt

=

[
θ2

t

γ
+ σθt(A1,T−tXt + A2,T−t) + r

]
dt +

[
θt

γ
+ σ(A1,T−tXt + A2,T−t)

]
dBt,

ψt = Wtπt

[1− γ

γ
θt + σ(A1,T−tXt + A2,T−t)

]
,

(A.37)

and hence the optimal portfolio weight is given by

φt =
θt

γσ
+ A1,T−tst + A2,T−t

=
θt

γσ
+ τA1,$mt +

[
A2,$ +

(
st−τ + rτ − σ2τ

2

)
A1,$

]
.

(A.38)

The last equality follows from mt = 1
τ
(st − st−τ ) − r + σ2

2
, which can be directly

derived from (3.2).

A.6. Proof of Lemma 6.1. At time t, the optimal portfolio (5.9) only consists of

the historical prices over [t − τ, t], so we examine that the historical path changes

from su to su + c for u ∈ [t− τ, t], where c is a constant. The price trend st− st−τ in

the myopic demand is still the same and hence the myopic demand does not change.

For the hedging demand, (5.12) implies that A2,$ changes by

A2,$(su + c)− A2,$(su)

=− ce
∫ $
0 (σ2A1,v+ α

γτ
)dv

∫ $

0

(
α

γτ
A1,v +

1− γ

γ2

α2

σ2τ 2

)
e−

∫ v
0 (σ2A1,u+ α

γτ
)dudv,

and the second component of the optimal portfolio changes by cA1,$. We only need

to show that the sum of the two changes equals zero.

In fact, the first equation in (A.36) implies that

Ȧ1,$e−
∫ $
0 (σ2A1,v+ α

γτ
)dv −

(
σ2A1,$ +

α

γτ

)
A1,$e−

∫ $
0 (σ2A1,v+ α

γτ
)dv

=

(
α

γτ
A1,$ +

1− γ

γ2

α2

σ2τ 2

)
e−

∫ ι
0 (σ2A1,v+ α

γτ
)dv.

By taking the integral from 0 to $, we have

A1,$e−
∫ $
0 (σ2A1,v+ α

γτ
)dv =

∫ $

0

(
α

γτ
A1,v +

1− γ

γ2

α2

σ2τ 2

)
e−

∫ v
0 (σ2A1,u+ α

γτ
)dudv,

so the change in the hedging demand

cA1,$ + A2,$(su + c)− A2,$(su) = 0.
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Therefore, both myopic demand and hedging demand do not react to a change

in the level of historical prices. But the weights on historical price su in A2 are

different for different u, so the optimal portfolio weight is affected by the historical

patterns in terms of returns.

A.7. Proof of Lemma 6.2. Assume mt ≥ 0 and α ∈ [0, 1]. The sum of myopic

demand and momentum hedging demand is given by

φm
t + φMH

t =
( α

γσ2
+ τA1,$

)
mt +

µ

γσ2
(1− α) >

( α

γσ2
+ τA1,$

)
mt.

In order to demonstrate that φm
t + φMH

t > 0 for $ ≤ τ , it is sufficient to show that
α

γσ2 + τA1,$ > 0.

Notice that A1,$ in (A.36) has two steady states

Ā±
1 =

α

γσ2τ
(−1±√γ),

and the corresponding eigenvalues are given by

χ± = ± 2α√
γτ

.

Therefore, the steady state Ā−
1 is locally asymptotically stable while Ā+

1 is unstable.

When γ < 1, both steady states are negative. Because the greater steady state

Ā+
1 is unstable and the initial value A1 is Ai,0 = 0, A1,$ will go to positive infinity

as $ increases. It is well known that all solutions of a one-dimensional ordinary

differential equation are monotonic functions of time, so A1,$ ≥ 0 for all $ ∈ [0, τ ],

implying that α
γσ2 + τA1,$ > 0.

When γ > 1, the unstable steady state Ā+
1 is positive while the stable steady state

Ā−
1 is negative. So A1,$ with 0 initial value will monotonically decrease to Ā−

1 as $

increases. It is easy to verify that

α

γσ2
+ τA1,$ >

α

γσ2
+ τA1,τ =

α
[
1 +

√
γ + (1−√γ)e2α/

√
γ
]

√
γσ2

[
(
√

γ − 1)e2α/
√

γ + 1 +
√

γ
] > 0,

whenever $ ≤ τ and γ > 1.

A.8. Proof of Lemma 6.3. It follows from (5.12) that g(u) is given by

g(u) =





exp

{ ∫ T−t

T−τ−u
(σ2A1,v + α

γτ
)dv

}[
αA1,T−τ−u

γτA1,$
− (γ−1)α2

γ2σ2τ2A1,$

]
, u ∈ [t− τ, T − τ ],

0, u ∈ [T − τ, t],

(A.39)

where A1,$ is negative when γ > 1 and positive when γ < 1. Then the derivative of

the density with respect to u for u ∈ [t− τ, T − τ ] is given by

∂g

∂u
= − α2

γτ 2

A1,T−τ−u

A1,$

exp

{∫ $

T−τ−u

(σ2A1,v +
α

γτ
)dv

}
≤ 0, (A.40)



38 LI AND LIU

implying the decreasing loadings on historical prices.

Appendix B. Monte Carlo Simulation Method for $ > τ

The conditional expectations are calculated using the least squares Monte Carlo

approach (Longstaff and Schwartz, 2001). More specifically, we simulate 10,000 time

series of prices over [t, T ] for a given historical path during [t− τ, t] generated from

model (3.1)-(3.2). The conditional expectation Et

[
ξ

(γ−1)/γ
T

]
in Proposition 5.1 is

just the average of ξ
(γ−1)/γ
T . The conditional expectation Et+dt

[
ξ

(γ−1)/γ
T

]
is derived

by regressing the realizations of ξ
(γ−1)/γ
T on a constant and the corresponding shocks

dB̂t at time t + dt by following Longstaff and Schwartz (2001). We find that adding

more regressors, such as (dB̂t)
2, (dB̂t)

3, or prices ŝt+dt, ŝ2
t+dt or ŝ3

t+dt, cannot affect

the results. Then ψt in (5.5) can be derived by regressing

d(πtWt) = W0ξ̄
−1
0

(
Et+dt

[
ξ

(γ−1)/γ
T

]
− Et

[
ξ

(γ−1)/γ
T

])

on dB̂t. The total demands follow (5.4).
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