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Abstract

We develop a trading strategy which employs limit and market orders in a multi-asset economy

where the assets are not only correlated, but can also be structurally dependent. To model the

structural dependence, the midprice processes follow a multivariate reflected Brownian motion

on the closure of a no-arbitrage region which is dictated by the assets’ bid-ask spreads. We

provide a formal framework for such an economy and solve for the value function and optimal

control for an investor who takes positions in these assets. The optimal strategy exhibits two

dominant features which depend on how far the vector of midprices is from the no-arbitrage

bounds. When midprices are sufficiently far from the no-arbitrage edges, the strategy behaves

as that of a market maker who posts buy and sell limit orders. And when the midprice vector

is close to the edge of the no-arbitrage region, the strategy executes a combination of market

orders and limit orders to profit from statistical arbitrages. Moreover, we discuss a numerical

scheme to solve for the value function and optimal control, and perform a simulation study to

discuss the main characteristics of the optimal strategy.
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1. Introduction

Over the past decade, advances in technology and computing power have given rise to a

new age in trading. There has been a movement from traditional pit exchanges to electronic

exchanges where open quotes get amalgamated into a limit order book (LOB) and agents

trade by placing limit orders (LOs) with intent to buy/sell at a particular price or by sending

market orders (MOs). In this paper, we develop a strategy where the investor trades in a

collection of assets which are not only correlated, but present static arbitrage opportunities if

their midprices stray outside a no-arbitrage region which is dictated by the bid-ask spreads of

the assets.

The investor’s goal is to maximize cash profits at some terminal time T , while controlling for

inventory risk by penalizing open positions. The investor may trade aggressively and take

liquidity via MOs if she sees a profitable opportunity in the form of a statistical arbitrage,

or may trade passively by submitting limit buy and sell orders to the LOB. The trading

strategy requires aggressive or passive orders depending on where the midprices are relative to

the boundaries of the no-arbitrage region. The following two examples illustrate how certain

structural dependencies in a collection of assets determine the no-arbitrage region.

Suppose that an investor maximizes expected wealth by trading in an equity futures contract

which matures at time T1 and also trades in its underlying. Furthermore, assume that this

underlying equity does not pay dividends and the risk-free rate is zero. Let S1
t denote the

price of the underlying at time t and S2
t the price of the futures contract. In an economy

where assets are traded with a zero bid-ask spread (that is, the price to sell or buy the asset

is the same), we have, by no-arbitrage, S1
t = S2

t for all t ≤ T1. If this equality does not hold,

then there exists an arbitrage.

Now assume that the underlying equity and its futures contract trade with bid-ask spreads

ξ1 > 0 and ξ2 > 0, respectively. In this case, it is possible for the market to bear arbitrage-free

prices of the form S1
t 6= S2

t . To see this, assume that S1
t > S2

t . To arbitrage these prices the

investor sends a buy market order (MO) for the futures contract, for which she must cross the

spread and pay S2
t + ξ2/2, and simultaneously sends a sell MO for the underlying and obtains

S1
t − ξ1/2. This trade is an arbitrage if (S1

t − ξ1/2)− (S2
t + ξ2/2) > 0. Hence, it is simple to

show that the no-arbitrage region is |S1
t − S2

t | < 1
2(ξ1 + ξ2).

Another example is one in which an investor takes positions in the following three derivatives:

i) the first nearby futures contract written on an equity having maturity T1, ii) the second

nearby futures contract written on the same equity having maturity T2 > T1, and iii) the

1-2 calendar spread contract1 having maturity T1. Furthermore, denote the midprices of

1The 1-2 calendar spread is a derivative that forces one party to exchange the T2 maturity contract for the
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these three contracts by S1
t , S

2
t , S

3
t and their spreads ξ1, ξ3, ξ3, thus the no-arbitrage region

is |S1
t − S2

t − S3
t | < 1

2

3∑
j=1

ξj (below we provide a formal definition of the no-arbitrage region).

Midprices outside the no-arbitrage region are immediately corrected by arbitrageurs who exert

price pressure until these opportunities disappear. In our framework, this arbitrage pressure is

modelled by assuming that midprices follow a multivariate reflected Brownian Motion on the

closure of the no-arbitrage region. Thus, when the midprice of an asset approaches the edges

of the no-arbitrage region, market forces will exert pressure so that the midprice is pulled back

into the interior of the region.

We solve the investor’s optimal investment strategy and show how it depends on the proximity

of the midprices to the edges of the no-arbitrage region. When midprices are ‘far’ from the no-

arbitrage boundary, the investor behaves as a strategic market maker who posts two-sided LOs.

However, these limit orders are strategically placed in the book to not only control for inventory

exposure, but also in anticipation of midprices approaching the edges of the no-arbitrage region

where the strategy employs a mix of market and limit orders to execute statistical arbitrages.

And when the midprice of one asset is ‘close’ to the no-arbitrage boundary, the investor

adjusts the depths of her LOs and may also execute MOs to take advantage of statistical

arbitrage opportunities in anticipation of price pressures which force prices to stay within the

no-arbitrage bounds, and to control exposure to inventory risk.

Our work is related to the literature that investigates investment strategies based on a col-

lection of co-integrated assets (see for example Tourin and Yan (2013), Tourin and Lintilhac

(2015), Cartea et al. (2015), Leung and Li (2015), and Cartea and Jaimungal (2015a)), but

our approach is different because we focus on a collection of assets with stronger structural

dependencies, and more importantly, we model the no-arbitrage region and the investor em-

ploys LOs and MOs in the strategy. Other related literature in investment strategies specific

to trading in a single asset to optimally liquidate/acquire shares as in Almgren and Chriss

(2000), Almgren (2003), Kharroubi and Pham (2010), Guéant et al. (2012), Bayraktar and

Ludkovski (2014), Cartea and Jaimungal (2015b), or in a general profit/utility maximization

setting as in Avellaneda and Stoikov (2008), Guilbaud and Pham (2013), and Cartea et al.

(2014).

The rest of this paper is organized as follows. Section 2 contains definitions and some modeling

assumptions. Section 3 states and discusses properties of the optimal trading strategy. Section

4 discusses the discretization scheme and convergence to the viscosity solution. Section 5

analyzes qualitative features in the interior and edges of the no-arbitrage in the 2-dimensional

case. Moreover, it uses simulations to study the financial performance of the optimal strategy.

underlying asset at time T1. Its payoff can be decomposed into being long the T1 contract and short the T2

contract.
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Section 6 concludes and we collect some additional details of proofs in the Appendix.

2. The Model

Here we develop a framework for investors who trade in a basket of assets. Our main focus

is on assets that exhibit strong structural dependencies as in the examples above where the

investor trades in futures contracts with the same underlying asset. The main question we

answer is: How can an investor design an algorithmic strategy to take advantage of this

structural dependency between assets?

We assume that the economy trades n risky assets with midprices at time t given by Sit ,

i = 1, · · · , n, and respective bid-ask spreads ξi > 0, both of which we arrange in n-dimensional

vectors St and ξ respectively. We also assume the existence of a risk-free cash asset that offers

zero return and trades with zero bid-ask spread.

A well-known result in finance theory is that when one asset’s payoff can be replicated as a

linear combination of other traded assets, then there is a redundant asset in the economy.

However, if some of these assets trade with a bid-ask spread, this redundancy ceases to exist.

We classify a multiple asset economy as over-complete if there exists a non-zero portfolio and

a finite investment horizon T such that at time T the portfolio’s value is a constant, i.e. its

variance is zero.

All random variables and stochastic processes in this paper are defined on the completed,

filtered probability space (Ω,FT ,F,P) with filtration F = {Ft}0≤t≤T and where P is the real-

world probability measure. Note that the filtration F is only defined up to time T < T ,

whereas P is defined on the larger σ-algebra FT . Here, F is the natural filtration generated

by (St, M±
t , N±t ), all of these processes will be defined later.

Definition 1. A financial system is said to be over-complete if ∃b ∈ Rn , T > 0 with ‖b‖ > 0

such that V
[
b · ST

]
= 0, provided ST ∈ L2

(
Ω,FT ,P

)
, where V is the variance operator, and

the operation · is the dot product.

One of our motivating examples (first two nearby futures and the calendar spread) fits into

this framework with portfolio b = (1, −1, −1) and T being the maturity of the first nearby

futures. The illustrative example that will be used throughout this paper (first nearby futures

and the underlying equity) also fits into this framework with b = (1, −1) and T being the

maturity of the futures contract.
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In Definition 1, the trivial portfolio b = 0 is excluded from Rn since V
[
0 · ST

]
is zero,

making every economy over-complete and rendering this classification trivial. Notice that if

the economy does not admit such a portfolio (i.e. there does not exist such a vector b), then

this problem reduces to a (correlated) multiple asset problem, see for example Tourin and

Yan (2013), and Cartea and Jaimungal (2015a). The no-arbitrage region in this simplified

case would be all of Rn. Also observe that the set from Definition 1 consists of all the

riskless portfolios when considering T as the investment horizon. However, T may be the only

investment horizon where these portfolios are riskless.

Definition 2. Define the space B as the set of all vectors b from Definition 1 plus the origin.

Observe that B is a subspace of Rn.

We require the set B in Definition 2 to include the origin so that it is, in fact, a subspace.

In the simplified case where the economic system is not over-complete, the set B would only

consist of the origin.

Definition 3. The no-arbitrage region, denoted by A ⊂ Rn, is the set of midprices that makes

this economy arbitrage free.

It is worth pointing out that the no-arbitrage region is open. More specifically, A is the set

of midprices such that the initial cashflow from purchasing a portfolio b plus the terminal

payoff, b · ST , is strictly negative, whenever this portfolio matures at a constant value (i.e.

when V
[
b · ST

]
= 0).

This observation deserves some explanation. It is clear that the no-arbitrage set A, as previ-

ously described, is open. At the boundary, these portfolios have cost equal to their maturity

value. Also, it has the potential for arbitrage profits via the following strategy: Obtain port-

folio b now for cost b · ST . There is a positive probability that prior to T , St will move to a

value (within A) such that a filled limit order (LO) on one asset, combined with liquidation

of the others assets via MOs, produces a net gain. Because there is a positive probability that

such an opportunity does not arise, having initial cost strictly greater than b · ST is enough

to ensure it is not an arbitrage portfolio. This is due to the fact that if the agent can only

execute MOs, the portfolio b (which costs b ·ST to obtain) can be liquidated for exactly b ·ST
only in the best case scenario (on the opposite boundary). In fact, this scenario is only in the

closure of A, and hence the midprice process can only move arbitrarily close to it. Notice that

the only assumption we have made here is that the spreads are positive constants.

In the 2-dimensional illustrative example consisting of a futures contract and its underlying,

we have A =
{
s ∈ R2 : |s1 − s2| < 1

2(ξ1 + ξ2)
}

. That is, at any time t < T , the midprices of
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these two assets cannot differ by more than the sum of their half-spreads; if they do, then one

could execute two MOs, for example one order to short the overpriced futures and the other

to purchase the underpriced underlying, and hold to maturity for an arbitrage.

In general, arbitrageurs (who are willing to hold the arbitrage portfolio until T ) ensure that

prices are always pulled back within the bounds of no-arbitrage. In our framework the investor

assumes that for t ∈ [0, T ], the dynamics of the midprice process St is a multivariate reflected

and correlated Brownian Motion.

Assumption 1. The n-dimensional midprice process {St}0≤t≤T satisfies

dSt = σdBt (1)

for t ∈ [0, T ] and St ∈ A. Here σ is an n-by-n matrix with σσ′ being positive definite,

{Bt}0≤t≤T is a standard Brownian Motion on Rn, and St has (normal) reflection at the

boundary of A.

When the risky assets possess a structural dependence, as in our illustrative example, the

matrix σ will induce a strong correlation between all or some of the n assets. For example,

the case discussed above consisting of n = 2, a futures contract and its underlying, σ will

induce a strong positive correlation. In general, for assets that exhibit strong structural

dependence, σ will induce movements in the midprice processes that are generally in the same

direction, on average, to some element of the subspace B⊥ (the orthogonal complement of B).

Recall that the agent will be submitting both LOs and MOs and therefore needs to model in-

coming MOs from other participants in addition to her own executions (which she controls). As

such, she assumes that other market participants send MOs according to independent Poisson

Processes. The counting processes representing the total number of MOs submitted by other

agents up until time t are {N−i,t : i = 1, . . . , n}0≤t≤T for sells and {N+
i,t : i = 1, . . . , n}0≤t≤T for

buys (i indexes the asset). On the other hand, the total number (including the agent’s trades)

of market sells and buys up until time t are given by the processes {N−i,t : i = 1, . . . , n}0≤t≤T
and {N+

i,t : i = 1, . . . , n}0≤t≤T respectively. It is also convenient to have these processes in

the following vector forms: N±t =
(
N±1,t , . . . , N

±
n,t

)′
and N

±
t =

(
N
±
1,t , . . . , N

±
n,t

)′
, where ′

denotes the transpose operator. Finally, the total number of MOs sent by the high-frequency

trader (HFT) up to time t is N
±
t −N±t .

Thus, Nt =
∑n

i=1

(
N−i,t +N+

i,t

)
is the total number of MOs executed by other agents up to

time t, and N t =
∑n

i=1

(
N
−
i,t +N

+
i,t

)
denotes the total number of MOs executed by all agents

up to time t. It is also convenient to have these processes in the following vector forms:

Nt = (N1,t , . . . , Nn,t)
′ and Nt =

(
N1,t , . . . , Nn,t

)′
. Thus, the total number of MOs sent by

the investor up to time t is N t −Nt.
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The investor sends LOs to the LOB at depth δit, i = 1, · · · , n, and we summarize this infor-

mation in the (2n-dimensional) vector-valued process {δt}0≤t≤T . Here we use the convention

that LO depth is from across the book : the limit buy order is measured from the best ask, and

the limit sell order is measured from the best bid quote. Therefore, the investor’s buy LOs are

posted at St+ξ/2−δ−t , and her sell LOs are posted at St−ξ/2+δ+
t . In addition, the running

counts of the investor’s filled LOs are given by the processes {M+
i,t : i = 1, . . . , n}0≤t≤T and

{M−i,t : i = 1, . . . , n}0≤t≤T for sell and buy orders, respectively, and we summarize this infor-

mation in the vector-valued processes {M+
t }0≤t≤T and {M−

t }0≤t≤T . This allows the investor

to post inside the spread.2

Assumption 2. The rate of arrival (called the fill rate functions) of MOs which hit/lift the

agent’s LOs for asset i = 1, . . . , n, as measured from “across the book”, denoted h±i (δ), satisfy

h±i (0) <∞, h±i (ξi) = λ±i , and lim
δ→∞

δh±i (δ) = 0. Furthermore, h±i ∈ C1
(
[0,∞)

)
with h′ < 0.

The investor gets filled when MOs arrive and reach the level that the LO is posted at. More

specifically, the deeper in the book the agent posts, the less frequently she gets filled by a

matching MO; a dependence that is captured by the functions h±i (δ). This is in line with how

a number of other authors have modeled optimal postings and fill probabilities as in Ho and

Stoll (1981), Avellaneda and Stoikov (2008), Guéant et al. (2013), Bayraktar and Ludkovski

(2014), and Cartea and Jaimungal (2015c), among others.

We may suppress the ± and i indices on the function h and the scalar variables λ, κ (defined

in Example 6), δ, and ξ, when it is clear which element is being represented.

3. The Investors’s Optimization Problem

Recall that δt is the depth, as measured from across the book, at which the investor sends

quotes to the LOB. Let (τ ; ς) = {(τ1, ς1), (τ2, ς2), . . . } be an impulse control representing the

investor’s submission of MOs to the LOB. The ordered sequence of uniformly bounded Ft
stopping times, 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ T , is the sequence of times of the MOs, and the binary

sequence ς1, ς2, . . . indicates whether the MO is a buy or a sell order. Recall that the filtration

{Ft}0≤t≤T is generated by the processes St, M±
t , N±t , N

±
t .

The cash process X = {Xt}0≤t≤T of the investor satisfies the SDE

dXt = (St − ξ/2 + δ+
t−) · dM+

t − (St + ξ/2− δ−t−) · dM−
t

+ (St − ξ/2) · d(N
−
t −N−t )− (St + ξ/2) · d(N

+
t −N+

t ) ,
(2)

2Inside the spread refers to LOs that improve upon the current best bid or offer.
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where St, δ
−
t , δ+

t , and ξ are all n-dimensional row vectors, and M−
t , M+

t , N−t , N+
t , N

−
t , N

+
t

are all n-dimensional column vectors.

The terms in the first line in (2) of the cash process account for the changes in cash due to

filled limit sell and buy orders, and the terms in the second line account for changes in cash

due to the investor’s own market sell and buy orders.

The investor seeks the strategy
(
{δt ≥ 0}0≤t≤T , τ , ς

)
which maximizes her expected terminal

wealth while penalizing and constraining inventories, where δt is a bounded Ft-previsible

process representing the LO quote depths, τ is an increasing sequence of Ft−stopping times

(bounded above by T ) representing the times of MO submissions, and ς is the binary sequence

of buy/sell indicators. The collection of all such strategies is called the admissible set and

denoted by X .

Thus, for 0 < T � T , the investor solves the control problem3

H(t, x, s,q) = sup
(δt, τ , ς)∈X

Et,x,s,q

[
XT +

n∑
i=1

qiT

(
SiT−sign(qiT )

ξi
2
−γqiT

− φ T∫
t

`(qu) du

 , (3)

where Et,x,s,q[·] denotes the expectation conditional on Xt− = x, St = s, qt− = q. Moreover,

γ ≥ 0, φ ≥ 0, qt = (q1
t , . . . , q

n
t ) is the investor’s inventory at time t, and `(·) ≥ 0 is an

instantaneous inventory penalty.

In Equation (3), we have included two inventory penalties. The first, qiT (−sign(qiT ) ξi2 − γq
i
T ),

is a cost that the investor incurs to unwind terminal inventory. To do so the investor uses

an MO that crosses the spread, picks up the cost ξi/2, and walks down one side of the LOB

where these costs are given by the linear “market impact” term γqiT . The second,
T∫
t

`(qu) du,

is a running inventory penalty which allows the agent to control her exposure to inventory

risk through time, but is not a financial cost, see Cartea and Jaimungal (2015c) and Cartea

et al. (2013). Here we assume that

`(q) = V
[
q · Ŝ1

]
= q′σσ′q , (4)

where {Ŝt}0≤t≤T is the unreflected version of {St}0≤t≤T .

A priori, it is unclear why the unreflected version of St in the penalty function (4) is used.

Classical mean-variance portfolio optimization problems penalize according to the variance of

the terminal profit and loss (PnL). However, such a penalty fails to characterize how much

inventory risk was taken on by the investor throughout the entire life of the strategy. In light

3
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of this shortfall, we take the penalty to be the intra-trade quadratic variation of the investor’s

portfolio, similar to what was done in Forsyth et al. (2012), which is a natural characterization

of the total risk taken on by the investor. The following observation gives a mathematical

justification for the use of the inventory penalty in (4).

Observation 4. For 0 ≤ u ≤ v ≤ T , we have the following equivalence (P almost surely):

v∫
u

V[qt · Ŝ1]dt = 〈q · S〉v − 〈q · S〉tNv +

Nv∑
k=Nu+1

{
〈q · S〉tk− − 〈q · S〉tk−1

}
, (5)

where tk is the time of the kth MO, tk− is the left limit at tk, and 〈 · 〉t is the quadratic variation

operator. Recall that {Ŝt}0≤t≤T is the unreflected version of {St}0≤t≤T .

The relation in (5) is also highlighted in Cartea and Jaimungal (2015c) where the authors offer

a similar relation for the one-dimensional case. Thus, the trader penalizes the strategy with

the “variance per second” of her current portfolio, which is scaled by φ ≥ 0 according to her

inventory-risk tolerance. In a single asset economy, this penalty reduces to
∫
q2
u du (up to a

multiplicative constant), which has been shown in Cartea et al. (2013) to stem from ambiguity

aversion on the drift of the midprice process.

3.1. Solving the Value Function

By appealing to Øksendal and Sulem (2007), the value function H(t, x, s,q), as defined in (3),

satisfies the following HJBQVI on the no-arbitrage region A:

max

[
sup
δ>0

{
(∂t + L)H +

∑
i

h−i (δ−i )∆−i H +
∑
i

h+
i (δ+

i )∆+
i H − φ `(q)

}
;

max
i ,±
{H(t, x± si − ξi/2, s,q∓ ei)−H}

]
= 0 , s ∈ A ,

(6)

with terminal condition H(T, ·) = x +
n∑
i=1

qi

(
si − sign(qi)

ξi
2 − γqi

)
, the Neumann condition

on the boundary of A
∂H

∂n
= ∇H · n = 0 , ∀s ∈ ∂A , (7)

where n is the normal vector to ∂A, and where L = 1
2

n∑
i,j=1

[σσ′]ij
∂2

∂si∂sj
is the infinitesimal

generator of the n-dimensional correlated Brownian Motion B. Finally, we use ∆±i to denote
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the difference operator

∆±i ϕ(t, x, s,q) = ϕ
(
t, x± si ± δ±i ∓ ξi/2, s,q∓ ei

)
− ϕ(t, x, s,q) ,

where ei is a vector with 1 in the ith position and 0 elsewhere, and dependence on δ is

suppressed for convenience. For example, ∆−i ϕ denotes the change in ϕ due to the investor’s

limit buy order being filled: inventory for asset i increases by 1, and cash x decreases by the

cost of the transaction si − δ−i + ξi/2. The interpretation for ∆+
i ϕ when the investor’s limit

sell order is filled has a similar interpretation.

Lemma 5. If the midprice process is in the no-arbitrage region (i.e. s ∈ A), then the supre-

mum term in (6) is equal to the sum of the supremum over each component.

Proof. The supremum operator satisfies countable sub-additivity. Equality comes from the

fact that the 2n variables being optimized appear exactly once in all of 2n distinct additive

terms. �

We apply the following ansatz for the value function

H(t, x, s,q) = x+ q · s + g(t, s,q) , (8)

and recalling that h(δ) is the fill rate function facing the investor for an LO placed at depth

δ, the first order condition for each component of δ in the continuation region is given by

h′(δ±,∗i )

(
δ±,∗i − ξi

2
+ ∆±i g

)
+ h±i (δ±,∗i ) = 0 . (9)

The implicit form in Equation (9) is then used to simplify (6) and obtain a new QVI for g(·):

max

[
(∂t + L)g −

∑
i,±

(h(δ∗))2

h′(δ∗) − φ `(q) , max
i ,±

{
∆±i g − ξi/2

}]
= 0 (10)

with terminal condition g(T, ·) = −
∑
qi

(
sign(qi)

ξi
2 + γqi

)
and boundary condition (q+∇g) ·

n = 0 on ∂A.

In order to obtain an explicit form for δ∗ (in feedback control form), we further assume that

h(δ) is exponential.
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Example 6. Exponential Fill Rate. Suppose that MOs arrive to the market according

to a Poisson process and the probability of being filled decays exponentially. More precisely,

h±i (δ) = λ±i e
−κ±i (δ−ξi) with 0 < κ±i ≤

1
ξi

.

Example 6 provides an additional modeling assumption4 on the fill rate facing the investor that

will be used in all numerical demonstrations throughout this paper. The additional condition

that κ±i ≤
1
ξi

is imposed so that a risk-neutral investor following an optimal market making

strategy does not post limit quotes inside the spread.

In this exponential fill rate setting, we have

δ±,∗i =
1

κ±i
+
ξi
2
−∆±i g , (11)

and Equation (10), in the continuation region, further reduces to

gt + 1
2

n∑
i,j=1

[σσ′]ij
∂2g

∂si∂sj
+
∑
i,±

λ±i
κ±i

exp

{
−1 +

κ±i ξi
2

+ κ±i ∆±i g

}
− φ `(q) = 0 . (12)

The optimal LO depth has two main components. The first is given by the two first terms

on the right-hand side in (11) which is the optimal depth chosen by an investor who does not

impose any inventory penalty, nor does she pick up any costs for unwinding terminal inventory,

γ = φ = 0. The second component, given by the third term on the right-hand of the equation,

is a correction to the optimal posting to account for the adjustment to the LO depth as a

result of the investor’s inventory management strategy.

Proposition 7. The max
i ,±
{∆±i g−ξi/2} component in the QVI (10) give rise to the LO spread

bounds 1
κ±i

< δ±i ≤
1
κ±i

+ ξi for each i = 1, . . . , n.

When considering δ−, the stated lower bound is because the agent is eager to obtain another

unit of the asset. Therefore, rather than posting an LO at the strict lower bound of 1/κ±i , she

executes an MO. The upper bound corresponds to posting at a deep level (since the investor

does not want the asset), and if the LO is filled, the agent immediately posts an MO to unwind

and attempts to make a profit. Profits in this case are not guaranteed and depend on the

resilience of the LOB. Note that δ−i (q) is arbitrarily close to 1/κ±i if and only if δ+
i (q + ei) is

close to 1
κ±i

+ ξi and similarly, δ+
i (q) is arbitrarily close to 1/κ±i if and only if δ−i (q − ei) is

4It is also common for a power law function to be used as the fill rate function.
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close to 1
κ±i

+ ξi.

4. Viscosity Solution and Numerical Scheme for Exponential Fill Rate

This section outlines the technical details regarding the existence of a unique viscosity solution

to the dynamic programming equation (DPE), specifies a dimensional reduction in the spacial

variables, gives explicit details regarding the discrete numerical scheme, and proves that the

discretized value function converges to the unique viscosity solution.

4.1. Dimensional Reduction of Spatial Variables

We first prove the following lemma to demonstrate a dimensional reduction in the spacial

variable s. Due to this lemma, the relevant s values live in a compact domain. For a fixed

error, the total computational run time will then be proportional to cdimB(2Q+ 1)n, where c

is some constant that depends on the spreads ξ1, ξ2, . . . , ξn, the basis vectors that span B (or

equivalently on the number of discrete steps on the dimensionally reduced s-grid), and Q is

the maximum inventory the investor can be long or short for each asset.

Lemma 8. There exists an C2, surjective function Γ : A −→ A′ such that:

(I) For all s ∈ A, g(s, ·) = g((Γ(s),0), ·),

(II) s ∈ ∂A ⇐⇒ Γ(s) ∈ ∂A′,

(III) A′ is the cartesian product of closed, bounded intervals.

Proof. Define m := dimB. Then B = span{b1, . . . , bm}, where b1, . . . , bm is an orthogonal

basis, and for each i = 1, . . . ,m we have (wlog) P[bi · ST̄ = 0] = 1. No arbitrage (i.e. s ∈ A)

is equivalent to the system of inequalities

y · s +
n∑
j=1

|yj |
ξj
2
> 0 for y = (±b1, . . . ,±bm)′ ,

which simplifies to

−
n∑
j=1

|yj |
ξj
2
< y · s <

n∑
j=1

|yj |
ξj
2

for y = (b1, . . . , bm)′ . (13)

12



Because the bi’s are linearly independent, one can see that (13) is equivalent to Γ(s) being

inside some rectangular subset of Rm for the function Γ(s) = [bj · s]j , which is also clearly C2.

At this point, (II) should be obvious from (13) and the definition of Γ, (III) is proven, and

linear independence of the basis vectors gives (IV ).

To prove (I), we must appeal to some invariance properties of g. Notice that A can now be

reparameterized to the product space
m∏
i=1

[
−

n∑
j=1
|bi · ej | ξj2 ,

n∑
j=1
|bi · ej | ξj2

]
×Rn−m. Looking at

(10) and the Neumann boundary condition (only depends on s via the direction of the normal

vector, which only depends on which piece of the boundary s is on; this can be determined

uniquely via Γ(s) by taking a limiting sequence in s to the boundary), we see that under

this new parameterization, g only depends on s through the first m components. Hence, if

s1, s2 ∈ A are such that Γ(s1) = Γ(s2), then g(s1) = g(s2) and (I) is proved. �

Lemma 8 states that it is not necessary to know s to obtain the value of g(s, ·); we only

require the information contained in Γ(s). Furthermore, there exists such a function Γ that

provides a nice, smooth mapping between the original n-dimensional no-arbitrage region A
and the new n′-dimensional no-arbitrage region A′, and that this new region is a bounded

rectangle. The fact that the new region is bounded improves the accuracy of the numerical

scheme discussed below in Section 4.2 since we no longer have to approximate the unbounded

set A by a bounded one.

There is, however, a minor detail that has been overlooked. The form (Γ(s),0), where 0 is

an (n−n′)-dimensional vector of 0’s, requires the assets to be ordered in a certain way. In an

arbitrary ordering, the components of (Γ(s),0) will need to be re-ordered. We continue with

the labels that produce a simplification of this form as it is more compact to write (Γ(s),0)

instead of having the 0’s in arbitrary positions (i.e. not consecutive nor all at the beginning

or end).

In some sense, Γ(s) is sufficient5 for g. That is, Γ(s) contains the same amount of information

as s when computing g. Furthermore, one could say that Γ(s) is minimal sufficient since it can

be written as a function of any other function of s that is sufficient for g. Stated heuristically,

Γ(s) contains the smallest amount of information about s that still allows us to know g(s) with

certainty. The construction of Γ in the proof of Lemma 8 is used in what follows to obtain a

5In mathematical statistics, a statistic U is said to be sufficient for an unknown model parameter Θ if the
conditional distribution of the data, conditional on U , is independent of Θ. Heuristically speaking, U contains
the same amount of information about Θ as the data itself.
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dimensional reduction, and is given by

Γ(s) = [bj · s]j . (14)

In our 2-dimensional illustrative example, we take Γ(s) = s1 − s2. For the 3-dimensional

example with two nearby futures and the 1-2 calendar spread, one could take Γ(s) = s1−s2−s3.

More details for these two examples are provided in Appendix A.

The following Corollary states that the function g is invariant to movements in the direction

of any element of B⊥. This would correspond to vectors of the form (1, 1) in our illustrative

example (i.e. g is remains unchanged when the futures and its underlying both increase or

decrease by exactly the same amount).

Corollary 9. Dvg = 0 on A whenever v ∈ B⊥.

Proof. Let s ∈ A and v ∈ B⊥. Note that we necessarily have s + v ∈ A by Equation (13)

since bi ·v = 0 for i = 1, . . . , n′. We then have Γ(s) = Γ(s+v) by (14). But v ∈ B⊥ is arbitrary

and B⊥ is a subspace, so one can consider a limiting sequence of the form {ηk v}, with the

scalar sequence ηk ↓ 0, which yields Dvg = 0. �

4.2. Description of Numerical Scheme

We numerically solve (12) by applying upper and lower bounds to each component in q, and

solving the corresponding ODEs backwards in time using an explicit numerical scheme. For

any fixed q, we have an n-dimensional discrete grid to solve for various values of s. Once we

have this grid for each q, we propagate one step backwards in t and repeat the process.

Define the domain for s, A′ ⊂ Rn′ , on the dimensionally reduced grid. Let Tdt be a regular

partition of [0, T ], Sds be an n′-dimensional regular rectangular partition of the dimensionally

reduced s-grid A′, and YQ be the subset of Zn that corresponds to inventory with maximum

Q as previously described (i.e. YQ = Zn ∩ [−Q,Q]n). Throughout the rest of this paper,

dt > 0 and ds > 0 refer to the discrete step sizes in the time (t) and space (Γ(s)) variables,

respectively.

Define, for any function ϕ : [0, T ]×A′ × Zn −→ R, the discrete dynamic evolution operator

Sdt,ds,Q(t, s,q, ϕ) = max
[
T dt,ds,Q(t, s,q, ϕ) ,Mdt,ds,Q(t, s,q, ϕ)

]
,
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with the component corresponding to the continuation region given by

T dt,ds,Q(t, s,q, ϕ) = ϕ+ dt

1

2

n∑
i,j=1

[σσ′]ij T̂ dt,ds,Q
ij (·, ϕ) +

∑
i,±

λ

κe
exp

{
κξ

2
+ κ∆ϕ

}
− φ `(q)

 ,
T̂ dt,ds,Qij (t, s,q, ϕ) =

ϕ(Γ(si + ds, sj + ds), ·)− ϕ(Γ(si + ds), ·)− ϕ(Γ(sj + ds), ·) + ϕ(·)
ds2

,

and the component corresponding to the impulse region given by

Mdt,ds,Q(t, s,q, ϕ) = max
i ,±
{ϕ(t, s,q± ei)− ξi/2} .

We approximate the solution g by gdt,ds,Q : Tdt × Sds × YQ −→ R defined by: gdt,ds,Q(T, s,q) = −
∑
qi

(
sign(qi)

ξi
2 + γqi

)
gdt,ds,Q(dt · k, s,q) = Sdt,ds,Q

(
dt · (k + 1), s,q, gdt,ds,Q

)
.

(15)

We employ an explicit scheme backwards in time as follows:

• When t = T , for each s and q on their respective grids, set

gdt,ds,Q(T, s,q) = −
∑

qi

(
sign(qi)

ξi
2

+ γqi

)
.

• For t < T and s ∈ A′, we perform the following:

– Compute T dt,ds,Q(t+dt, s,q, gdt,ds,Q) and store the optimal control δ. Some details

for handling the mixed partial term are given in Appendix A.1.

– Compute Mdt,ds,Q(t+ dt, s,q, gdt,ds,Q) and store the optimal impulse τ .

– If T dt,ds,Q(t+ dt, s,q, gdt,ds,Q) ≥Mdt,ds,Q(t+ dt, s,q, gdt,ds,Q), then set

gdt,ds,Q(t, s,q) = T dt,ds,Q(t+ dt, s,q, gdt,ds,Q). Otherwise, set

gdt,ds,Q(t, s,q) =Mdt,ds,Q(t+ dt, s,q, gdt,ds,Q).

• For t < T and s ∈ ∂A′, we perform the following:

– Numerically approximate the condition (q +∇g) ·n = 0, similar to what is done in

Appendix A.3 and Appendix A.4 for the n = 2 and n = 3 examples, respectively.

4.3. Convergence of the Numerical Scheme

We require the following bounds on the value function to ensure the existence of a unique

viscosity solution to the DPE.

15



Lemma 10. There exists constants c0, c1, c2 ∈ R such that

x+
∑
i

qi

(
si − sign(qi)

ξi
2

)
≤ H ≤ x+ q · s + c0(T − t) + c1‖q‖1 + c2 . (16)

Proof. The lower bound is attained by the strategy that immediately liquidates and then

does nothing until time T . For the upper bound we have

H ≤ sup
(δ,τ )∈U

Et

XT + qT · ST − φ
T∫
t

`(qu)du

∣∣∣∣∣∣
q=0

+ q · s + ‖q‖1
∑
i

ξi

≤ sup
(δ,τ )∈U ′

Et

XT + qT · ST − φ
T∫
t

`(qu)du

∣∣∣∣∣∣
q=0

+ q · s

+ (T − t)

(∑
i

ξi + sup
δ , i ,±

δh(δ)

)
+ ‖q‖1

∑
i

ξi

= x+
∑
i

ξi sup
ω , t , i

(qt · ei)c3(σ)
√
T − tE [χ1] + (T − t)

∑
i

ξi sup
δ , i ,±

δh(δ)

+ q · s + (T − t)

(∑
i

ξi + sup
δ , i ,±

δh(δ)

)
+ ‖q‖1

∑
i

ξi ,

where χu is the maximum (in absolute value) of a standard n-dimensional Brownian motion

up to time u and U ′ ⊂ U is the subset of admissible controls with δ = ∞ whenever ‖q‖ = 0.

Finally, the result follows from Assumption 2. �

Although this upper bound is not necessarily sharp, it is sufficient to continue. We now turn

our attention to each term in the upper bound in this proof. The terms q · s + ‖q‖1
∑
i
ξi

correspond to free liquidation to q = 0 with an added bonus of
∑
i
ξi per unit of each open

position. The investor cannot do better than this (or even come close) on an expected value

basis. The term (T − t)

(∑
i
ξi + sup

ω , t , i ,±
δh(δ)

)
is an upper bound on the profit of all future

open positions that use filled LOs. Lastly, we must consider all MO initiated open positions

(for the case where q = 0 is not an element of the continuation region). If these positions are

aided with filled LOs, then we have already accounted for such events. Otherwise, in order

to produce a profit, the Brownian motion must travel a certain distance from where the open

position was initiated. The total number of times this happens is proportional to
√
T − t, and

φ > 0 guarantees that qt(ω) is uniformly bounded. We are able to bound the expected round

trip profit because the dimensionally reduced no-arbitrage region is bounded.
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Similar to Guilbaud and Pham (2015), we first prove monotonicity, stability, and consistency

properties (Propositions 11, 12, and 13, respectively) of the discrete dynamic evolution oper-

ator Sdt,ds,Q(t, s,q, ·). These properties are critical in the proof of Theorem 14, which states

that the solution to the numerical scheme, as given by (15), converges locally uniformly to the

unique viscosity solution g(t, s,q).

Proposition 11. (Monotonicity) For any ds > 0, there exists ht > 0 (depends on ds) such

that for any 0 < dt < ht, Q ∈ N, and ϕ1, ϕ2 ∈ C1,2
b

(
[0, T ]×A′ × Zn

)
with ϕ1 ≤ ϕ2, we have

Sdt,ds,Q(t, s,q, ϕ1) ≤ Sdt,ds,Q(t, s,q, ϕ2).

Proof. Let ϕ1 ≤ ϕ2, Q ∈ N, and ds > 0. Monotonicity of the operator M is obvious.

Because ϕ and its derivatives are continuous, and the domain of ϕ is compact, there exists

finite constants A1, A2 > 0 such that

eκ∆ϕ2 − eκ∆ϕ1 ≥ (e−κϕ2 − e−κϕ1)eκSϕ1 = (e−κ(ϕ2−ϕ1) − 1)eκ∆ϕ1 ≥ −A1(ϕ2 − ϕ1) , (17)

where A1 does not depend on ϕ1 or ϕ2, S is the shift operator associated with ∆, and

T̂ dt,ds,Qij (t, s,q, ϕ2)− T̂ dt,ds,Qij (t, s,q, ϕ1) ≥ −A2(ϕ2 − ϕ1) , (18)

where A2 only depends on ds.

Using (17) and (18) gives

T dt,ds,Q(t, s,q,ϕ2)− T dt,ds,Q(t, s,q, ϕ1)

= ϕ2 − ϕ1 + dt
1

2

n∑
i,j=1

[σσ′]ij

(
T̂ dt,ds,Qij (·, ϕ2)− T̂ dt,ds,Qij (·, ϕ1)

)
+ dt

∑
i,±

λ

κ
e−1+κξ/2

(
eκ∆ϕ2 − eκ∆ϕ1

)

≥ (ϕ2 − ϕ1)

1− dt

A1

∑
i,±

λ

κ
e−1+κξ/2 +

A2

2

n∑
i,j=1

[σσ′]ij


 .
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Taking

dt <

A1

∑
i,±

λ

κ
e−1+κξ/2 +

A2

2

n∑
i,j=1

[σσ′]ij

−1

(19)

gives monotonicity of T . �

Proposition 12. (Stability) For any dt, ds > 0 and Q ∈ N, there exists a unique solution

gdt,ds,Q(t, s,q) to (15). Furthermore, the sequence {gdt,ds,Q} is uniformly bounded. More

formally, there exists c0, c1, c2 ∈ R such that for any (t, s,q) ∈ Tdt × Sds × YQ,

−
∑
i

qisign(qi)
ξi
2
≤ gdt,ds,Q(t, s,q) ≤ c0(T − t) + c1‖q‖1 + c2 . (20)

Proof. Existence and uniqueness follows immediately from the definition of the explicit dis-

cretization scheme given in (15). The upper bound is a direct consequence of Lemma 10 since

gdt,ds,Q(t, s,q) ≤ g(t, s,q) = H−x−q·s ≤ c0(T−t)+c1‖q‖1 +c2. The lower bound is attained

by immediate liquidation of the current inventory and then doing nothing until t = T . �

Proposition 13. (Consistency) For all (t, s,q) ∈ [0, T )×A′ × Zn and

ϕ ∈ C1,2
b

(
[0, T ]×A′ × Zn

)
, we have

lim
(dt, ds,Q)→ (0, 0,∞)

(t′, s′)→ (t, s)

1
dt

[
T dt,ds,Q(t′ + dt, s′,q, ϕ)− ϕ(t′, s′,q)

]
=

∂ϕ
∂t + 1

2

n∑
i,j=1

[σσ′]ij
∂2ϕ
∂si∂sj

+
∑
i,±

λ
κ exp

{
−1 + κξ

2 + κ∆ϕ
}
− φ `(q)

(21)

and

lim
(dt, ds,Q)→ (0, 0,∞)

(t′, s′)→ (t, s)

Mdt,ds,Q(t′ + dt, s′,q, ϕ) = max
i ,±
{∆±i ϕ− ξi/2} . (22)

Proof. Equation (22) follows by continuity of ϕ. To prove (21), let (t′, s′,q) ∈ [0, T )×A′×Zn

and observe:
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1

dt

[
T dt,ds,Q(t′ + dt, s′,q, ϕ)− ϕ(t′, s′,q)

]
=

1

dt

[
ϕ(t′ + dt, s′,q)− ϕ(t′, s′,q)

]
− φ `(q)

+
1

2

n∑
i,j=1

[σσ′]ij T̂ dt,ds,Qij (t′ + dt, s′,q, ϕ)

+
∑
i,±

λ

κ
exp

{
−1 +

κξ

2
+ κ∆ϕ(t′ + dt, s′,q)

}
.

The only term that does not trivially converge is ∆ϕ(t′ + dt, s′,q) (the other terms clearly

converge since ϕ ∈ C1,2
b ). But ∆ϕ(t′ + dt, s′,q) is also continuous in (t, s) whenever Q ≥

‖q‖∞ + 1, thus proving (21). �

Observe that we do not need to include a sequence of inventory levels due to the fact that q

resides on the sparse grid Zn. More formally, one could only consider the limiting sequence

(t′ + dt, s′,q′)→ (t, s,q) sufficiently far in the tail when q′ = q onwards.

Theorem 14. (Convergence) The solution gdt,ds,Q to the numerical scheme (15) converges

locally uniformly to the unique viscosity solution g(t, s,q) on [0, T )×A′×Zn, as (dt, ds,Q)→

(0, 0,∞), provided dt < f(ds) for some f : R+ → R+.

Proof. Follows from Propositions 11, 12, 13, and Barles and Souganidis (1991). For com-

pleteness, the details are provided.

The limits

g∗(t, s,q) := lim inf
(dt, ds,Q)→ (0, 0,∞)

(t′, s′)→ (t, s)

gdt,ds,Q(t′, s′,q)

g∗(t, s,q) := lim sup

(dt, ds,Q)→ (0, 0,∞)

(t′, s′)→ (t, s)

gdt,ds,Q(t′, s′,q)

are lower/upper semi-continuous functions on [0, T ] × A′ × Zn, and inherit the boundedness
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of {gdt,ds,Q} by the stability result in Proposition 12. It suffices to show (by symmetry and

the strong comparison principle) that g∗ possesses the viscosity supersolution property. To

this end, let (t̄, s̄, q̄) ∈ [0, T ) × A′ × Zn and ϕ ∈ C1,2
b

(
[0, T ]×A′ × Zn

)
such that (t̄, s̄, q̄)

attains the strict global minimum of g∗ − ϕ. Then there exists sequences {(t′k, s′k,q′k)}k in

[0, T )×A′ × Zn and {(dtk, dsk, Qk)}k such that

(t′k, s
′
k,q
′
k) −→ (t̄, s̄, q̄) ,

(dtk, dsk, Qk) −→ (0, 0,∞) ,

gdtk,dsk,Qk −→ g∗(t̄, s̄, q̄) ,

and (t′k, s
′
k,q
′
k) is the global minimizer of gdtk,dsk,Qk − ϕ .

Observe that for us to apply the monotonicity result in Proposition 11, the sequence {(dtk, dsk, Qk)}k
must have dtk sufficiently small for each dsk, as prescribed by (19).

Denote the sequence of minimum values {βk}k by βk := (gdtk,dsk,Qk − ϕ)(t′k, s
′
k,q
′
k). Then we

have the relation gdtk,dsk,Qk ≥ ϕ+βk. Applying the definition of the numerical scheme in (15)

and the monotonicity result from Proposition 11 gives:

βk + ϕ(t′k, s
′
k,q
′
k) = gdtk,dsk,Qk(t′k, s

′
k,q
′
k)

= Sdtk,dsk,Qk(t′k + dtk, s
′
k,q
′
k, g

dtk,dsk,Qk)

≥ Sdtk,dsk,Qk(t′k + dtk, s
′
k,q
′
k, ϕ+ βk)

= Sdtk,dsk,Qk(t′k + dtk, s
′
k,q
′
k, ϕ) + βk

= max
[
T dtk,dsk,Qk(t′k + dtk, s

′
k,q
′
k, ϕ) ,Mdtk,dsk,Qk(t′k + dtk, s

′
k,q
′
k, ϕ)

]
+ βk .

We then have the relation

min

{
1

dtk

[
ϕ(t′k, s

′
k,q
′
k)− T dtk,dsk,Qk(t′k + dtk, s

′
k,q
′
k, ϕ)

]
,

ϕ(t′k, s
′
k,q
′
k)−Mdtk,dsk,Qk(t′k + dtk, s

′
k,q
′
k, ϕ)

}
≥ 0 ,

and applying the consistency result in Proposition 13 while taking k → ∞ finally yields the
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viscosity supersolution property

min

−∂ϕ
∂t
− 1

2

n∑
i,j=1

[σσ′]ij
∂2ϕ

∂si∂sj
−
∑
i,±

λ

κ
exp

{
−1 +

κξ

2
+ κ∆ϕ

}
+ φ `(q) ,

ϕ−max
i ,±

{
∆±i ϕ−

ξi
2

}]∣∣∣∣
(t̄,s̄,q̄)

≥ 0 .

�

5. Optimal Trading: no-arbitrage region and performance of strategy

5.1. No-Arbitrage region

We use our 2-dimensional illustrative example to explore the behavior of the optimal strategy.

Recall that the first asset S1
t is a traded equity and the second asset, S2

t , is a T -maturity

futures contract written on S1
t . In this economy, we have V

[
(1 , −1)′ · ST

]
= 0, yielding a

market that is over-complete. To this end, we take b = (1 , −1)′ as the basis of B for this

illustrative example, and other parameters are given in Table 1.

Parameter Value

φ 1

σ

(
0.005 0.009

0 0.015

)
γ 0.001

ξ1 , ξ2 0.02
λ−1 , λ

+
1 1.2

λ−2 , λ
+
2 1.0

κ−1 , κ
+
1 40

κ−2 , κ
+
2 25

T − t 60

Table 1: Model parameters used in the analysis of the function g(t, s,q), the continuation region, and the

optimal inventory level. Recall that the fill rate assumption h±i (δ) = λ±i e
−κ±

i (δ−ξi) from Example 6 is being
made.

For simplicity, we assume that the fill rates on both sides of the LOB are the same (see Table 1)

and that the arrival of buy and sell MOs are also the same, but both the fill rate parameter and

arrival of MOs differ across the two assets. For example, the underlying equity S1
t is modeled

with a higher rate of incoming MOs than S2
t which is the T -maturity futures contract. This
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is because the underlying trades more actively than the first nearby futures and so we assume

that there is more liquidity in the equity than the futures by taking κ±1 > κ±2 .6

Finally, note that because ξi > 0, we do not require their correlation to be 1 or even for their

volatilities to be the same. However, it is financially sound for their volatilities to be similar

and for their correlation to be positive. This leads to our choice of volatility matrix, σ, which

induces a correlation of approximately 0.87. The total volatility of Asset 1 turns out to be less

than that of Asset 2. The rationale behind this is that the sources of quadratic variation of the

futures contract not only include the underlying equity (Asset 1), but also with that of interest

rates and stochastic volatility (which affects the futures price via the convexity correction).

So the futures contract should then have a larger total volatility than its underlying.

For a fixed time t, Figures 1(a) and 1(c) show g(t, s,q) as a function of q for fixed s =

(100, 100). It is clear that it attains its maximum at q = (0, 0). The asymmetry in g with

respect to inventory is due to the fact that the risk associated with a single unit of Asset 1

is less than that of Asset 2. Furthermore, portfolios of the form (a, b) with sign(a) 6= sign(b)

are less risky than portfolios with sign(a) = sign(b) as the two assets are strongly positively

correlated. This is depicted in the dark blue regions in the upper right and lower left corners

of Figure 1(c), which corresponds to large long positions and large short positions in both

assets, respectively.

The left and right panels of Figure 1 show g(t, s,q) as a function of q for two different values

of s1 − s2. When s1 = s2, the maximum of g(t, s,q) is again obtained at q = (0, 0). However,

this is no longer the case when s1 6= s2. When s1 < s2, the investor would rather be long

Asset 1 and short Asset 2, and she will post LOs in a way that reflects this desire to hold

such an inventory. This is because the process S1
t − S2

t is bounded from below by the sum

of the assets’ half-spreads. Hence, when this process is near the lower boundary, there is the

potential for profits as we have assumed reflection on this boundary.

Figure 2 shows how the continuation region also depends on s1 − s2. When s1 = s2, the

continuation region is centered around the origin, just as one would expect. However, when

one asset is cheap relative to the other, i.e. s1 < s2, then the agent prefers to long Asset 1 and

short Asset 2 in an attempt to profit when Asset 1 increases relative to Asset 2. Furthermore,

she will be aggressive and execute MOs if she is caught holding a portfolio that is short Asset 1

and long Asset 2 when this shift in the midprices occurs, as demonstrated by the absence of the

continuation region in the upper left corner of Figure 2(b). As the price discrepancy becomes

larger, the investor adjusts her strategy to accumulate inventory in a way that positions her

to profit from these market conditions.

6Although this is true for equities, there are cases (such as commodities) when a future’s underlying does
not actively trade or is a non-traded asset (e.g., electricity).
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Figure 1: g surface for various s. Figures 1(a) and 1(c) show the surface and heatmap, respectively, of g(t, s,q)
when the assets’ midprices are equal. Figures 1(b) and 1(d) show the surface and heatmap, respectively, of
g(t, s,q) when Asset 1 is cheap relative to Asset 2 (s1 = s2 − 0.012).

As discussed earlier, inventory control plays a critical role in investment strategies. The

investor actively tries to liquidate outstanding long positions and cover outstanding short

positions. In a single asset scenario, the logistics behind this are clear. However, in a multiple

asset setting with correlated assets, the investor may attempt to partially hedge a long position

in one asset with a short position in another asset that is positively correlated.

Corollary 15. Mean Reversion of Inventory. Given the optimal strategy δ∗, the expected

drift of the inventory process qt inside the continuation region is given by

lim
u→t+

1

u− t
E[qu − qt | Ft] =

[
λ−i h

−
i (δ−i,t)− λ

+
i h

+
i (δ+

i,t)
]
i
. (23)

Proof. By observing that each element of δt is a right continuous with left limits (RCLL)
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Figure 2: Continuation region for various s. The different coloured regions correspond to different MO submis-
sions. Namely, light blue: Asset 1 buy MO; orange: Asset 1 sell MO; dark blue: Asset 2 buy MO; burgundy:
Asset 2 sell MO; green: continuation region; and white: unattainable. Recall that Figure 2(b) is specified by
s1 = s2 − 0.012.

function of t (for fixed ω ∈ Ω), we can conclude that the expected drift in inventories inside

the continuation region is given by the difference in the arrival rates of filled LOs at time t. �

Figure 3 shows the inventory drift as a function of the midprice s. When the trader is flat

(holding zero inventory) and Asset 1 is cheap relative to Asset 2 (i.e. when s1−s2 is small), she

wants to acquire a long position in Asset 1 and short position in Asset 2. The corresponding

drifts in the q1
t and q2

t processes become more pronounced as the inventory penalty parameter

φ decreases.

Figures 4 and 5 show the drift in the process qt as a function of the current inventory q for

fixed values of s1− s2 (and φ = 1 as taken in previous plots where not explicitly stated). The

inventory will be attracted to the curve where the reversion rate is 0 (colored green). Notice

how in each figure the qi process is attracted to a curve and not a point. More specifically,

for each value of q, the component qi is attracted to a particular point that depends on the

values of the other components of q. When q1 = 0 and s1 = s2, then the optimal amount

of Asset 2 to hold is 0. However, when q1 > 0, then the optimal amount of Asset 2 to hold

is less than 0. This highlights the behaviour that the investor tries to partially hedge a long

position in one asset by acquiring a short position in the other (as well as try to reduce the

long position in Asset 1 as well).

The intersection point of the corresponding attraction curves for q1 and q2 then acts as the

attraction point for the vector-valued inventory process qt. Figure 6 is a graphical depiction

of this attraction point as a function of s1 − s2.
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Figure 3: Inventory drift when the investor is flat (i.e. q1 = q2 = 0).

5.2. Simulation Study: PnL of the Strategy

In this section we use simulations to analyze the financial performance of an investor who

follows the optimal strategy in the last section. We use the time limiting strategy for T − t
large since the . The investor’s operating frequency is every 5 milliseconds, the maximum

amount of inventory the investor can hold long or short7 is Q = 40 for each asset, and the

trading horizon is T = 300 seconds. Other model parameters are provided in Table 2. Recall

that we continue with the fill rate assumption h±i (δ) = λ±i e
−κ±i (δ−ξi) from Example 6.

5.3. Facing Adverse Selection

Here we analyze the strategy under more realistic scenarios, in particular we assume that an

important source of risk faced by the investor is adverse selection. The investor might be

trading with better informed counterparties and therefore faces the risk of buying assets right

before prices drop or selling assets right before prices rise. In our analysis, we include adverse

selection by assuming that some MOs will affect the midprice of the asset, but the investor

does not account for this in her model.

With this in mind, we suppose that an MO originates from one of two sources. It was either

executed by an informed trader, or an uninformed one. We assume that the probability

7This bound on the investor’s inventory only plays a role in the numerical solution of the value function and
was not imposed in the optimal control problem above, but it is trivial to include it. Depending on the penalty
parameter φ > 0, the exact strategy will dictate uniform (over time and Ω) bounds on the investor’s inventory
since the continuation region is bounded, as argued in Section 4.3. This is visually depicted in Figure 2 where
the optimal strategy keeps inventory inside the rhombus shaped region.
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Figure 4: Inventory drift when the assets’ midprices are equal (i.e. s1 = s2).

that any particular MO comes from an informed trader is constant, and we shall denote this

probability by ρ. We describe the two possible effects by example. Suppose the current best

bid-ask quotes for Assets 1 and 2 are 100.00/100.02 and 100.01/100.03, respectively. A large

buy MO on Asset 1 arrives, widening the spread to 100.00/100.06. At this point, one of two

things will happen immediately:

• The MO was executed by an informed trader: The best bid-ask quotes for Asset 1

becomes 100.04/100.06, giving an immediate impact of $0.04. This impacts Asset 2

in the same way causing the BBO to move to 100.05/100.07. The informed trader

knows that there will be upward pressure on the price, and some other informed market

participants (on both assets) move their current quotes to reflect this.

• The MO was executed by an uninformed trader: The best bid-ask quotes for both assets

remains unchanged. There is nothing special about this MO, and the depleted portion

of the LOB refills with LOs.

This describes the immediate effect on the midprice process which now follows

dSt = αtdt+ σdBt + d(Nt−+1)

(
1 1

1 1

)
d
(
N̂+
t + N̂−t

)
,

dαt = −ζ αt dt+ e(Nt−+1) Ψ d
(
N̂+
t − N̂−t

)
.

(24)

Here the vector-valued processes {N̂−t }0≤t≤T and {N̂+
t }0≤t≤T are the total number of informed

market sell and buy orders up to time t, respectively, with the ith component representing

Asset i. The process αt denotes the persistent impact of an informed MO which affects the
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Figure 5: Inventory drift when Asset 1 is cheap relative to Asset 2 (i.e. s1 = s2 − 0.012).
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Figure 6: Mean reversion point of q as a function of s1 − s2. The red (blue) dots correspond to small (large)
values of s1 − s2.

drift of the midprice process.8 Moreover, St has (normal) reflection at the boundary of A, ζ

and Ψ are n × n matrices with non-negative entries, d(1), d(2), . . . is the sequence of random

variables representing immediate market impact (will be non-negative for market buy orders

and non-positive for market sell orders), and e(1), e(2), . . . is an i.i.d. sequence of exponential

random variables with mean 1.

Note that because the immediate market impact term adds a random multiple of (1, 1)′ to

St, the resulting value of the midprice vector is guaranteed to remain inside the no-arbitrage

region A (recall from Section 2 that A =
{
s ∈ R2 : |s1 − s2| < 1

2(ξ1 + ξ2)
}

) and α1
t = α2

t

8Since all of these effects occur simultaneously (or faster than the HFT can respond), this model does not
admit latency arbitrage.
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Parameter Value

T 300
φ 0.3, 1, 3, 10, 30, 100, 200

σ

(
0.005 0.009

0 0.015

)
γ 0.001

ξ1 , ξ2 0.02
λ−1 , , λ

+
1 1.2

λ−2 , λ
+
2 1.0

κ−1 , κ
+
1 40

κ−2 , κ
+
2 25

ζ

(
2 0
0 2

)
ρ 0.40, 0.50, 0.60
ε 0, 0.01, 0.02, 0.04

Table 2: Model parameters used in the simulation study. Recall that the fill rate assumption h±i (δ) =

λ±i e
−κ±

i (δ−ξi) from Example 6 is being made.

(which will be denoted αt). Equation (24) is the natural multivariate extension of the drift

dynamics presented in Cartea et al. (2014).

When an informed buy MO arrives on Asset i, then there will immediately be a jump in αt
equal to the ith column of Ψ multiplied by a random exponential random variable. The matrix

ζ serves as the decay matrix which forces each component of the process αt to mean revert

to zero. The effect of an informed sell MO is similar, except it induces a negative jump in αt.

Observe that we are using N̂±t instead of N±t or N
±
t in (24). This has the interpretation that

only the MOs of informed traders will have an impact on αt. Furthermore, our own MOs do

not move the market, unlike the informed traders’ MOs, as our MOs are quite small in size and

we are a small player without superior market information. For the purposes of illustration,

we make the further assumption that Ψ = ε

(
1 1

1 1

)
, where ε ≥ 0 is a scale parameter.

Figure 7 shows sample paths for the midprice process St and its drift process αt. Observe the

jumps in both the midprice process and in the short-term drift component due to the activity

of informed traders. On this particular time window, Asset 1 is priced lower than Asset 2.

Observe in Figure 7(c) how the midprice spends most of the time near the upper boundary.

It will be shown in Section 4.1 that g is only a function of s through the function s1− s2. We

provide a sample path of this process in Figure 7(d). Again, notice that on this particular

window S
(1)
t − S

(2)
t < 0, but still obeying the bound S

(1)
t − S

(2)
t > −1

2(ξ1 + ξ2) = −0.02.
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Figure 7: Sample paths of the midprice process St and drift process αt. The red lines in Figure 7(c) represent
the boundary of the no-arbitrage region.

Notice how the investor’s buy LO quote for Asset 1 (as depicted in Figure 8(a)) varies as the

process S
(1)
t − S

(2)
t varies over time in Figure 7(d). The discrete jumps in δ−1,t are due to the

state variable s1 − s2 moving to another (discrete) grid point (recall that g(t, s,q) was solved

numerically on a sparse grid for the spacial variable s). In this plot, the cheaper Asset 1 is

relative to Asset 2 (i.e. when S
(1)
t − S

(2)
t is close to -0.02), the more willing the investor is to

acquire an additional unit of Asset 1. Hence, she posts her limit buy order closer to the best

bid for Asset 1 and her limit sell order closer to the best offer for Asset 2. Along this sample

path, the investor manages to acquire a long position in Asset 1, as shown in 8(b), and is

using her short position in Asset 2 to partially hedge away the risk associated with being long

the underlying equity.

Although these adverse selection effects are present in the DGP, the trader cannot estimate

the correct drift of the asset so she assumes that it is zero. Recall that the investor assumes

that the dynamics of St are given by Assumption 1, and that this was the assumption used
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Figure 8: Sample paths of the investor’s LO depth and her inventory level for φ = 10.

when solving the stochastic control problem above.

5.4. Results of the Simulation Study

Here we show how the investor’s strategy performs when we vary the running inventory penalty

φ and her exposure to adverse selection by varying the scale parameter ε. The investor starts

with zero inventory in both assets and will trade for T = 300 seconds. We run 2,500 simulations

and record the PnL for each run. Figure 9 provides histograms depicting the distribution of

the terminal PnL for two levels of running inventory penalty. In Figure 9(a) we assume that

the investor is not exposed to adverse selection costs by assuming ε = 0 and in Figure 9(b) we

show the histogram of the PnLs when the investor is exposed to adverse selection effects by

setting ε = 0.02.

However, when we increase the scale parameter ε in the jump size of the short-term drift

process, we observe that the less inventory averse investor does not necessarily outperform

her more inventory averse counterpart. This is because the less inventory averse investor is

willing to hold larger inventories for a longer period of time which further exposes her to the

drift of St, while the more inventory averse investor cuts her losses early in an attempt to

reduce inventory risk. The ε = 0.04 case in Figure 10 illustrates this result very well.

There is some debate about which risk metric better characterizes the riskiness of a strategy.

Classical work in finance is typically only concerned with the terminal distribution of PnL (at

time T ); namely, its variance (or standard deviation) and possibly higher moments that give

information about the weight of the tails. However, considering the penalty term in (3), we

see that we are concerned with the optimal portfolio’s risk throughout the entire time interval

[0, T ], not just at the end. To this end, we classify a strategy’s riskiness via the penalty
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(a) ε = 0 (b) ε = 0.02

Figure 9: Distribution of terminal profit and loss. The probability of an informed MO is fixed at ρ = 0.50.
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Figure 10: Performance of strategy for various φ with different drift impact scale parameters ε. The probability
of an informed MO is fixed at ρ = 0.50.

∫ T
0 `(qu) du and consider the mean of this quantity. This is what is termed mean inventory

risk, see Cartea and Jaimungal (2015c) in the context of algorithmic trading.

Figures 10 and 11 provide ‘efficient frontiers’ comparing expected PnL against both standard

deviation of PnL and mean inventory risk for a variety of adverse selection parameters (ε and

ρ, respectively). Decreasing φ (i.e. increasing inventory-risk appetite) corresponds to moving

in the rightward direction of this plot. As stated in Table 2, φ ranges from 0.3 to 200.

Recall that the investor assumes that the drift of St is zero, when in fact there is a short-term

component in the drift that affects midprices when informed traders send MOs. As outlined

in detail in Section 5.3, we have a scale parameter ε ≥ 0 that represents the magnitude of
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Figure 11: Performance of strategy for various φ with different probabilities of informed MOs ρ. The drift
impact scale parameter is fixed at ε = 0.01.

such effects. The larger the parameter, the stronger the effects of adverse selection are in the

market. It is clear from Figure 10, that adverse selection generally has a negative effect on the

investor’s PnL. In the extreme case of ε = 0.04, these effects are so strong that decreasing the

investor’s inventory aversion actually decreases return because she is allowing her portfolio to

be exposed to these effects for a longer period of time.

Up until this point, we have assumed that 50% of all incoming MOs are from informed traders

and thus have an impact on the drift of the midprice. Recall that MOs of this type have

two effects: an immediate effect and a persistent effect. If we increase the probability ρ that

an MO comes from an informed trader, then this will directly translate into an increase in

the number of MOs that immediately move the market. Because this movement is always

against the investor when her LO is filled, it will always have a negative impact on her PnL

(in contrast to increasing ε where this was not the case). The resulting efficient frontiers are

reported in Figure 11 for three differing values of ρ.

Figure 12 shows that the larger the inventory penalty parameter φ is, the more MOs are

executed by the investor. Larger φ means that the investor imposes a higher penalty on

running inventory, which induces higher mean reversion in inventories. This is attained by

adjusting the depth of LOs and by executing MOs to unwind positions. For example, if the

inventory is long, the sell LO will be posted very close to the midprice, the buy LO far away

from the midprice, and if necessary execute a sell MO. One can also see that see that the larger

φ is, the smaller the continuation region, so the boundary gets breached more often inducing

MOs that force the investor to cross the bid-ask spread to bring q back into the continuation

region.

Although there is symmetry between the buy and sell sides of the LOB, there is an intuitive
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(a) Asset 1 – Market Buy (b) Asset 1 – Market Sell

(c) Asset 2 – Market Buy (d) Asset 2 – Market Sell

Figure 12: Distribution of the number of executed MOs for various inventory penalty levels when ε = 0.01 and
ρ = 0.50.

explanation for the drastic difference in number of executed MOs between the two assets.

Asset 2 has a higher total volatility, which increases the penalty for holding a position in it,

hence, the continuation region is smaller in the q2 direction than in the q1 direction (as seen

in Figure 2).

6. Conclusions

We develop a trading strategy which employs limit and market orders in a multi-asset economy

where assets exhibit structural dependence. For example, i) trading in a futures contract and

its underlying, or ii) trading in the first and second nearby futures and the 1-2 calendar spread.

When structurally dependent assets trade with positive bid-ask spread, midprices live in a no-
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arbitrage region and we show how an investor can take positions in these assets to maximize

expected cash over a trading horizon.

The investor’s performance criteria is linear in wealth and penalizes inventory positions. Key

to the strategy is the behaviour of midprices close to the edges of the no-arbitrage region.

Price pressure from arbitrageurs and other traders push prices to the interior of the region,

and in our framework this is modeled assuming that midprices follow a multivariate Brownian

motion that is reflected on the boundaries of this region.

The optimal strategy exhibits two dominant features which depend on how far the vector of

midprices is from the no-arbitrage bounds. When midprices are sufficiently far from the no-

arbitrage edges, the strategy behaves as that of a market maker who posts buy and sell limit

orders. However, these limit orders are strategically placed in the book to not only control

for inventory exposure, but also in anticipation of midprices approaching the edges of the

no-arbitrage region where the strategy employs a mix of market and limit orders to execute

statistical arbitrages.

We employ simulations to show the qualitative features of the optimal trading strategy. Market

orders, employed for statistical arbitrages and inventory management, play a key role in the

success of the strategy. Limit orders are posted in the book to earn the spread, and to manage

inventories where the instantaneous correlation between multiple assets is also used to partially

hedge away the inventory risk associated with a large open position in the less liquid assets.

Finally, an explicit numerical scheme is provided to solve the derived HJBQVI and convergence

results are discussed to ensure that the given discretization scheme converges to the true

viscosity solution. Lastly, we derive a dimensional reduction in the spacial variable for the

midprice which significantly reduces the computational time of the numerical solution, thus

making it viable for practical applications.
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Appendix A. Evaluating Non-Trivial Terms in the Numerical Scheme of Section

4.2

This section illustrates how to apply the dimensional reduction to terms where the result is

non-trivial. All expressions are given explicitly for the n = 2 example. In what follows, all

functions are evaluated at a fixed inventory level, q, and this dependence is suppressed.

Appendix A.1. The Mixed Partial Term

For i 6= j, we numerically approximate the following term that appears in (12):

∂2g

∂si∂sj
≈ g(si + ds̃, sj + ds̃, ·)− g(si + ds̃, ·)− g(sj + ds̃, ·) + g(·)

ds̃2
, (A.1)

where ds̃ is the step size of the finite difference approximation. Note that if we require the

grids to line up in our n = 2 example, we must have ds̃ = ds, where ds is the step size on the

dimensionally reduced grid given in Appendix A.3.

Appendix A.2. Dimensional Reduction

Recall that Corollary 9 states that there exists v ∈ Rn \ {0} such that Dvg = 0. In our

example, v = 1, so we take s := s1 − s2.

Continuing from (A.1), we then have

∂2g

∂s1∂s2
≈ 2g(·)− g(s− ds, ·)− g(s + ds, ·)

ds2
, (A.2)

where the right hand side is defined on the dimensionally reduced grid and taken at the

previous time step (t+ dt).

For the 2-dimensional illustrative example studied in this paper, the full numerical approxi-

mation for the diffusive term in Lg is then given by

g(s + ds, t+ dt) + g(s− ds, t+ dt)− 2g(s, t+ dt)

2ds2

(
[σσ′]11 + [σσ′]22 − 2[σσ′]12

)
. (A.3)
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Appendix A.3. The Neumann Condition

For s ∈ ∂A, numerically impose (q + ∇g) · n = 0. Take ds̄ = c0ds so the grids match up,

where c0 depends only on the choice of orthogonal basis of B.

In our n = 2 example, we have the normal vector n = (1 , −1) and c0 = 1 resulting in

∇g ≈ ∓
(
g(s)−g(s±ds)

ds , g(s±ds)−g(s)ds

)
with the upper (lower) symbol for reflection on the upper

(lower) boundary when viewed graphically. The relation is only approximate because we are

using a finite difference method. Finally, for s ∈ ∂A, we have

g(s) ≈ g(s± ds)± (q1 − q2)ds

2
. (A.4)

Appendix A.4. Explicit Example when n = 3

The analogue of the right-most coefficient in (A.3) is given by

[σσ′]11 + [σσ′]22 + [σσ′]33 − 2[σσ′]12 − 2[σσ′]13 + 2[σσ′]23 (A.5)

and, for s ∈ ∂A, we have

g(s) ≈ g(s± ds)± (q1 − q2 − q3)ds

3
. (A.6)
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