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Adaptive Stochastic Approximation by the
Simultaneous Perturbation Method

James C. Spall, Senior Member, IEEE

Abstract—Stochastic approximation (SA) has long been ap-
plied for problems of minimizing loss functions or root finding
with noisy input information. As with all stochastic search algo-
rithms, there are adjustable algorithm coefficients that must be
specified, and that can have a profound effect on algorithm per-
formance. It is known that choosing these coefficients according
to an SA analog of the deterministic Newton–Raphson algorithm
provides an optimal or near-optimal form of the algorithm. How-
ever, directly determining the required Hessian matrix (or Ja-
cobian matrix for root finding) to achieve this algorithm form
has often been difficult or impossible in practice. This paper
presents a general adaptive SA algorithm that is based on a simple
method for estimating the Hessian matrix, while concurrently esti-
mating the primary parameters of interest. The approach applies
in both the gradient-free optimization (Kiefer–Wolfowitz) and
root-finding/stochastic gradient-based (Robbins–Monro) settings,
and is based on the “simultaneous perturbation (SP)” idea intro-
duced previously. The algorithm requires only a small number
of loss function or gradient measurements per iteration—inde-
pendent of the problem dimension—to adaptively estimate the
Hessian and parameters of primary interest. Aside from intro-
ducing the adaptive SP approach, this paper presents practical
implementation guidance, asymptotic theory, and a nontrivial nu-
merical evaluation. Also included is a discussion and numerical
analysis comparing the adaptive SP approach with the iterate-av-
eraging approach to accelerated SA.

Index Terms—Adaptive estimation, optimization, parameter
estimation, root-finding, simultaneous perturbation stochastic
approximation (SPSA), stochastic approximation.

I. INTRODUCTION

STOCHASTIC approximation (SA) represents an important
class of stochastic search algorithms. Many well-known

techniques are special cases of SA, including neural-network
backpropagation, perturbation analysis for discrete-event
systems, recursive least squares and least mean squares, and
some forms of simulated annealing. Therefore, progress in
general SA methodology can have a potential bearing on a
wide range of practical implementations. This paper presents
an approach for accelerating the convergence of SA algorithms.
The results apply in both the gradient-free (Kiefer–Wolfowitz)
and stochastic gradient-based (Robbins–Monro root-finding)
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SA settings.1 The essential idea is to use the “simultaneous per-
turbation” concept to efficiently and easily estimate the Hessian
matrix of the loss function to be optimized (or, equivalently,
the Jacobian matrix for root finding). This Hessian matrix is
then used in an SA recursion that is a stochastic analog of
the well-known Newton–Raphson algorithm of deterministic
optimization to accelerate convergence.

The problem of minimizing a (scalar) differentiable loss func-
tion , where is considered. A typical ex-
ample of would be some measure of mean-square error
for the output of a process as a function of some design param-
eters . For many cases of practical interest, this is equivalent to
finding the unique minimizing such that

For the gradient-free setting, it is assumed that measurements
of , say , are available at various values of. These
measurements may or may not include random noise. No di-
rect measurements (either with or without noise) of are as-
sumed available in this setting. In the gradient-based case, it is
assumed that direct measurements of are available, usually
in the presence of added noise. The basic problem is to take the
available information (measurements of and/or ), and
attempt to estimate . This is essentially a local unconstrained
optimization problem (although this is also the form when dif-
ferentiable penalty functions are used for constrained optimiza-
tion). Although there are extensions of SA to finding the global
optimum in the presence of multiple local minima and for opti-
mizing in the presence of constraints (see, e.g., Styblinski and
Tang [39], Chin [5], Kushner and Yin [15, pp. 77–79, 100–101,
etc.], and Sadegh [29])—and it is expected that the approach
here would apply in the context of these extensions—we will
not focus on those generalizations in this paper.

The adaptive simultaneous perturbation (ASP) approach here
is based on the simple idea of creating two parallel recursions,
one for estimating and the other for estimating the Hessian
matrix . The first recursion is a stochastic analog of the
Newton–Raphson algorithm, and the second recursion yields
the sample mean of per-iteration Hessian estimates. The second
recursion provides the Hessian estimate for use in the first re-
cursion. The simultaneous perturbation idea of varying all of the
parameters in the problem together (rather than one at a time) is

1Although this paper is written largely in the language of optimization,
the ideas would also apply in the stochastic root-finding context of the Rob-
bins–Monro algorithm. In particular, the “gradient” in this paper is equivalent
to the function for which a zero is to be found, and the Hessian matrix is
equivalent to the Jacobian matrix of this function.
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used to form the per-iteration Hessian estimates in the second re-
cursion. This leads to an efficient means for achieving a second-
order adaptive algorithm. In particular, in the gradient-free case,
only four function measurements are needed at each it-
eration to estimate both the gradient and Hessian for any di-
mension . In the gradient-based case,threegradient measure-
ments are needed at each iteration, again for any. (In prac-
tical implementations, one or more additional values may
be useful as a check on algorithm behavior as discussed in Sec-
tion II-D below.) Although ASP is arelativelysimple adaptive
approach, care is required in implementation just as in any other
second-order-type approach (deterministic or stochastic); this
includes the choice of initial condition and choice of “step size”
coefficients to avoid divergence. (However, simply choosing the
step size in the notation below providesasymptoti-
cally optimal or near-optimal performance.) These issues are
discussed in the sections to follow.

Although theconceptof adaptive SA has been known for
some time (e.g., Venter [41], Nevel’son and Has’minskii [23, ch.
7]), theimplementationhas been far less successful: no adaptive
method appears to have been proposed that is practically imple-
mentable in a wide range of general multivariate problems (e.g.,
“ the optimal choice [of gain sequence] involves the Hessian
of the risk [loss] function, which is typically unknown and hard
to estimate,” from Yakowitzet al.[44]). Let us summarize some
of the existing approaches to illustrate the difficulties. Fabian
[10] forms estimates of the gradient and Hessian for an adap-
tive SA algorithm by using, respectively, a finite-difference ap-
proximation and a set of differences of finite-difference approx-
imations. This leads to measurements per update of
the estimate, which is extremely costly whenis large. Kao
et al. [13] present a heuristic approach based on analogies to
quasi-Newton methods of deterministic optimization; at each
iteration, this approach uses function measurements
plus some additional measurements for a separate line search.
For the gradient-based case, Ruppert [27] forms a Hessian es-
timate by taking finite differences of gradient measurements.
In a similar spirit, Wei [43] presents a multivariate extension
of the Venter [41] and Nevel’son and Has’minskii [23, ch. 7]
approaches for adaptive Robbins–Monro algorithms. Both the
Ruppert and Wei approaches require measurements of

for each iteration. These approaches differ from the ASP
approach in the potentially large number of function or gra-
dient measurements required per iteration. Related to the above,
there are also numerous means for adaptively estimating a Hes-
sian matrix in special SA estimation settings where one has de-
tailed knowledge of the underlying model (see, e.g., Macchi and
Eweda [19], Benvenisteet al. [1, ch. 3–4], Ljung [17], and Yin
and Zhu [45]); while these are more practically implementable
than the general adaptive approaches mentioned above, they are
restricted in their range of application.

The concept of iterate averaging, as reported in Ruppert [28]
and Polyak and Juditsky [25] for the gradient-based case and
Dippon and Renz [7] for the gradient-free case, also provides
a form of second-order (optimal or near-optimal) convergence
for SA. This appealingly simple idea is based on using a sample
mean of the iterates coming from a “basic” first-order SA
recursion as the final estimate of. For the gradient-based case,

it can be shown that the asymptotic mean-square error for the
averaged iterations is identical to that which would be obtained
by using the true Hessian in a stochastic Newton–Raphson-like
algorithm, i.e., the iterate averaging method achieves the
minimum possible mean-square errorwithoutrequiring knowl-
edge—or even an estimate—of the Hessian matrix. For the
gradient-free case, the iterate averaging solution isnearly
asymptotically optimal in a precise sense defined by Dippon
and Renz [7]. Some numerical studies provide support for the
benefits of iterate averaging (e.g., Yin and Zhu [45], Kushner
and Yin [15, ch. 11]). However, finite-sample analysis by this
author and others (e.g., Maryak [21], Spall and Cristion [38],
and, Section V here) has shown that the asymptotic promise
of iterate averaging may be difficult to realize in practice.
This is not surprising upon reflection. For iterate averaging
to be successful, it is necessary that a large proportion of the
individual iterates hover approximately uniformly aroundin

, leading to the average of the iterates producing a mean that
is nearer than the bulk of the individual iterates. However,
since a well-designed (“stable”) algorithm will not be jumping
approximately uniformly around when the iterates are far
from the solution (or else it is likely to diverge), the only way
for the bulk of the iterates to be distributed uniformly around
the solution is for the individual iterates to be near the solution.
In most practical settings with a well-designed algorithm, one
observes that the components ofmove in aroughly (subject
to the inherent stochastic variability) monotonic manner toward
the solution, and that the user will terminate the algorithm when
either the “budget” of iterations has been exceeded or when the
iterates begin to move very slowly near (one hopes!). But
the latter situation is precisely when iterate averaging starts
to work well (in fact, while the algorithm is in its monotonic
phase, iterate averaging will tend tohurt the accuracy of those
components in that have not yet settled near!). This sug-
gests that, despite the simplicity and asymptotic justification,
the role of iterate averaging in practical finite-sample problems
may not be in achieving true second-order efficiency (one role
may be in enhancing algorithm stability by feeding back the
averaged solution into the iteration process as in Kushner and
Yin [15, ch. 11]).2

Section II describes the general ASP approach, and summa-
rizes the essential methodology related to the simultaneous per-
turbation form of the basic first-order SA algorithm (i.e., the
SPSA algorithm). This section also summarizes some of the
practical guidelines the user should consider in a real imple-
mentation. Section III and the associated Appendixes A and B
provide part of the theoretical justification for ASP, establishing
conditions for the almost sure (a.s.) convergence of both theit-
erate and the Hessian estimate. Section IV and Appendix A then
build on this convergence to establish the asymptotic normality
of ASP in both the gradient-based and gradient-free case. Most
importantly, Section IV uses the asymptotic normality to ana-
lyze the statistical estimation error of the ASP iterates, showing
that the errors are either asymptotically optimal or nearly op-

2Note the contrast of iterate averaging with a “true” second-order algorithm,
where knowledge of the Hessian, even at iterations not near� , may enhance
convergence by improving the search direction and scaling for potentially large
differences in the magnitudes of the� elements.
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timal. Section V performs a numerical analysis of ASP, and Sec-
tion VI offers some concluding remarks.

II. THE ADAPTIVE SIMULTANEOUS PERTURBATION APPROACH:
METHODOLOGY AND IMPLEMENTATION ISSUES

A. Basic Form of Algorithm

The second-order ASP approach is composed of two parallel
recursions: one for and one for the Hessian of . The two
core recursions are, respectively,

(2.1a)

(2.1b)

where is a nonnegative scalar gain coefficient, is the
input information related to (i.e., the gradient approxima-
tion from measurements in the gradient-free case or the di-
rect observation as in the Robbins–Monro gradient-based case),

: positive de�nite matrices is a map-
ping designed to cope with possible nonpositive definiteness of

, and is a per-iteration estimate of the Hessian discussed
below.3 Equation (2.1a) is a stochastic analog of the well-known
Newton–Raphson algorithm of deterministic search and opti-
mization. Equation (2.1b) is simply a recursive calculation of
the sample mean of the per-iteration Hessian estimates.4 Ini-
tialization of the two recursions is discussed in Section II-D
below. Since has a known form, the parallel recur-
sions in (2.1a), (2.1b) can be implemented once is spec-
ified. The remainder of this paper will focus on two specific
implementations of the ASP approach above: 2SPSA (second-
order SPSA) for applications in the gradient-free case, and 2SG
(second-order stochastic gradient) for applications in the Rob-
bins–Monro gradient-based case.

We now present the per-iteration Hessian estimate. As
with the “basic” first-order SPSA algorithm, let be a pos-
itive scalar (decaying to 0 for formal convergence; conditions
given below), and let be a user-generated mean-zero
random vector satisfying certain regularity conditions discussed
in Section III below. (Typical conditions are that the individual
components be mutually independent, bounded, symmetri-
cally distributed, and have finiteinversemoments of order 2,
e.g., being a vector of independent Bernoulli1 random
variables satisfies these conditions, but a vector of uniformly or
normally distributed random variables does not.) It will prove
convenient to work with a “vector-divide” operation where the

th element of the resulting matrix corresponds to the ratio of
the th element of the numerator row vector to theth element

3In the general Robbins–Monro root-finding case, the mappingf would be
into the set of nonsingular (but not necessarily symmetric) matrices.

4It is also possible to use a weighted average or “sliding window” method
(where only the most recent̂H values are used in the recursion) to determine
H . Formal convergence ofH (à la Theorems 2a, b) may still hold under such
weighting provided that the analog to expressions (A10) and (A13) in the proof
of Theorem 2a holds.

of the denominator column vector. Applying the vector-divide
operator, the formula for estimating the Hessian at each itera-
tion is

(2.2)

where

and may or may not equal , depending on the set-
ting.5 In particular, for 2SPSA, there are advantages to using
a one-sidedgradient approximation in order to reduce the total
number of function evaluations [versus the two-sided form usu-
ally recommended for ], while for 2SG, usually

. The term “simultaneous perturbation” in ASP comes
from the fact that all elements of are varied simultaneously
(and randomly) in forming , as opposed to the finite-differ-
ence forms in, e.g., Fabian [10] and Ruppert [27], where the
elements of are changed deterministically one at a time.

B. Specific Gradient Forms

While the ASP structure in (2.1a), (2.1b), and (2.2) is gen-
eral, we will largely restrict ourselves in our choice of
(and ) in the remainder of the discussion in order to
present concrete theoretical and numerical results. For 2SPSA,
we will consider the simultaneous perturbation approach for
generating and , while for 2SG, we will suppose
that is an unbiased direct measurement of
(i.e., + mean-zero noise). The rationale
for basic SPSA in the gradient-free case has been discussed ex-
tensively elsewhere (e.g., Spall [33], Chin [6], Dippon and Renz
[7], and Gerencsér [12]), and hence will not be discussed in de-
tail here. (In summary, it tends to lead to more efficient opti-
mization than the classical finite-difference Kiefer–Wolfowitz
method while being no more difficult to implement; the rel-
ative efficiency grows with the problem dimension.) In the
gradient-based case, SG methods include as special cases the
well-known approaches mentioned at the beginning of Section
I (backpropagation, etc.). SG methods are themselves special
cases of the general Robbins–Monro root-finding framework
and, in fact, most of the results here can apply in this root-finding
setting as well.

For 2SPSA, the core gradient approximation requires
two measurements of , and ,
representing measurements at design levels and

, where and are as defined above for (see Spall
[32], [33]). These two measurements will be used to generate

in the conventional SPSA manner, in addition to being
employed toward generating the one-sided gradient approxima-
tions used in forming . Two additional mea-

5The symmetrizing operation in (2.2) is convenient in the optimization case
being emphasized here to maintain a symmetric Hessian estimate in finite sam-
ples. In the general root-finding case, whereH(�) represents a Jacobian matrix,
the symmetrizing operation should not be used since the Jacobian is not neces-
sarily symmetric.
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surements are used in generating the
one-sided approximations as follows:

...

(2.3)

with generated in the same sta-
tistical manner as , but independently of (in particular,
choosing as independent Bernoulli 1 random variables
is a valid—but not necessary—choice), and withsatisfying
conditions similar to (although the numerical value of may
be best chosen larger than; see Section II-D).6

C. Motivation for Form of Hessian Recursion

To illuminate the underlying simplicity of ASP, let us now
provide some informal motivation for the form in (2.2). The
arguments below are formalized in the theorems of Sections III
and IV. Let represent the true Hessian matrix, and suppose
that is three-times continuously differentiable in a neigh-
borhood of . Then, simple Taylor series arguments show that

in the SG case

where this result is immediate in the SG case, and follows easily
(as in Spall [33, Lemma 1]) by a Taylor series argument in the
SPSA case (where the term is the difference of the two

bias terms in the one-sided SP gradient approximations
and ). Hence, by an expansion of each of

, we have for any

where the term in the second line absorbs higher order
terms in the expansion of . Then, since

by the assumptions for , we have

implying that the Hessian estimate is “nearly unbiased,” with
the bias disappearing at rate . The addition operation in
(2.2) simply forces the per-iteration estimate to be symmetric.

6An alternative SPSA gradient approximation not explored here is the one-
measurement form in Spall [34]. Here, onlyonefunction evaluation is required
to get anO(c ) “almost unbiased” approximation ofg(�). Although this will in-
crease the variability of̂H , it may be beneficial in nonstationary settings where
the underlying true gradient and Hessian are changing in time since the reduced
number of measurements will reduce the potential bias that may otherwise be
introduced.

D. Implementation Aspects

The two recursions in (2.1a), (2.1b) are the foundation for
the ASP approach. However, as is typical in all stochastic algo-
rithms, the specific implementation details are important. Equa-
tions (2.1a), (2.1b) do not fully define these details. The five
points below have been found important in making ASP per-
form well in practice.

1) and Initialization: Typically, (2.1a) is initialized at
some believed to be near . One may wish to run stan-
dard first-order SA (i.e., (2.1a) without or some other
“rough” optimization approach for some period to move the
initial for ASP closer to . Although, with the indexing
shown in (2.1b), no initialization of the recursion is re-
quired since is computed directly from , the recursion
may be trivially modified to allow for an initialization if one
has useful prior information. If this is done, then the recursion
may be initialized at (say) scale , scale , or some
other positive semidefinite matrix reflecting available prior in-
formation (e.g., if one knows that theelements will have very
different magnitudes, then the initialization may be chosen to
approximately scale for the differences). It is also possible to
run (2.1b) in parallel with the rough search methods that might
be used for initializing ; the resulting Hessian estimate can be
used to initialize (2.1b) when the full ASP method (2SPSA or
2SG) is used. Since has (at most) rank 2 (and may not be
positive semidefinite), having a positive-definite initialization
helps provide for the invertibility of , especially for small
(if is positive definite, in (2.1a) may be taken as the
identity transformation).

2) Numerical Issues in Choice of and : Generating
the elements of according to a Bernoulli 1 distribution
is easy and theoretically valid (and was shown to be asymp-
totically optimal in Sadegh and Spall [30] for basic SPSA; its
potential optimality for the adaptive approach here is an open
question). In some applications, however, it may be worth ex-
ploring other valid choices of distributions since the generation
of represents a trivial part of the cost of optimization, and a
different choice may yield improved finite-sample performance
(this was done, e.g., in Maeda and De Figueiredo [20] in “basic”
SPSA). Because may not be positive definite, especially for
small (even if is initialized based on prior information to
be positive definite), it is recommended that in (2.1b) not
generally be used directly in (2.1a). Hence, as shown in (2.1a),
it is recommended that be replaced by another matrix
that is closely related to . One useful form when is not too
large has been to take , where the in-
dicated square root is the (unique) positive semidefinite square
root and is some small number. For large, a more effi-
cient method is to simply set , but this is likely
to require a larger to ensure positive definiteness of . For
very large , it may be advantageous to have be only a diag-
onal matrix based on the diagonal elements of . This
is a way of capturing large scaling differences in theelements
(unavailable to first-order algorithms) while eliminating the po-
tentially onerous computations associated with the inverse op-
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eration in (2.1a). Note that should only be used in (2.1a), as
(2.1b) should remain in terms of to ensure a.s. consistency
(see Theorems 2a, b in Section III). By Theorems 2a, b, one can
set for sufficiently large . Also, for general non-
diagonal , it is numerically advantageous to avoid a direct
inversion of in (2.1a), preferring a method such as Gaussian
elimination (which, e.g., is directly available as the MATLAB
“ ” operator).

3) Gradient/Hessian Averaging:At each iteration, it may be
desirable to compute and average severaland values
despite the additional cost. This may be especially true in a high-
noise environment. Also see item 5) for additional potentially
useful averaging.

4) Gain Selection:The principles outlined in Brennan and
Rogers [3] and Spall [36] are useful here as well for practical
selection of the gain sequences , , and in the 2SPSA
case, . For 2SPSA and 2SG, the critical gain can be
simply chosen as to achieve asymptotic near opti-
mality or optimality, respectively (see Section IV-B), although
this may not be ideal in practical finite-sample problems. For the
remainder, let us focus on the 2SPSA case; similar ideas apply
for 2SG case, but the problem is slightly easier since there is no

sequence. We can choose ,
and for . In fi-
nite-sample practice, it may be better to chooseand lower
than their asymptotically optimal values of= 1 and = 1/6
(see Section IV-B), and, in particular,= 0.602 and = 0.101
are practically effective and approximately the lowest theoreti-
cally valid values allowed (see Theorems 1a, 2a, and 3a in Sec-
tions III and IV). Choosing so that the typical change in
to is of “reasonable” magnitude, especially in the critical
early iterations, has proven effective. Settingapproximately
equal to 5–10% of the total expected number of iterations en-
hances practical convergence by allowing for a largerthan
possible with the more typical = 0. However, in slight contrast
to Spall [36] for the first-order algorithm, we recommend that
have a magnitude greater (by roughly a factor of 2–10) than the
typical (“one-sigma”) noise level in the measurements. Fur-
ther, setting has been effective. These recommendations
for larger (and values than given in Spall [36] are made due
to the greater inherent sensitivity of a second-order algorithm to
noise effects.

5) Blocking: At each iteration, block “bad” steps if the new
estimate for fails a certain criterion (i.e., set in
going from to . should typically continue to be up-
dated even if is blocked. The most obvious blocking ap-
plies when must satisfy constraints; an updated value may be
blocked or modified if a constraint is violated. There are two
ways [5a) and 5b)] that one might implement blocking when
constraints are not the limiting factor, with 5a) based onand

directly, and 5b) based on loss measurements. Both of 5a)
and 5b) may be implemented in a given application. In 5a),
one simply blocks the step from to if
tolerance, where the norm is any convenient distance mea-
sure and tolerance is some “reasonable” maximum dis-
tance to cover in one step. The rationale behind 5a) is that a

well-behaving algorithm should be moving toward the solution
in a smooth manner, and very large steps are indicative of po-
tential divergence. The second potential method, 5b), is based
on blocking the step if tolerance, where
tolerance might be set at about one or two times the ap-
proximate standard deviation of the noise in the measure-
ments. In a setting where the noise in the loss measurements
tends to be large (say, much larger than the allowable differ-
ence between and ), it may be undesirable to
use 5b) due to the difficulty in obtaining meaningful informa-
tion about the relative old and new loss values. For any nonzero
noise levels, it may be beneficial to average several mea-
surements in making the decision about whether to block the
step; this may be done even if the averaging mentioned in guide-
line 3) is not used (then the standard deviation for choosing
tolerance should be normalized by the amount of averaging).
Having tolerance as specified above when there is noise
in the ’s builds some conservativeness into the algorithm by
allowing a new step only if there is relatively strong statistical
evidence of an improved loss value.

Let us close this subsection with a few summary comments
about the implementation aspects above. Without the second
blocking procedure 5b) in use, 2SPSA requiresfour measure-
ments per iteration,regardlessof the dimension (two for
the standard estimate and two new values for the one-
sided SP gradients ). For 2SG,threegradient measure-
ments are needed, again independent of. If the second
blocking procedure 5b) is used, one or more additionalmea-
surements are needed for both 2SPSA and 2SG. The use of gra-
dient/Hessian averaging 3) would increase the number of loss or
gradient evaluations, of course. The standard deviation for the
measurement noise (used in items 4) and 5b)) can be estimated
by collecting several values at ; neither 4) nor 5a)
requires this estimate to be precise (so relatively fewvalues
are needed). In general, 5a) can be used anytime, while 5b) is
more appropriate in a low- or no-noise setting. Note that 5a)
helps to prevent divergence, but lacks direct insight into whether
the loss function is improving, while 5b) does provide that in-
sight, but requires additional measurements, the number of
which might grow prohibitively in a high-noise setting.

III. STRONG CONVERGENCE

This section presents results related to the strong (a.s.) con-
vergence of and (all limits are as

unless otherwise noted). This section establishes sep-
arate results for 2SPSA and for 2SG. One of the challenges, of
course, in establishing convergence is the coupling between the
recursions for and . We present a martingale approach
that seems to provide a relatively simple solution with reason-
able regularity conditions. Alternative conditions for conver-
gence might be available using the ordinary differential equa-
tion approach of Metivier and Priouret [22] and Benvenisteet
al. [1, ch. II.1], which includes a certain Markov dependence
that would, in principle, accommodate the recursion coupling.
However, this approach was not pursued here due to the diffi-
culty of checking certain regularity conditions associated with
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the Markov dependence (e.g., those related to the solution of the
“Poisson equation”).

The results below are in two parts, with the first part (Theo-
rems 1a, b) establishing conditions for the convergence of,
and the second part (Theorems 2a, b) doing the same for.
The proofs of the theorems are in Appendix A. We let de-
note the standard Euclidean vector norm or compatible matrix
spectral norm (as appropriate), and represent
the th components of the indicated vectors (notation chosen to
avoid confusion with the iteration subscript, i.o. represent
infinitely often, and . Below are some reg-
ularity conditions that will be used in Theorem 1a for 2SPSA
and, in part, in the succeeding theorems. Some comments on
the practical implications of the conditions are given immedi-
ately following their statement. Appendix B provides some ad-
ditional comments on the relationship of the conditions here to
the conditions of other adaptive approaches mentioned in Sec-
tion I.

Note that some conditions show a dependence onand
, the very quantities for which we are showing convergence.

Although such “circularity” is generally undesirable, it is fairly
common is the SA field (e.g., Kushner and Yin [15, Theorem
5.2.1], Benvenisteet al. [1, p. 238]). Appendix B elaborates
on the circularity issue relative to conditions in other adaptive
algorithms. The Appendix points out that adaptive algorithms
without circularity conditions haveother conditions that are
difficult to check and/or easily violated. The inherent difficulty
in establishing theoretical properties of adaptive approaches
comes from the need to couple the estimates for the parameters
of interest and for the Hessian (Jacobian) matrix. Note that the
bulk of the conditions here showing dependence onand
are conditions on the measurement noise and smoothness of
the loss function (C.0, C.2, and C.3 below; C.0, C.2 , C.3 ,
C.8, and C.8in later theorems); the explicit dependence on
can be removed by assuming that the relevant condition holds
uniformly for all “reasonable” . The dependence in C.5 is
handled in the lemma below.

C.0: a.s. , where
is the effective SA measurement noise, i.e.,

.
C.1: as

.
C.2: For some and

is symmet-
rically distributed about 0, and are mutually
independent.

C.3: For some and almost all , the function
is continuously twice differentiable with a uniformly
(in bounded second derivative for allsuch that

.
C.4: For each and all , there exists a not

dependent on and , such that
.

C.5: For each and any ,
i.o.

i.o. (see lemma
for sufficient conditions).

C.6: exists a.s. 0 a.s., and for some
.

C.7: For any and nonempty , there
exists a such that

a.s.

for all when and
when (see lemma for sufficient condi-

tions).

Comments on Conditions C.0–C.7:C.0 and C.1 are common
martingale-difference noise and gain sequence conditions. C.2
provides a structure to ensure that the gradient approximations

and are well behaved. The conditions on are
very close to those for “basic” SPSA, and would usuallyex-
clude from being uniformly or normally distributed due
to their violation of the implied finite inverse moments condi-
tion in (note that Holder’s
inequality makes the finite inverse moment condition explicit
since the expectation of interest exists if
and are uniformly bounded for .
An independent Bernoulli 1 distribution is frequently used
for the elements of as discussed in Section II-D. C.3 and
C.4 provide basic assumptions about the smoothness and steep-
ness of . C.3 holds, of course, if is twice continu-
ously differentiable with a bounded second derivative on.
C.5 is a modest condition that says thatcannot be bouncing
around in a manner that causes the signs of the normalized gra-
dient elements to be changing an infinite number of times if
is uniformly bounded away from (see the sufficient condi-
tions below). C.6 provides some conditions on the surrogate for
the Hessian estimate that appears in (2.1). Since the user has
full control over the definition of , these conditions should
be relatively easy to satisfy. Note that the middle part of C.6

a.s.) allows for to “occasionally” be large
provided that the boundedness of moments in the last part of the
condition is satisfied. The example for given in Section II-D
[guideline 2)] would satisfy this potential growth condition, for
instance, if . Finally, C.7 ensures that, for

sufficiently large, each element of tends to make a non-
negligible contribution to products of the form
(see C.4). A sufficient condition for C.7 is that, for each
be uniformly (in bounded 0 and when is
bounded away from 0 for all; C.7 is unnecessary when is
bounded as stated in the lemma below. Note that, although no
explicit conditions are shown on , there are implicit condi-
tions in C.4–C.7 given ’s effect on (via . In Theorem
2a on the convergence of , there are explicit conditions on

.
Conditions C.5 and C.7 are relatively unfamiliar. So, before

showing the main theorems on convergence for 2SPSA and
2SG, we give sufficient conditions for these two conditions
in the lemma below. The main sufficient condition is the
well-known boundedness condition on the SA iterate (e.g.,
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Kushner and Yin [15, Theorem 5.2.1], Benvenisteet al. [1,
Theorem II.15]). Although some authors have relaxed this
boundedness condition (e.g., Gerencsér [12]), the condition
imposes nopractical limitation. This boundedness condition
also formally eliminates the need for the explicit dependence
of other conditions (C.2 and C.3 above; C.0, C.2 , C.3 , C.8,
and C.8 below) on since the conditions can be restated to
hold for all in the bounded set containing. Note also that
the condition holds automatically for gains in the
standard form discussed in Section IV. One example of when
the remaining condition of the lemma, (3.1), is trivially satisfied
is when is chosen as a diagonal matrix, as suggested in
guideline 2) of Section II-D.

Lemma—Sufficient Conditions for C.5 and C.7:Assume that
C.1–C.4 and C.6 hold, and a.s. Then
condition C.7 is not needed. Further, let , and sup-
pose that, for any ,

sign

sign i.o. (3.1)

Then C.5 is automatically satisfied.
Theorem 1a—2SPSA:Consider the SPSA estimate for

with given by (2.4). Let conditions C.0–C.7 hold. Then
a.s.

Theorem 1b below on the 2SG approach is a straightforward
modification of Theorem 1a on 2SPSA. We replace C.0, C.1,
and C.2 with the following SG analogs. Equalities hold a.s.
where needed.

C.0 : where .
C.1 :

.
C.2 : For some .
Comments on C.0–C.2: Note (analogous to in The-

orem 1a) that there are no explicit conditions on here.
These conditions are implicit via the conditions on, and will
be made explicit when we consider the convergence ofin
Theorem 2b.

Theorem 1b—2SG:Consider the setting where is a
direct measurement of the gradient. Suppose that C.0–C.2 and
C.3–C.7 hold. Then a.s.

Theorem 2a below treats the convergence ofin the SPSA
case. We introduce several new conditions as follows, which are
largely self-explanatory:

C.1 : The conditions of C.1 hold plus
with .

C.3 : Change “thrice differentiable” in C.3 to “four-times
differentiable” with all else unchanged.

C.8: For some and all

and

and

where
.

C.9: satisfies the assumptions for in C.2 (i.e.,
and is symmetrically distributed

about 0; are mutually independent); and
are independent; ,
and some .

Theorem 2a—2SPSA:Let conditions C.0, C.1, C.2, C.3,
and C.4–C.9 hold. Then, a.s.

Our final strong convergence result is for the Hessian esti-
mate in 2SG. As above, we introduce some additional modified
conditions.

C.1 : The conditions of C.1hold plus , , and
.

C.8 : For some and all

and

where .
C.9 : For some and all is sym-

metrically distributed about 0, are mutually in-
dependent, and .

Comments on C.1, C.8 , C.9 : Unlike this theorem’s com-
panion result for 2SG (Theorem 1b), explicit conditions are nec-
essary on to control the convergence of the Hessian it-
eration. Note that due to the simpler structure of 2SG (versus
2SPSA), the conditions in C.9are a subset of the conditions in
C.9 for Theorem 2a.

Theorem 2b—2SG:Suppose that C.0, C.1 , C.2 , C.3 ,
C.4–C.7, C.8, and C.9 hold. Then a.s.

IV. A SYMPTOTICDISTRIBUTIONS AND EFFICIENCY ANALYSIS

A. Asymptotic Distributions of ASP Iterate

This subsection builds on the convergence results in the
previous section, establishing the asymptotic normality of the
2SPSA and 2SG formulations of ASP. The asymptotic nor-
mality is then used in Section IV-B to analyze the asymptotic
efficiency of the algorithms. Proofs are in Appendix A.

2SPSA Setting:As before, we consider 2SPSA before 2SG.
Asymptotic normality or the related issue of convergence
of moments in basic first-order SPSA has been established
under slightly differing conditions by Spall [33], Chenet
al. [4], Dippon and Renz [7], Kushner and Yin [15, ch. 10],
and Gerencsér [12]. We consider gains of the typical form

and , , ,
and take , . The
asymptotic mean below relies on the third derivative of ;
we let represent the third derivative of with respect
to elements of evaluated at . The following regularity
conditions will be used in the asymptotic normality result.

C.10: a.s. for some .
For almost all ,
is an equicontinuous sequence at= 0, and is contin-
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uous in on some compact, connected set containing
the actual (observed) value of a.s.

C.11: In addition to implicit conditions an and via C.1 ,
and . Further, when

. Let in (2.1a) be chosen such that
a.s.

Comments on C.10 and C.11:Although, in some applica-
tions, the “ ” for the noise second moments in C.10 may be
replaced by “=,” the limiting operation allows for a more gen-
eral setting, and is relevant in the example of Section V. Since
the user has full control over , it is not difficult to guar-
antee in C.11 that a.s.; most examples in Section
II-D2) satisfy this condition.

Theorem 3a—2SPSA:Suppose that C.0, C.1, C.2, C.3, and
C.4–C.9 hold (implying convergence of and . Then, if
C.10 and C.11 hold and exists,

(4.1)

where if ; if
, the th element of is

(4.2)

, and if
and if .

2SG Setting:We now consider the 2SG setting of direct
bias-free gradient measurements. There are a number of
references on the asymptotic distribution and/or moments of
second-order SG algorithms when the Hessian is estimated
adaptively in particular ways (e.g., Nevel’son and Has’minskii
[23, ch. 7], Fabian [11], Ruppert [27], Wei [43], Benveniste
et al. [1, pp. 115–116], Ljung [17], and Walk [42]). These
references show that the asymptotic properties—such as distri-
bution—of the adaptive algorithms are identical to those that
would result from using the true (unknown) Hessian. We will
do likewise for 2SG implementation. As above, consider gains
of the typical form .

Before introducing the asymptotic normality result, we intro-
duce an additional regularity condition.

C.12: a.s. for some positive semidef-
inite matrix if = 1, and is chosen
such that a.s.

Comments on C.12:As with C.10, frequently, “ ” can be
replaced with “=” in the limiting covariance expression. Like-
wise, see the comments following C.11 regarding the condition

a.s.
Theorem 3b—2SG:Suppose that C.0, C.1 , C.2 , C.3 ,

C.4–C.7, C.8, and C.9hold (implying convergence of
and that C.12 holds with existing. Then,

(4.3)

where with if
and if .

B. Efficiency Analysis

Using the distribution results in Section IV-A, we now ana-
lyze the asymptotic efficiency of the second-order approaches.
For convenience here and in Section V, let 1SPSA and 1SG de-
note the standard first-order SPSA and SG algorithms (to con-
trast with 2SPSA and 2SG).

2SPSA Setting:From Theorem 3a, the root-mean-squared
(rms) error from the asymptotic distribution of the normalized
error is

rms trace (4.4)

where the arguments emphasize the dependence on the gain
sequence coefficients (coefficient, of course, does not affect
the asymptotic distribution). (Under some additional condi-
tions—e.g., Gerencsér [12]—the asymptotic distribution-based
rms error in (4.4) is equal to
To analyze the asymptotic efficiency, we compare rms
with a corresponding quantity based on standard 1SPSA. Let
rms denote the rms error from the asymptotic
distribution for 1SPSA, as given, e.g., in Spall [33, Prop. 2].

Dippon and Renz [7] pursue a line of reasoning close to that
above in comparing the iterate averaging version of SPSA with
optimal versions of 1SPSA. In particular, the rms error in (4.4)
with is identical to the rms error for iterate
averaging (note that is asymptotically optimal
for both 1SPSA and 2SPSA since they maximize the rate of con-
vergence under the constraints on . Then, based on
Dippon and Renz [7, expressions (5.2) and (5.3)] and assuming
the same number of iterations in both 1SPSA and 2SPSA, we
have

rms

rms

(4.5a)
rms

rms
(4.5b)

where is the minimum eigenvalue of . The interpre-
tation of (4.5a), (4.5b) is as follows. From (4.5a), we know that,
for any common value of, the asymptotic rms error of 2SPSA
is less than twice that of 1SPSA with an optimal(even when

is chosen optimally for 1SPSA). Expression (4.5b) states that,
if we optimize only for 2SPSA, while optimizing both and

for 1SPSA, we are still guaranteed that the asymptotic rms
error for 2SPSA is no more than twice the optimized rms error
for 1SPSA. Another interesting aspect of 2SPSA is the relative
robustness apparent in (4.5a), (4.5b) given that the optimal
for 1SPSA will not typically be known in practice. For certain
suboptimal values of in 1SPSA, the rms error can get very
large whereas simply choosing= 1 for 2SPSA provides the
factor-of-2 guarantee mentioned above.

Although (4.5a), (4.5b) suggest that the 2SPSA approach
yields a solution that is quite good, one might wonder if a
true optimal solution is possible. Dippon and Renz [7, pp.
1817–1818] pursue this issue, and provide an alternative to
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as the limiting weighting matrix for use in an SA
form such as (2.1a). Unfortunately, this limiting matrix has no
closed-form solution, and depends on the third derivatives of

at , and furthermore, it is not apparent how one would
construct an adaptive matrix (analogous to that would
converge to this optimal limiting matrix. Likewise, the optimal

for 2SPSA is typically unavailable in practice since it also
depends on the third derivatives of .

Expressions (4.5a), (4.5b) are based on an assumption that
1SPSA and 2SPSA have used the same number of iterations.
This is a reasonable basis for a core comparison since the “cost”
of solving for the optimal 1SPSA gains is unknown. However,
a more conservative representation of relative efficiency is pos-
sible by considering only the direct number of loss measure-
ments, ignoring the extra cost for optimal gains in 1SPSA. In
particular, 1SPSA uses two loss measurements per iteration and
2SPSA uses four measurements per iteration. Hence, with both
algorithms using the same number of loss measurements, the
corresponding upper bounds to the ratios in (4.5a), (4.5b) (re-
flecting the ratio of rms errors as the common number of loss
measurements gets large) would be 2 , an increase
from the bound of 2 under a common number of iterations. This
bound’s likely excessive conservativeness follows from the fact
that the cost of solving for the optimal gains in 1SPSA is being
ignored. Note that, for other adaptive approaches that are also
asymptotically normally distributed, the same relative cost anal-
ysis can be used. Hence, for example, with the Fabian [10] ap-
proach using measurements per iteration to generate the
Hessian estimate, the corresponding upper bounds would be of
magnitude , bounds that, unlike the bounds for 2SPSA,
increase with problem dimension.

2SG Setting:The SG case is more straightforward than
the above. By minimizing the asymptotic rms error, it is
well known that the optimal gain is (e.g., Wei
[43], Ruppert [28], and Kushner and Yin [15, p. 289]).
Then rms trace trace

, as derived from (4.3) in Theorem
3b. Setting yields an rms error for the adaptive
algorithm (2.1a), (2.1b) that is identical to that obtained by
using the idealized optimal gain . In particular,
rms trace . Hence, rms
ratios for SG analogous to (4.5a), (4.5b) (rms for 2SG over the
optimal RMS for 1SG) have the value 1. As in 2SPSA above,
this ratio is for a common number of iterations. If this ratio is
expressed based on a common number of gradient measure-
ments (reflecting the fact that three gradient measurements per
iteration are used for 2SG versus one gradient measurement per
iteration for 1SG), then the ratio of asymptotic rms errors for
2SG over 1SG is . Although this ratio is likely to be
overly conservative since it ignores the cost of solving for the
optimal gains in 1SG, it is enlightening relative to fundamental
limits. Also, in parallel with the analysis for 2SPSA, the ratio
based on using one of the previous adaptive approaches (e.g.,
Wei [43] or Ruppert [27]) instead of 2SG shows the detrimental
effects of increasing. In particular, with the Wei or Ruppert
adaptive approaches using gradient measurements per
iteration to generate the Hessian estimate, the corresponding

TABLE I
NORMALIZED LOSSVALUES FOR1SPSAAND 2SPSAWITH � = 0.001;

90% CONFIDENCEINTERVAL SHOWN IN [�]

upper bounds to the ratio would be equal to , bounds
that, unlike the bounds for 2SG (i.e., which are equal to ,
increase with problem dimension.

V. NUMERICAL STUDIES

This section compares 2SPSA and 2SG with their cor-
responding first-order “standard” forms (1SPSA and 1SG).
Numerical studies on other functions are given in Spall [35],
Luman [18], and Vande Wouweret al. [40]. The loss function
considered here is a fourth-order polynomial with= 10, sig-
nificant variable interaction, and highly skewed level surfaces
(the ratio of maximum to minimum eigenvalue of is
approximately 65). Gaussian noise is added to the or
evaluations as appropriate. MATLAB software was used to
carry out this study. The loss function is

(5.1)

where represents theth component of the argument vector
(as in Section III) and is such that is an upper triangular
matrix of ones. The minimum occurs at with .
The noise in the loss function measurements at any value ofis
given by where is independently
generated at each. This is a relatively simple noise structure
representing the usual scenario where the noise values in
depend on (and are therefore dependent over iterations); the

term provides some degree of independence at each noise
contribution, and ensures that always contains noise of vari-
ance at least (even if = 0). Guidelines 1), 2), 4), and 5) from
Section II-D were applied here.

A fundamental philosophy in the comparisons below is that
the loss function and gradient measurements are the dominant
cost in the optimization process; the other calculations in the
algorithms are considered relatively unimportant. This philos-
ophy is consistent with most complex stochastic optimization
problems where the loss function or gradient measurement may
represent a large-scale simulation or a physical experiment. The
relatively simple loss function here, of course, is merely a proxy
for the more complex functions encountered in practice.

2SPSA Versus 1SPSA Results:Spall [37] provides a thor-
ough numerical study based on the loss function (5.1). Three
noise levels were considered:= 0.10, 0.001, and 0. The re-
sults here are a condensed study based on the same loss func-
tion. Table I shows results for the low-noise = 0.001) case.
The table shows the mean terminal loss value after 50 indepen-
dent experiments, where the values are normalized (divided) by
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TABLE II
NORMALIZED LOSSVALUES AND 90% CONFIDENCEINTERVALS FOR1SGAND 2SGWITH � = 0.10

. Approximate 90% confidence intervals are shown below
each mean loss value. Relative to guideline 4), the gains ,
and decayed at the rates , and , re-
spectively. These decay rates are approximately the slowest al-
lowed by the theory and are slower than the asymptotically op-
timal values discussed in Section IV (which do not tend to work
as well in finite-sample practice). Three separate algorithms are
shown: basic 1SPSA with the coefficients of the slowly de-
caying gains mentioned above chosen empirically according to
Spall [36], the same 1SPSA algorithm but with final estimate
taken as the iterate average of the last 200 iterations, and 2SPSA.
Additional study details are as in Spall [37].

We see that 2SPSA provides a considerable reduction in
the loss function value for the same number of measurements
used in 1SPSA.7 Based on the numbers in the table together
with supplementary studies, we find that 1SPSA needs ap-
proximately five–ten times the number of function evaluations
used by 2SPSA to reach the levels of accuracy shown. The
behavior of iterate averaging was consistent with the discussion
in Section I in which the 1SPSA iterates had not yet settled into
bouncing roughly uniformly around the solution. Numerical
studies in Spall [37] show that 2SPSA outperforms 1SPSA
even more strongly in the noise-free = 0) case for this loss
function, but that it is inferior to 1SPSA in the high-noise
= 0.10) case. However, Spall [37] presents a study based on
a larger number of loss measurements (i.e., more asymptotic)
where 2SPSA outperforms 1SPSA in the high-noise case.
In addition, studies by other authors (e.g., simulation-based
optimization in Luman [18], or neural network-based training
in Vande Wouveret al. [40]) show that, for other loss functions,
2SPSA can outperform 1SPSA in high-noise settings with
only a moderate number of loss measurements. The Luman
[18] study is one where the transform invariance property of
second-order algorithms is particularly useful given the large
scaling differences among the elements of.

2SG Versus 1SG Results:We also examined the ASP ap-
proach as it applies in the SG setting with loss function (5.1)
and the noise model above. Given this model, the noise in the
gradient measurements is independently dis-
tributed. Consistent with the theory in Section IV, this study
uses the asymptotically optimal form for the gain
(and from Theorem 2b, we choseto correspondingly have the
form . Although this eases the implementation of the
algorithm (since the critical gain sequence no longer has
to be empirically determined), it likely limits the performance
of the algorithm for the finite samples of interest [the gains for

7It was also found that, if the iterates were constrained to lie in some hy-
percube around� (as required, e.g., in genetic algorithms), then all values in
Table I will be reduced, sometimes by several orders of magnitude. Such prior
information can be valuable at speeding convergence.

1SG, on the other hand, were approximately optimized numeri-
cally as in the 2SPSA versus 1SPSA study, and used the slower
decay form ]. Hence, the results presented here
should be considered a conservative representation of possible
performance for 2SG. Aside from this asymptotically optimal
choice of gain, the same experimental setup reported in Spall
[37] was used. The comparison between algorithms in the SG
case is complicated by the mix of both loss and gradient mea-
surements used in the algorithms, and the need to compare ac-
curacy for the same overall “cost” of the optimization (as men-
tioned above, only the loss and gradient measurements are con-
sidered relevant to the cost here).

We report results in Table II for the high-noise = 0.10)
case. 1SG (unaveraged and averaged) used only gradient mea-
surements, while 2SG used gradient measurements and [for
the blocking step 5b)] loss measurements. All results are based
on 5000 “gradient equivalents” for the algorithm budgets (so
that 5000 iterations of 1SG is the same number of iterations as
1SPSA with 10 000 loss measurements). A gradient equivalent
represents either a gradient measurement or some number of
loss measurements. We consider two cases, one where the cost
of a loss measurement is so high that it is undesirable to invoke
blocking step 5b) due to the relatively high noise levels, and
another case where the cost is negligible compared to a gradient
measurement. In the former (“high-cost”) setting, 2SG used
three gradient measurements and no loss measurements at each
iteration. In the latter (“low-cost”) setting, it was assumed that
one could obtain enough loss measurements so that, at a cost
equivalent to one gradient measurement, one could effectively
average out the noise in the loss values used in the blocking
step 5b). The 2SG approach is inferior when the loss measure-
ments are costly, and superior when the loss measurements are
significantly cheaper than the gradient measurements.

Other studies have been conducted with 2SG. For example,
Vande Wouveret al. [40] show an approximate order of
magnitude reduction (relative to 1SG/backpropagation) in loss
value in a neural-network training problem. For loss function
(5.1), the performance of 2SG relative to 1SG improves when

gets smaller. In fact, in the no-noise = 0) setting (such
as in system identification applications where one has exact
information about the gradient of the loss function) with only
500 gradient equivalents (versus 5000 above), 2SG produces
loss values of order 10 , about two orders of magnitude lower
than those resulting from 1SG; the relative disparity between
2SG and 1SG grows even larger as the number of gradient
equivalents gets larger.

VI. CONCLUDING REMARKS

This paper has presented a general adaptive second-order
SA approach that has a simple structure and is efficient in
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high-dimensional problems. The approach applies in either
the gradient-free (Kiefer–Wolfowitz) setting where only noisy
loss function evaluations are available or the stochastic gra-
dient-based/root-finding (Robbins–Monro) setting where noisy
gradient evaluations are available. This adaptive simultaneous
perturbation algorithm is based on the principle of changing
of all the parameters in the problem simultaneously in con-
structing gradient and Hessian estimates. In high-dimensional
problems of practical interest, such simultaneous changes admit
an efficient implementation by greatly reducing the number
of loss function evaluations or gradient evaluations required
to carry out the optimization process relative to conventional
“one-at-a-time” changes. The ASP algorithm is composed
of two parallel recursions: one a direct SA analog of the
Newton–Raphson algorithm of deterministic optimization, and
the other a sample mean calculation of per-iteration Hessian
estimates formed using the simultaneous perturbation principle.
The simple form for the Hessian estimate seems to obviate
the claims of Schwefel [31, p. 76], Polyak and Tsypkin [26],
or Yakowitz et al. [44] that few practical algorithms exist for
estimating the Hessian in recursive optimization.

We establish conditions for the a.s. convergence of theand
Hessian estimates from the parallel recursions. This allows us
to establish the asymptotic normality of theestimate in both
the gradient-free and stochastic gradient-based settings. In turn,
the asymptotic normality provides the mechanism for analyzing
the efficiency of the ASP approach. It is shown that the ASP al-
gorithm has the same limiting efficiency that an SA algorithm
would have if the true Hessian were known; this is a nearly op-
timal algorithm in the gradient-free case, and an optimal algo-
rithm in the gradient-based case. Some numerical analysis illus-
trates the efficiency improvement possible in finite samples rel-
ative to conventional first-order approaches, with the advantage
in the example here being larger in lower noise environments.
(These numerical studies also illustrate some limitations of it-
erate averaging as a means for obtaining efficient algorithms in
finite-sample practice.) Numerical studies of ASP by others on
different problems have validated the efficiency of the approach
for practical low- and high-noise settings.

The ASP method illustrates both the benefits and potential
dangers of second-order approaches. Although ASP is arela-
tively simple adaptive approach, and the theory and numerical
experience point to the improvements possible, one should be
careful in implementation, and beware of potential divergence.
Most of the care in implementation is devoted to choosing the
important algorithm coefficients; there are generally more co-
efficients to choose than in the first-order algorithms (although
fewer than certain other stochastic optimization methods
such as the various genetic algorithms; further, the effort can
be reduced by simply using the asymptotically optimal or
near-optimal for the important “gain” sequence if
the initial condition is sufficiently close to the optimum). In
addition, it is important to monitor the algorithm or implement
the “blocking” procedures described in Section II-D to guard
against wild steps during the iteration process. This problem
seems inherent in second-order approaches, both deterministic

(à la Newton–Raphson) and stochastic. Nevertheless, with the
appropriate care, the adaptive approach is relatively easy to
implement, and can offer impressive gains in efficiency.

APPENDIX A
PROOFS OFCONVERGENCERESULTS IN SECTION III AND

ASYMPTOTICDISTRIBUTION RESULTS INSECTION IV

Proof of Lemma (Sufficient Conditions for C.5 and C.7)

C.7 is used in the proofs of Theorems 1a and 1b only to ensure
that . Given the boundedness
of , this condition becomes superfluous. Regarding C.5, the
boundedness condition together with the facts that

and (C.6) imply that, for some
a.s. for all sufficiently large. From the

basic recursion, , where
. But a.s. by the martingale

convergence theorem (see (8) and (9) in Spall and Cristion [38]).
Since , we know that sign = sign for
all sufficiently large, implying that sign = sign
a.s. Assumption (3.1) completes the proof of sufficiency for
C.5. Q.E.D.

Proof of Theorem 1a (2SPSA)

The proof will proceed in three parts. Some of the proof
closely follows that of the proposition in Spall and Cristion [38],
in which case the details will be omitted here, and the reader will
be directed to that reference. However, some of the proof differs
in nontrivial ways due to, among other factors, the need to ex-
plicitly treat the bias in the gradient estimate . First, we
will show that does not diverge in magnitude to

on any set of nonzero measure. Second, we will show that
converges a.s. to some random vector, and third, we will show
that this random vector is the constant 0, as desired. Equalities
hold a.s. where relevant.

Part 1: First, from C.0, C.2, and C.3, it can be shown in the
manner of Spall [33, Lemma 1] that, for allsufficiently large,

(A1)

where is uniformly bounded a.s. Using C.6, we know
that exists a.s., and hence we write

. Then, as in the proposition of Spall and Cristion [38], C.1,
C.2, and C.6, and Holder’s inequality imply, via the martingale
convergence theorem,

(A2)

where is some integrable random vector.
Let us now show that . Since

the arguments below apply along any subsequence, we will,
for ease of notation and without loss of generality, consider the
event . We will show that this event has probability
0 in a modification to the arguments in [38, proposition] (which
is a multivariate extension to scalar arguments in Blum [2], and
Evans and Weber [8]). Furthermore, suppose that the limiting
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quantity of the unbounded elements is (trivial modifica-
tions cover a limiting quantity including limits). Then, as
shown in [38, proposition], the event of interest
has probability 0 if

(A3a)

and

(A3b)

both have probabilities 0 for all , and as defined
in C.7, where and the superscriptdenotes set
complement.

For event (A3a), we know that there exists a subsequence
, such that

is true. Then, from C.6 and (A1),

a.s. (A4)

for all . By C.4, a.s. which, by C.7,
implies, for all sufficiently large,

dim a.s. (A5)

since and dim . Taken together, (A4) and
(A5) imply that, for each sample point (except possibly on a
set of measure 0), the event in (A3a) has probability 0. Now,
consider the second event (A3b). From (A2), we know that, for
almost all sample points, must be
true. But this implies from C.5 and the above-mentioned uni-
formly bounded decaying bias that for no can

occur i.o. However, at each, the event
is composed of the union of 2 events, each of which
has for at least one . This, of course, requires
that i.o. for at least one , which creates a contra-
diction. Hence, the probability of the event in (A3b) is 0. This
completes Part 1 of the proof.

Part 2: To show that converges a.s. to a unique (finite)
limit, we show that

(A6)
for any . This result follows exactly as in the proof of
Part 2 of the proposition in Spall and Cristion [38].

Part 3: Let us now show that the unique finite limit from
Part 2 is 0. From (A2) and the conclusion of Part 1, we have

a.s. . Then the result to be

shown follows if

(A7)

Suppose that the event in the probability of (A7) is true, and let
represent those indexessuch that

as . Then, by the convergence in Part 2, there exists (for
almost any sample point in the underlying sample space) some

and (dependent on sample
point) such that when

and when . From C.4, it follows
that

(A8)

But since C.5 implies that can change sign only a finite
number of times (except possibly on a set of sample points of
measure 0), and since , we know from (A8) that, for
at least one ,

(A9)

Recall that and
a.s. Hence, from C.6, we have . Then by (A9),

. Since, for the above, there ex-
ists such a for each sample point in a set of measure one
(recalling that converges a.s. by Part 2), we know from the
above discussion that there also exists an possibly de-
pendent on the sample point) such that .
Since has a finite number of elements,
with probability 0 for at least one. However, this is inconsis-
tent with the event in (A7), showing that the event does, in fact,
have probability 0. This completes Part 3, which completes the
proof. Q.E.D.

Proof of Theorem 1b (2SG)

The initial martingale convergence arguments establishing
the 2SG analog to (A2) are based on C.0–C.2 and C.6. Al-
though there is no bias in the gradient measurement, C.4 and C.7
still work together to guarantee that the elements potentially di-
verging [in the arguments analogous to those surrounding (A3a),
(A3b)] asymptotically dominate the product . As in
the Proof of Theorem 1a, this sets up a contradiction. The re-
mainder of the proof follows exactly as in Parts 2 and 3 of the
Proof of Theorem 1a, with some of the arguments made easier
since Q.E.D

Proof of Theorem 2a (2SPSA)

First, note that the conditions subsume those of Theorem
1a; hence, we have a.s. convergence of. By C.8, we have

uniformly bounded . Hence, by the
additional assumption introduced in C.1(beyond that in C.1),
the martingale convergence result in, say, Laha and Rohatgi
[16, p. 397], yields

a.s. (A10)
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as . By (2.4), conditions C.3, C.8, and C.9 imply
(A11) shown at the bottom of the page, where represents
the third derivative of w.r.t. the th, th, and th elements of ;

are points on the line segments between
and ; and we used the fact that

, and (implied by C.9 and the Cauchy–Schwarz in-
equality).

Let

By C.3 (bounding the difference in terms) and C.9 in con-
junction with the Cauchy–Schwarz inequality and C.1

, we have uniformly bounded (in for all
sufficiently large. Hence, from (A11) the th element of

satisfies

(A12)

where the term in the third line of (A12) encompasses
both and the uniformly bounded contributions due to

in the remainder terms of the expansion of
(so is uniformly

bounded, allowing the use of C.9 and the Cauchy–Schwarz
inequality in producing the term in the last line of
(A12)).

Then, by (A12), the continuity of near , and the fact that
a.s. (Theorem 1a), the principle of Cesaro summability

implies

a.s. (A13)

Given that , (A.10) and (A13) then
yield the result to be proved. Q.E.D.

Proof of Theorem 2b (2SG)

Since the conditions subsume those of Theorem 1b, we have
a.s. Analogous to (A10), C.1and C.8yield a martin-

gale convergence result for the sample mean of .
Then, given the boundedness of the third derivatives of
near for all , the Cauchy–Schwarz inequality and C.8, C.9
imply that . By a.s., the
Cesaro summability arguments in (A13) yield the result to be
proved. Q.E.D.

Proof of Theorem 3a (2SPSA)

Beginning with the expansion
, where is on the line segment between and

and the bias is defined in (A1), the estimation error can be
represented in the notation of [9] (also [28]) as

where

and . The proof follows that of Spall [33, Prop.
2] closely, which shows that the three sufficient conditions for
asymptotic normality, in Fabian [9, (2.2.1)–(2.2.3)], hold. By the
convergence of , it is straightforward to show a.s. convergence
of to 0 if or to in (4.2) if
. The mean expression then follows directly from Fabian

(A11)
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[9] and the convergence of (and hence by C.11 and
the existence of ). Further, as in Spall [33, Prop. 2],

is a.s. convergent by C.2 and C.10, leading to the
covariance matrix . This shows Fabian [9, (2.2.1) and (2.2.2)].
The final condition [9, (2.2.3)] follows as in Spall [33, Prop. 2]
since the definition of is identical in both standard SPSA and
2SPSA. Q.E.D.

Proof of Theorem 3b (2SG)

Analogous to the Proof of Theorem 3a, the estimation error
can be represented as

where and . Conditions
(2.2.1) and (2.2.2) of Fabian [9] follow immediately by the
smoothness of (from C.3), the convergence of and

, and C.12. Condition (2.2.3) of Fabian follows by Holder’s
inequality and C.2, C.3 . Q.E.D.

APPENDIX B
INTERPRETATION OFREGULARITY CONDITIONS

This Appendix provides comments on some of the conditions
of ASP relative to other adaptive SA approaches. In the confines
of a short discussion, it is obviously not possible to provide a
detailed discussion of all conditions of all known adaptive ap-
proaches. Nevertheless, we hope to convey a flavor of the rela-
tive nature of the conditions.

As discussed in Section III, some of the conditions of ASP de-
pend on itself, creating a type of circularity (i.e., direct condi-
tions on the quantity being analyzed). This circularity has been
discussed elsewhere (see Section III and Kushner and Clark [14,
pp. 40–41]) since other SA algorithms also have-dependent
conditions. Some of the ASP conditions can be eliminated or
simplified if the conditions of the lemma in Section III hold.
The foremost lemma condition is that be uniformly bounded.
Of course, this uniformly bounded condition is itself a circular
condition, but it helps to simplify the other conditions of the
theorems that are dependent onsince the dependence can
be replaced by an assumption that these other conditions hold
uniformly over all in the bounded set guaranteed to contain
(e.g., the current assumption C.3 that be twice continuously
differentiable in neighborhoods of estimatescan be replaced
by an assumption that is twice continuously differentiable
on some bounded set known to contain. If the lemma ap-
plies, condition C.5 (on the i.o. behavior of is unnecessary.

In showing convergence and asymptotic normality, one might
wonder whether other adaptive algorithms could avoid condi-
tions that depend on , and avoid alternative conditions that
are similarly undesirable. Based on currently available adap-
tive approaches, the answer appears to be “no.” As an illustra-
tion, let us analyze one of the more powerful results on adap-
tive algorithms, the result in Wei [43]. Wei’s results are mul-
tivariate generalizations of results in Nevel’son and Has’min-
skii [23, ch. 7] and Venter [41]. The Wei [43] approach is re-
stricted to the SG/root-finding setting as opposed to the more

general setting for ASP that encompasses both gradient-free and
SG/root finding. The approach is based onmeasurements of

at each iteration to estimate the Jacobian (Hessian) matrix.
Some of the conditions in Wei [43] are similar to conditions
for ASP (e.g., decaying gain sequences and smoothness of the
functions involved), while other conditions are more stringent
(the restriction to only the root-finding setting and the require-
ment for i.i.d. measurement noise). There are also conditions in
ASP that are not required in Wei [43], principally those asso-
ciated with “nice” behavior of the user-specified (bounded
moments, etc.), the steepness conditions C.4 and C.7 (similar
to standard conditions in some other adaptive approaches, e.g.,
Ruppert [27]), and limits on the amount of bouncing in “big
steps” around (the i.o. condition C.5). An additional key as-
sumption in Wei [43] is the symmetric function condition on the
Jacobian (or Hessian) matrix:

(B1)

This, unfortunately, is a stringent condition that may be easily
violated. In the optimization case (where is a Hessian), this
condition may fail even for benign (e.g., convex) loss functions.
Consider, for example, a case with and a simple
convex loss function . Letting

and , we have

which is not positive definite, violating condition (B1). Aside
from the fact that this condition may be easily violated, it is also
generally impossible to check in practice because it requires
knowledge of the true over the whole domain; this, of
course, is the very quantity that is being estimated! The require-
ment for such prior knowledge is also apparent in other adaptive
approaches discussed in Section I, e.g., Ruppert [27] and Fabian
[10]. Given the above, it is clear that neither ASP nor Wei [43]
(nor others) have uniformly “easier” conditions for their respec-
tive approaches.

The inherent difficulty in establishing theoretical properties
of adaptive approaches comes from the need to couple the es-
timates for the parameters of interest and for the Hessian/Ja-
cobian matrix. This tends to lead to nontrivial regularity con-
ditions, as seen in the -dependent conditions of ASP and in
the stringent conditions that have appeared in the literature for
other approaches. There appear to be no easy conditions for es-
tablishing rigorous properties of adaptive algorithms. However,
given that all of these approaches have a strong intuitive appeal
based on analogies to deterministic optimization, the needs of
practical users will focus less on the nuances of the regularity
conditions and more on the cost of implementation (e.g., the
number of function measurements needed), the ease of imple-
mentation, and the practical performance.
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