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Abstract. This paper evaluates the performance of several popular technical trad-
ing rules applied to the Australian share market. The optimal trading rule parame-
ter values over the in-sample period of 4/1/82 to 31/12/89 are found using a genetic
algorithm. These optimal rules are then evaluated in terms of their forecasting abil-
ity and economic profitability during the out-of-sample period from 2/1/90 to the
31/12/97. The results indicate that the optimal rules outperform the benchmark
given by a risk-adjusted buy and hold strategy. The rules display some evidence of
forecasting ability and profitability over the entire test period. But an examination
of the results for the sub-periods indicates that the excess returns decline over time
and are negative during the last couple of years. Also, once an adjustment for non–
synchronous trading bias is made, the rules display very little, if any, evidence of
profitability.

1 Introduction

Forecasting the future direction of share market prices is an important, but
difficult exercise. Both technical and fundamental analysis have been used for
this purpose, with varying success. Initial studies of technical analysis by [2]
and [16] were unable to find evidence of profitability and thus concluded
that technical analysis is not useful. More recently, there has been a renewed
interest in this topic; see [7,10,3].

Technical analysis uses only historical data, usually consisting of only past
prices but sometimes also includes volume, to determine future movements
in financial asset prices. This method of forecasting is commonly used by
foreign exchange dealers, who are mostly interested in the short term move-
ments of currencies; see the survey of the London foreign exchange market
by [29]. However, technical analysis is also used to forecast share prices. A
survey by [11] reveals that investment analysts consider technical analysis as
an important tool for forecasting the returns to different classes of assets.
This widespread use of technical analysis in financial markets is surprising to
most academics, since this behavior is irrational given the implications of the
efficient market and random walk hypotheses for investment and speculation.
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Under an efficient market it is expected that prices follow a random walk and
thus past prices cannot be used successfully to forecast future prices. There-
fore, the most appropriate investment strategy is the buy and hold strategy
which consists of holding the market portfolio. It is not expected that any
other strategy can consistently beat or outperform the market.

Although criticized by economists, most notably [25], technical analy-
sis has received an increasing amount of attention by academics. Numerous
studies examining technical trading rules applied to various shares and share
market indices, have uncovered evidence of predictive ability and profitability;
see [28,8,6,19,27]. There are also studies which have found some evidence of
predictive ability but no profitability once reasonable adjustments are made
for risk and trading costs; see [12,20,7,10,3].

The majority of these studies have examined trading rules where both
the rules and their parameter values were chosen arbitrarily. However this
approach leaves these studies open to the criticisms of data-snooping and the
possibility of a survivorship bias; see [23] and [9] respectively. By choosing
trading rules based on an optimisation procedure utilising in-sample data and
testing the performance of these rules out-of-sample, this bias can be avoided
or at least reduced. This approach is taken by [26] and [3], by employing a
genetic programming approach to discover optimal technical trading rules for
the foreign exchange market and US share market respectively.

In this paper the forecasting ability and economic profitability of some
popular technical trading rules applied to the Australian share market are in-
vestigated using a standard genetic algorithm optimisation procedure.1 The
approach adopted in this study differs from the genetic programming ap-
proach for two reasons. First, since the objective of this study is not to
discover new trading rules but rather to examine popular, commonly used
trading rules.2 Second, there is a potential problem associated with the use
of genetic programming, since this artificial intelligence technique was only
recently developed by [21]. Therefore it is unrealistic to evaluate the perfor-
mance of trading rules discovered by the genetic programming approach prior
to the date of the development of this technique.

The next section of the paper describes the technical trading rules ex-
amined in this study. Section 3 develops the genetic algorithm methodology
used in trading rule optimisation. Section 4 explains the performance mea-
sures that are used to evaluate trading rule forecasting ability and economic
profitability. Section 5 considers an empirical investigation of the performance
1 To the author’s knowledge there is only one other study considering the perfor-

mance of technical trading rules applied to the Australian share market. The
performance of the filter rule applied to various individual Australian shares was
examined by [4], who was unable to find any significant evidence of profitability.

2 Focusing exclusively on the popular and commonly used rules, does introduce
the possibility of a survivorship bias. But since it is difficult, if not impossible, to
include the entire universe of all technical trading rules, there is always a danger
of survivorship bias in any performance study.
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of the genetic algorithm-optimised technical trading rules applied to the Aus-
tralian share market. Finally, Section 6 provides some conclusions and direc-
tions for possible future research.

2 Technical Trading Rules

Trading rules are used by financial market traders to assist them in deter-
mining their investment or speculative decisions. These rules can be based
on either technical or fundamental analysis. This study considers only rules
based on technical indicators. A technical indicator is a mathematical for-
mula that transforms historical data on price and/or volume into a single
number. These indicators can be combined with price, volume or each other
to form trading rules. Some of the more popular technical indicators used
by traders include: channels, filters, momentum, moving averages and rela-
tive strength indices. Reference [1] provides an excellent description of the
different technical indicators used in trading.

2.1 Determination of the investment position

Trading rules return either a buy or sell signal which together with a particu-
lar trading strategy determines the trading position that should be taken in a
security or market. The trading strategy considered in this study is based on
a simple market timing strategy, consisting of investing total funds in either
the share market or a risk free security. If share market prices are expected to
increase on the basis of a buy signal from a technical trading rule, then the
risk free security is sold and shares are bought. However, if the rule returns a
sell signal, it is expected that share market prices will fall in the near future.
As a result, shares are sold and the proceeds from the sale invested in the
risk free security.3

2.2 Different types of rules

Two general types of technical trading rules are considered - rules based on
either moving averages or order statistics.

Moving average rules Moving averages are used to identify trends in
prices. A moving average (MA) is simply an average of current and past
prices over a specified period of time. An MA of length θ is calculated as
3 This strategy excludes the possibility of short selling, which in general is difficult

to conduct in the Australian share market due to certain legal restrictions. By
using a stock index futures contract, the market portfolio can be sold short to
establish a negative position in order to profit from a fall in prices. This is not
considered here, but left for possible future work.



4 Robert Pereira

MAt(θ) =
1
θ

θ−1∑
i=0

Pt−i (1)

where

∀θ ∈ {1, 2, 3, ...}.
By smoothing out the short-term fluctuations or noise in the price series, the
MA is able to capture the underlying trend in the price series over a particular
period of time. An MA can be used to formulate a simple trend-following
rule also referred to as a momentum strategy.

A simple MA rule can be constructed by comparing price to its trend, as
represented by the MA. If the price rises above the MA, then the security is
bought and held until the price falls below the MA at which time the security
is sold. This simple rule can be modified to create the filtered MA rule and the
double MA rule. A filtered MA rule is similar to the simple MA rule, except
it includes a filter which accounts for the percentage increase or decrease of
the price relative to its MA. The purpose of this filter is an attempt to reduce
the number of false buy and sell signals, which are issued by a simple MA
rule when price movement is nondirectional. This rule operates by returning
a buy signal if the price rises by X percent above the MA and then returning
a sell signal only when the price falls by X percent below the MA at which
time the security is sold. In contrast to the previous two rules, a double MA
rule compares two MAs of different lengths. With this rule if the shorter
length MA rises above the longer length MA from below then the security
is bought and held until the shorter MA falls below the longer MA at which
time the security is sold.

A more general MA rule can be specified by considering two moving
averages and a filter.4 This Generalised MA (GMA) rule can be represented
by the binary indicator function

S(Θ)t = MAt(θ1) −
(

1 + (1 − 2St−1)
θ3

104

)
MAt(θ2)

{
> 0, 1
≤ 0, 0 (2)

where

∀θ1, θ2 ∈ {1, 2, 3, 4, ...}, θ1 < θ2

∀θ3 ∈ {0, 1, 2, ...}
and the MA indicator is defined by Equation 1. This function returns either a
one or zero, corresponding to a buy or sell signal respectively, which indicates
4 Obviously, this general rule could be extended to include more MAs, filters and

other technical indicators.
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the trading position that should be taken at time t. The lengths of the short
and long MAs are given by parameters θ1 and θ2, which represent the number
of days used to calculate the MAs. The parameter θ3 represents the filter
parameter in terms of basis points; where one hundred basis points equivalent
to one percent.

The three different MA rules discussed above are nested within the GMA
rule. These rules can be derived individually by imposing certain restrictions
on Equation 2:

1. Simple MA: θ1 = 1, θ2 > 1 and θ3 = 0

S(Θ)t = Pt − MAt(θ2)
{

> 0, 1
≤ 0, 0

2. Filtered MA: θ1 = 1, θ2 > 1 and θ3 > 0

S(Θ)t = Pt −
(

1 + (1 − 2St−1)
θ3

104

)
MAt(θ2)

{
> 0, 1
≤ 0, 0

3. Double MA: 1 < θ1 < θ2 and θ3 = 0

S(Θ)t = MAt(θ1) − MAt(θ2)
{

> 0, 1
≤ 0, 0.

Rules based on order statistics Technical trading rules can also be based
on order statistics, such as the maximum and minimum prices over a specified
period of time. The filter and channel rules are two examples which use local
maximum and minimum prices. Reference [8] refer to this rule as the trading
range break-out rule. The maximum price Pmax

t (φ) and the minimum price
Pmin

t (φ) at time t given a historical price series consisting of φ observations
are

Pmax
t (φ) = Max [Pt−1, ..., Pt−φ] (3)

Pmin
t (φ) = Min [Pt−1, ..., Pt−φ] (4)

where

∀φ ∈ {1, 2, 3, ...}.
The channel rule is founded on the idea of support and resistance levels

which are related to the market forces of demand and supply. The support
level is achieved at a price where buying power dominates selling pressure,
effectively placing a floor on the level of prices. The resistance level, which is
the opposite of support, is defined as the price where selling pressure exceeds
buying power forcing down the price and effectively creating an upper level
or ceiling in prices. With the channel rule the resistance (or support level) is
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defined using the maximum (or minimum) price over the most recent histor-
ical period of prices consisting of φ observations as defined by Equations 3
and 4 respectively. This rule returns a buy (or sell) signal when price breaks
through its current resistance (or support) level from below (or above) to
above (or below) this level.

The filter rule is based on the idea that when price rises above (or drops
below) a certain level, it will continue to rise (or fall) for some period of
time. The filter rule operates by returning a buy signal when price increases
by X percent above a previous low and a sell signal once the price falls
by X percent below a previous high. The original filter rule of Alexander
(1964) defines the previous low (or high) implicitly using the minimum (or
maximum) price from a historical series commencing on the date of the most
recent transaction.

The filter rule can be generalised by explicitly choosing the amount of
data to use in order to determine the previous low or high. This can be done
by introducing a parameter φ which specifies a fixed length for the historical
price series used to calculate the maximum or minimum price, similar to the
channel rule. Furthermore the original channel rule as outlined above, can
also be generalised by introducing a filter parameter. Similar to the filtered
MA rule, this rule will only return a buy (or sell) signal if the price exceeds
the maximum (or minimum) price by X percent.

Since both the channel and filter rules use order statistics, these two rules
can be nested within a single decision rule. This Generalised Order Statistic
(GOS) rule is represented by the indicator function

S(Φ)t = Pt −
(

1 + (1 − 2St−1)
φ2

10−4

)
(Pmax

t (φ1))
a (

Pmin
t (φ1)

)b
{

> 0, 1
≤ 0, 0

(5)

where

a = φ3St−1 + (1 − φ3)(1 − St−1)
b = φ3(1 − St−1) + (1 − φ3)St−1

∀ φ1, φ2 ∈ {1, 2, 3, ...}.

The parameter φ1 represents the length of the historical price series used in
determining either the maximum or minimum price, φ2 is the filter parameter
given in basis points and φ3 is a binary parameter defined as

φ3 =
{

1, Filter rule
0, Channel rule (6)
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where the value one and zero represent the filter and channel rules respec-
tively. The rule can be generalised further by allowing the parameter φ1 to
be derived either implicitly (as is the case with the channel rule) or explicitly
(as is the case with the filter rule).

The filter and channel rules outlined above, can be derived from the GOS
rule by imposing certain restrictions on Equation 5:

1. Filter rule; φ1 = number of days since last transaction, φ2 > 0 and
φ3 = 1

St = Pt −
(

1 + (1 − 2St−1)
φ2

10−4

)
(Pmax

t (φ1))
St−1

(
Pmin

t (φ1)
)(1−St−1)

{
> 0, 1
≤ 0, 0

2. Channel rule; φ1 > 0, φ2 = 0 and φ3 = 0

St = Pt − (Pmax
t (φ1))

(1−St−1)
(
Pmin

t (φ1)
)St−1

{
> 0, 1
≤ 0, 0

3 Genetic Algorithm Methodology

3.1 Optimisation

The choice of technical trading rule parameter values has a profound impact
on the profitability of these rules. In order to maximise trading rule prof-
itability, parameter values must be chosen optimally. In this optimisation
problem, it is important to be aware of two issues. First, there are a large
number of possible parameter values. Second, the profit surface is charac-
terised by multiple optima; see [26] and [3]. Genetic algorithms are a very
efficient and effective approach to this type of problem.

Efficiency refers to the computational speed of the optimisation technique.
Through a recombination procedure known as crossover and by maintaining
a population of candidate solutions, the genetic algorithm is able to search
quickly through the profitable areas of the solution space. Effectiveness refers
to the global optimisation properties of the algorithm. Unlike other search
or optimisation techniques based on gradient measures, a genetic algorithm
avoids the possibility of being anchored at local optima due to its ability to
introduce random shocks into the search process through mutations. Since
a genetic algorithm is an appropriate global optimisation method, it can
be used to search for the optimal parameter values for the GMA and GOS
trading rules given by Equations 2 and 5 respectively.5

Genetic algorithms were originally developed by [18]. They are a class
of adaptive search and optimisation techniques based on an evolutionary
5 Another global optimisation technique is simulated annealing. However, this

study focuses exclusively on a standard genetic algorithm.
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process. By representing potential or candidate solutions to a problem using
vectors consisting of binary digits or bits, mathematical operations known as
crossover and mutation, can be performed. These operations are analogous
to the genetic recombinations of the chromosomes in living organisms. By
performing these operations, generations of new candidates can be created
and evolved over time through an iterative procedure. However, there do exist
restrictions on the process of crossover so as to ensure that better performing
candidates are evolved over time. Similar to the theory of natural selection
or survival of the fittest, the better performing candidates have a better
than average probability of surviving and reproducing relative to the lower
performing candidates which eventually get eliminated from the population.
The performance of each candidate can be assessed using a suitable objective
function. A selection process based on performance is applied to determine
which of the candidates should participate in crossover, and thereby pass
on their favourable traits to future generations. It is through this process
of “survival of the fittest” that better solutions are developed over time.
This evolutionary process continues until the best (or better) performing
individual(s), consisting of hopefully the optimal or near optimal solutions,
dominate the population.6

3.2 Problem representation

Potential solutions to the problem of optimisation of the parameters of the
GMA rule defined in Equation 2 can be represented by the vector

y1 = [θ1, θ2, θ3]. (7)

For the GOS rule given by Equation 5, candidates can be represented by the
vector

y2 = [φ1,φ2, φ3,φ4] (8)

where φ3 is defined above given by Equation 6, while φ4 is a dummy variable
defined by

φ4 =
{

1, φ1 is determined implicitly
0, φ1 is determined explicitly. (9)

In order to use a genetic algorithm to search for the optimal parameter
values for the rules considered above, potential solutions to this optimisation
6 [17] provides a detailed description of the mathematical operations involved, the

programming and applications of genetic algorithms.
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problem are represented using vectors of binary digits. Binary representa-
tion is necessary in the standard genetic algorithm for the application of the
recombination operations. These vectors also known as strings, are linear
combinations of zeros and ones, for example [0 1 0 0 1]. A binary representa-
tion x = [x1, x2, x3, ..., xn] is based on the binary number system which has a
corresponding equivalent decimal value given by

∑n
i=1(2

n−i)xi. For example,
the decimal equivalent of the vector [0 1 0 0 1] = (24 × 0) + (23 × 1) + (22

× 0) + (21 × 0) + (20 × 1) = 8 + 1 = 9.

Binary representation of the GMA rule The periodicity of the two
MAs have a range defined by 1 < θ1 ≤ L1 and 2 < θ2 ≤ L1, where L1

represents the maximum length of the moving average. The filter parameter
has a range given by 0 ≤ θ3 ≤ L2, where L2 represents the maximum filter
value. For this study L1 = 250 days and L2 = 100 basis points.7

In order to satisfy the limiting values given above, the binary representa-
tions for θ1 and θ2 are each given by a vector consisting of eight elements. For
the filter parameter (θ3) a seven bit vector is required. Therefore, the binary
representation for the GMA rule can be defined by a row vector consisting
of twenty three elements stated as

x1 = [x11,x12,x13] (10)

where

x11 = subvector consisting of eight elements (binary representation of θ1)
x12 = subvector consisting of eight elements (binary representation of θ2)
x13 = subvector consisting of seven elements (binary representation of θ3).

Binary representation of the GOS rule The parameter on the chan-
nel rule φ1 represents the number of the most recent historical observations
used to calculate either the maximum or minimum price. This parameter is
restricted to the values 1 ≤ φ1 ≤ 250. Therefore, the binary representation
is given by a vector consisting of eight elements. The range for φ2 is given
by 0 < φ2 ≤ 1000 basis points. Thus a vector consisting of ten elements is
used and the decimal equivalent values are restricted to the desired range.
Therefore, the binary representations for the order statistics based rule can
be defined by a row vector consisting of twenty elements stated as

x2 = [x21,x22,x23,x24] (11)

7 These limiting values are consistent with what is used in practice. Also, results
from a preliminary investigation, indicated that higher parameter values generally
produced losses.
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where

x21 = subvector consisting of eight elements (binary representation of φ1)
x22 = subvector consisting of ten elements (binary representation of φ2)
x23 = subvector consisting of one element (binary representation of φ3)
x24 = subvector consisting of one element (binary representation of φ4).

3.3 Objective function

The ultimate goal of the genetic algorithm is to find the combination of bi-
nary digits for the two vectors x1 and x2, representing the parameter values
given by y1 and y2, which maximises an appropriate objective function. Each
candidate’s performance can be assessed in terms of this objective function,
which can take numerous forms depending upon specific investor preferences.
Given that individuals are generally risk averse, performance should be de-
fined in terms of both risk and return. The Sharpe ratio is an example of a
measure of risk-adjusted returns. The Sharpe ratio is given by

SR =
r

σ
√

Y
(12)

where r is the average annualised trading rule return, σ is the standard
deviation of daily trading rule returns, while Y is equal to the number of
trading days per year. This formulation is actually a modified version of
the original Sharpe ratio which uses average excess returns, defined as the
difference between average market return and the risk-free rate.

Trading rules as defined by the indicator functions given in Equations 2
and 5, return either a buy or sell signal. These signals can be used to divide the
total number of trading days (N), into days either “in” the market (earning
the market rate of return rmt) or “out” of the market (earning the risk-free
rate of return rft). Thus the trading rule return over the entire period of 0
to N can be calculated as

rtr =
N∑

t=1

St−1rm,t +
N∑

t=1

(1 − St−1) rf,t − T (tc) (13)

where

rm,t = ln
(

Pt

Pt−1

)

which includes the summation of the daily market returns for days “in” the
market and the daily returns on the risk-free security for days “out” of the
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market. An adjustment for transaction costs is given by the last term on the
right hand side of Equation 13 which consists of the product of the cost per
transaction (tc) and the number of transactions (T ). Transaction costs of 0.2
percent per trade are considered for the in-sample optimisation of the trading
rules.

3.4 Operations

Selection, crossover and mutation are the three important mathematical oper-
ations in any genetic algorithm. It is through these operations that an initial
population of randomly generated solutions to a problem can be evolved,
through successive generations, into a final population consisting of a poten-
tially optimal solution. The search process which ensues is highly efficient
and effective because of these operations.

Selection involves the determination of the candidates for participation
in crossover. The genitor selection method, a ranking-based procedure devel-
oped by [30], is used in the genetic algorithm employed in this study. This
approach involves ranking all candidates according to performance and then
replacing the worst performing candidates by copies of the better performing
candidates. In the genetic algorithm developed in this paper a copy of the
best candidate replaces the worst candidate.

The method by which promising (better performing) candidates are com-
bined, is through a process of binary recombination known as crossover. This
ensures that the search process is not random but consciously directed into
promising regions of the solution space. As with selection there are a num-
ber of variations, however single point crossover is the most commonly used
version and the one adopted in this study.

To illustrate the process of crossover, assume that two vectors A = [1 0 1 0
0] and B = [0 1 0 1 0] are chosen at random and that the position of parti-

tioning is randomly chosen to be between the second and third elements of

each vector. Vectors A and B can be represented as
[
1 0

... 1 0 0
]

= [A1 A2]

and
[
0 1

... 0 1 0
]

= [B1 B2] respectively, in terms of their subvectors. Recom-

bination occurs by switching subvector A2 with B2 and then unpartioning
both vectors A and B, producing two new candidates C = [1 0 0 1 0] and
D = [0 1 1 0 0].

In contrast to crossover, mutation involves the introduction of random
shocks into the population, by slightly altering the binary representation of
candidates. This increases the diversity in the population and unlike crossover,
randomly re-directs the search procedure into new areas of the solution space
which may or may not be beneficial. This action underpins the genetic algo-
rithms ability to find novel inconspicuous solutions and avoid being anchored
at local optimum solutions. Mathematically, this operation is represented by
switching a binary digit from a one to a zero or vice versa. However, the
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probability of this occurrence is normally very low, so as to not unnecessarily
disrupt the search process.

This operation can be illustrated by an example. Assume that the third
element in vector C = [1 0 0 1 0] undergoes mutation. The outcome of this
operation changes the binary representation of vector C slightly, producing
a new candidate represented by E = [1 0 1 1 0].

3.5 Procedure

The genetic algorithm procedure can be summarised by the following steps:

1. Create an initial population of candidates randomly.
2. Evaluate the performance of each candidate.
3. Select the candidates for recombination.
4. Perform crossover and mutation.
5. Evaluate the performance of the new candidates.
6. Return to step 3, unless a termination criterion is satisfied.

The last step in the genetic algorithm involves checking a well-defined
termination criterion. If this criterion is not satisfied, the genetic algorithm
returns to the selection, crossover and mutation operations to develop further
generations until this criterion is met, at which time the process of the cre-
ation of new generations is terminated. The termination criterion adopted,
is satisfied when either one of the following conditions is met:

1. the population converges to a unique individual,
2. a predetermined maximum number of generations is reached,
3. there has been no improvement in the population for a certain number

of generations.

This latter condition ensures that the genetic algorithm cannot continue in-
definitely.

3.6 Parameter settings

The genetic algorithm has six parameters settings {b, p, c, m, Gmax
1 , Gmax

2 },
defined as:

b = number of elements in each vector,
p = number of vectors or candidates in the population,
c = probability associated with the occurrence of crossover,
m = probability associated with the occurrence of mutation,
Gmax

1 = maximum number of generations allowed,
Gmax

2 = maximum number of iterations without improvement.
These parameters can effect both the efficiency and effectiveness of the genetic
algorithm search. Small (large) values for b, p, m, Gmax

1 , Gmax
2 and a large

(small) value of c result in rapid (slow) convergence; see [17] or [5] for an
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Table 1. Genetic Algorithm Parameters

Rule b p c m Gmax
1 Gmax

2

GMA 23 150 0.6 0.005 250 150
GOS 20 150 0.6 0.005 250 150

explanation of these results. The greater the rate of convergence the lower
the computational time that is required to reach the solution. However, if
the rate of convergence is too rapid the solution space is not adequately
searched, potentially missing the optimal solution (or better solutions to the
one found).

Table 1 displays the parameter values that are used by the genetic al-
gorithm for each of the trading rules. The choice of b values was discussed
above in Section 3.1, while the choice of values for p, c, m, Gmax

1 and Gmax
2

was guided by previous studies (see [5], Chapter 7) and experimentation with
different values.

4 Performance evaluation

4.1 Economic profitability

The true profitability of technical trading rules is hard to measure given
the difficulties in properly accounting for the risks and costs associated with
trading. Trading costs include not only transaction costs and taxes, but also
hidden costs involved in the collection and analysis of information. Trans-
action costs of 0.1 percent per trade are used to investigate trading rule
performance. Since according to [28], large institutional investors are able to
achieve one-way transaction costs in the range of 0.1 to 0.2 percent. However,
given that different individuals face different levels of transaction costs, the
break-even transaction cost is also reported in the results section; see [6].
This is the level of transaction costs which offsets trading rule revenue with
costs, leading to zero trading profits.

To evaluate trading rule profitability, it is necessary to compare trading
rule returns to an appropriate benchmark. Since the trading rules considered
in this paper restrict short selling, they do not always lead to a position
being held in the market and therefore are less risky than a passive buy and
hold benchmark strategy, which always holds a long position in the market.
Therefore, the appropriate benchmark is constructed by taking a weighted
average of the return from being long in the market and the return from
holding no position in the market and thus earning the risk free rate of return.
The return on this risk-adjusted buy and hold strategy can be written as
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rbh =
N

α
∑

t=1

rf,t + (1 − α)
N∑

t=1

rm,t − 2(tc) (14)

where α is the proportion of trading days that the rule is out of the market.
This return represents the expected return from investing in both the risk-
free asset and the market according to the weights α and (1−α) respectively.
There is also an adjustment for transaction costs incurred due to purchasing
the market portfolio on the first trading day and selling it on the last day of
trading.

Therefore, trading rule performance relative to the benchmark can be
measured by excess returns

XR = r − rbh (15)

where r represents the total return for a particular trading rule calculated
from Equation 13 and rbh is the return from the appropriate benchmark
strategy given by Equation 14Since investors and traders also care about
the risk incurred in deriving these returns, a Sharpe ratio based on excess
returns can be calculated using Equation 12, where r represents annualised
excess returns given by Equation 15 and σ is the standard deviation of the
daily excess returns.

4.2 Predictive ability

To investigate the statistical significance of the forecasting power of the buy
and sell signals, traditional t tests can be employed to examine whether the
trading rules issue buy (or sell) signals on days when the return on the market
is on average higher (or lower) than the unconditional mean return for the
market.

The t-statistic used to test the predictive ability of the buy signals is

tbuy =
rbuy − rm

σ
√

1
N

buy
+ 1

N

(16)

where rbuyrepresents the average daily return following a buy signal and N
buy

is the number of days that the trading rule returns a buy signal. The null
and alternative hypotheses can be stated as

H0 : rbuy ≤ rm

H1 : rbuy > rm.
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Similarly, a t-statistic can be developed to test the predictive ability of the
sell signals. To test whether the difference between the mean return on the
market following a buy signal and the mean return on the market following
a sell signal is statistically significant, a t-test can be specified as

tbuy−sell =
rbuy − rsell

σ
√

1
N

buy
+ 1

Nsell

(17)

where the null and alternative hypotheses are

H0 : rbuy − rsell ≤ 0
H1 : rbuy − rsell > 0.

Another test of whether the rules have market timing or forecasting ability
is based on an approach suggested by [13]. This test is based on the following
regression

rm,t − rf,t = α + βSt + εt (18)

where rm,t and rf,t are the return at time t for the risky asset or market
portfolio and the risk-free security respectively, εt is a standard error term
and St is the trading rule signal. To test whether a particular rule has market
timing ability the regression given in Equation 18 is estimated using OLS and
the following hypothesis test is conducted

H0 : β = 0, no market timing ability
H1 : β > 0, positive market timing ability.

4.3 Statistical Significance

The bootstrap method proposed by [15] has been applied in finance for a wide
variety of purposes; see [24]. Reference [22] use this method for the purpose
of testing the significance of trading rule profitability, while [8] use trading
rules on bootstrapped data as a test for model specification. In this study, a
bootstrap approach similar to [22] is used to test the significance of both the
predictive ability and the profitability of technical trading rules.

To use the bootstrap method a data generating process (DGP) for market
prices or returns must be specified a priori. The DGP assumed for prices in
this study is the simple random walk with drift

ln Pt+1 = μ + lnPt + εt (19)
εt ∼ IID N(0, σ2)
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where μ represents the drift in the series, lnP is the natural logarithm of
the price and ε is the stochastic component of the DGP. Since continuously
compounded returns are defined as the log first difference of prices, then the
above DGP given in Equation 19 implies an IID normal process with a mean
of zero for returns.

The bootstrap method can be used to generate many different return
series by sampling with replacement from the original return series. The
bootstrap samples created are pseudo return series that retain all the dis-
tributional properties of the original series, but are purged of any serial de-
pendence. Each bootstrap sample also has the property that the DGP of
prices is a random walk with drift. From each bootstrap a corresponding
price series can be extracted, which can then be used to test the significance
of the predictive ability or profitability of a particular rule. This is done by
applying the rule to each of the pseudo price series and calculating the empir-
ical distribution of the trading rule profits or the statistic of interest. P-values
can then be calculated from this distribution.

To test the significance of the trading rule excess returns the following
hypothesis can be stated

H0 : XR ≤ XR
∗

H1 : XR > XR∗.

Under the null hypothesis, the trading rule excess return (XR) calculated
from the original series is less than or equal to the average trading rule
return for the pseudo data samples ( XR∗). The p-values from the bootstrap
procedure are then used to determine whether the trading rule excess returns
are significantly greater than the average trading rule return given that the
true DGP is a random walk with drift. In a similar way, the market returns
following buy and sell signals and the Sharpe ratio can also be bootstrapped
to test the significance of the predictive ability and profitability of the trading
rule studied.

The bootstrap procedure involves the following steps:

1. Create Z bootstrap samples, each consisting of N observations, by sam-
pling with replacement from the original return series.

2. Calculate the corresponding price series for each bootstrap sample given
that the price next period is Pt+1 = exp(rt+1)Pt.

3. Apply the trading rule to each of the Z pseudo price series.
4. Calculate the performance statistic of interest for each of the pseudo price

series.
5. Determine the P-value by calculating the number of times the statistic

from the pseudo series exceed the statistic from the original price series.



Forecasting Ability But No Profitability 17

5 An empirical application

5.1 Data

The data consists of the daily closing All Ordinaries Accumulation index
and the daily 90 day Reserve Bank of Australia bill dealer rate. The data
is collected over the period 4/1/1982 to 31/12/97, consisting of 4065 obser-
vations.8 For the purpose of avoiding the possibility of data-snooping, the
total period is split into an in-sample optimisation period from 4/1/1982 to
31/12/89 and an out-of-sample test period from 2/1/1990 to 31/12/97.

Table 2 provides summary statistics for the continuously compounded
daily returns (rm) on the All Ordinaries index.9 The return series has char-
acteristics common to most financial time series and the results are broadly
consistent with previous studies. The autocorrelation coefficients are also
reported for the first five lags. These coefficients show evidence of highly
significant low-order positive autocorrelation.10 Significant first-order serial
correlation in share indices is a well known stylized fact due to the inclusion
of thinly-traded small shares in share market indices. Therefore, this result is
not surprising given that the All Ordinaries Accumulation index is comprised
of over 300 shares, which includes a significant amount of small shares. There
also appears to be significant higher order serial correlation as indicated by
the heteroscedasticity-adjusted Box-Pierce Q statistic (ABP). These results
seem to be consistent across the in-sample optimisation and out-of-sample
test periods.

5.2 Trading rule parameter values

A genetic algorithm was programmed and then used to search for the optimal
parameter values using the All Ordinaries Accumulation index data during
the in-sample optimisation period.11 The GA-optimal parameter values for
the trading rules found during the in-sample period based on transaction
costs of 10 basis points are reported in Table 3. The returns and the Sharpe
ratios are high, even compared to the buy and hold return of 18.79 percent
per annum and the corresponding Sharpe ratio of 0.86 percent per unit of
standard deviation. The best GMA rule can be described as a 14 day MA
rule with a 64 basis point filter, while the best GOS rule can be described as
a 9 day channel rule with a 21 basis point filter.
8 The data was obtained from the Equinet Pty Ltd data base.
9 The continuously compounded daily returns are calculated as the natural loga-

rithm of the first difference of the orignal price series.
10 The 95% confidence interval is ±0.0314, which is calculated using the formula

± 2√
n
, where n is the number of observations.

11 All programs are written in GAUSS, version 3.2, which are available from the
author upon request.



18 Robert Pereira

Table 2. Summary statistics for daily returns

1982-97 1982-89 1990-97

Sample size 4064 2028 2035
Mean 0.0533 0.0676 0.0381
Std. dev. 1.0214 1.1956 0.8107
Skewness -6.0385 -7.4628 -0.3231
Kurtosis 163.7916 173.2427 8.9921
Maximum 6.2228 5.5994 6.2228
Minimum -28.7495 -28.7495 -7.4286
ρ1 0.1114 0.1214 0.1222
ρ2 -0.0400 -0.0413 -0.0413
ρ3 0.0696 0.1119 0.1111
ρ4 0.0869 0.1300 0.1295
ρ5 0.0493 0.0751 0.0752
ABP(10) 22.7308 19.1460 19.2501
ABP(30) 53.8039 46.1164 46.3069

Table 3. Trading rule parameter values

Rule Parameter r SR No. r SR Best No. of Time
values after iters (mins)

Best over ten trials Average over 10 trials
GMA (1,14,64) 36.1 3.0 8 35.8 3.0 119 229.7 203.9
GOS (9,21,0,0) 36.0 3.1 10 36.0 3.1 123 245.3 207.8

The Sharpe ratio (SR) is calculated as the ratio of annualised returns (r) to standard
deviation. The number of times the best rule was found in 10 trials (No.) is given
in the fifth column. The average number of iterations completed until the best rule
was found (Best after) is reported in column 8. The average number of iterations
completed for one trial (No. of iters) is reported in the second last column.

In order to investigate the important properties of effectiveness and effi-
ciency, the genetic algorithm is run over ten trials for each rule. The effec-
tiveness of the genetic algorithm’s ability to search for the optimal parameter
values is investigated by observing how many times the best rule is found over
ten trials; given in the fifth column of Table 3. It appears that the genetic
algorithm is reasonably efficient, since in 90 percent of the runs the genetic
algorithm has found the same best rule.

Another measure of the effectiveness of the genetic algorithm is to find
good rules in terms of the performance criteria used, not necessarily the
best or optimal rule. This is evaluated by considering the average of the
annualised returns and Sharpe ratios over the ten trials for each rule. The
results indicate that the genetic algorithm may not have perfect accuracy,
but on average finds rules very close to the best rule.



Forecasting Ability But No Profitability 19

The efficiency of the genetic algorithm as a search or optimisation tech-
nique is measured by considering the time it takes to find good rules. On
average the genetic algorithm took over three and half hours to run, whereas
an exhaustive grid-search procedure would have taken many hours, if not
days.12 Obviously, a more efficient genetic algorithm could be developed, but
this is not pursued in this study.

5.3 Performance evaluation

It should not be surprising to observe high in-sample performance for the
genetic algorithm-optimised trading rules. Rather, it is more interesting and
important to examine how these rules perform out-of-sample.

Economic profitability The out-of-sample performance statistics are re-
ported in Table 4. In terms of the annualised excess returns (XR) and the
corresponding Sharpe ratio (SR), both rules are able to outperform the ap-
propriate benchmarks after allowing for transaction costs of 10 basis points
per trade. These results remain positive, as long as transaction costs are be-
low 0.53 and 0.62 percent per trade as indicated by the break-even costs
(tc∗). The rules trade roughly seven times per year and produce positive ex-
cess returns for approximately 45 percent of the trades. An indication of their
riskiness is given by the maximum drawdown (Max D), which measures the
largest drop in the cumulative excess return series. In terms of this measure
of risk, both rules are much less risky than the buy and hold, which has a
maximum drawdown of -69 percent.

The robustness of the results is investigated across different non-overlapp-
ing sub-periods. Four 2 year sub-periods are investigated during the out-of-
sample period from 1990 to 1997. A sub-period analysis of the performance
results, show that this good performance deteriorates over time. In the last
couple of years neither rule is able to outperform the benchmark.

Predictive ability To examine the forecasting ability of the rules, the sig-
nals are investigated both individually and together. The results for the pre-
dictive ability of the trading rules are reported in Table 5. Both rules display
some evidence of significant predictive ability as indicated by the t-statistics
in the second last column of Table 5. This result is confirmed by the final
column in the table which reports the t-statistic based on the [13] market
timing test. However, individually the buy and sell signals do not seem to
have any significant predictive ability. In addition to this overall significant
predictive ability, all the rules issue buy (or sell) signals when the excess re-
turns on the market are on average less (or more) volatile as indicated by the
volatility of returns following buy (σbuy) and sell (σsell) signals respectively.
12 All genetic algorithm runs were conducted on a Pentium 233 MHz desktop PC.
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Table 4. Performance statistics for GA-optimised share market rules

Rule r XR SR tc∗ T Tw/T rw rL Max D

Panel A: Full Sample (1990-97)
GMA 10.82 2.45 0.37 53 7.36 44.07 1.72 -0.88 -14.10
GOS 11.16 2.91 0.44 62 6.86 45.45 1.92 -0.98 -10.97

Panel B: Sub-period results for the GMA rule
1990-91 12.48 5.91 0.82 99 7.53 40.00 1.87 -0.97 -6.11
1992-93 16.53 3.59 0.62 69 7.44 46.67 2.20 -0.81 -7.64
1994-95 8.02 2.83 0.45 58 7.50 46.67 1.27 -0.78 -5.40
1996-97 5.20 -3.37 -0.46 0 8.53 41.18 1.20 -0.82 -14.31

Panel C: Sub-period results for the GOS rule
1990-91 11.27 4.64 0.65 87 7.03 35.71 2.58 -1.24 -9.35
1992-93 16.36 3.73 0.64 79 6.45 53.85 2.09 -0.87 -9.10
1994-95 8.35 3.16 0.51 64 7.00 42.86 1.50 -0.71 -5.67
1996-97 7.01 -1.39 -0.19 3 8.53 47.06 1.31 -0.94 -11.02

The Sharpe ratio (SR) is the ratio of annualised excess returns (XR) to standard
deviation. The break-even level of transaction cost is given by tc∗. Trading frequency

T is measured by the average number of trades per year. Tw/T represents the
proportion of trades that yield positive excess returns. The average excess return
on winning and losing trades is given by rw and rL respectively. The maximum
drawdown Max D represents the largest drop in cumulative excess returns.

Table 5. Predictive ability - share market rules

Rule Nbuy rbuy σbuy tbuy Nsell rsell σsell tsell tbuy−sell t∗

Panel A: Full Sample (1990-97)
GMA 1159 0.065 0.729 0.922 876 0.003 0.906 -1.033 1.699 1.669
GOS 1097 0.069 0.731 1.037 938 0.002 0.894 -1.077 1.834 1.830

Panel B: Sub-period results for the GMA rule
1990-91 284 0.065 0.793 0.796 222 -0.048 0.951 -0.883 1.458 1.455
1992-93 303 0.100 0.700 0.636 209 0.020 0.739 -0.799 1.245 1.248
1994-95 271 0.052 0.745 0.551 237 -0.016 0.804 -0.588 0.987 0.972
1996-97 298 0.033 0.680 -0.201 208 0.062 1.103 0.218 -0.364 -0.335

Panel C: Sub-period results for the GOS rule
1990-91 271 0.058 0.813 0.658 235 -0.033 0.924 -0.693 1.171 1.199
1992-93 292 0.101 0.696 0.642 220 0.023 0.742 -0.758 1.214 1.223
1994-95 255 0.056 0.748 0.610 253 -0.016 0.798 -0.600 1.049 1.037
1996-97 275 0.047 0.665 0.031 231 0.043 1.079 -0.030 0.052 0.050

All the statistics reported in this table are defined and discussed in Section 4.
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Table 6. Bootstrap p-values

Rule XR SR rbuy σbuy rsell σsell rbuy−sell σbuy−sell

Panel A: Full Sample (1990-97)
GMA 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.998
GOS 0.016 0.018 0.018 0.996 0.018 0.960 0.044 0.946

Panel B: Sub-period results for the GMA rule
1990-91 0.076 0.082 0.078 0.976 0.026 0.894 0.086 0.844
1992-93 0.104 0.110 0.130 0.746 0.238 0.892 0.112 0.842
1994-95 0.124 0.126 0.110 0.842 0.220 0.838 0.148 0.716
1996-97 0.592 0.570 0.596 0.986 0.046 0.390 0.582 0.118

Panel C: Sub-period results for the GOS rule
1990-91 0.106 0.110 0.106 0.926 0.104 0.872 0.122 0.758
1992-93 0.094 0.098 0.108 0.806 0.208 0.892 0.114 0.836
1994-95 0.130 0.134 0.110 0.798 0.254 0.828 0.154 0.728
1996-97 0.464 0.462 0.458 0.984 0.048 0.542 0.480 0.108

The measures reported in this table are described in Tables 4 and 5

A sub-period analysis of these results indicates that the difference between
the average return following buy signals and the average return following sell
is no longer significant. This is also true for the market timing test. However,
the ability of the rules to buy when volatility in the market is low and sell
when volatility is high, appears to be robust across different time periods.

Statistical significance The bootstrap approach outlined in Section 4 is
applied to both the trading rule performance and predictive ability results.
The simulated p-values for the various measures of performance and pre-
dictive ability are given in Table 6. The results for the entire out-of-sample
period provide evidence that the rules have significant forecasting power and
profitability given that the return series are generated by a random walk pro-
cess. However a sub-period analysis shows only weak evidence of significant
predictive ability and profitability. In general, these results confirm those
reported in Tables 4 and 5.

5.4 Return measurement bias

It is important to evaluate the sensitivity of the results to the significant per-
sistence in returns, which are reported in Table 2.Since the existence of thinly
traded shares in the index can introduce a non-synchronous trading bias or
return measurement error. Therefore, these returns might not be exploitable
in practice. To investigate this issue, the performance of the trading rules
is simulated based on trades occurring with a delay of one day. This should
remove any first order autocorrelation bias due to non-synchronous trading.
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Table 7. Return measurement sensitivity–share market rules

Bootstrap p-values

Rule XR SR tc∗ T MaxD t∗ rbuy σbuy rsell σsell

GMA 0.57 0.09 28 7.36 -21.36 0.879 0.156 1.000 0.002 0.810
GOS 0.39 0.06 25 8.11 -23.91 0.866 0.158 1.000 0.002 0.790

The performance statistics contained in columns two to seven are described in the
notes to Table 4. The last four columns contain bootstrap simulated p-values for
the statistics described in Section 4.

As can be seen from Table 7, the rules are still profitable over the out-
of-sample test period, although there has been a substantial reduction in
performance. Furthermore, there appears to be weak, if any, evidence of pre-
dictive ability. However, both rules still retain the property of being in the
market when return variability is low and out of the market when return
variability is high.

The break-even transaction costs have been reduced to approximately 0.25
percent per trade. This probably lower than the costs faced by most financial
institutions. Since stamp duty and taxes are also incurred on all trades, which
have been ignored in this evaluation of trading rule performance.13 Also dur-
ing volatile periods liquidity costs, as reflected by the bid-ask spread, could
increase substantially. Even for large shares this increase could be in the or-
der of 0.5 to 1 percent. Thus, there does not appear to be sufficient evidence
to conclude that the trading rules are economically profitable.

6 Conclusion

This paper has outlined how a genetic algorithm can be used to optimise
technical trading rules and considered an application of this methodology
to the Australian share market. The results indicate that there exists some
evidence of overall market timing ability, but individual buy and sell signal
have only, at best marginal forecasting power for the next days returns. Sur-
prisingly, the rules appear to be able to distinguish between periods of low
and high volatility. This is an interesting issue which was not investigated in
this study, but is left for future research.

Both the GMA and GOS rules were able to outperform the benchmark
strategy over the out-of-sample test period, taking into account both trading
costs and risks. However, a sub-period analysis of the results indicates that
the performance of both rules deteriorates over time. This performance is
substantially reduced once the trading rule returns are adjusted for non-
synchronous or thin trading.
13 Stamp duty costs per trade in Australia are currently 0.15 percent. Taxation

costs vary across institutions and different individuals.
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In conclusion, there appears to be some evidence of forecasting ability,
but probably little or no evidence of profitability once a reasonable level of
trading costs has been considered. Since the break-even costs for these trading
rules do not appear to be high enough to exceed realistic trading costs.
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