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ABSTRACT 
 

We identify the VIX index is innately a risk-neutrally forward-looking measure of the polynomial 

(not quadratic) variation of market returns.  Correspondingly, we define the realized VIX (RVIX) 

as a physically conditional measure of the polynomial variation that captures not only the realized 

variance but the entire realized jump-tail variability.  The VIX risk premium (i.e., VIX2 minuses 

RVIX) thus compensates jointly the risk of stochastic volatility and that of jump and tail.  The 

difference between the risk-premium of VIX and that of variance (derived from the quadratic 

variation) further quantifies the compensation for the tail (fear) risk.  Consequently, the VIX2 index 

can be decomposed into four fundamentally different components: the realized variance (RV), the 

variance risk premium (VRP*), the realized tail (RT), and the tail risk premium (TRP), 

respectively.  The empirical results reveal that VRP*, RT, and TRP help predict future market 

returns.   
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The conventional view of the (squared) VIX index sees it as a risk-neutrally forward-

looking measure of market return volatility.  Statistically, it is a time-series conditional expectation 

of the future realized variance (i.e. quadratic variation) in a risk-neutral probability space.  Thus, 

the equity variance risk premium (hereafter VRP), the difference between the physical measure of 

the realized variance (hereafter RV) and the squared VIX, serves as an important indicator of 

aggregate risk-aversion of market participants.1  Mounting empirical evidence suggests that the 

variance risk premium is a superior predictor of future aggregate market returns compared to the 

traditional predictor variables such as the dividend-price and other valuation ratios, particularly for 

shorter time horizons.2  Andreou and Ghysels (2013) and Bondarenko (2014) demonstrate that the 

variance risk premium is unique in that it cannot be explained by other traditional risk factors.    

Nevertheless, a puzzle regarding the variance risk premium described by Bollerslev, Tauchen, and 

Zhou (2009; BTZ hereafter) exists: Neither the square VIX nor the realized variance predict stock 

market returns. Why does their difference (i.e. VRP) provide strong predictive power?  Many 

studies address this issue by empirically identifying attributions of the predictability.  Empirical 

findings of Todorov and Tauchen (2011) suggest that the volatility risk either coincides or is highly 

correlated with the price jump risk.   Bollerslev and Todorov (2011) show that the risk premium 

for tail events cannot solely be explained by the level of volatility and argue that the jump tail risk 

is still present even if the investment opportunity set does not change over time, and it remains a 

force even for short time-intervals where the investment opportunity set is approximately constant.  

Cremers, Halling and Weinbaum (2015) recently also show that aggregate jump and volatility risk 

collectively explain variation in expected returns, and aggregate stock market jump risk is priced 

in the cross-section.  Thus, volatility and price jump-tail risk premia share compensations for 

similar risks, and therefore should be modeled jointly.  Most notably, Bollerslev, Todorov and Xu 

(2015; BTX hereafter) reveal that most of the predictability for the aggregate market portfolio 

previously ascribed to the variance risk premium stems from not just the jump but the tail risk 

component, and the compensation for tail risk drives out most of the predictability stemming from 

                                                           
1 See Campbell and Cochrane (1995), Bekaert and Engstrom (2010), Bollerslev, Gibson and Zhou (2011), Bekaert, 

Hoerova, and Lo Duca (2013), and Bekaert and Hoerova (2014).  
2 These studies includes but not limit to Bollerslev, Tauchen, and Zhou (2009) include Drechsler and Yaron (2011), 

Han and Zhou (2012) Du and Kapadia (2012), Eraker and Wang (2015), Almeida, Vicente, and Guillen (2013), 

Bekaert and Hoerova (2014), Bali and Zhou (2014), Camponovo, Scaillet, and Trojani (2014), Kelly and Jiang (2014), 

Li and Zinna (2014), Vilkov and Xiao (2013) and Bollerslev, Marrone, Xu, and Zhou (2014).  
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the part of the variance risk premium associated with “normal” sized price fluctuations.3  

Intuitively, the compensation demanded by investors for bearing tail risk (jump fear) redounds to 

the expectation as well as the predictability of future market returns.     

Du and Kapadia (2012) and Chow, Jiang and Li (2014) observe that the VIX index rapidly 

deviates from the true volatility measure when a larger proportion of stock return variability is 

determined by fears of substantial jumps.  This indicates that the VIX index may be inappropriate 

for measuring volatility per se, in that the tail (large jumps) process is embedded in the index.4   

Specifically, from a statistical viewpoint, the VIX is a measure beyond quadratic variation in that 

the embedded tail variation in the VIX is determined specifically by higher-order moments of the 

jump distribution and is therefore distinguishable from the quadratic variation.   Recently, Amaya 

et al. (2015) empirically examine time-series and cross-sectional properties of realized moments 

based on the standard diffusion process of returns with jumps and found that the realized third 

moment (skewness) has significant and reliable predictive power for future stock returns, but 

unsurprisingly, there is little evidence of a reliable relation between realized volatility and future 

stock returns.   Many other studies, from different aspects, also suggest that higher order moments 

of the return stochastic process contribute significantly to the return predictively.  For example, 

BTZ (2009) argue that the volatility-of-volatility (VOV) constitutes the dominant source of the 

variation in the equity premium.  Park (2013) further develops a model-free and risk-neutral 

measure of the VOV implied by a cross section of the VIX options, which is called the VVIX 

index.  Park (2013) states that the VOV risk premium significantly contributes to the forecasting 

power of the VVIX index, and that the predictability largely results from the integrated VOV rather 

than volatility jumps.  In summary, we note that empirical evidence has strongly shown that tail 

risk premium does not just afford some additional predictability for the market portfolio over and 

above that of the variance risk premium, it is the main source for the predictability of future returns.  

As elaborated below, the source of return predictability from the conventional measure of variance 

risk premium is ambiguous in that VIX is generally not a volatility measure.  Thus, using VIX to 

                                                           
3 In addition, a number of papers have related jump-tail risk to asset risk premia. For example, Naik and Lee (1990), 

Longsta and Piazzesi (2004), Liu, Pan, and Wang (2005), Bollerslev and Todorov (2011, 2014),  Kelly and Jinag 

(2014), and Andersen, Fusari and Todorov (2015) model jump-tail risk premia in equity returns, while Gabaix (2008) 

and Wachter (2013), extending initial work of Rietz (1988) and Barro (2006), relate equity risk premia to time-varying 

consumption disaster risk. 
4 In addition, Broadie and Jain (2008), Cont and Kokholm (2013), as well as Carr, Lee, and Wu (2012) also observe 

that jump-induced tail bias the VIX as a volatility measure. 
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measure variation premium (i.e., VIX2 minus RV) makes it very difficult to distinguish the due to 

volatility or tail risk.     

Specifically, the VIX index was originally designed to measure the quadratic variation 

(hereafter ℚ𝕍) of a jump-free process.5  Nevertheless, the deviation of VIX from ℚ𝕍 estimation is 

proportional to the jump intensity.  As discussed above, the accuracy of the VIX to ℚ𝕍 deteriorates 

rapidly when a larger proportion of stock return variability is determined by fear of discourteously 

large jumps (i.e., the tail risk).  In fact, it has been often overlooked that the Bakshi-Kapadia-

Madan’s (2003; BKM hereafter) measure of the variance (hereafter VBKM) is insensitive to tail 

variation and can be served as an unbiased ex-ante estimate of quadratic variation.6  A puzzle then 

arises: if the VIX is not a ℚ𝕍 measure, then what does it really measure?  We identify that the 

underlying variation process of the VIX measure actually follows a polynomial variation 

(hereafter ℙ𝕍) which is much more general than the ℚ𝕍 in form.  The ℙ𝕍 contains time variation 

in the jump intensity process in addition to the ℚ𝕍, where this additional jump-induced tail of the 

distribution in the ℙ𝕍 is determined by high-order moments of the jump distribution in a 

polynomial form.  We further determine that the physical measure for the ℙ𝕍, named the realized 

VIX (hereafter RVIX) analogous to the realized variance, can be simply measured by twice the 

arithmetic-logarithmic forward return difference.  Thus, it is clear now that the VIX index is indeed 

a risk-neutrally forward-looking measure of the RVIX and not that of the RV.   

Next, according to Bollerslev and Todorov’s (2011) definition of risk premium, the 

difference between the physical measure of RVIX and squared VIX is then the appropriate risk 

premium for the polynomial variation of returns.  For convenience, we call this the VIX risk 

premium (hereafter VIXRP).  Analogously, the correct definition of variance risk premium 

(hereafter VRP*) corresponding to quadratic variation should be the difference between RV and 

VBKM (not squared VIX).  Finally, since ℚ𝕍 is the second order ℙ𝕍, the RV (the physical measure 

of ℚ𝕍) is a special case of the RVIX (the physical measure of ℙ𝕍), when the stochastic process of 

return is tail-free.  The premium-differentiation between VIX risk and variance risk (i.e., VIXRP 

minuses VRP*) thus logically quantifies the tail risk premium (hereafter TRP) or the compensation 

for investors' fear risk.  

                                                           
5 See Carr and Madan (1999), Demeter, Derman, Kamal and Zou (1999a, 1999b), and Britten-Jones and Neuberger 

(2000). 
6 Du and Kapadia (2012) and Chow, Jiang and Li (2014) explicitly demonstrate that the BKM’s measure of the 

variance of the holding period return is the most appropriate for measuring quadratic variation.   
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The main goals of the present manuscript are twofold. First, by explicitly recognizing the 

underlying stochastic process of the VIX index that follows the polynomial (not quadratic) 

variation, we decompose the (squared) VIX into four fundamentally different components: the 

conditional realized variance, the variance risk premium, the conditional realized tail, and the tail 

risk premium, respectively.  Second, relying on our decomposition of the VIX index, we seek to 

clarify where the inherent market return predictability of the conventional VRP (i.e., VIX2 - RV) 

is coming from and how it plays out over different return horizons and for different portfolios with 

different risk exposures. 

Based on the notion of BTZ, the risk premium of return variation is defined as the 

difference between the time series conditional expected future return variation in the (options 

based) risk-neutral (ℚ) framework and that in the physical probability (ℙ) space.  Conventionally, 

the physical measures employed are backward-looking (past) sample estimations, where the 

options based ℚ measures, are forward looking.  This counterintuitive approaches used for 

calculating variation risk premium could naturally produce biased results.  Fortunately, to resolve 

this problem, Bekaert and Hoerova (2014; BH hereafter) developed a robust selection procedure 

for identifying stable volatility forecasting models that are used for estimating ℙ spaced 

conditional realized variation.   We apply both the BTZ unconditional ex-post and the BH 

conditional ex-ante methods in our empirical analysis.  Using 5-minute high-frequency data on the 

S&P 500 index, we found that statistically the realized tail as well as both the unconditional and 

conditional tail risk premium are significantly positive.  Our empirical results confirm that the 

return predictability for the aggregate market portfolio afforded by the conventional variance risk 

premium (i.e., VRP) is attributed to the return predictability of the decomposed components: the 

unbiased variance risk premium (VRP*), the realized tail (RT), and the tail risk premium (TRP).  

Importantly, the tail variation and its risk premia do not just offer some additional predictability 

for the market portfolio over and above that of the variance risk premia but provide the main 

impetus for the total predictability.  This is consistent with recent findings of BTX (2015) that 

most of the predictability for market return previously ascribed to the variance risk premium 

actually originates from the tail risk component.  In addition, we found even greater increases in 

predictive performance of RT and TRP from decomposed market portfolios: Size, Value, 

Momentum as well as Industrial Sectors.   In summary, the significantly empirical evidence of the 

market return predictability stemming from our measure of the tail risk premium explains the 
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predictability appearing in the variance risk premium as previously documented in the literature.  

Consequently, our measure of the tail risk premium as a component to the risk premium of total 

market return variation provides a proxy for market fears.   

The rest of the paper is organized as follows.   Section II begins with a simple derivation 

of the VIX formulation. The realized VIX and polynomial variation are then formally defined.  A 

simple approach for determining tail risk premium as well as our decomposition of the VIX index 

are also presented, and we show the sample estimating procedures of the statistics in Section II.  

Section III presents the statistical estimations for both unconditional and conditional risk premiums 

of return variation.  Section IV describes the data and illustrates our empirical results.  Section V 

contains brief concluding remarks. 

 
 

II. Realized VIX, Polynomial Variation, VIX Decomposition and Tail Risk Premium 

 

 The Chicago Board Options Exchange's (CBOE) VIX index is the most widely used 

option-based (forward-looking) measure of stock return variability.  Nevertheless, it is well known 

that the index contains compensation for risk in addition to that for the time-varying volatilities.  

Those include risk premium of jump intensities as well as that of fears for jump tail events.  As 

such, this does lend acceptance to the common use of the term “investor’s fear gauge” as an epithet 

for the VIX volatility index, although admittedly a rather imperfect proxy.  This section presents 

an unambiguous approach to distinguish risk between volatility and fear embedded in the VIX 

index.  We begin with a simple formulating process of the VIX index. 

 

A.  A Simple VIX Formulation 

 

Without any specification of the return generating process, Chow, Jiang and Li (2014) 

show that the formulation of VIX can be derived mathematically and straightforwardly as follows:  

Let 𝑅𝑡+1 (=
𝑆𝑡+1−𝑆𝑡

𝑆𝑡
) be the forward arithmetic return and 𝑟𝑡+1 (= ln (

𝑆𝑡+1

𝑆𝑡
)) denotes the 

logarithmic forward return over a period from 𝑡 to 𝑡 + 1.  Employing Taylor expansion and with 

its remainder, the difference between the arithmetic and logarithmic returns can be expressed as 

follows: 
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𝑅𝑡+1 − 𝑟𝑡+1 = [∫
1

𝐾2
(𝑆𝑡+1 − 𝐾)+𝑑𝐾 + ∫

1

𝐾2
(𝐾 − 𝑆𝑡+1)+𝑑𝐾

𝑆𝑡

0

∞

𝑆𝑡

] = ∑
1

𝑛!
𝑟𝑡+1

𝑛
∞

𝑛=2
. (1) 

 

Now, let ℚ denote the risk-neutral distribution associated with the time dynamic of forward returns.  

Under the no-arbitrage framework, the time-series conditional expected return-difference can be 

measured by current option prices, which is equivalent to the basic formulation of the (squared) 

VIX:7   

𝐸𝑡
ℚ(𝑅𝑡+1 − 𝑟𝑡+1) = 𝑒𝑟𝑓 {∫

1

𝐾2
𝐶𝑡,𝑡+1(𝐾)𝑑𝐾

∞

𝑆𝑡

+ ∫
1

𝐾2
𝑃𝑡,𝑡+1(𝐾)𝑑𝐾

𝑆𝑡

0

}                      

(2) 

 =
1

2
VIX𝑡

2  =  
1

2
[𝐸𝑡

ℚ(𝑟𝑡+1
2 ) + ∑

2

𝑛!
𝐸𝑡

ℚ(𝑟𝑡+1
𝑛 )

∞

𝑛=𝟑
] 

 

where 𝐸𝑡
ℚ(∙) is the risk-neutrally conditional expectation operator at time t, 𝑟𝑓 is the annualized 

risk-free rate corresponding to expiration date 𝑡 + 1, and 𝐶𝑡,𝑡+1(𝐾) and 𝑃𝑡,𝑡+1(𝐾) are the current 

(at time t) premiums of call and put option contracts with a strike K  and expiration 𝑡 + 1, 

respectively.  That is, the arbitrage-free argument implies that the VIX index can be extractable 

from the market price of a portfolio composited by all possible out-of-the-money (OTM) call/put 

options of the underlying index with weight inversely proportional to the square value of the strike 

price.   Equivalently, equation (2) shows that instead of employing a long list of OTM options, the 

VIX can also be simply replicated by a portfolio of only two assets: a long position of a forward 

contract with a settlement price, 𝑆𝑡+1 and a short position of a log contract with a settlement 

price, ln(𝑆𝑡+1), where the log contract has been proposed by Neuberger (1994) for hedging 

volatility.8   

  

B. The Polynomial Variation, the Realized VIX and the Realized Tail 

 

The most notable result from equation (2) is that the VIX index, calculated from the fair 

market price of either an options portfolio or that of long-short forward contracts, provides not 

only a forward looking estimate of the market volatility but information about the entire future 

                                                           
7 Under a purely continuous process of the quadratic variation, equation (2) serves as a basis for the 

derivation of the VIX.  See Carr and Madan (1998), Demeterfi, Derman, Kamal and Zou (1999a, 1999b), 

and Britten-Jones and Neuberger (2000)  
8  Precisely, the replicated portfolio consists 

1

𝑆𝑡
 long position for every short position. 
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return distribution. The distributional information in addition to the volatility (the second moment) 

is characterized by a polynomial combination of a series of all higher distributional moments (e.g. 

skewness, kurtosis, etc.).  This aggregate of high moments implanted in the VIX formulation 

perhaps explains why the VIX index is often referred to as the investor fear gauge.  To examine 

and analyze the VIX index as a market fear indicator, decomposing the index in terms of different 

risk characteristics is necessary.  For convenience, we define RVIX𝑡+1 as the future realized 

outcomes of the VIX such that 

 

RVIX𝑡+1
2 = 2(𝑅𝑡+1 − 𝑟𝑡+1). (3) 

 

Then, the (squared) VIX is a conditionally risk-neutral estimate of twice of the future arithmetic 

and logarithmic return differences (as called RVIX𝑡+1):   

 

VIX𝑡
2 = 𝐸𝑡

ℚ(RVIX𝑡+1
2 ).   (4) 

 

Next, following the classical approach and without losing generality, we assume assets' returns 

follow Merton’s (1976) diffusion-jump process:   

 

𝑅𝑡+1 = ∫ (𝛼 − 𝜆𝜇𝐽)𝑑𝑡 + ∫ 𝜎𝑑𝑊𝑡

𝑡+1

𝑡

𝑡+1

𝑡

+ ∫ ∫ (𝑒𝑥 − 1)
ℝ0

𝑡+1

𝑡

𝜇[𝑑𝑥, 𝑑𝑡]. (5) 

 

𝑟𝑡+1 = ∫ (𝛼 −
1

2
𝜎2 − 𝜆𝜇𝐽) 𝑑𝑡 + ∫ 𝜎𝑑𝑊𝑡

𝑡+1

𝑡

𝑡+1

𝑡

+ ∫ ∫ 𝑥
ℝ0

𝑡+1

𝑡

𝜇[𝑑𝑥, 𝑑𝑡], (6) 

 

where 𝛼 is the instantaneous expected return on the asset,  𝜎 is the volatility, 𝑊𝑡 is standard 

Brownian motion, ℝ0 is the real line excluding zero, and 𝜇[𝑑𝑥, 𝑑𝑡] is the Poisson random measure 

for the compound Poisson process with compensator equal to 𝜆
1

√2𝜋𝜎𝐽
2 𝑒−

1

2
(𝑥−𝛼)2

, with 𝜆 as the jump 

intensity.  Now, by taking the square of equation (6) and based on the Brownian properties, the 

future quadratic return, 𝑟𝑡+1
2 , can be expressed by a sum of two decomposed components: the 

integrated value of continuously instant variance (ℂ𝕍 hereafter) and that of discontinuously (or 

jump) quadratic variability (hereafter 𝕁ℚ𝕍).  This decomposed process of return variability is the 
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quadratic variation (ℚ𝕍), and  𝑟𝑡+1
2  is the future realized outcome of the quadratic variation 

(denoted RV𝑡+1).9  We summarize this as follows: 

 

RV𝑡+1 = ℚ𝕍[𝑡,𝑡+1] = 𝑟𝑡+1
2 = ∫ 𝜎2𝑑𝑡

𝑡+1

𝑡

+ ∫ ∫ 𝑥2𝜇(𝑑𝑥, 𝑑𝑡)
ℝ0

𝑡+1

𝑡

           
(7) 

                                                                =   ℂ𝕍[𝑡,𝑡+1]  +     𝕁ℚ𝕍[𝑡,𝑡+1], 

 

Equation (7) shows the second-order stochastic process of return variation.  Analogously, we 

extend the quadratic (second-order) format of (7) to a generalized polynomial framework format 

of infinite orders stochastic process, defined as the polynomial variation (hereafter ℙ𝕍) of returns: 

 

Definition 1. The polynomial variation (ℙ𝕍) of returns, according to (5), from time 𝑡 to 𝑡 + 1 is 

defined as  
 

ℙ𝕍[𝑡,𝑡+1] = ∑
2

𝑛!

∞

𝑛=𝟐
∫ 𝜎𝑛(𝑑𝑊𝑡)𝑛

𝑡+1

𝑡

+ ∑
2

𝑛!

∞

𝑛=𝟐
∫ ∫ 𝑥𝑛

ℝ0

𝑡+1

𝑡

𝜇(𝑑𝑥, 𝑑𝑡),           (8) 

 

where  

∑
2

𝑛!

∞

𝑛=𝟐
∫ 𝜎𝑛(𝑑𝑊𝑡)𝑛

𝑡+1

𝑡

= ∫ 𝜎2𝑑𝑡
𝑡+1

𝑡

,           

 

based on the stochastic properties of Brownian motion.   

 

The ℙ𝕍 is a linear combination of all orders of return variability in a polynomial form, and ℚ𝕍 = 

ℙ𝕍, if 𝑛 = 2.  Also, note that the continuous component of the polynomial variation converges to 

that of the quadratic variation under Brownian motion.  Now, by substituting (5) and (6) to (3), we 

have our main result as follows: 10 

 

                                                           
9 See Andersen et al. (2001), Cont and Tankov (2003) and others. 
10 RVIX𝑡+1 = 2(𝑅𝑡+1 − 𝑟𝑡+1) = ∫ 𝜎2𝑑𝑡

𝑡+1

𝑡
+ ∫ ∫ 2(𝑒𝑥 − 𝑥 − 1)

ℝ0

𝑡+1

𝑡
𝜇[𝑑𝑥, 𝑑𝑡], where ∫ ∫ 2(𝑒𝑥 − 𝑥 − 1)

ℝ0

𝑡+1

𝑡
𝜇[𝑑𝑥, 𝑑𝑡] =

∑
2

𝑛!

∞
𝑛=𝟐 ∫ ∫ 𝑥𝑛

ℝ0

𝑡+1

𝑡
𝜇(𝑑𝑥, 𝑑𝑡).     
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Theorem 1.  Based on Definition 1 as well as equations (3) and (4), the squared VIX index at time 

𝑡 is the risk neutral estimate of the polynomial variation from time 𝑡 to 𝑡 + 1: 

 

VIX𝑡 = √𝐸𝑡
ℚ(ℙ𝕍[𝑡,𝑡+1])     (9) 

 

in that  

RVIX𝑡+1
2 = ℙ𝕍[𝑡,𝑡+1] = 2(𝑅𝑡+1 − 𝑟𝑡+1) = ∫ 𝜎2𝑑𝑡

𝑡+1

𝑡

+ ∑
2

𝑛!

∞

𝑛=𝟐
∫ ∫ 𝑥𝑛

ℝ0

𝑡+1

𝑡

𝜇(𝑑𝑥, 𝑑𝑡) 
(10) 

                                                 =   ℂ𝕍[𝑡,𝑡+1]  +    𝕁ℙ𝕍[𝑡,𝑡+1], 

where  𝕁ℙ𝕍[𝑡;𝑡+1] = ∑
2

𝑛!
∞
𝑛=𝟐 ∫ ∫ 𝑥𝑛

ℝ0

𝑡+1

𝑡
𝜇(𝑑𝑥, 𝑑𝑡)  denotes a weight sum of the total predictable jumps 

of the ℙ𝕍.    

 

In short, the VIX index is a risk-neutral forward looking measure of the polynomial variation of 

log-returns (not that of the quadratic variation), where RVIX𝑡+1 (RV𝑡+1) is the future realized 

outcome of the polynomial (quadratic) variation, 

 

Structurally, although polynomial and quadratic variations are similar in form, ℙ𝕍 provides 

additional information beyond the jump process of return variability.  That is, statistically, the 

difference between ℙ𝕍 and ℚ𝕍 captures simultaneously the asymmetry, tail thickness and other 

characteristics of the log-return distribution.  We refer to this difference as the tail variation 

(hereafter 𝕋𝕍) or the realized tail (hereafter RT) of returns: 

 

Corollary 1.    From (10) in Theorem 1 and equation (7), the difference between the polynomial 

and the quadratic variations of returns characterizes the jump tail variation (denoted 𝕋𝕍), which 

can be measured by the realized tail (denoted RT).  The realized tail is a polynomial combination 

of all possible high orders of log-returns that is calculated by the spread between the squared 

realized VIX and the realized variance: 
 

RT𝑡+1 ≡ 𝕋𝕍[𝑡,𝑡+1] = ℙ𝕍[𝑡,𝑡+1] − ℚ𝕍[𝑡,𝑡+1] 
(11) 

 =  RVIX𝑡+1
2 − RV𝑡+1 

 = ∑
2

𝑛!

∞

𝑛=𝟑
∫ ∫ 𝑥𝑛

ℝ0

𝑡+1

𝑡

𝜇(𝑑𝑥, 𝑑𝑡) = ∑
2

𝑛!

∞

𝑛=𝟑
𝑟𝑡+1

𝑛  .  

 

Note that, based on (6), the higher order of the jump process, 𝑥𝑛 for 𝑛 > 2, is equivalent to the 

same order of the log-returns, 𝑟𝑛 for 𝑛 > 2.  Therefore, the expected RT is a polynomial sum of 



11 
 

all higher order distributional moments of log-returns.  Corollary 1 highlights the important 

relationship between the quadratic variation and the VIX: Under the risk-neutral framework as 

well as from (4) and (11),  

 

𝐸𝑡
ℚ(ℚ𝕍[𝑡,𝑡+1]) =  VIX𝑡

2 − 𝐸𝑡
ℚ(𝕋𝕍[𝑡,𝑡+1]). (12) 

 

Consistent with the Proposition 1 of Carr and Wu (2009), we show that the (risk-neutral) 

conditional ℚ𝕍 is just a tail-free VIX2.  Further, the options based conditional tail variation can 

then be measured by the spread between the squared VIX and the BKM’s unbiased variance 

measure (VBKM): 11 

 

𝐸𝑡
ℚ(RT𝑡+1) =  VIX𝑡

2 − V𝑡
𝐵𝐾𝑀 =  ∑

2

𝑛!

∞

𝑛=𝟑
𝐸𝑡

ℚ
(𝑟𝑡+1

𝑛 ), (13) 

 

where 
 
 

V𝑡
𝐵𝐾𝑀 ≡ 𝐸𝑡

ℚ
(ℚ𝕍[𝑡,𝑡+1]) = 𝑒𝑟𝑓 [∫

2 [1 − ln (
𝐾
𝑆𝑡

)]

𝐾2
𝐶𝑡,𝑡+1(𝐾)𝑑𝐾

∞

𝑆𝑡

+ ∫
2 [1 + ln (

𝑆𝑡

𝐾
)]

𝐾2
𝑃𝑡,𝑡+1(𝐾)𝑑𝐾

𝑆𝑡

0

], (14) 

 

that serves as an appropriate (risk-neutral) forward looking measure of the quadratic variation.   

 

C. VIX Decomposition  

 

Following BTZ’s basic notion, we define formally three different risk premiums: the VIX 

risk premium (VIXRP), the unbiased variance risk premium (VRP*), and the tail risk premium 

(TRP) as follows:  First, 

 

VIXRP[𝑡,𝑡+1] =  𝐸𝑡
ℚ(ℙ𝕍[𝑡,𝑡+1) − 𝐸𝑡

ℙ(ℙ𝕍[𝑡,𝑡+1) = VIX𝑡
2 − 𝐸𝑡

ℙ(RVIX𝑡+1
2 ), (15) 

 

where 𝐸𝑡
ℙ(RVIX𝑡+1) is the physical measure of the polynomial variation in the actual probability 

space ℙ, and VIX𝑡
2, as shown in (4), is the risk-neutral estimation of ℙ𝕍.  Since ℙ𝕍 identifies the 

overall variation of returns, VIXRP contains both the risk premium of return volatility and that of 

potentially abnormal variability.  Second,  

 

                                                           
11 This spread is the negative value of Du and Kapadia (2012) jump and tail index. 
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VRP[𝑡,𝑡+1]
∗ = 𝐸𝑡

ℚ
(ℚ𝕍[𝑡,𝑡+1)  − 𝐸𝑡

ℙ(ℚ𝕍[𝑡,𝑡+1) = V𝑡
𝐵𝐾𝑀 − 𝐸𝑡

ℙ(RV𝑡+1). (16) 

 

VRP* serves as a risk premium proxy for ordinary price fluctuation with normal jumps.  Third,  

 

                             TRP[𝑡,𝑡+1] = (VIX𝑡
2 − V𝑡

𝐵𝐾𝑀) − 𝐸𝑡
ℙ(RT𝑡+1), (17) 

 

where  

 

𝐸𝑡
ℙ(RT𝑡+1) = 𝐸𝑡

ℙ(RVIX𝑡+1
2 ) − 𝐸𝑡

ℙ(RV𝑡+1)                           

(18)  
= ∑

2

𝑛!
𝐸𝑡

ℙ(𝑟𝑡+1
𝑛 )

∞

𝑛=𝟑
. 

 

TRP is the difference between VIXRP and VRP*, which characterizes the compensation for the 

prospectively unusual jumps of return distribution (the fear risk).   Finally, the VIX index can then 

be decomposed into four fundamentally different constituents such that: 

 

VIX𝑡
2 = [𝐸𝑡

ℙ(RV𝑡+1) + VRP[𝑡,𝑡+1]
∗ ] + [𝐸𝑡

ℙ(RT𝑡+1) + TRP[𝑡,𝑡+1]]. (19) 

 

Intuitively, the first two components of the (squared) VIX index reflect the conditional (physical) 

expectation of future volatility and the risk compensation of the future variability from normal 

economic uncertainty.  The third and fourth elements characterize the conditional (physical) tail 

variation of returns and the corresponding (tail) risk premium for compensating fear of potential 

abnormal market disaster.  The RT and TRP could be negative, if market returns are negatively 

skewed.  This implies that the VIX index could understate the true return volatility due to negative 

RT and/or TRP, although VIX tends to be highly correlated with return volatility.  Importantly, 

the conventional BTZ variance risk premium (VRP), is also biased toward the true variance risk 

premium in that from (19), 

 

 

VRP[𝑡,𝑡+1] = VIX𝑡
2 − 𝐸𝑡

ℙ(RV𝑡+1) = VRP[𝑡,𝑡+1]
∗ + [𝐸𝑡

ℙ(RT𝑡+1) + TRP[𝑡,𝑡+1]]. (20) 

 

It is clear that the widely used VRP is actually influenced by not only the volatility risk premium 

but the realized tail and its associated risk premium.  Consequently, the impact of tail risk on future 

market price fluctuation could be the source of the predictability of the BTZ’s VRP to US 
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aggregate equity returns.  This paper addresses this issue by empirically examining the return 

predictability of our four decomposed VIX measures.    

Traditionally, the past realized variation is often used as the ℙ estimate of the conditional 

variation of stock market returns, which is, in fact, an unconditional sample estimate of the 

historical return variability.  Consequently, to insure the accuracy of risk estimation developing 

robust statistical methods for measuring conditional (physical) return variation is necessary.  We 

presents our estimation procedures of conditional RVIX, RV and RT based on BH’s forecasting 

models in the next section.  

 

III. Unconditional and Conditional Sample Estimates 

 

 To quantify the actual return variations, standard approaches employ high-frequency price 

observations, and the time interval [𝑡 − 1, 𝑡] is split into 𝑛 equally spaced increments. (e.g. 78 5-

mininum trading intervals in a day).  Let 𝑝𝑡 denotes the logarithmic price of the asset.  The jth 

intraday return 𝑟𝑗 on day 𝑡 is defined as 𝑟𝑗 = 𝑝
𝑡−1+

𝑗

𝑛

  −  𝑝
𝑡−1+

𝑗−1

𝑛
(∆)

.   According to Andersen and 

Bollerslev (1998), the unconditional (ex-post) estimate of the realized variance can be defined:   

 

RV̂𝑡 = ∑ 𝑟𝑗
2  

𝑛

𝑗=1

𝑝
→   ℚ𝕍[𝑡−1,𝑡], for 𝑛 →  ∞ (21) 

 

where 
𝑝
→  standard for convergence in probability.  Analogous to RV estimation, Jiang and Oomen 

(2008) show that the sum of the twice difference between arithmetic and logarithmic returns 

convergence in probability limit to quadratic variation pluses jumps in exponential form.   

Mathematically, that is, 𝑝𝑙𝑖𝑚
𝑛 → ∞

∑ 2(𝑅𝑗 − 𝑟𝑗) =𝑛
𝑗=1 ℚ𝕍[𝑡−1,𝑡] + 2 ∫ [exp (𝐽𝑢

𝑡

𝑡−1
) − 𝐽𝑢

2 − 𝐽𝑢 − 1]𝑑𝑞𝑢 = ℙ𝕍[𝑡−1,𝑡], 

with 𝐽 the jump process.   Therefore, the sample estimate of our realized VIX can be calculated as:  

 

RVIX̂𝑡
2 = ∑ 2(𝑅𝑗 − 𝑟𝑗)

𝑛

𝑗=1

𝑝
→   ℙ𝕍[𝑡−1,𝑡], for 𝑛 →  ∞, (22) 

 

and the asymptotically unbiased unconditional measure of the realized tail can thus be computed 

by RT̂𝑡 = ∑ [2(𝑅𝑗 − 𝑟𝑗)𝑀
𝑗=1 − 𝑟𝑗

2]   
𝑝
→  [ℙ𝕍[𝑡−1,𝑡] − ℚ𝕍[𝑡−1,𝑡]], for 𝑛 →  ∞.  Further, the estimation of 

VIX (denoted VIX̂𝑡) based on finite options prices can be obtained from the Chicago Board of 

Option Exchanges (CBOE).  We also apply the same procedure as the CBOE’s VIX formulation 
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to the unbiased variance measure of V𝑡
𝐵𝐾𝑀 (denoted V̂𝑡

𝐵𝐾𝑀
).12  Then, the calculation of our risk 

premiums can be summarized as follows: 13 

 

Unconditional VIX Risk Premium:   VIXRP̂𝑡 = VIX̂𝑡
2 − RVIX̂𝑡

2, 

Unconditional Unbiased Variance Risk Premium:  VRP̂𝑡
∗ = V̂𝑡

𝐵𝐾𝑀 − RV̂𝑡, 

Unconditional Tail Risk Premium:   TRP̂𝑡 = (VIX̂𝑡
2 − V̂𝑡

𝐵𝐾𝑀) − RT̂𝑡. 

 

Economically, the return variation risk premium as shown in (15), (16), and (17) is the 

difference between the conditional variation using a risk-neutral probability measure and that using 

the actual physical probability measure.  Both the options based estimates of V̂𝑡
𝐵𝐾𝑀 and VIX̂𝑡 are 

risk-neutral conditional measures.  Since the empirical projection of the physically realized return 

variations relies on variables in the information sets, the common approach is to employ 

forecasting models.  Recently. BH evaluate a plethora of state-of-the-art volatility forecasting 

models based on the decomposition of the squared VIX index to produce an accurate measure of 

the conditional variance.  We adopt one of the BH’s winning models (model 11) as our forecasting 

model for estimating conditional return variation.  BH’s Model 11 features continuous and jump 

variations at three frequencies: one-day, five-day, and twenty two-day, respectively, in that the 

presence of realized variability at all three frequencies is important in delivering lower error 

statistics.  We present the application of BH’s Model 11 to our variables as follows. 

We begin with daily measures of RV, RVIX and RT, calculated from five-minute intraday 

returns as well as an overnight close-to-open return (79 increments in total per day).  They are   

RV̂𝑡
(1)

=
79

𝜅
∑ 𝑟𝑖

2𝜅
𝑖=1 , RVIX̂𝑡

2(1)
=

79

𝜅
∑ 2(𝑅𝑖 − 𝑟𝑖)𝜅

𝑖=1 , and RT̂𝑡
(1)

=
79

𝜅
∑ 2(𝑅𝑖 − 𝑟𝑖) − 𝑟𝑖

2𝜅
𝑖=1 , respectively, 

where 𝜅 is the actual trading increments.  Next, the h-day estimate of the continuous as well as the 

discontinuous components of the quadratic and polynomial variations in (7) and (9) are 

calculated:  ℂ𝕍𝑡
(ℎ)

= (
22

ℎ
∑ RV̂𝑡−𝑗+1

(1)ℎ
𝑗=1 ) − 𝕁𝕍ℚ𝑡

(ℎ)
,  𝕁ℚ𝕍

𝑡
(ℎ) =

22

ℎ
∑ 𝑚𝑎𝑥 [(RV̂𝑡−𝑗+1

(1)
−ℎ

𝑗=1

TBPV𝑡−𝑗+1
(1)

) , 0] , and  𝕁ℙ𝕍𝑡
(ℎ)

=
22

ℎ
∑ (RVIX̂𝑡−𝑗+1

2(1)
− ℂ𝕍𝑡−𝑗+1

(1)
)ℎ

𝑗=1 ,  where TBPV𝑡
(1)

 stands for the daily 

threshold bipower variation defined in Corsi et al. (2010), equation 2.14.  Note that we scale up all 

measures to the monthly (22-day) basis.  Then, three rollover series of continuous and 

                                                           
12 See the VIX white paper, URL: http://www.cboe.com/micro/vix/vixwhite.pdf. 
13 All variables are annualized whenever appropriate. 
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discontinuous sample estimates, daily (h = 1), weekly (h = 5), and monthly (h = 22), accordingly, 

are used as independent variables for the following forecasting models: 

 

[𝑟 𝑡
(22)

]
2

= 𝑎 +  𝑏𝑚ℂ𝕍𝑡−22
(22)

+ 𝑏𝑤ℂ𝕍𝑡−22
(5)

+ 𝑏𝑑ℂ𝕍𝑡−22
(1)

                                          (23) 

     +𝑐𝑚𝕁ℚ𝕍𝑡−22
(22)

+ 𝑐𝑚𝕁ℚ𝕍𝑡−22
(5)

+ 𝑐𝑑𝕁ℚ𝕍𝑡−22
(1)

+ 𝑒𝑡, 

 

2[𝑅 𝑡
(22)

− 𝑟 𝑡
(22)

] = 𝛼 +  𝛽𝑚ℂ𝕍𝑡−22
(22)

+ 𝛽𝑤ℂ𝕍𝑡−22
(5)

+ 𝛽𝑑ℂ𝕍𝑡−22
(1)

                  (24) 

     + 𝛾𝑚𝕁ℙ𝕍𝑡−22
(22)

+ 𝛾𝑤𝕁ℙ𝕍𝑡−22
(5)

+ 𝛾𝑑𝕁ℙ𝕍𝑡−22
(1)

+  𝜀𝑡, 

and  

 

2[𝑅 𝑡
(22)

− 𝑟 𝑡
(22)

] − [𝑟 𝑡
(22)

]
2

 = 𝒜 +  𝒞𝑚[𝕁ℙ𝕍𝑡−22
(22)

− 𝕁ℚ𝕍𝑡−22
(22)

] 

(25)       + 𝒞𝑤 [𝕁ℙ𝕍𝑡−22
(5)

− 𝕁ℚ𝕍𝑡−22
(5)

] 

      + 𝒞𝑑  [𝕁ℙ𝕍𝑡−22
(1)

− 𝕁ℚ𝕍𝑡−22
(1)

] + 𝜖𝑡, 

 

where 𝑅 𝑡
(22)

 and 𝑟 𝑡
(22)

 are the monthly rollover arithmetic and logarithmic returns over the time 

interval [𝑡 − 22, 𝑡] , respectively.   Consequently, the conditional measures of return variations as 

well as their risk premiums can be computed using the estimated coefficients from regressions of 

(23), (24), and (25), accordingly. We summarize the calculation as follows: Let RVIX̅̅ ̅̅ ̅̅ ̅
𝑡
2  

=  �̂�𝑡
ℙ(RVIX𝑡+22

2 ), RV̅̅̅̅
�̅� = �̂�𝑡

ℙ(RV𝑡+22), and RT̅̅̅̅
𝑡 = �̂�𝑡

ℙ(RT𝑡+22) be the empirical conditional 

estimates of next month’s return variations. 

 

Conditional VIX Risk 

Premium: 
VIXRP̅̅ ̅̅ ̅̅ ̅̅

𝑡 =
1

12
VIX̂𝑡

2 − RVIX̅̅ ̅̅ ̅̅ ̅
𝑡
2, where  

 RVIX̅̅ ̅̅ ̅̅ ̅
𝑡
2 = �̂� +  �̂�𝑚ℂ𝕍𝑡

(22)
+ �̂�𝑤ℂ𝕍𝑡

(5)
+ �̂�𝑑ℂ𝕍𝑡

(1)
 

                     + 𝛾𝑚𝕁ℙ𝕍𝑡
(22)

+ 𝛾𝑤𝕁ℙ𝕍𝑡
(5)

+ 𝛾𝑑𝕁ℙ𝕍𝑡
(1)

, 

 

Conditional Unbiased  

Variance Risk Premium: 
VRP̅̅ ̅̅ ̅̅

𝑡
∗ =

1

12
V̂𝑡

𝐵𝐾𝑀 − RV̅̅ ̅̅
𝑡, where 

RV̅̅ ̅̅
𝑡 = �̂� + �̂�𝑚ℂ𝕍𝑡

(22)
+ �̂�𝑤ℂ𝕍𝑡

(5)
+ �̂�𝑑ℂ𝕍𝑡

(1)
 

 
               +�̂�𝑚𝕁ℚ𝕍𝑡

(22)
+ �̂�𝑤𝕁ℚ𝕍𝑡

(5)
+ �̂�𝑑𝕁ℚ𝕍𝑡

(1)
, 

 

Conditional Tail Risk 

Premium: 
TRP̅̅ ̅̅ ̅̅

𝑡 =  
1

12
(VIX̂𝑡

2 − V̂𝑡
𝐵𝐾𝑀) − RT̅̅̅̅

𝑡,  where 

 RT̅̅̅̅
𝑡 = �̂� +  �̂�𝑚[𝕁ℙ𝕍𝑡

(22)
− 𝕁ℚ𝕍𝑡

(22)
] + �̂�𝑤[𝕁ℙ𝕍𝑡

(5)
− 𝕁ℚ𝕍𝑡

(5)
] 

                    +  �̂�𝑑[𝕁ℙ𝕍𝑡
(1)

− 𝕁ℚ𝕍𝑡
(1)

]. 
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IV. Empirical Illustration 

 

This section describes data and empirical analysis of our VIX decomposition.  Particularly, 

the focus is on examining the source of the intrinsic market return predictability with respect to 

different return horizons as well as different decomposed aggregate market portfolios with various 

types of risk exposures. 

 

A. Data Description 

 We employ the aggregate S&P 500 composite index as a proxy for the aggregate market 

portfolio.  Our high-frequency data for the S&P 500 index span the period January 2, 1990 to 

October 10, 2014. The prices are recorded at 5-minute intervals, with the first price for the day at 

9:30 a.m. and the last price at 4:00 p.m.  Along with the close-to-open overnight return, this leaves 

us with a total of 79 intraday return observations for each of the 5,979 trading days in the sample.  

In addition, the daily VIX index is obtained directly from the website of the Chicago Board of 

Options Exchange (CBOE).  For calculating VBKM, we use closing bid and ask quotes for all S&P 

500 options traded on the CBOE.14  Further, for analyzing predictive performance of variance and 

tail risk premium on various size, book-to-market, and momentum sorted portfolios, we download 

return data from Kenneth R. French's data library. 
15

  Finally, the data of the control variables on 

our analytical models are from Compustat and Federal Reserve Bank dataset of WRDS and Federal 

Reserve Bank of St. Louis website. 

 

B. Estimates of the VIX, Variance and Tail Risk Premiums 

 Basic summary statistics for the daily, weekly and monthly measures of return variations 

and risk premiums are given in Table I.   In addition to ex-post (unconditional) sample estimates, 

we calculate the daily conditional measures of return variations using the resulting coefficients 

from the forecasting regressions of (22), (23) and (24) over the full sample as follows:  

 

RVIX̅̅ ̅̅ ̅̅ ̅
𝑡
2 = 12.747

(2.184)
−

 
0.164

(0.132)
ℂ𝕍𝑡

(22) + 0.456
(0.169)

ℂ𝕍𝑡
(5) − 0.071

(0.089)
ℂ𝕍𝑡

(1)

 
(26) 

 
              

+ 0.544
(0.226)

𝕁ℙ𝕍𝑡
(22) +

 
0.370

(0.316)
𝕁ℙ𝕍𝑡

(5)

−
0.028

(0.041)
𝕁ℙ𝕍𝑡

(1)

, 

                                                           
14 We obtained options data from Ivolatility.com 
15 Website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
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RV̅̅ ̅̅
𝑡 = 12.752

(2.212)
−

 
0.171

(0.143)
ℂ𝕍𝑡

(22) + 0.487
(0.180)

ℂ𝕍𝑡
(5) − 0.086

(0.091)
ℂ𝕍𝑡

(1)

 
(27) 

 
              

+ 0.530
(0.229)

𝕁ℚ𝕍𝑡
(22) +

 
0.392

(0.334)
𝕁ℚ𝕍𝑡

(5)

+
0.029

(0.042)
𝕁ℚ𝕍𝑡

(1)

, 

 

RT̅̅̅̅
𝑡 = −0.234

(0.195)
−

 
2.013

(1.300)
[𝕁ℙ𝕍𝑡

(22)
− 𝕁ℚ𝕍𝑡

(22)
]− 0.608

(0.890)
[𝕁ℙ𝕍𝑡

(5)
− 𝕁ℚ𝕍𝑡

(5)
]
 

(28) 
 

              
+ 0.129

(0.123)
[𝕁ℙ𝕍𝑡

(1)
− 𝕁ℚ𝕍𝑡

(1)
]
; 

 

the heteroscedasticity-robust standard errors are reported in parentheses.  Numerically, due to the 

similarity of scale between RVIX2 and RV, the magnitude of the realized tail (RT) measures is 

quite small in that the means of daily, weekly and monthly RT are only -0.172, -0.312, and -0.206 

percentage points, respectively.16 Nevertheless, the significant t-statistics for all RT estimates 

indicate that RVIX2 is statistically different from RV, and thus the high order jump (tail) process 

of market returns cannot be ignored.  Implicitly, it shows that market return variability results from 

two parts: volatility as well as tail variation.  Therefore, the risk compensation of market variation 

can be decomposed by the risk premium of the variance (VRP*) and that of the tail (TRP), 

accordingly.  Empirically, both VRP* and TRP are statistical non-zero.  The mean of variance risk 

premium is generally negative, but that of the tail risk premium appears to be positive.  For an 

illustration, Figure 1 plots the daily time series of VRP* and TRP based on conditional measures.  

Consistent with empirical evidence in previous studies, the spread between the unbiased implied 

(risk-neutral, VBKM) and realized variance is generally positive.  We show that the spread between 

the realized and implied tail variation, on the other hand, is mostly negative and seems to be highly 

and negatively correlated with the variance risk premium.  Back in Table I, conditional and 

unconditional risk premium measures are alike on average.  However, conditional (unconditional) 

VRP* tends to be positively (negatively) skewed.  This highlights the potential difference between 

ex ante and ex post approaches in market return predictability analysis.     

 

[Insert Table I here] 

[Insert Figure 1 here] 

 

                                                           
16 Bondarenko (2014) also shows the numerical similarity between ∑ 2(𝑅𝑗 − 𝑟𝑗)𝑛

𝑗=1  and ∑ 𝑟𝑗
2𝑛

𝑗=1 . 
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C. S&P 500 Index Return Predictability  

 Mounting empirical evidence suggests that equity market future returns could be predicted 

by the long-term variance risk premium, defined as the difference between the risk-neutral and the 

actual expectations (e.g. VIX2 – RV), especially over a three- to six-month time horizon.   BTX 

(2015) argue that the variance risk premium can be naturally decomposed into two fundamentally 

different sources of market variance risk:  normal size price fluctuations and jump tail risk.  

Specifically, by differentiating the left and right (risk-neutral) jump components from the quadratic 

variation based on a threshold of log-jump size, the part of the variance risk premium associated 

with compensation for left jump (tail) risk may be seen as a proxy for market fears.  BTX show 

that the left jump (or tail variation) serves as a predictor variable for market future returns.  Instead 

of discriminating the quadratic jump variation between left and right, we measure tail risk based 

on the spread between the polynomial and quadratic variations (i.e. 𝕋𝕍 = ℙ𝕍 − ℚ𝕍).   

 Following the analytical procedures of BTZ and BH, we investigate the relationship 

between aggregate stock market (the S&P 500 Index) monthly excess returns and a set of lagged 

predictor variables with a focus on the realized tail and the tail risk premium.  The main predictive 

variables include the four decomposed VIX risk factors: RV, VRP*, RT and TRP, respectively.  In 

addition, to ensure the robustness of our analysis, we also include a set of control variables 

employed by BH that consists of the real three-month rate (the three-month T-bill minus CPI 

inflation, denoted 3MTB), the logarithm of the dividend yield (denoted Log(DY)), the credit 

spread (the difference between Moody’s BAA and AAA bond yield indices, denoted CS) and the 

term spread (the difference between the ten-year and the three-month Treasury yields, denoted 

TS).   Table II reports two correlation matrixes of predictor variables with respect to the 

unconditional and conditional measures.  The realized tail has relatively low cross-sectional 

correlations with other variables.  It ranges from -0.18 (with VRP*) to 0.24 (with TRP) for the 

unconditional RT, and from -0.12 (with VIXRP) to 0.51 (with RVIX) for the conditional RT.  

Unsurprisingly, since RT is small, RVIX and RV as well as their risk premiums, VIXP and VRP*, 

are almost perfectly correlated.  Nevertheless, this does not mean that the VIX risk premium is 

equal to the variance risk premium and the tail premium can be ignored.  This manuscript later 

empirically demonstrates that the small trail risk is not only nontrivial but important for future 

market return determination.     
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[Insert Table II here] 

 

 Our main analytical results of stock market predictability appear in Table III.  We employ 

the standard approaches of BTZ and BH by regressing excess stock returns (the annualized 

monthly S&P500 return in excess of the annualized three-month T-bill rate) against the risk factors 

described above.  All variables, except RT, are expressed in annualized percentages; realized tail 

is expressed in basis points.  The analysis is also based on three different horizons, monthly, 

quarterly and annual (denoted by 1, 3 and 12, respectively), averaging returns over a quarter/year. 

To correct for serial correlation, the Newey–West t statistics with a relatively large number of lags 

is adopted.    For each panel of the Table III, we report the results from simple regressions with 

respect to each risk variable and their risk premium individually as well as with multivariate 

regressions that consider jointly individual risk factors, its premium and control variables.  Panel 

A reveals monthly return predictability.  There are quite different outcomes between unconditional 

and conditional measurements.  Based on a conventional ex-post approach of simple historical 

(unconditional) estimation, individual t-statistics for all risk factors (except the realized tail), 

extending from -2.311 to 3.926, are significant at the 5% level.  Again, the small magnitude of RT 

sample estimate makes the impact of RVIX (the ℙ𝕍 estimate) almost identical to that of RV (the 

ℚ𝕍 estimate).  They both have the t-value of -2.311 and R2 of 8.85.   This may be the reason why 

RV is usually used as the realized outcome of the squared VIX index and the importance of ℙ𝕍 is 

thus often overlooked.   The evidence that ℙ𝕍 is different from ℚ𝕍 can be found by the difference 

between VIXRP and VRP*.  From the multivariate regressions with control variables, the 

significance of predictability from RVIX and RV vanishes.  However, the significant t-statistics 

of the three risk premiums (4.822 of VIXRP, 4.756 of VRP, and 1.961 of TRP) once again 

empirically prove the distinction of ℙ𝕍 from ℚ𝕍, and the necessity of the tail risk factor.   

 

[Insert Table III here] 

 

 Importantly, shown on panel A of Table III, almost an opposite result appears when we 

employ the BH conditional approach.  From simple return predictability regressions, the realized 

tail (RT) and its risk premium (TRP) are the only significant predictors for future monthly market 

returns.  The similar result holds from the multiple variable regression, except that VRP* is 

significant, where Newey-West t-statistics of conditional VRP*, RT, and TRP regressor 
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coefficients are 3.172, 2.651, and 2.513, respectively.  By extending the prediction period from a 

month to a quarter, panel B of Table III shows that from the regression with multiple control 

variables, both conditional RT and TRP still retain their predictive power of stock market returns.  

However, the panel C of Table III reports that both conditional RT and TRP fail to predict stock 

market returns.  Therefore, the tail risk factor and its risk premium have predictive power for stock 

return over a relatively shorter period of time. On the other hand, the predictability of unconditional 

VIXRP and VRP* increases as the time horizon increases from a month to a quarter.  In short, the 

empirical evidence from Table III concludes that from multiple regressions including control 

variables, neither RVIX nor RV predicts S&P 500 index returns for all time horizons. 

Nevertheless, the time series conditional tail risk factor and its premium proxy, on the contrary, 

statistically predict the next month’s (and quarter’s) stock market returns.    

Next, consider that the two decomposed components of the VIX risk premium derived from 

the polynomial variation (i.e., VRP* and TRP) are separate potential predictors of stock market 

returns.  To compare the predictability of VRP* with that of TRP, we plot the corresponding 

Newey-West t-statistics and adjusted regression R2's for all of the one- through twelve-month 

return regressions in Figure. 2.  The t-statistics from the simple regressions based on unconditional 

(conditional) VRP* are all significant (insignificant), and the R2's increase with the return horizons.  

However, the R2's of the unconditional VRP* regression decreases after they reach the maximum 

value of 10% at the 4-month horizon.  Consistent with results in Table III, the t-statistics from the 

simple regressions based on either unconditional or conditional TRP are significant in the short 

time horizon (shorter than 2-month), and the R2's decrease with the return horizon. In addition, the 

adjusted R2's from the multiple regressions based on both unconditional (conditional) predictor 

variables are higher but close to those from the simple regressions based on unconditional VRP* 

(conditional TRP) only.  In summary, the risk premium of the market return variation contains two 

components: compensation for economic uncertainty, measured by the VRP*, and that for market 

fear, measured by the TRP.  To further examine the sources of the predictability, we follow BTX 

by analyzing a series of predictability regressions for various style portfolios.  

 

 [Insert Figure 2 here] 
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D. Return Predictability of Style Portfolios  

 Portfolios with different styles represent different risk characteristics and exposures.  

Therefore, their reaction to a change in aggregate risk and risk-aversion could vary.  Table IV 

reports the results from multiple regressions based on lagged RV, VRP*, TRP, RT, and control 

variables similar to those in Table III.  The dependent variables are based on monthly excess 

returns of different style portfolios.  The style portfolios are classified by three different risk factors 

of Fama-French-Carhart: Size, Value/Growth and Momentum, accordingly.  The six equally 

weighted portfolios, obtained from the data library of Kenneth R. French, made up of the top and 

bottom quintiles for each of the three different stock sorts according to their market capitalization, 

book-to-market (B/M) value, and most recent annual return. The predictability analysis is again 

based on three different horizons: monthly, quarterly and annual.   

 The most notable result shown in Table IV is that neither conditional nor unconditional 

realized variance (RV) predicts style portfolios for all time horizons.  Now, we begin with the 

analysis relating to the size-sorted portfolios.  From the monthly and quarterly results, both 

unconditional and conditional measures of VRP* and those of TRP are significant predictors for 

the small-stock portfolio.  The influence of the conditional realized tail to the small-stock portfolio 

is insignificant till the predictive time horizon increases to one quarter (one-year), where the t-

statistics of conditional (unconditional) RT reaches 2.967 (2.536).  The predictability of a big-

stock portfolio is mainly coming from the variance risk premium, although conditional TRP and 

RT show some influence on monthly and quarterly predictability.  Further, the zero-cost long-short 

portfolio of SMB (small minus big) is a proxy portfolio that removes the market systematic risk 

but retains only the size effect.  From panels A and B of Table IV, in contrast to BTX, we find that 

the tail risk premium (TRP) contributes the predictability of the SMB portfolio, where the variance 

risk premium (VRP*) shows no impact on SMB prediction at all.   

 For the book-to-market sorted value and growth portfolios, both the conditional and 

unconditional variance risk premiums (tail risk premiums) seem to be significant predictors for the 

monthly and quarterly (annual) returns on the zero-cost High-Minus-Low (HML) portfolios.   The 

t-statistics of conditional TRP and RT predictors for the next month returns on the growth (low 

Book-to-Market) portfolios are significant at the 5% percent level.  But, this tail risk influence on 

the value portfolios declines as the predictive time horizon increases.  Both the VRP and TRP 

appear to have an impact on the monthly and quarterly return prediction for the value portfolios.  
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Our VIX decomposed measures seem to have relatively low predictability for the returns on the 

momentum (WML) portfolios.  Particularly, none of the t-statistics of the quarterly predictive 

regression coefficients is significant.  However, the unconditional VRP* and RT as well as the 

conditional TRP retains some predictive power on the monthly return prediction of the WML 

portfolios.  Both the winner and loser portfolios have some influence from the VRP, TRP and RT. 

 

[Insert Table IV here] 

 

 Figure 3 shows the predictability patterns (t-statistics and R2) of VRP* (solid lines) and 

TRP (dashed lines) over time for size, value/growth, and momentum portfolios.  Generally, the 

patterns are similar between unconditional and conditional measures.  The impact of TRP (VRP*) 

on SMB appears to be relative short-term (long-term).  For the HML portfolios, the predictive 

power of TRP seems to be much larger than that of VRP*, where the R2's of TRP for the HML 

portfolio appear to be maximized at the intermediate four-month horizon.  Finally, the pattern of 

increasing (decreasing) predictability from TRP (VRP*) on the WML portfolio indicates that the 

short-term (long-term) predictability of momentum portfolios is attributable to variance (tail) risk 

premium.  In summary, the results of Table IV and Figure 3 describe that variance and tail risk 

have various impacts on portfolios with different fundamental risk exposures.  In addition to style 

portfolios, we further investigate effects of our decomposed VIX premiums to disintegrative equity 

market portfolio based on different mutually exclusive industrial sectors.  

 

[Insert Figure 3 here] 

 

 

E. Return Predictability of Industrial Portfolios  

 Table V reports results from multiple predictability regressions that include the four 

conditional measures of the VIX decomposed components (VR, VRP*, TRP and RT) as well as all 

control variables.  Once again, the realized variance (RV) has no influence on return predictability 

for all sector portfolios.  The conditional realized tail of the S&P index return distribution (RT), 

on the other hand, significantly attributes monthly return predictability to industrial sectors of Non-

Durables, Chemicals, Equipment, Telecommunication, Utilities, and Wholesale.  By extending the 

predictive time horizon from a month to a quarter, RT has significant impacts on eleven of the 

twelve sectors.  Although both VRP* and TRP have predictive power for monthly and quarterly 
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returns on some industrial stocks, it is less significant than the predictability of RT.  This suggests 

that the realized jump tail could be an important risk factor in determining future returns on 

disintegrative market portfolios or even on individual assets.  The insignificance of t-statistics of 

all our predictor variables in the Panel C of Table V suggests that the influence of variance risk 

and tail risk premium to less diversified market portfolios (e.g., industrial equity funds) occurs 

only in relative short-run.  Interestingly, from our empirical outcomes shown in all Panels of Table 

V, returns on Energy stocks appear to be independent from both the equity market volatility and 

jump-tail (fear) risk.     

[Insert Table V here] 

 

V. Conclusion 

 

We identify the underlying process of the CBOE's VIX index following the polynomial 

(instead of quadratic) variation of market returns.  Based on our notion of the polynomial variation, 

the (squared) VIX index is decomposed into four fundamentally different components: the realized 

variance (RV), the underlying (unbiased) variance risk premium (VRP*), the realized tail (RT), 

and the tail risk premium (TRP).  The RV and VRP* measure the normal return volatility and its 

risk premium, respectively; RT and TRP are proxies for the abnormal fear and the corresponding 

risk compensation.  In short, the VIX index is composed of two essentially separated sources of 

market return variations as well as their associated risk premiums: the volatility risk (normal price 

fluctuations from economic uncertainty) and jump tail risk (potentially and abnormally large price 

movement caused by investors' fear).   

 Our VIX decomposition also highlights the bias of the conventional measure of variance 

risk premium (VRP; the squared VIX minuses RV) toward the true premium of its underlying 

variance risk (i.e., VRP*) in that VRP is simply the sum of VRP*, RT, and TRP.  The question then 

arises: could the strong predictive power of the traditional VRP as previously reported in the 

literature be actually from the predictability of conditional realized tail and that of tail risk 

premium?  We look for the answer by investigating empirically the joint predictive ability of the 

decomposed VIX components for future returns on S&P 500, style, and sector portfolios.    To 

insure the accuracy of risk estimation, we employ both the BTZ unconditional and the BH 

conditional approaches for calculating RV, VRP*, RT, and TRP, respectively.  Statistically, our 

analysis, consistent with previous researchers' findings, also shows that the realized variance (RV) 
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has no predictive power of future market returns.  However, the realized tail (RT), on the other 

hand, has significant influence on market return prediction, particularly, for relatively short time 

horizons.  In addition, both the unbiased premiums of variance risk and tail risk play an important 

role in predicting future returns on the market, style as well as different sector portfolios.  

Specifically, the predictability of the zero-cost small-minus-big (size) portfolios appears to be 

driven by the tail risk premium.  The variance risk premium has a significant impact on the return 

prediction of the high-minus-low book-to-market (growth/value) portfolios.  Nevertheless, the 

influence of the four VIX decomposed components on return prediction of the winners-minus-

losers (momentum) portfolios is quite weak.  Finally, although none of our VIX decomposed 

measures has long-term predictive power for forecasting (annual) returns on industrial portfolios, 

the conditional RT and TRP, particularly, appear to be strong return predictors for monthly and 

quarterly returns on almost all sector portfolios.  Interestingly, the insignificance of all of our 

predictors for predicting returns on the Energy portfolio demonstrates the unique pricing behavior 

of Energy stocks from other sectors.   

Perceptibly, in spite of the fact that the physical measure of realized tail (RT) is numerically 

unnoticeable, our empirical evidence reveals that its impact on future returns is statistically 

significant and should not be ignored.  Particularly, the increase in statistical significance from the 

market indexes to less diversified industrial portfolios indicates that the influence of tail risk on 

individual stocks could be nontrivial.  Therefore, mapping the cross-sectional dynamics of time-

varying tail variations in individual asset prices so that the asset pricing model can generate 

sufficient compensations for investors' fear of potential disasters becomes a consequential line of 

further research. 
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Table I 

Summary Statistics 
 

This table reports descriptive statistics for our realized VIX (i.e., RVIX2), realized tail (i.e., RT) as well as both the 

conditional and unconditional (annualized) risk premiums of the VIX (i.e., VIXRP), these of the variance (i.e., VRP*) 

and these of the jump-tail (i.e., TRP) with respect to no overlapping one-day, 5-day (weekly) and 22-day (monthly) 

time horizon, respectively.  The RT is the difference between RVIX2 and RV, and VIXRP = VRP* + TRP.  The sample 

of 5-minute returns of S&P 500 index extends from January 31, 1990 to September 10, 2014. The conditional measures 

are based on the forecasting models shown in equations (26), (27) and (28), accordingly.  All our measures are on 

daily overlapping basis with 5979 observations in total.  RT is in annualized basis point, and all other variables are in 

annualized percentage.  In addition, all numbers are scaled up by a factor of 100.  
 

    Unconditional  Conditional 

 RVIX2         RT  VRP* TRP  VRP* TRP 
 

Panel A. Daily Measure 

Mean 3.801 -0.172  1.013 -0.179  2.051 -0.156 

Std. Dev. 8.695 6.523  6.241 0.740  3.971 0.744 

Skewness 11.874 -49.538  -15.959 -5.038  5.014 -5.051 

Max 282.727 50.690  25.947 3.606  59.072 3.289 

Min 0.099 -429.90  -226.595 -9.521  -5.869 -9.620 

t-value 33.677 -2.035  12.505 -18.673  39.791 -16.160 

 

Panel B. Weekly Measure  

Mean 3.940 -0.312  0.901 -0.183  2.054 -0.161 

Std. Dev. 7.461 4.770  4.752 0.701  3.784 0.708 

Skewness 6.910 -15.493  -8.144 -4.913  4.480 -4.846 

Max 109.373 26.492  14.991 1.328  43.839 1.325 

Min 0.234 -100.39  -69.897 -7.625  -3.886 -7.545 

t-value 18.754 -2.320  6.736 -9.264  19.274 -8.100 

         

Panel C. Monthly Measure 

Mean 3.877 -0.206  0.970 -0.177  2.044 -0.154 

Std. Dev. 6.151 1.548  2.840 0.637  3.606 0.641 

Skewness 6.625 -7.694  -5.208 -4.600  4.076 -4.515 

Max 74.082 4.630  9.610 0.648  31.758 0.490 

Min 0.389 -19.569  -30.766 -5.611  -2.166 -5.555 

t-value 10.789 -2.276  5.848 -4.752  9.705 -4.122 
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Figure 1. Variance and Tail Risk Premiums. The monthly conditional estimates of VRP and TRP are based on 5-

minute sample returns of S&P 500 index extends from January 31, 1990 to September 10, 2014 for a total of 5979 trading 

days.  VRP* = RV – VBKM, TRP = (RVIX – VIX2) – VRP*, and the conditional measures are based on the forecasting 

models shown in equations (26), (27) and (28), accordingly.  Both VRP* and TRP are reported in annualized percentage 

and scaled up by a factor of 100.  
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Table II 

Correlation Matrixes  
 

The table depicts pairwise correlations for monthly non-overlapping measures of variation (i.e., RVIX, 

VIX, RV, VBKM, and RT), these of risk premiums (i.e., VIXRP, VRP* and, TRP) as well as these of our 

control variables including 3MTB (3-month T-bill minus CPI inflation), Log(DY), the log-dividend 

yield, CS (the spread between Moody’s BAA and AAA bond yield), and TS (the spread between 10-

year and 3-month Treasury yields), respectively.  The sample period extends from January 31, 1990 to 

September 10, 2014.  
       

       

  Unconditional     

  RVIX VIXRP RV VRP* RT TRP 3MTB log(DY) CS TS 

U
n

co
n

d
itio

n
a
l 

RVIX 1.00 -0.34 1.00 -0.17 -0.10 -0.71 -0.15 0.16 0.59 0.08 

VIXRP  1.00 -0.34 0.97 -0.13 0.10 -0.01 -0.10 0.09 0.01 

RV   1.00 -0.17 -0.10 -0.71 -0.15 0.16 0.59 0.08 

VRP*    1.00 -0.18 -0.13 -0.06 -0.04 0.20 0.02 

RT     1.00 0.24 -0.06 0.04 0.09 0.08 

TRP      1.00 0.18 -0.23 -0.49 -0.04 

 3MTB       1.00 -0.66 -0.43 -0.72 

 log(DY)        1.00 0.31 0.08 

 CS         1.00 0.31 

 TS          1.00 
            

  Conditional     

  RVIX VIXRP RV VRP* RT TRP 3MTB log(DY) CS TS 

C
o

n
d

itio
n

a
l 

RVIX 1.00 0.49 1.00 0.54 0.51 -0.71 -0.07 0.08 0.43 0.03 

VIXRP  1.00 0.48 0.99 -0.12 -0.51 -0.20 0.12 0.67 0.11 

RV   1.00 0.53 0.50 -0.71 -0.07 0.08 0.43 0.03 

VRP*    1.00 -0.09 -0.62 -0.21 0.14 0.68 0.11 

RT     1.00 -0.28 0.08 -0.04 -0.10 -0.08 

TRP      1.00 0.17 -0.22 -0.46 -0.03 

 3MTB       1.00 -0.66 -0.43 -0.72 

 log(DY)        1.00 0.31 0.08 

 CS         1.00 0.31 

 TS          1.00 
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Table III 

S&P 500 Return Predictability Regressions 
 

This table reports the estimated regression coefficients and adjusted R2’s from return predictability regressions for monthly, quarterly as well as annual excess returns on the S&P 500 market 

portfolio, respectively.   Here RVIX is the realized VIX, VIXRP is the VIX risk premium, RV is the realized variance, VRP* is the unbiased variance risk premium, RT is the realized tail, and 

TRP is the tail risk premium.  The term 3MTB is the 3-month T-bill minus CPI inflation, Log(DY) is the log-dividend yield, CS is the spread between Moody’s BAA and AAA bond yield, 

and TS is the term spread between 10-year and 3-month Treasury yields. The sample extends from January 31, 1990 to September 10, 2014.  Newey-West t-statistics are reported in parentheses.  

Adj. R2 is the adjusted coefficient of determination. RT is in annualized basis point, and all other variables are measured by annualized percentage. 

Panel A. Monthly Return Prediction 
Unconditional 

RVIX -1.788            -0.163    
 (-2.311)            (-0.216)    

VIXRP  5.512           5.791    

  (3.926)           (4.822)    
RV   -1.788           1.668   

   (-2.311)           (1.260)   

VRP*    4.598          6.597   
    (3.204)          (4.756)   

RT     0.110         0.543   

     (0.036)         (0.132)   
TRP      16.164        26.064   

      (2.448)        (1.961)   

Conditional 
RVIX       -2.215        -2.772  

       (-0.835)        (-0.824)  

VIXRP        0.470       3.147  

        (0.256)       (1.645)  
RV         -2.127       -2.207 

         (-0.835)       (-0.660) 

VRP*          -0.052      5.168 
          (-0.033)      (3.172) 

RT           0.484     2.376 

           (2.056)     (2.651) 
TRP            15.155    29.260 

            (2.470)    (2.513) 
                 

3MTB             1.510 1.260 -0.231 0.769 

             (0.384) (0.328) (-0.052) (0.195) 

Log(DY)             12.725 15.831 2.279 12.016 
             (0.722) (0.843) (0.118) (0.656) 

CS             -12.463 -12.808 -18.750 -12.593 

             (-0.960) (-0.923) (-1.241) (-0.806) 
TS             3.387 2.674 1.188 2.126 

             (0.638) (0.503) (0.198) (0.388) 

Constant 8.850 -7.060 8.850 -5.819 4.341 6.600 10.426 3.463 10.243 4.430 5.489 6.113 -42.065 -52.486 16.261 -19.072 
 (3.389) (-1.927) (3.390) (-1.543) (1.342) (2.409) (1.582) (1.036) (1.599) (1.469) (1.692) (2.174) (-0.575) (-0.680) (0.200) (-0.253) 

Adj. R2(%) 2.023 5.899 2.022 4.034 -0.343 2.573 0.406 -0.274 0.405 -0.343 0.183 2.341 5.391 6.766 0.367 4.602 
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Table III (Continued) 
 

Panel B. Quarterly Return Prediction 
Unconditional 

RVIX -1.151            0.207    
 (-2.593)            (0.349)    

VIXRP  4.426           4.736    

  (7.240)           (6.832)    
RV   -1.149           0.480   

   (-2.588)           (0.630)   

VRP*    4.096          4.765   
    (6.855)          (6.228)   

RT     -2.288         -0.910   

     (-1.940)         (-0.923)   
TRP      5.501        8.678   

      (0.898)        (1.707)   

Conditional 
RVIX       -0.943        -1.281  

       (-0.440)        (-0.689)  

VIXRP        0.646       2.321  

        (0.431)       (2.207)  
RV         -0.937       -2.673 

         (-0.457)       (-1.668) 

VRP*          0.401      3.553 
          (0.288)      (3.313) 

RT           0.562     1.779 

           (1.631)     (3.699) 

TRP            4.851    10.824 

            (0.795)    (2.161) 
                 

3MTB             -1.001 -1.043 -2.597 -1.612 

             (-0.335) (-0.346) (-0.741) (-0.480) 

Log(DY)             1.362 1.878 -7.974 -2.160 
             (0.080) (0.109) (-0.434) (-0.123) 

CS             -10.656 -9.818 -14.527 -10.985 

             (-0.900) (-0.799) (-1.032) (-0.806) 
TS             -0.330 -0.461 -2.397 -1.139 

             (-0.078) (-0.107) (-0.501) (-0.241) 

Constant 7.201 -4.883 7.198 -4.776 4.011 5.049 6.878 3.079 6.889 3.488 5.621 4.847 3.574 1.279 51.871 33.498 
 (4.062) (-1.709) (4.059) (-1.516) (1.489) (1.759) (1.286) (1.066) (1.330) (1.220) (1.841) (1.671) (0.055) (0.020) (0.714) (0.500) 

Adj. R2(%) 2.363 10.790 2.356 9.265 0.192 0.589 0.030 0.016 0.056 -0.177 0.253 0.416 10.590 10.200 1.538 4.820 
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Table III (Continued) 

Panel C. Annual Return Prediction 
Unconditional 

RVIX 0.057            0.248    

 (0.193)            (0.524)    
VIXRP  1.304           1.218    

  (2.674)           (2.243)    

RV   0.057           -0.112   
   (0.193)           (-0.177)   

VRP*    1.452          1.144   

    (3.099)          (2.079)   

RT     -0.125         0.764   

     (-0.144)         (0.735)   

TRP      -2.897        -3.594   
      (-1.369)        (-0.755)   

Conditional 
RVIX       0.435        0.039  

       (0.890)        (0.081)  
VIXRP        0.783       0.608  

        (1.436)       (0.894)  

RV         0.416       -0.767 
         (0.904)       (-0.994) 

VRP*          0.722      0.629 

          (1.524)      (0.798) 
RT           0.074     0.225 

           (0.585)     (0.827) 

TRP            -2.813    -2.519 
            (-1.380)    (-0.591) 
                 

3MTB             -2.380 -2.281 -2.820 -2.581 
             (-0.800) (-0.788) (-0.896) (-0.813) 

Log(DY)             -16.434 -16.750 -19.024 -18.599 

             (-0.728) (-0.748) (-0.819) (-0.793) 
CS             2.274 1.466 1.728 1.718 

             (0.429) (0.267) (0.284) (0.297) 

TS             -2.290 -2.039 -2.893 -2.467 
             (-0.505) (-0.467) (-0.614) (-0.521) 

Constant 4.153 1.569 4.153 1.052 4.287 3.892 3.089 2.812 3.129 2.844 4.479 3.967 56.999 58.536 69.181 68.997 

 (1.421) (0.510) (1.421) (0.319) (2.531) (1.545) (0.931) (0.910) (0.945) (0.937) (1.460) (1.690) (0.734) (0.762) (0.871) (0.861) 
Adj. R2(%) -0.335 2.822 -0.335 3.614 -0.352 0.500 -0.094 1.380 -0.097 1.445 0.3224 0.490 4.262 4.612 2.771 2.685 
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Unconditional Measures  

t-Statistics 

Unconditional Measures  

R2 

  

 

Conditional Measures  

t-Statistics 

Conditional Measures  

R2 

  
Figure 2. S&P 500 Return Predictability Regressions.  The left panels show the Newey-West t-statistics from the simple return  

predictability regressions for the S&P 500 portfolio based on the unbiased variance risk premiums VRP* (solid line) and the tail risk premium TRP 

(dashed line), respectively.  The right panels depict the corresponding R2s along with the R2s from multiple regressions including both VRP* and TRP 

(dotted line).  The results shown on the top (bottom) panels are based on unconditional (conditional) measures of risk premiums.   
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Table IV 

Style Portfolio Return Predictability Regressions 
This table reports the predictability regression results from excess returns on Size (20% smallest and biggest firms), Book-to-Market (20% highest and lowest B/M ratios), 

and Momentum (20% top and bottom performance), along with the corresponding zero-cost portfolios.  All other variables are described in Table III.   

Panel A. Monthly Return Prediction 
  Unconditional        

 Constant RV VRP* TRP RT  3MTB Log(DY) CS TS Adj. R2(%) 

Small 3.804 0.110 0.568 3.133 0.504  -0.326 -1.101 0.265 -0.059 
6.238 

(0.429) (0.805) (3.236) (2.207) (1.049)  (-0.699) (-0.491) (0.201) (-0.098) 

Big -4.792 0.152 0.599 1.957 0.003  0.147 1.464 -1.187 0.273 
6.797 

(-0.776) (1.331) (4.930) (1.737) (0.011)  (0.463) (0.985) (-1.029) (0.604) 

SMB 8.596 -0.042 -0.032 1.176 0.501  -0.474 -2.565 1.453 -0.332 
3.707 

(1.479) (-0.390) (-0.215) (1.774) (2.017)  (-1.369) (-1.810) (1.776) (-0.669) 

High 0.098 0.085 0.447 2.300 0.195  -0.124 0.259 -0.586 0.028 
4.213 

(0.014) (0.763) (3.029) (1.986) (0.476)  (-0.313) (0.148) (-0.391) (0.057) 

Low -8.822 0.140 0.701 1.821 0.020  0.376 2.289 -0.761 0.527 
7.276 

(-1.290) (0.995) (4.935) (1.479) (0.074)  (0.990) (1.378) (-0.742) (0.937) 

HML 8.920 -0.054 -0.255 0.479 0.175  -0.499 -2.030 0.174 -0.499 
2.693 

(2.071) (-0.658) (-2.164) (0.769) (0.742)  (-1.894) (-2.025) (0.213) (-1.094) 

Winners -2.819 0.021 0.557 1.124 0.270  0.132 1.048 -1.600 0.472 
4.932 

(-0.452) (0.202) (4.338) (1.100) (0.920)  (0.438) (0.698) (-1.684) (0.909) 

Losers -2.436 0.318 1.080 4.450 0.141  -0.265 0.114 0.779 -0.069 
8.492 

(-0.191) (1.577) (4.622) (2.419) (0.317)  (-0.382) (0.036) (0.309) (-0.079) 

WML 
-0.384 -0.297 -0.523 -3.326 0.129  0.398 0.934 -2.378 0.540 

5.392 
(-0.040) (-1.836) (-2.566) (-2.507) (0.460)  (0.773) (0.385) (-1.261) (0.777) 

  Conditional        

  RV VRP* TRP RT        

Small 6.534 -0.205 0.406 3.561 0.144  -0.379 -1.465 0.428 -0.123 
4.461 

(0.755) (-0.662) (2.436) (2.920) (1.587)  (-0.831) (-0.660) (0.286) (-0.213) 

Big -1.564 -0.161 0.455 2.251 0.203  0.087 1.053 -1.186 0.200 
3.906 

(-0.257) (-0.555) (3.513) (2.330) (2.909)  (0.264) (0.730) (-0.916) (0.431) 

SMB 8.098 -0.044 -0.049 1.309 -0.059  -0.465 -2.518 1.614 -0.324 
3.142 

(1.413) (-0.198) (-0.338) (1.978) (-0.883)  (-1.298) (-1.751) (1.836) (-0.622) 

High 2.736 -0.101 0.293 2.628 0.127  -0.196 -0.152 -0.493 -0.066 
2.502 

(0.381) (-0.249) (1.850) (2.781) (1.105)  (-0.474) (-0.089) (-0.282) (-0.127) 

Low -5.075 -0.331 0.560 2.130 0.254  0.331 1.893 -0.828 0.481 
4.073 

(-0.779) (-0.895) (3.529) (1.754) (3.001)  (0.913) (1.244) (-0.677) (0.912) 

HML 7.810 0.231 -0.268 0.498 -0.128  -0.526 -2.046 0.335 -0.547 
2.716 

(1.879) (1.200) (-2.964) (0.830) (-1.897)  (-1.915) (-2.046) (0.500) (-1.202) 

Winners 1.053 -0.267 0.344 1.566 0.145  0.031 0.457 -1.558 0.342 
1.266 

(0.153) (-0.885) (2.437) (1.617) (2.004)  (0.080) (0.288) (-1.266) (0.587) 

Losers 2.275 -0.386 0.913 4.873 0.379  -0.298 -0.308 0.739 -0.090 
6.781 

(0.197) (-0.585) (2.949) (2.941) (1.964)  (-0.452) (-0.115) (0.217) (-0.101) 

WML -1.222 0.118 -0.569 -3.307 -0.235  0.329 0.765 -2.297 0.431 
5.860 

(-0.126) (0.374) (-2.967) (-2.513) (-3.070)  (0.664) (0.293) (-1.230) (0.652) 
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Table IV (Continued) 
 

Panel B. Quarterly Return Prediction 
  Unconditional        

 Constant RV VRP* TRP RT  3MTB Log(DY) CS TS Adj. R2(%) 

Small 7.424 0.111 0.458 2.142 0.041  -0.501 -2.061 0.527 -0.396 
8.769 

(0.881) (1.342) (4.690) (3.478) (0.229)  (-1.063) (-0.967) (0.408) (-0.654) 

Big -0.507 0.041 0.412 0.471 -0.101  -0.026 0.350 -0.855 0.029 
10.240 

(-0.096) (0.611) (5.910) (1.084) (-1.164)  (-0.104) (0.252) (-0.868) (0.078) 

SMB 7.931 0.071 0.046 1.671 0.141  -0.475 -2.410 1.383 -0.425 
9.358 

(1.569) (0.901) (0.509) (3.049) (1.168)  (-1.577) (-1.946) (2.117) (-0.945) 

High 3.051 0.034 0.320 1.617 -0.200  -0.267 -0.610 0.122 -0.239 
7.480 

(0.507) (0.468) (3.833) (3.296) (-1.546)  (-0.830) (-0.388) (0.086) (-0.579) 

Low -3.182 0.057 0.466 0.148 -0.054  0.142 0.900 -0.716 0.217 
9.634 

(-0.564) (0.776) (5.800) (0.303) (-0.527)  (0.499) (0.626) (-0.757) (0.509) 

HML 6.233 -0.023 -0.146 1.469 -0.146  -0.408 -1.511 0.839 -0.456 
11.250 

(1.710) (-0.326) (-1.932) (2.866) (-1.505)  (-1.912) (-1.721) (1.286) (-1.136) 

Winners 1.331 0.004 0.365 0.337 0.019  -0.049 -0.048 -1.325 0.236 
6.655 

(0.246) (0.059) (4.030) (0.646) (0.186)  (-0.170) (-0.035) (-1.482) (0.533) 

Losers 6.077 0.118 0.713 1.757 -0.178  -0.613 -2.145 1.750 -0.689 
13.910 

(0.545) (1.041) (4.094) (2.082) (-0.677)  (-1.127) (-0.733) (0.823) (-0.981) 

WML 
-4.746 -0.114 -0.348 -1.420 0.197  0.564 2.097 -3.075 0.924 

16.450 
(-0.591) (-1.078) (-1.746) (-1.664) (0.884)  (1.370) (1.040) (-2.206) (1.622) 

  Conditional        

  RV VRP* TRP RT        

Small 9.976 -0.129 0.352 2.345 0.136  -0.551 -2.400 0.459 -0.457 
6.659 

(1.193) (-0.734) (3.403) (4.404) (2.967)  (-1.204) (-1.090) (0.338) (-0.784) 

Big 2.268 -0.242 0.313 0.643 0.155  -0.071 0.013 -0.976 -0.024 
4.543 

(0.414) (-1.759) (3.304) (1.398) (3.454)  (-0.257) (0.009) (-0.890) (-0.060) 

SMB 7.709 0.113 0.039 1.703 -0.018  -0.479 -2.413 1.435 -0.433 
9.289 

(2.200) (0.798) (0.458) (3.835) (-0.479)  (-2.280) (-2.757) (2.710) (-1.346) 

High 5.899 -0.051 0.180 1.809 0.123  -0.361 -1.106 0.071 -0.365 
4.082 

(1.022) (-0.262) (1.800) (3.084) (2.604)  (-1.119) (-0.746) (0.049) (-0.851) 

Low -0.382 -0.300 0.378 0.320 0.167  0.112 0.612 -0.860 0.188 
4.895 

(-0.066) (-1.867) (3.477) (0.642) (3.261)  (0.357) (0.417) (-0.817) (0.409) 

HML 6.281 0.249 -0.198 1.489 -0.043  -0.472 -1.718 0.931 -0.553 
13.020 

(1.844) (2.369) (-2.354) (2.945) (-1.477)  (-2.251) (-2.046) (1.588) (-1.436) 

Winners 3.881 -0.271 0.266 0.533 0.132  -0.090 -0.359 -1.401 0.188 
3.140 

(0.666) (-1.925) (2.565) (1.196) (3.226)  (-0.289) (-0.247) (-1.321) (0.396) 

Losers 11.109 -0.200 0.498 2.078 0.208  -0.742 -2.907 1.533 -0.856 
8.772 

(1.558) (-0.578) (3.083) (2.121) (1.983)  (-1.915) (-1.656) (0.988) (-1.652) 

WML -7.228 -0.072 -0.231 -1.545 -0.076  0.652 2.549 -2.934 1.043 
14.560 

(-0.852) (-0.354) (-1.314) (-1.629) (-0.954)  (1.517) (1.101) (-1.868) (1.738) 
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Table IV (Continued) 
 Panel C. Annual Return Prediction 

  Unconditional        

 Constant RV VRP* TRP RT  3MTB Log(DY) CS TS Adj. R2(%) 

Small 12.109 0.071 0.169 0.270 0.229  -0.521 -3.518 0.908 -0.544 
21.380 

(1.698) (1.519) (2.548) (0.819) (2.536)  (-1.828) (-1.697) (1.962) (-1.402) 

Big 4.090 -0.013 0.102 -0.393 0.050  -0.132 -1.127 0.096 -0.097 
4.825 

(0.670) (-0.236) (2.202) (-0.976) (0.638)  (-0.567) (-0.637) (0.214) (-0.266) 

SMB 8.019 0.084 0.068 0.663 0.178  -0.389 -2.390 0.812 -0.447 
19.060 

(2.279) (1.689) (1.035) (2.352) (2.613)  (-2.348) (-2.655) (1.608) (-1.488) 

High 5.118 0.009 0.025 0.201 0.030  -0.166 -1.545 0.942 -0.154 
5.108 

(0.750) (0.191) (0.421) (0.594) (0.291)  (-0.558) (-0.784) (1.730) (-0.378) 

Low 1.883 -0.009 0.149 -0.582 0.084  -0.014 -0.602 0.157 0.012 
8.814 

(0.326) (-0.154) (3.234) (-1.438) (1.012)  (-0.061) (-0.365) (0.376) (0.030) 

HML 3.236 0.018 -0.124 0.783 -0.054  -0.152 -0.943 0.785 -0.166 
10.510 

(0.869) (0.390) (-2.266) (2.594) (-0.840)  (-0.722) (-1.051) (2.143) (-0.378) 

Winners 4.437 -0.035 0.144 -0.503 0.065  -0.087 -1.224 -0.261 0.154 
10.170 

(0.657) (-0.625) (3.014) (-1.192) (0.866)  (-0.339) (-0.633) (-0.583) (0.365) 

Losers 11.586 0.050 0.112 -0.382 0.127  -0.578 -3.814 2.101 -0.597 
26.440 

(1.200) (0.622) (1.347) (-0.682) (1.150)  (-1.570) (-1.338) (3.553) (-1.188) 

WML 
-7.149 -0.085 0.032 -0.121 -0.061  0.491 2.590 -2.363 0.751 

37.160 
(-1.231) (-1.510) (0.443) (-0.383) (-0.922)  (1.982) (1.574) (-4.887) (2.353) 

  Conditional        

  RV VRP* TRP RT        

Small 13.353 0.125 0.079 0.442 -0.041  -0.591 -3.870 0.998 -0.651 
19.820 

(1.769) (1.873) (1.042) (1.621) (-1.816)  (-1.932) (-1.770) (2.085) (-1.537) 

Big 5.058 -0.074 0.055 -0.300 0.023  -0.159 -1.296 0.113 -0.136 
2.579 

(0.794) (-1.088) (0.821) (-0.823) (1.036)  (-0.621) (-0.699) (0.233) (-0.344) 

SMB 8.295 0.199 0.023 0.741 -0.064  -0.432 -2.574 0.885 -0.515 
20.370 

(2.360) (2.419) (0.317) (3.019) (-2.689)  (-2.580) (-2.854) (1.899) (-1.760) 

High 5.590 0.060 -0.012 0.259 -0.011  -0.199 -1.698 0.994 -0.204 
5.213 

(0.787) (1.097) (-0.171) (0.840) (-0.482)  (-0.632) (-0.826) (1.721) (-0.471) 

Low 3.209 -0.091 0.085 -0.451 0.027  -0.052 -0.835 0.179 -0.042 
4.902 

(0.529) (-1.209) (1.226) (-1.219) (1.210)  (-0.203) (-0.481) (0.381) (-0.098) 

HML 2.381 0.151 -0.096 0.710 -0.039  -0.147 -0.863 0.814 -0.162 
8.095 

(0.634) (2.258) (-1.773) (2.451) (-2.401)  (-0.676) (-0.927) (2.104) (-0.360) 

Winners 6.120 -0.103 0.060 -0.346 0.031  -0.143 -1.545 -0.229 0.074 
5.520 

(0.846) (-1.310) (0.849) (-0.956) (1.278)  (-0.493) (-0.748) (-0.458) (0.158) 

Losers 12.340 0.074 0.057 -0.273 -0.021  -0.619 -4.021 2.173 -0.659 
26.040 

(1.231) (0.763) (0.589) (-0.524) (-0.734)  (-1.573) (-1.351) (3.343) (-1.218) 

WML -6.220 -0.177 0.002 -0.073 0.052  0.476 2.475 -2.402 0.733 
36.110 

(-1.053) (-1.662) (0.035) (-0.260) (1.950)  (1.835) (1.473) (-4.643) (2.149) 
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Figure 3.  Sorted Zero-Cost Style Portfolio Return Predictability Regressions This figure depicts the Newey-West t-statistics and the corresponding R2s from simple return 

predictability regressions for the sorted zero-cost style portfolios based on the unbiased variance risk premiums VRP* (solid lines) and the tail risk premium TRP (dashed lines), respectively.   

The dotted lines are the t-statistics and adjusted R2s from multiple regressions including both VRP* and TRP.  SMB, HML and WML stands for Small Minus Big, High Minus Low, and 

Winners Minus Losers, accordingly. 
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 Table V 

Industry Portfolio Return Predictability Regressions 
This table reports the predictability regression results from excess returns on twelve industry portfolios. All other variables are described in Table III.  We employ the data 

directly from the Fama-French Research Library.   

Panel A: Monthly Return Prediction 

  Conditional      

 Constant RV VRP* TRP RT 3MTB Log(DY) CS TS Adj. R2(%) 

Non-Durables -2.939 -0.230 0.229 1.706 0.213 0.202 1.099 0.408 0.271 
2.619 

 (-0.576) (-1.063) (1.584) (1.942) (3.556) (0.696) (0.893) (0.403) (0.745) 

Durables 4.102 -0.560 0.751 3.806 0.269 -0.252 -0.655 0.033 0.182 
6.054 

 (0.395) (-1.122) (3.068) (2.614) (1.931) (-0.438) (-0.262) (0.015) (0.251) 

Manufacturing -0.374 -0.265 0.525 3.126 0.244 0.002 0.704 -0.432 0.154 
4.296 

 (-0.047) (-0.584) (2.466) (2.460) (1.925) (0.004) (0.374) (-0.233) (0.270) 

Energy 4.095 -0.136 0.181 0.700 0.009 -0.286 -0.190 -1.306 -0.344 
-1.131 

 (0.605) (-0.461) (1.258) (0.822) (0.137) (-0.754) (-0.114) (-1.533) (-0.651) 

Chemicals -2.197 -0.220 0.325 2.197 0.202 0.124 0.986 -0.251 0.417 
3.268 

 (-0.362) (-0.601) (1.791) (2.466) (1.986) (0.346) (0.697) (-0.163) (0.833) 

Equipment -4.373 -0.364 0.968 3.899 0.350 0.281 2.006 -1.902 0.543 
5.055 

 (-0.416) (-0.957) (4.549) (2.321) (4.053) (0.533) (0.764) (-1.246) (0.615) 

Telecommunications 3.529 0.046 0.404 1.766 0.196 -0.329 -0.080 -1.789 -0.234 
1.621 

 (0.501) (0.153) (2.059) (1.451) (2.384) (-0.895) (-0.044) (-1.281) (-0.405) 

Utilities -0.912 -0.090 0.026 -0.037 0.108 0.034 0.915 -0.925 0.068 
-0.764 

 (-0.168) (-0.482) (0.223) (-0.046) (2.544) (0.127) (0.657) (-0.921) (0.192) 

Wholesale -2.329 -0.187 0.509 2.662 0.233 0.108 1.073 -0.439 0.272 
4.310 

 (-0.325) (-0.566) (3.236) (2.647) (2.785) (0.241) (0.641) (-0.356) (0.488) 

Healthcare -4.089 -0.182 0.264 0.552 0.111 0.325 1.667 -0.831 0.176 
-0.599 

 (-0.617) (-0.555) (1.973) (0.577) (1.296) (0.842) (1.037) (-0.742) (0.316) 

Finance 3.581 -0.096 0.429 3.661 0.183 -0.112 -0.588 -0.463 -0.045 
4.746 

 (0.433) (-0.178) (2.075) (3.145) (1.173) (-0.217) (-0.309) (-0.201) (-0.071) 

Other -0.372 -0.159 0.507 2.976 0.167 -0.101 0.798 -1.358 0.154 
4.674 

 (-0.053) (-0.337) (2.635) (2.166) (1.419) (-0.259) (0.491) (-0.785) (0.291) 
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Table V (Continued) 

 

Panel B: Quarterly Return Prediction 

  Conditional      

 Constant RV VRP* TRP RT 3MTB Log(DY) CS TS Adj. R2(%) 

Non-Durables -2.202 -0.202 0.204 0.752 0.133 0.184 0.889 -0.021 0.269 
2.398 

 (-0.502) (-1.524) (2.711) (1.916) (3.636) (0.724) (0.827) (-0.025) (0.845) 

Durables 10.763 -0.312 0.438 1.904 0.214 -0.637 -2.576 0.642 -0.442 
7.689 

 (1.221) (-1.180) (2.906) (2.410) (3.205) (-1.341) (-1.144) (0.364) (-0.692) 

Manufacturing 5.166 -0.155 0.312 1.435 0.152 -0.297 -0.798 -0.392 -0.268 
3.469 

 (0.765) (-0.846) (3.263) (2.785) (2.907) (-0.848) (-0.465) (-0.280) (-0.584) 

Energy 3.168 -0.116 0.147 0.489 -0.006 -0.223 -0.037 -1.080 -0.308 
0.883 

 (0.634) (-0.643) (1.574) (0.998) (-0.117) (-0.860) (-0.029) (-1.225) (-0.758) 

Chemicals 3.169 -0.176 0.135 0.906 0.119 -0.151 -0.537 0.226 -0.027 
2.202 

 (0.664) (-0.855) (1.309) (1.886) (2.140) (-0.560) (-0.465) (0.229) (-0.073) 

Equipment 3.566 -0.300 0.597 0.866 0.210 -0.097 -0.180 -1.670 -0.004 
5.009 

 (0.456) (-1.297) (3.607) (1.035) (2.691) (-0.235) (-0.089) (-1.152) (-0.006) 

Telecommunications 2.124 -0.140 0.358 0.612 0.178 -0.207 0.289 -1.690 -0.028 
5.359 

 (0.322) (-0.836) (2.344) (1.006) (3.905) (-0.638) (0.164) (-1.361) (-0.053) 

Utilities -4.198 -0.029 0.132 0.516 0.069 0.192 1.726 -1.296 0.347 
1.978 

 (-0.896) (-0.259) (1.553) (1.343) (2.113) (0.841) (1.379) (-1.349) (1.269) 

Wholesale 3.803 -0.256 0.370 0.670 0.163 -0.171 -0.485 -0.611 -0.094 
5.679 

 (0.787) (-1.499) (3.272) (1.261) (3.107) (-0.538) (-0.418) (-0.730) (-0.231) 

Healthcare -2.107 -0.183 0.210 -0.171 0.099 0.241 1.136 -0.913 0.096 
2.957 

 (-0.392) (-1.439) (2.306) (-0.394) (2.742) (0.767) (0.815) (-0.988) (0.202) 

Finance 9.651 -0.241 0.290 2.013 0.188 -0.370 -2.253 0.231 -0.457 
7.465 

 (1.605) (-0.921) (2.279) (2.982) (2.505) (-1.025) (-1.533) (0.169) (-0.964) 

Other 5.336 -0.254 0.329 1.324 0.172 -0.367 -0.746 -0.688 -0.265 
5.683 

 (0.912) (-1.203) (3.159) (2.523) (3.057) (-1.116) (-0.516) (-0.571) (-0.610) 
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Table V (Continued) 

 

Panel C: Annual Return Prediction 

  Conditional      

 Constant RV VRP* TRP RT 3MTB Log(DY) CS TS Adj. R2(%) 

Non-Durables 0.170 -0.010 0.043 0.186 0.004 0.072 -0.082 0.447 0.088 
1.750 

 (0.032) (-0.213) (0.834) (0.916) (0.237) (0.305) (-0.055) (1.213) (0.233) 

Durables 6.142 0.015 0.064 0.174 0.030 -0.244 -2.259 1.863 -0.067 
17.170 

 (0.617) (0.213) (0.597) (0.404) (1.060) (-0.593) (-0.763) (2.435) (-0.111) 

Manufacturing 7.961 -0.029 0.034 -0.155 0.000 -0.345 -2.121 0.671 -0.380 
6.759 

 (1.052) (-0.579) (0.508) (-0.460) (0.017) (-1.210) (-0.944) (1.215) (-0.917) 

Energy 5.663 -0.074 0.012 -0.359 -0.017 -0.300 -1.018 -0.484 -0.288 
2.595 

 (0.969) (-1.366) (0.200) (-1.254) (-0.863) (-1.272) (-0.604) (-0.962) (-0.883) 

Chemicals 4.607 -0.029 -0.018 -0.057 0.001 -0.154 -1.353 0.872 -0.143 
6.068 

 (0.905) (-0.633) (-0.326) (-0.221) (0.044) (-0.751) (-0.916) (2.250) (-0.455) 

Equipment 8.948 -0.124 0.129 -0.803 0.037 -0.285 -2.279 -0.144 -0.254 
6.417 

 (1.146) (-0.923) (1.292) (-1.278) (1.202) (-0.925) (-1.070) (-0.199) (-0.393) 

Telecommunications 3.302 -0.142 0.059 -0.609 0.052 -0.166 -0.700 -0.044 0.085 
4.184 

 (0.422) (-1.151) (0.501) (-1.087) (1.601) (-0.473) (-0.323) (-0.059) (0.153) 

Utilities -2.808 -0.051 0.054 0.040 0.015 0.171 0.956 -0.317 0.358 
-0.894 

 (-0.466) (-0.996) (0.807) (0.146) (0.633) (0.687) (0.561) (-0.777) (1.124) 

Wholesale 2.535 -0.017 0.123 0.015 0.024 -0.064 -0.632 0.084 -0.003 
8.430 

 (0.478) (-0.311) (1.989) (0.061) (1.237) (-0.246) (-0.420) (0.180) (-0.008) 

Healthcare 2.354 -0.009 0.060 -0.002 0.008 -0.025 -0.452 0.124 -0.235 
1.360 

 (0.414) (-0.134) (0.905) (-0.006) (0.322) (-0.083) (-0.283) (0.264) (-0.524) 

Finance 9.994 0.057 0.041 0.371 -0.009 -0.252 -3.104 0.770 -0.292 
10.720 

 (1.059) (0.823) (0.502) (0.961) (-0.350) (-0.622) (-1.122) (1.379) (-0.540) 

Other 5.799 -0.048 0.028 -0.108 0.003 -0.282 -1.681 0.649 -0.152 
7.538 

 (0.746) (-0.854) (0.414) (-0.319) (0.112) (-0.919) (-0.741) (1.368) (-0.352) 

 

 

 


