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Annuls of Economic and Social Measure,nent, 1/4, 1972

STOCHASTIC OPTIMIZATiON IN RECURSIVE EQUATiON
SYSTEMS WITH RANDOM PARAMETERS WITH AN APPLICATION

TO CONTROL OF THE MONEY SUPPLY*

uy I-I, Woois &)WMAN AND ANNIE MARIE LAPORTEt

In this paper the coefficienrs of a stochastic linear recursive' model are presumed random. (Js!ne an
expected loss (Bayesian) approach, the exact one-period solution for a single control variable, quadratic
criterion function, and one number of criteria variables is derived. un application to the recursive St. Louis
model indicates that a Bayesian approach leads to smaller losses and, genera/fr, a more conservative
police thou a certainty equivalence approach where the Co fJicitnts of the ninth'! are assumed known.

A promising approach to decision making with econometric models has been
developed by Holt and Theil who postulate a quadratic utility (or loss) function
in the criteria variables.1 Provided the model is linear with Inown coefficients,
the optimal policy is found to be one for which the criterion function is an
extremurm2 Since, in practice. the coefficients of a model are not known the
technique utilizes the mean values of the coefficient estimators and for this reason
it is known as the certainty equirah'nce approach.

Unfortunately this approach does not take account of the variance of the
population parameters. An alternative, not yet popular, utilizes an explicit criterion
function, hut prestinies that the population parameters are unknown. In this case,
the criterion function is a function of random variables and, hence. an extremum
does not exist. If the function is quadratic, however, its mathematical expectation
is sometimes tractable and an extremum can be located for the expectation of the
function.

This technique, known as the Bayesian or expected loss technique, has been
explored by Fisher and Zellner, among others, and recently an application was
made to a money multiplier model at the Federal Reserve Bank of St. Louis.3
Fisher and Zellner derive exact results for single equation models and indicate

* Most of the work on this paper was done while Dr. Bowman was atliliated with the Federal
Reserve Bank of Chicago. The authors would like to express their appreciation to Karl A. Scheld of
the Federal Reserve Bank of Chicago and Arnold Zeliner of the tlniversity of Chicago for their guidance
and encouragensent throughout the project. Calculations were performed using consputer facilities
at the Federal Reserve Bank of Chicago.

f Ms. Laporte is primarily responsible For the final section which treats the application l)r.
Bowman is primarily responsible for the remainder of the paper.

C. C. Holt. "Linear Decision Rules for Economic Stabilization and Growth," Quarterlr Jour,ial
of Economics, 67(1962) and Henri Theil, Opt imal Decision Rules for Government and Industry (Amster-
dam: North-Holland, 1964), Ch. 6.

2 Among their other virtues, quadratic functions possess unique extrerna. so that a single "best"
policy will always exist.

Walter Fisher, "Estimation in the Linear Decision Model," International Economic Review,

3 (1962); Arnold Zellner, An Introduction to Bayesian Inference in Econonietrics (New York: John
Wiley, 1971), Ch. II; Albert F. Burger. Lionel Kalish III, and Christopher T. Babb. "Money Stock
Control and Its Implications for Monetary Policy," Federal Reserve Bank of St. I.ouis Review. 53
(October, 1971), pp. 6-22.
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that the difference in control settings and expected loss arising from using the
certainty equivalence solution instead of the Bayesian solution is rather small.

In multi-equation models, the difference can be niagnilied by the particular
shape of the quadratic criterion function employed and by the relationships
among the endogenous variables. Research in this area had been held up because
exact solutions are difficult to find for multi-equation systems. One type of multi-
equation system for which exact solutions can he easily found is the recursive
system. This paper develops the exact form for the one period solution in the
case of (I) a quadratic criterion function, (2) a single policy instrument, (3) any
number of equations which are linear in the parameters and recursive in structure,
and (4) any number of criteria variables.

An application of the solution is then made to a model of the U.S. economy
developed at the Federal Reserve Bank of St. Louis.4 The results indicate that the
difference in expected loss can be extremely large. The magnitude of the difference
is significantly affected by information contained in the data (for a given model)
over which the policymaker has no control. However, if more than one criterion
variable is used, the policyinaker employing a certainty equivalence solution can
minimize the difference by emphasizing in the criterion function the variable
about which he or she is more certain.

CONTROL IN GENERAL RECURSIVE SYSTEMS

The problem is to
minimize: EL = E(y - aVQ(v - a), expected loss
subject to: Y= Y1 + KB + U

where these quantities are defined as follows:

y is an in-element column vector of "future" observations (that is, th
T + I observations) on the endogenous variables of the system, havin
unconditional mean value V;

a is an rn-element column vector of targets corresponding to these variables
Q is an in x in positive definite symmetric matrix of constantsthe param

eters of the loss function ;5
V is a T x in matrix of observations on the endogenous variables in the

system;
F is an m x in upper triangular matrix of random coefficient parameters

with zeros along the diagonal;
X is a T x ii matrix of observations on the predetermined variables of the

system;
B is ann x in matrix of random coefficient parameters;
U is a T x in matrix of unobserved random error terms.

Furthermore, it is assumed that the columns of U are normally and independently
distributed, such that letting

(u',u .....
Andersen and Keith M. Carlson, "A Monetarisi Model for Economic Stabilization.'
Bunk ofSt. Louis Review, 52 (April, 1970), pp. 7-25. Hereafter referred to as the St
of rank k < rn, where k is the number of Criteria variab!es in the controt problem
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then

Ev' = 0

Evv' = D(o) 0 I. i = 1,2.....in
where u represents the ith column of U and D() is a diagonal matrix with
diagonal elements given by o. The recursive nature of the system is evident from
two conditions: (I) the F matrix is upper triangular and (2) the error terms of
different equations are independently distributed.

The same model is assumed to generate "future" observations, that is
y = yT + x'B + u'

where y' is an rn-element row vector and x' is an n-element row vector representing
observations on the endogenous and predetermined variables respectively in the
T + 1 period. The in elements of the row vector ii' are unobserved error terms in
the T ± I period, independently and normally distributed such that

Eu = 0,

Euu' = D(cr,) i =

Euu=[OJ k= 1,2.....T,
where u is the kth row of U.

Having defined these new quantities and placed the appropriate restrictions
on the error terms, we are now in a position to consider the loss function6

EL = E(y - a)'Q(y - a) = E(y - y)'Q(y - + .. a)'Q(V - a).

Note that the second term is the loss function associated with the certainty
equivalence solution (CEL) to the control problem. It is simply a weighted sum
of the deviations of the mean values of the criteria variables about their respective
targets. The Bayesian approach, which is the sum of the two terms, takes into
account additional loss arising from the possible failure to predict the mean
values of the criteria variables accurately. The first term clearly expands into a
linear combination of variances and covariances of the multivariate predictive
probability density function (pdf) for y, which are easily derivable because the
form of the distribution is known.

Consider a single element of the vector y, say y. The posterior pdf for this
element conditional upon the other elements of y can be set up using a non-
informative prior on the appropriate elements of B, F and D(a1), and then inte-
grating over these unknown quantities, thusly

P(Yy #) J p(y1, - , # ) d1 d'11 d1

= f ', y #)p(1, Ti, a)d dy1 da

Alternativeiy the problem could be expressed in a utility maximizing format. Ifso, completing
the square on y yields a declining monotonic function of(4). Maximizing utility and minimizing loss
are therefore equivalent statements of the problem.
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where y represents the vector of endogenous variables appearing in the ith
equation of the system, is the ith column of B (the coefficients of the predeter-
mined variables in the ith equationi. 'y represents the ith column of F and
represents observed data (X, Y, and x). The first pdf in the second line above is
univariate normal because of the normality assumption concerning the error
terms and the second pdf is proportional to 1/a, because we are using non-
informative prior pdf's. When the indicated integration is performed the resulting
conditional predictive pdf for y is Student-t with mean and variance given by7

(6) = Y?I + xI,
and

i' = (l + zt41z1)

respectively, where the bars in (6) represent the means of the corresponding
quantities and

, x.),

s [v/(v - 2)]s?,

Y:1x
I _1

v1 being the degrees of freedom in the ith equation, s being the estimated OLS
residual variance for the ith equation, and where the subscripts on the X and Y
quantities indicate that only the variables in the ith equation are to be considered.

We may now use these quantities to find the mean and variance of the
corresponding marginal distribution of V1.

First, the mean

J
(y1I #) (ly1

= I
yp(yIy1 - , # )p(y1 -, # ) dy1

jp(y1-1, #)dy11

= y'i + x',.
By induction, therefore,

y = y'r +

and since it is easily seen that (im -- T) is non-singular,

y = x'(I T) 1 xli.

The integralion is performed in Zeliner, op. ci:., pp. 72-74.
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The mean of the marginal predictive pdf for an arbitrary element ofy is therefore
given by

(lOa) = x it

where is the ith column of ft
The variance of the marginal pdf is more difficult to find but the same

technique of integrating unwanted variables out of the joint distribution can
still be used:

J( - )2( #)

J[t
)2 + 2v1( ;) + - 12]p(yIy1- # )p(y1 ii

All terms in the brackets will cancel except for (y - i. The others were
added in order to make use of the expression for the variance of the conditional
predictive pdf, thusly

= $ {v + ( - )2]p(y-. I #) dy,

=
j {[1 + (- ,x)'M(y_ , x1)] + [(y1 - 1Y?]2}p(y #) dy i.

The first term in brackets is a quadratic form in the elements of y . The
indicated integration transforms these random variables into their respective
means. Using the well-known relation Eyl = v, + , this term becomes a
quadratic form in the elements of y_ plus a weighted sum of variances, that is

i-I
I -- , x)'M(y1, x.) +

I = I

or

1 + ZM1

where M1 is the jth diagonal element of M1.
The second term in brackets is also a quadratic function and performing

the indicated integration transforms it into a weighted sum of variances and
covariances thusly

i-I i-1 i-I
+ 2

j=I j=2&=1
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The covariance terms can be evaluated as follows for j > k

jk 5 (y yJ)(yk )p(y3! ) dy,

- 5
(yj - )Q' -- )p(yIy-1. # )p(y_ ii #) dy,

= $ (Yk -- yk)(yy) + x' - 1)p(y #) dy1

=
$ [Q' - Y)(Y? - + ( RY? + x -

p(y_1l#)dyi.
The first term in the brackets becomes a weighted sum of other covariance ternis
while the second vanishes when integration is carried out over Vk. Therefore we
can simplify the above to an element of V. an upper triangular in x in matrix of
covariances with variances along the diagonal. If v is a row vector from this
matrix and i' is the ith row vector of tm' then

And further letting D be an in x in diagonal matrix of variances, this generalizes to

V=Vr+D.
Since (Im - rI is non-singular,

V=D(Imr)'.
Thus, a covariance relation between any two endogenous variable can be expressed
as a multiple of the variance associated with the variable having the lower index
number. For example, v is some multiple of v1 if i <j, and v, ifj < 1.

Returning to the second term in brackets in the expression for the variance,
(11), we can now see that it will be a linear combination of variances of endogenous
variables occurring in preceding equations. In particular, if we consider the
complete variance-covariance matrix (V -- V' - D), then the second term in
brackets becomes, after integration,

[D(1m - f)' + (I,,. - F - D]?1.
This cumbersome expression is of the form

Finally, the complete expression for the variance of the endogenous variable
of the ith equation is

= (1 + ZM1) + (MJ + g1)v.
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Before proceeding to evaluate the expected loss function, it is instructive to pause
and study this expression. The first part is the variance of the ith endogenous
variable conditional upon the other variables in the system being equal to their
mean values. This will tend to understate the true variance, however, insofar as
the mean of the conditional distribution of the ith endogenous variable is not
equal to the mean of its niarginal distribution. Any difference between these
quantities will serve to increase the variance. Moreover, the effect upon the
variance will be magnified by the variance of the other endogenous variables
appearing in the ith equation, hence the terms in The remaining terms
will be recognized as the variance of the parameter estimates of the jth endo-
genous variable appearing in the ith equation. This indicates that any uncertainty
introduced by random variables appearing in the ith equation is also magnified
by the uncertainty associated with the corresponding coefficients.

To adapt this expression for a matrix format we let d be an ni-element column
vector consisting of the diagonal elements of D. the ith element of which is t'.
Then,

d' = + d'G

where we have defined the ith element of to he [1 + and the i, jth
element of the in x in matrix G to be (MJ' + g.,). Therefore,

d' = m G'.
Finally, we are ready to evaluate the loss function and to find its extremum.

Recall that the loss function was given by

(4) EL = E(y - y)'Q(y - ) + ( - a)'Q(7 - a).

The expectation operator applied to the first term merely yields a weighted sum
of variances and covariances. That is,

trace [Q(V + V. - D)].

But the covariances are themselves functions of the variances,

trace {Q[D(lm - T) + (I,,, -- r')- 'D - D]}
= trace {DQ[(im - r)' + (Jr, - r')-' - Ij}

d'q.

Upon substituting for d we have

d'q = '(1m G)_tq 'w, where w Urn -

So we see that the first term of the loss function is a weighted sum of variances
of conditional pdf's given that other variables are equal to their mean values.
The weights are given by the corresponding elements of the vector (m - 'q,
that is w.

From this point it is a straightforward, but tedious, task to differentiate the
loss function with respect to the policy instrument (control variable) and then
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solve for the loss minimizing setting for thai variable, so we simply state the
result without proof. However, some new quantities need to he defined:

is the coiitrol variable;
n is the number of predetermined variables in the ithi equation;
p is an n + I I element vector equal to i'(fl1_ , P) where

is an n-element vector consisting of zeros and ones, such that i = dx/dx1
and
is a matrix consisting of the first I - 1 columns of Hand

P is ann x iz matrix consisting of zeros and ones such that iP = dx/dx,
where x is a vector of predetermined variables entering in the ith
equation;

x0 is an n-element vector of "future" values of all predetermined variables
in the system with the exception of x1, the value of which is set equal
to zero;

x01 is an u-element vector of all predetermined variables in the ith
equation with the exception of x1, the value of which is set equal to
zero;

P7 is ann x ti1 matrix consisting of zeros and ones such that x' = xP7;
p7' is an n + I - I clement vector equal to x(fl1_1, P7).

Using these quantities, the optimal setting for the control variable is given by

* - .2pM17 - i'flQ(fl'x0 - a)
(21)

m

it'p;M1p + t'FQii't

The other quantities, such as w1, , M., Q and a, are defined elsewhere above.
We are assured that x' minimizes the expected loss function because the matrix Qwas assumed to be positive definite symmetric.

Had we elected to merely minimize certainty equivalence loss the termsinvolving sums of squares arid cross-products (M1) would not appear in thesolution:

(22) x I1Q(llx0a)
i'flQfl'i

Clearly, x is a linear function of xi'. A sufficient condition for x7 to exceed xis that the indicated summation in the numerator of(2l) be non-negative, whichis always the case when there are no other predetermined variables in the systemexcept the control variable.

THE Loss FUNCTION
In the experimental example which follows, we employ two criteria variables--price changes and the unemployment rate--so it is usefll at this point toconsider some of the properties of a two variable loss function. Specializing (4)
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we have:

CEL )2 + 2q2(j a)( a) tj3( a)2
EL = q1V(y) + 2q2Cov(v,z) ± q3V(z) -I- CEL.

A regular minimum exists for these functions if and only if q1 > 0 and q1q3 -
> 0.

These second order conditions imply elliptical isoloss contours for both
(23) and (24). One senses immediately, however, that only a portion of the ellipse
would be economically relevant. To make the discussion concrete, consider
Figure I and suppose that z measures the rate of change in prices and measures
the unemployment rate.

If one were to begin at point B and move clockwise, one would he trading
more inflation for more unemployment. This bizarre implication is, of course, due
to the symmetric nature of the quadratic function: undershooting a target is as
undesirable as overshooting by the same amount. Those who find this symmetry
unappealing may be tempted to abandon the quadratic function and search for a
nonsymmetric one. But one may retain the quadratic function if one is satisfied
with being confined to a limited region of the ellipse between A and A'. Within
this region one always trades more inflation for less unemployment, or vice versa.
Moreover, one experiences an increasing marginal rate of substitution---which is
as it should be since deviations from either target are undesirable.

A set of necessary and sufficient conditions for operating in the relevant range
of the ellipse are (1) the implied Phillips' curve of the system must be negatively
sloped, and (2) the targets must be chosen to be below and to the left of the implied
Phillips' curve. The reason for these conditions is clear when one considers that
the system of regression equations acts as a constraint to minimizing expected loss.

A

Figure 1 Elliptical iso-loss function
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The optimal solution x is that one for which the iniplied Phillips'curveis tangent
to the lowest possible iso-loss contour projected onto its plane. When operating
with an optimal policy the policymaker's marginal rate of substitution will he
equal to the slope of the implied Phillips' curve of the system.

Bearing these things in mind, we seek to reparanieterize the loss function in
terms of easily interpretable quantities with geometric signtuIcancc. Consider first
the certainty equivalence loss (23). The center of each elliptical iso-loss curve will
be at the point (a)., a2). From analytic geometry we recognize that the loss function
parameters q1 and q3 represent simple transformations of the projections of the
elliptical axes upon the axes of the reference system, and if we rotate the ellipse
about the point (a1, a) until its axes are parallel to those of the reference system,
q2 vanishes and q1 becomes q, q3 becomes q, becomes and becomes

A rotation of the elliptical axes through an angle can be expressed as

= icos - ±sin,
= VS1flrI + cosc.

Substituting these transformations into the certainty equivalence loss function and
using the following trigonometric identities:

1

= tan2

tan2
sin2

tan2 + 1'
tansincos =

tan2 + 1'
we have

[r + tan]
a1)2

[(1 - r)tanzlCEL
= Ltan2 + I - - + 2[

tan2 + I]
[rtan2 I

( - a)( - a2) ± [tan2
+ i ]( (g2

where r = qt/q. This quantity is also by definition equal to 1 - e2 where e is the
eccentricity of the ellipse, and measures the departure ofthe ellipse from circularity.
For a circle e = 0 and as the ellipse becomes "tighter" e I. Notice, however, that
e = I is not possible if the loss function is to remain an ellipse.

The coefficient of(j - a)2 is evidently q1 , the coefficient of(j - a1)( -- a2) is
2q2 ,and the coefficient of(z - a2)2 is q3. All q's are expressed in terms of two simple
quantitiesthe slope of the major axis of the ellipse and the ratio of the elliptical
axes. Although tan ir/2 is infinite, the elements of the loss function possess finite
limits as tan -+ co. Systematic variation of the parameters is facilitated by this
particular parameterization because tan cz is a periodic function of , and the
eccentricity is bounded by zero and one.

We are now in a position to consider the effect of taking the mathematical
expectation of the loss function instead of simply replacing the random variables
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with their respective means. To make the discussion concrete, let us consider a
simple two equation system:

r hx, + u1 I 1,2,..., T u1 are NID(O, i)

z = cy1 + v I = 1,2.....T v are N1D(O, a) and E(uv) = 0
For simplicity, consider a circular loss function where q2 = 0. In this case

EL = [V(y) + ( - (4;.)2] + [V(z) + (2 - (,Z)2].

Note that the difference between this result and the certainty equivalence loss is the
addition of a weighted sum of variances which are themselves expressible in terms
of the variable means ji and 2 and other quantities calculated from the data:

V(z) = + [V(c) +ë2][V(y) + 2] + 2(2 - 2)
V(y) = + i2V(b)Jb2.

However, we do not make use of the system constraint 5 = ë..
Upon inserting these quantities into (33) and completing the square on and

2 we have:
EL = in(5 - a) -- 2 - a)(2 - afl + 2(2 - a?) + constants

where in = (1 +ë2)/t +2/tt +2/t + -i- 1 and the new, or virtual, targets
are given by a' = ar/in and a' = a/2. Thus, the new iso-loss contour will be
elliptically shaped, rotated with respect to the coordinate axes and centered closer
to the origin. The angle of rotation and eccentricity are given by:

cot 2c = (2 m)/2t and

e2 = 1 - (2 - e2)/(m + 2) if in + ë2 > 2 otherwise

e2 = 1 - (ni + ë2)/(2 2)

If (38a) holds, the major axis of the ellipse corresponds to the 2 dimension in an
unrotated system, while if (38b) holds, the major axis of the ellipse corresponds
to the 1i dimension in an unrotated system.

To illustrate this example, consider Figure 2. The system constraint 2 = ëi is
a straight line passing through the origin which is associated with a zero setting for
the control variable. The certainty equivalence loss function is a circle with center at
(as, as). The certainty equivalence solution is the point of tangency of the certainty
equivalence loss function and the System constraint, and is denoted by CEL.
The expected loss function, on the other hand, is an ellipse centered at (ar/rn, aJ2).
Its tangency with the system constraint, denoted by EL, represents the solution
to the Bayesian control problem.

The EL solution is a more conservative solution than the CEL solution
because it moves the policymaker in the direction of a zero setting for the policy
instrument (i.e., towards the origin).8 The conservativeness of the policy is a func-
tion of the certainty with which the coefficients b and c are known. For example,
suppose that there were a great deal of uncertainty about either b or c or both, such
that in >> 2, then the major axis of the ellipse would be the 2 axis and the angle of

This conclusion may not be true ii there arc exogenous variables in the system which are not
under control.
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Figure 2 Comparison of certainty equivalence loss and expected loss functions

rotation would be close to zero or it. As uncertainty increases, m increases and the
ellipse becomes "tighter" as the control solution assigns increasing weight to
deviations of about its virtual target.

APPLICATION OF CONTROL SoI.uTIoN

In the final section of this paper we apply the Bayesian control solution to
variations of the St. Louis model of the U.S. economy. The model's structure can be
easily seen from the flow chart on the following page. The model is fully recursive---
unemployment is iniluenced by prices and nominal spending through a real out-
put identity ; prices, in turn, are influenced by nominal spending; nominal spending
depends only upon exogenous variables, including a money variable.9

While this form of the model was satisfactoiy for estimating parameters and
performing simulation experiments, it could not be used for computing the
optimal value of the instrument variable. A problem arises because the identities
operate on the endogenous variables of the system before they enter subsequent
equations. The unemployment equation was respecified in terms of a new depen-
dent variable, U,XP1_1, because the real income identity and the gap identity
caused iY1 and AP to be multiplied by (XP_ in the original unemployment
equation. This new unemployment variable is an approximate value of foregone
production (in period t - I prices) due to underutilized resources. The measure is

In addition, the necessary assumption about the error terms arc made. The original St. Louis
model contained additional equations for long, and short-term interest rates, but these are not
considered here since the criteria variables of interest are prices and unemployment and the recursive
nature olthe system does not require their inclusion for either estimation or computation ofthe optimal
solution.
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Spending equation

Demand pressure identity

Price equation

Real output identity

Real output gap identity

Unemployment equation Lu = f3(G,,G,1)

Exogenous variables

AM, change in currency plus demand deposits:
AE,changc in high employment government expenditures:
X, full ernploynierit level of real output:

Endogeneous variables:

A}. change in nominal spendtng:
D,, denand pressure:

AP, dollar change in nominal spending due to change in price deflator:
A!',', anticipated change in prices:

X,, real output:
G,. gap in real output:
U,, unemployment rate:

Figure 3 Flow Chart of the St. Louis Model

not exact, however, because the elasticity of output with respect to labor input may
not be unity.

Since the Bayesian formulation of the control problem differs from the cer-
tainty equivalence formulation by taking account of the uncertainty in the model's
parameters, information can be gained by comparing models with differing degrees
of uncertainty in the parameters. To this end an alternative unemployment
equation was selected. It is the same as the revised unemployment equation with-
out the term introduced by the lagged real output gap. As can be seen in Table 1,
however, the properties ofthe two resulting models differ in that the model with the
lagged gap term (Model-I) has much less precise coefficient estimates for the con-
temporaneous endogenous variables in the unemployment equation than does the
model without the lagged gap term (Model-Il).

To study the differences between the solutions, the targets in the criteria
function were set at zero price change and zero unemployment while the shape and
orientation of the quadratic criteria function were systematically varied. The two
solutions were compared (I) in terms of the ratio of the expected losses generated
for each particular choice of criteria function parameters and (2) in terms of the
ratio of the corresponding settings for the control variable. Although the choice of
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TABLE I
ill- i-l(itN i [Si IMA I IS

Spending t.quatio,:
4 4 Sample Period: 1953/I to 1969IV

= 274 AM, + e1 AE Constraints: 4th degree polynomial
(3.56) 0 (ni_i = = 0; e. = = 0)

?fl0 = 1.259 (2.86) e3 = 0.569 (2.66) R2 = 0.656
in1 = 1.755 (7.21) e1 = 0.504 (3.91) SE. = 3.844
rn2 = 1.485 (3.90) '2 = 0.061 (0.32)
013 = 0.711 (3.02) e3 = -0.440(-3.31)

= - 0.045 (--0.10) e4 = -- 0.611 (-2.79)

Price Equntion
Sample Period: 1955/1 to 1969,iIV

= 2.60 -1- 0.941 AP + dD Constraints: 2nd degree polynomial
(6.62) (8.78) iO (d_ 0;d5 = 0)

= 0.0222 (2.32) d3 = 0.0146 (3.12) = 0.865
= 0.0205 (5.95) £14 = 0.0105(2.06) SE. = 1134

d2 = 0.01 79 (6.82) d5 = 0.0056 (1.59)

Uneinployrneni Equation
Lagged gap term included Sample Period: 1955.'! to 1969'IV

UXFPI [x1p11
= 4.554j -' - - 0.0066(AY, - AP + -i)

100 (l.05)L 100 -(-0.l5)
Fx"P -0.315G_l

(7.34) L 100

No lagged gap term
UxFP, [xp,1

= 35.3
I I

- 0314{AY, - LP + Y,)
100 (22.1)L 100 1(_ 19.2)

(f-values in parentheses)

targets is arbitrary, zero values represent the most extreme values which satisfy the
necessary and sufficient conditions for a relevant economic solution.'°

Because the variances of the coefficients associated with contemporaneous
endogenous variables are much larger in Model-I than in Model-lI. we expect that
the relative differences in expected loss between the certainty equivalence solution
and the Bayesian solution for Model-I would be greater than the relative difference
for Model-lI. Further, since (lie control setting in the Bayesian solution tends
toward zero as one becomes more uncertain, we expect the relative difference in the
control settings between the certainty equivalence solution and the Bayesian
solution to be greater for Model-I than for Model-lI.

The results of the experiments in terms of expected loss are given in Table II.
In general, they are in accord with expectations. In the case of Model-I! the relative
difference between the two solutions is rarely very great. In the case of Model-I the
relative difference between the solutions is more sensitive to the parameters of
the loss function, often increasing by an order of magnitude or more as the eccen-
tricity of the function approaches unity. The greatest differences occur when the

'° Friedman has suggested that the optimal rate of price change is actually negative, but this raises
other issues which are beyond the scope of this paper.
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= 0.915
S.E. = 1.817

Sample Period: 1955/Ito 1969/IV
= 0.838

SE. = 2.511
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TABLE II
RATIo OF EXPECT,)) CERTAINTY EQUIVAlENCE Lo TO Exprcri3) BAYESIAN Loss
iN 19701 FOR AlTERNATIVE Loss fUNCTION PARAMETERIZATIONS ASSUMINo Zl:Ro

FO RATE OF PRI'F C!IANGE AN!) UNEMPlOYMENT RAE!:

Model-I

angle of rotation is in the vicinity of m/2 and the eccentricity approaches unity.
This particular parameterization of the criteria function puts the maximum weight
on the unemployment target. Since we are very uncertain about the unemployment
equation parameters in Model-I (relative to Model-Il) the loss associated with
using the certainty equivalence approach is much larger than the Bayesian
approach which takes this uncertainty into account. However, if the loss function is
circular, the certainty equivalence solution and the Bayesian solution generate
very similar expected losses, regardless ofthe model employed.

On the basis of these results one may be tempted to conclude that the certainty
equivalence solution could be used with impunity as a suitable approximation to
the Bayesian solution if the loss function did not depart significantly from cir-
cularity.'' But, according to Table III which reports the relative ditTerence in

This conclusion is, however, conditional upon the particular set of criteria variable targets
chosen.
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Angle of
Rotation

Eccentricity

0.0 (circle) 0.75 0.87 0.97 0.99(radians)

n/ 12 1.001 1.000 1.000 1.000 1.000
1.001 1.092 1.188 1.512 2.258

n14 1.001 1354 1.815 2.925 3.759
n/3 1.001 1.672 2.752 5.288 6.837

5n/12 1.001 1.769 3.515 9.652 14.857
1.001 1.404 2.802 15.705 52.060

7n/12 1.001 1.007 1.024 1.402 859.029
2it/3 1.001 1.210 2.087 12.304 54.893
3n/4 1.001 1.469 2.569 6.599 10.292
5io/6 1001 1.400 1.946 2.993 3.590

IIir/12 1.001 1.206 1.389 1.609 1.772
n(0) 1.001 1.055 1.100 1.150 1.328

B. Model-Il
Angle of Eccentricity
Rotation
(radians) 0.0 (circle) 0.75 0.87 0,97 0.99

t/12 L067 1.035 L018 1.002 1.000
1.067 1.040 1.028 1.019 1.041
1.067 1.052 1.049 1.056 1.073

ir/3 1.067 1.067 1.071 1.085 1.093
5m/12 1.067 1.081 1.090 1.104 1.110
i/2 1.067 1.091 L104 1J20 1.126

7n/12 1.067 1.098 1.115 1.135 1.143
2,i/3 1.067 1.101 1.122 1.151 1.164
3n/4 1.067 1.096 1.121 1169 1.197
5it/6 1.067 1.082 1.104 1.182 1.266

I lit/12 1.067 1.061 1.063 1.125 1.573
t(0) 1.067 1.042 1.027 1005 1.327
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TABLE III
RA1IO OF CERTAINTY EQUIVALENCE CONTROL VARIAIiU SIrrtNG TO BAYESIAN
CONTROl VARIAIII.E SETTING IN 197011 FOR ALTERNATIVE Loss FUNCTION PARA-
METENIZATIONS ASSUMING ZERO TARGETS FOR RATE OF PRICE CIIAES;v ANt) UN-

EMI'LOYMLNT RATE

control settings, the certainty equivalence solution typically calls for much larger
settings for the control variable than the Bayesian solution in Model-I. Again, the
largest differences occur for the loss function parameterizations emphasizing the
unemployment target. Only in Model-I! does there seem to be little difference in the
control settings. Thus, if there is a cost to changing the control variable which has
not been taken into account in formulating the control problem, use of the cer-
tainty equivalence solution instead of the Bayesian solution may impose a severe
penalty upon the policymaker.

CONCLUDING REMARKS

In this paper we have found the exact setting for a single control variable in
the case where the control variable is linked to several criteria variables b) a
stochastic linear recursive equation system and the criterion function is quadratic.
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A. Model-I
Angle of Eccentricity
Rotation
(radians) 0.0 (circle) 0.75 0.87 097 0.99

n/12 2.705 1.670 1.312 0.979 0.876

2.705 3.356 2.914 2.413 2.181

n14 2.705 4.267 4.059 3.785 3.680

it/3 2.705 5.537 5.964 6.449 6.ó39

Sn/6 2.705 7.105 9.012 12.373 14.239

2.705 8.274 12.785 28.088 48.233

lir/12 2.705 5.045 8.317 30.653 4328.440

27t!3 2.705 10.377 14.138 30.686 59.371

3n/4 2.705 6.970 7.733 9.503 10.616

2.705 4.934 4.432 3.873 3.650

I Iiijl2 2.705 3.826 2.959 2.096 1.792

n(0) 2.705 3.506 2.497 1.634 1.354

B. Model-Il
Angle of Eccentricity
Rotation
(radians) 0.0 (circle) 0.75 0.87 0.97 0.99

n/12 1.130 1.114 1.098 1.048 0.987
n/6 1.130 1.107 1.091 1.063 1.049

it/4 1.130 1.108 1.097 1.083 1.078

1.130 1.114 1.107 1.100 1.097
5n1'6 1.130 1.121 1.118 1.115 1.114

1.130 1.129 1.129 1.129 1.129
7n/12 1.130 1.138 1.142 [145 1.146
2it/3 1.130 1.147 1.155 1.164 1.167
3it/4 1.130 1.154 1.169 1.191 1.200
Sir/6 1.130 1.157 1.180 1.233 1.269

llit/12 1.130 1.149 1.173 1.285 1.577
t(0) 1.130 1.131 1.133 1.111 1.354
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By taking the uncertainty in system parameters into account the solution dilTers
from the certainty equivalence approach developed by other authors. By being
applicable to recursive systems the solution represents an extension of the single
equation solution already known. In the application developed here, the optima!
setting provided a rule for the conduct of monetary policy one period at a time.

The results of the application were sensitive to the manner in which the
equations were specified in each of two models. The two models, which had
identical specifications of the price equation but different specifications of the
unemployment rate equation, had vastly different control properties. The relative
differences between the certainty equivalence approach and the Bayesian approach
were generally greater for that model specification having the less precise con-
temporaneous coefficient estimates but better overall predictive properties. For
judicious choices of loss function parameters the relative differences for expected
losses were modest, but the relative differences in control settings remained large.
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