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Abstract

Algorithmic Trading (AT) and High Frequency (HF) trading, which are responsible for over
70% of US stocks trading volume, have greatly changed the microstructure dynamics of tick-by-
tick stock data. In this paper we employ a hidden Markov model to examine how the intra-day
dynamics of the stock market have changed, and how to use this information to develop trad-
ing strategies at high frequencies. In particular, we show how to employ our model to submit
limit-orders to profit from the bid-ask spread and we also provide evidence of how HF traders
may profit from liquidity incentives (liquidity rebates). We use data from February 2001 and
February 2008 to show that while in 2001 the intra-day states with shortest average durations
(waiting time between trades) were also the ones with very few trades, in 2008 the vast majority
of trades took place in the states with shortest average durations. Moreover, in 2008 the states
with shortest durations have the smallest price impact as measured by the volatility of price
innovations.

Keywords: High Frequency Traders; Algorithmic Trading; Durations; Hidden Markov Model
JEL Classifications: G10, G11, G14, C41

1 Introduction

Not too long ago the vast majority of the transactions in stock exchanges were executed by humans
or required frequent human input along the trading process. This trend has changed dramatically
over the last decade, and especially over the last five years, where fast computers now conduct most
of the transactions. The use of computer algorithms that make trading decisions, submit orders,
and manage those orders after submission, is known as algorithmic trading (AT). This technological
change has taken over most exchanges and different sources report that between 50% to 77% of
trading volume in the US equities markets is due to AT, SEC (2010), and Cvitanić and Kirilenko
(2010).

Trading on the back of powerful computers and software that relies heavily on the ability to
process and react quickly to the flux of trades and market information, has made it possible to
execute large volumes of trades over short periods of time. Some of the effects of AT in stock
exchanges can be gauged in disparate ways including: daily volume, speed of execution, daily
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trades, and average trade size. For example, the SEC reports that in the NYSE between 2005 and
2009: consolidated average daily share volume increased 181%; average speed of execution for small,
immediately executable (marketable) orders shrunk from 10.1 to 0.7 seconds; consolidated average
daily trades increased 662%; and consolidated average trade size decreased from 724 to 268 shares,
SEC (2010). These substantial changes in the aggregate figures are the tip of the iceberg in modern
electronic trading and are showing a particular aspect of how AT is changing financial markets in
general and equity markets in particular.

But what are the fundamental changes in the tick-by-tick dynamics of stock prices as a conse-
quence of AT? From the aggregate figures it is not clear if new trading patterns have emerged, and
if they have, what are their key characteristics. AT has become an arms race and the profitability of
these algorithms not only depends on the level of participation of other types of traders, for instance
liquidity or noise traders, but also on how AT strategies coexist with other algorithmic traders.

In this paper we model stock-price dynamics and extract important information on changes in
the market’s behavior at a tick-by-tick level and use this information to design AT strategies. To
model the tick-by-tick dynamics we start from the fact that AT has considerably changed the way in
which trading is done and that historical stylized facts of tick-by-tick data might have been altered in
a substantial way. In general, at this point one can only conjecture what are the principal strategies
that AT deploy and how do they affect stock prices at high frequencies. However, in equilibrium,
which patterns emerge or what are the new stylized facts of tick-by-tick dynamics are questions that
can be answered and are key in the development of trading algorithms.

The majority of AT strategies are designed to compete for profits or manage risks whilst others
are designed to execute third-party trades at best prices. Examples of types of strategies include:
i) high frequency (HF) market making strategies which are designed to operate on extremely short-
time scales. Currently, any strategies which are designed and/or are able to react within 100
milliseconds are considered HF, see Cartea, Jaimungal, and Ricci (2011), Cartea and Jaimungal
(2012), Latza, Marsh, and Payne (2012). ii) Strategies that are designed to: minimize price impact
when a large order must be executed over a fixed horizon; trigger other algorithmic traders into
action; or other proprietary strategies based on speed of execution and information processing, see
Cartea and Penalva (2012), Almgren (2003), Almgren (2009), and Lorenz and Almgren (2011). The
complexity of these strategies and their effect on the dynamics of tick-by-tick stock prices requires
a modeling approach that can describe the different states in which financial markets could be and
how the market transitions between these states. Ideally, one would want to model states of the
market where the presence of a type of strategy (or types of AT) is the main source that drives
trading (or the lack of) activity. For instance, in situations where HF traders are active, one expects
to be in a state where duration between trades is very low (very short periods of time between
consecutive trades) until the market ‘moves on’ to another state where the underlying reasons for
trading is a release of a piece of news or the market transitions to a state of more calm where less
trading takes place.1

The overall effect of all these new trading strategies in the market at a macroscopic level might be
easy to measure, but the microscopic changes are far from clear. In the era of superfast electronic
trading the dynamics of prices at high frequencies will be a consequence of many economic and
financial factors, but ultimately the trading decisions and the management of these orders are
handled by AT. Thus, at an intraday level the market can show bursts of activity which may be
accompanied by high or low volatility of price revisions (measured in transaction time), times of
relatively low activity but with high volatility, and many other features very difficult to see at the
aggregate level. Therefore, to model the tick-by-tick dynamics of stock prices we use a Hidden
Markov Model (HMM) in order to capture the different states in which the market can be. In
particular, our model determines the different states by: (i) the existence of regimes or states of

1In general, AT can refer to a wide range of computerized strategies including: technical indicators that alert
traders when to enter/exit positions, computers arbitraging different exchanges or statistical patterns.
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intra-day activity characterized by the intra-day trading intensity of market orders and how the
market switches between these regimes; (ii) the state-dependent distribution of price revisions in
transaction time controlling for trades that generate no change in prices and those that do; and (iii)
the distribution of the duration between trades which is an important variable in intra-day AT and
HF trading strategy design.

Our approach allows us to address two issues. First, from a purely financial viewpoint, how has
the market changed in the recent years when AT has had an increasing role? Second, if nowadays
most of what we see at the tick-by-tick stock price level is due to AT, can our model be used to
design and execute high frequency trading strategies?

We summarize some of our findings as a response to these two questions. First, we employ
tick-by-tick data for six stocks2 over the two separate periods February 2001 and February 2008 to
estimate the model parameters. Our empirical findings show that over the last decade the increasing
presence of AT has not only changed the speed at which trades take place, but that there have been
other fundamental changes in the intra-day characteristics of stock price behavior. We start by
describing the characteristics that have changed little in the two periods: In 2001 and 2008 we
find that i) for all but one asset, the states with shortest average durations is where the highest
probability of observing zero price innovations occur; and ii) the states with longest average durations
are generally the ones where the probability of observing a zero price innovation is lowest. Some of
the changes between the two periods are: i) Across all stocks we study in 2008 the intra-day states
with shortest average durations are also the states with lowest volatility of price revisions. The
same is not true for 2001 where there is no general connection between states of high activity and
volatility. ii) For all stocks in 2001 the intra-day state with the shortest durations is also the state
where the least amount of trades took place. On the other hand, in 2008 we find the opposite result
where, generally, the intra-day states with the longest durations have the least number of trades.
Our empirical results are consistent with the theoretical predictions of Cvitanić and Kirilenko (2010)
who show that the introduction of HF traders (HFTs) increases trading activity (by reducing the
waiting time between trades) and modifies the distribution of price revisions by increasing mass
around the center and thinning the tails.

Second, an advantage of our approach is that the HMM identifies not only the intra-day states
of trading, and their persistence, but also captures the probability of trades with zero price revision
and is able to capture the distribution of non-zero price revisions. This information allows us to
discuss the potential profits from HF trading strategies such as rebate trading.

Moreover, the HMM allows us to develop a tick-by-tick trading strategy for an HF investor
that posts immediate-or-cancel buy and sell limit-orders to profit from the bid-ask spread. An HF
investor would execute this strategy over a time interval of length T which usually ranges between
a couple of minutes and at most one day. The optimal strategy indicates the buy and sell quantities
that the investor should post and how to update them every time a trade has occurred. These
quantities depend on: the rate of arrival of trades, the intra-day-state of the market, the within
state volatility of price revisions, the inventories which track the investor’s accumulated stock, and
finally, the proximity to the terminal investment horizon. We show that the spread posted by the
HF investor is wider (tighter) when the volatility of the price innovation is high (low). Moreover,
as the investor accumulates a long (short) position, the investor’s bid-price (ask-price) moves away
from the mid-price and the ask-price (bid-price) moves in towards it – inducing the investor to sell
(buy) assets – which induces the inventories to mean-revert towards zero. Finally, all else equal,
as the investment horizon approaches T , the investor submits buy and sell limit-orders which are
tighter around the mid-price; a strategy that stresses the fact that the HF investor aims at holding
zero inventories at time T .

As a particular example of this tick-by-tick strategy we calibrate the model to PCP data and
find the profit and loss (PnL) distribution of an HF investor who posts limit-orders on PCP shares

2The six stocks are: AA, AMZN, HNZ, IBM, KO, and PCP.
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based on a two-regime model and the PnL distribution of a less informed HF trader who cannot
distinguish between the different regimes PCP may be in. We show that the less informed trader’s
PnL is almost always underperforming that of the better informed trader. This difference in PnLs
can be in part attributed to adverse selection costs; the better informed trader is able to adjust
her posts so that she is able to avoid losses as a consequence of being picked off by better informed
traders.

The remainder of this article is organized as follows. Section 2 discusses how we jointly model
durations and price revisions using an HMM. Section 3 describes the data used throughout the
article and discusses some estimation issues. Section 4 presents and interprets the results. Section 5
presents a discussion of how HFTs can use the information provided by our model to execute certain
trading strategies. Finally, Section 6 concludes.

2 Joint modeling of durations and price revisions

Over the last twenty years a substantial body of literature known as market microstructure has
focused on the study of price formation at an intra-day level. Initially, most of the studies were
at a theoretical level and particular attention was devoted to market structure and market designs
and how these affect price formation – see e.g. de Jong and Rindi (2009). More recently, the
availability of intra-day high-frequency data has enabled researchers to test some of the previous
theories of market microstructure and to attempt to describe the stylized facts of high-frequency
price dynamics.

Prior to the days when AT dominated most of the trading volume in the US equity markets, em-
pirical studies with tick-by-tick data document some of the salient features of the intraday behavior
of stock prices. For example most of the volume of transactions generally takes place at the opening
and closing of the market, together with the U-shaped pattern of volatility over the day, see Engle
(2000). Other studies, both theoretical and empirical, show that although traditional stock price
models that assume that trades occur at every instant in time (or that they occur at equally spaced
time-intervals) may be harmless at long-time scales, it is an unsuitable assumption for high-frequency
data modeling. In particular, these studies show that at high frequencies, duration between trades
conveys relevant information about the dynamics of tick-by-tick trades, including: the pace of the
market, the presence of uninformed or informed traders, the volatility of price revisions, and implied
volatility from the option markets, see Diamond and Verrechia (1987), Easley and O’Hara (1992),
Engle and Russell (1998), Engle (2000), Dufour and Engle (2000), Manganelli (2005), and Cartea
and Meyer-Brandis (2010).

Thus, duration is one of the features of stock price behavior that becomes highly relevant over
short periods of time. This random variable is generally overlooked in most asset pricing models that
have horizons of at least a few days because it is believed that any effect that durations may have
are dissipated very quickly. But nowadays, when the majority of trades are executed by AT that
process information on a tick-by-tick level, duration becomes an important variable to model because
it conveys relevant information about the market over short-time intervals. From a statistical point
of view, the calendar-time distribution of stock price dynamics (on small timescales) depends not
only on the distribution of price revisions, but also on the distribution of duration. From a financial
viewpoint, trading strategies are specifically designed to profit from price patterns and behavior
over ever shrinking timescales.

As mentioned in the introduction, the speed of trade execution shrunk by a factor of ten in
the last five years, strongly indicating that trading very quickly over short periods of time is at
the heart of modern trading in general, and AT in particular. There are many factors that have
contributed to the increase of AT. The introduction of limit order markets and changes in market
structure have lowered the entry barriers to new participants. At the same time computer power
has spectacularly increased and its costs dramatically decreased. Thus, the number of market
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Figure 1: The intra-day-states Zt evolve according to discrete time Markov chain with transition
matrix A. Trades arrive at a rate of λ(Zt) and have price revisions with pdf f (Zt). Once a trade
occurs, the world-state evolves.

participants has increased and the speed at which trading occurs has also increased.
The econometrics literature focusing on trade arrival started in earnest with the work of Engle

and Russell (1998) who propose the autoregressive conditional duration (ACD) model to capture
the time of arrival of financial data. Since then, most models have extended the ACD framework
in different directions. See for example the logarithmic model of Bauwens and Giot (2000) and
the augmented class of Fernandes and Grammig (2005) among others. Other extensions are based
on regime-shifting and mixture ACD models, see for example Maheu and McCurdy (2000), Zhang,
Russell, and Tsay (2001), Meitz and Terasvirta (2006), and Hujer, Vuletic, and Kokot (2002), and
the recent work of Renault, van der Heijden, and Werker (2010) which proposes a structural model
for durations between events and associated marks. For a comprehensive account of ACD models
we refer the reader to Bauwens and Hautsch (2009).

Departing from the more traditional literature based on ACD models, we propose a finite-state
HMM for the high-frequency dynamics of spot prices. We take this approach because it provides
us not only with a good description of the statistical properties of the arrival of trades, but also,
and more importantly, it provides us with a framework that is applicable to algorithmic and HF
tick-by-tick trading design. Specifically, our model zooms in to the fine structure of price dynamics
and is able to: distinguish between different trading regimes throughout the trading day and how
the intra-day market switches between the different states; capture the distribution of durations
between trades; and model the regime-dependent distribution of price revisions (trade and volatility
clustering). The rest of this Section discusses the model we propose and Section 5 looks at tick-by-
tick trading strategies.

We employ a finite state {1, . . . ,K} discrete-time Markov chain Zt, with transition matrix A,
to modulate intra-day states. The time index in the Markov chain corresponds to the number
of trades that have occurred during the trading day – in other words the time index marks the
business time. Within a given intra-day state (or regime) the arrival of trades is governed by the
regime-dependent hazard rate λt = λ(Zt), and price revisions are distributed according to a discrete-
continuous mixture model. The discrete part of the distribution of price innovations models a zero
price revision upon a trade occurring, while the continuous portion models non-zero price revisions,
where all parameters are dependent on the intra-day-state. Specifically, we assume that the size of
the log-mid-price revision X, in state k ∈ {1, . . . ,K}, has pdf

fX|Zt=k(x) , f
(k)
X (x) = p(k) δ(x) + (1− p(k)) g(k)(x) , (1)

where δ(x) represents a probability mass (or Dirac measure) at x = 0, g(k)(x) represents the contin-
uous distribution of the non-zero price revisions, and p(k) represents the probability of observing a
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regime A λ p σ

1 0.80 0.20 1.37 0.56 2.9× 10−4

2 0.43 0.57 0.14 0.14 6.3× 10−4

Table 1: Parameters used to generate the sample price path in Figure 2. These parameters were
estimated from the PCP Feb 2008 data set assuming a two-regime model.

trade with zero price innovation. In principle, conditional on a non-zero price revision, any reason-
able distribution could be used to model the price innovations, for example: Gaussian, student-t,
double exponential, etc. Moreover, in this framework there is ample flexibility to choose how to
model durations within a given regime, for example using a hyper-exponential, Coxian class, or
more generally, using phase-type distributions which uniquely describe the state-dependent hazard
rate λt = λ(Zt). Moreover, it is also possible to introduce co-dependence between the duration and
price revision within a given regime through a copula. However, we have found that having inde-
pendence of duration and price revision within a fixed regime aptly captures the stylized features
of the data. Figure 1 shows how the intra-day-states evolve according to the discrete-time Markov
chain with transition matrix A, and where upon a trade occurring in regime i it enters regime j
with probability Aij .

Now, equipped with the Markov chain Zt, the regime contingent rate of arrival function λ(k) and

the regime contingent price revision distribution F
(k)
X (x) =

∫ x
−∞ f

(k)
X (z)dz with k ∈ {1, . . . ,K}, we

model the tick-by-tick price process of the asset as a marked point process as follows:

St = S0 exp

{
Nt∑
n=1

ε
(Ztn−)
n

}
, (2)

where
{
ε

(k)
1 , ε

(k)
2 , . . .

}
are i.i.d. random variables with distribution function F

(k)
X (x), and where

{t1, t2, . . . } are the arrival times of the trades and Nt = sup{n : tn < t} is the counting process
corresponding to trade arrivals.

For simplicity, we assume that the non-zero price revisions are Gaussian, that is g(k)(x) =
φ
(
x;σ(k)

)
where φ(x;σ) denotes the pdf of a Gaussian random variable with zero mean and standard

deviation σ, and that the state-dependent hazard function λt = λ(Zt) is a constant which implies
that within the regimes the waiting times are exponentially distributed. We remark that our HMM is
able to capture the long and short durations exhibited by financial data because the chain meanders
through the different regimes according to the transition matrix A, we return to this point below.

In Figure 2, we use equation (2) to simulate a high-frequency sample path of stock prices using
a two-state HMM with parameters given in Table 1 which have been estimated from PCP February
2008 data. Notice that in regime 1 (depicted by blue ’x’s) durations are fairly short and the price
innovations tend to be small; moreover, the chain persists in this regime for some time. Once the
chain migrates to regime 2 (depicted by green circles), durations are longer and the price innovations
have larger variance; however, the chain eventually switches back to regime 1 at a faster rate than
the rate at which it originally switched into regime 2 with. This simple example shows some of the
characteristics of prices on a tick-by-tick level. There are times when the market experiences bursts
of activity with volatility clustering (e.g., between the 1.396 and 1.398 mark in the time axis) – i.e.,
many trades over short periods of time followed by relatively high volatility; and periods of very
little activity and low volatility (e.g., around the 1.408 mark in the time axis) – which could be
interpreted as no news arriving in the market.
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Figure 2: A sample price path generated by our model together with the state of the hidden Markov
chain. The large and small circles indicate trades that occurred while the Markov chain was in
regime 1 and 2 respectively. The model parameters used to generate these paths are recorded in
Table 1 and were estimated using the PCP Feb 2008 data with 2 regimes.

3 Model Estimation & Data

In this section we describe our approach to estimating the parameters of our model and the data
sets that we used.

3.1 The EM-algorithm

We employ the Baum-Welch EM algorithm for the HMM to estimate the transition probability
matrix A, the within regime model parameters θ = {λ, p, σ}, and the initial distribution of the
regimes π, for details see Baum, Petrie, Soules, and Weiss (1970). The methodology amounts to
maximizing the log-likelihood

lnL =
n∑
t=1

K∑
j=1

ln fθj ({(τt, Xt)})I(Zt = j)

+
n−1∑
t=1

K∑
j=1

K∑
k=1

lnAjkI(Zt = j, Zt+1 = k) +
K∑
j=1

lnπjI(Z1 = j)

of the sequence of observations {(τt, Xt)t=1,...,n}. Here, fθj ({(τt, Xt)}) denotes the joint probability
density of the observation (τt, Xt) given that the chain is in state j with parameters θj . Since the
durations between trades have been recorded to the nearest second, we adopt a censored version of
the density and for our specific model write

fθj (τt, Xt) = e−λjτt(1− e−λj )× (pjI(Xt = 0) + (1− pj)I(Xt 6= 0)φ (Xt; σj)) , (3)

where I(·) is the indicator function, Xt is the log-price innovation at time t and τt is the duration
since the last trade. The initial starting parameters for the HMM learning were estimated assuming
that the duration/price innovation pairs are independent and drawn from the related mixture model

f
(0)
X,τ =

K∑
j=1

αj e
−λjτt(1− e−λj )× (pjI(Xt = 0) + (1− pj)I(Xt 6= 0)φ (Xt; σj)) .

The estimated mixture weights αj were used to provide an initial estimate for the transition proba-
bility matrix A by assuming that only transitions between neighboring regimes can occur. The EM
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algorithm was then run until a relative tolerance of 10−6 was achieved. A review of the Baum-Welch
approach for fitting HMMs with the EM algorithm is provided in Appendix A together with the
updating rule for our specific within regime model.

3.2 The Data

We used TAQ data for several mid-cap and large-cap stocks for the months of February 2001 and
February 2008. Trade data during the normal trading hours between 9:30am and 4:00pm were
analyzed. The data were cleaned by deleting entries with a non-zero Field Correction flag and
entries with a Field Condition flag of Z. Furthermore, the data were filtered to remove any data
points that were outside 15 standard deviations because we assume that these are errors in the
tape. Unlike many previous works, we keep all other reported trades, and in particular do not throw
away trades which reported a price revision of zero nor do we throw away trades which reported a
duration of zero. Deleting such trades results in well over 30% reduction in the data and there are
two important reasons why discarding these trades is undesirable. First, from an estimation point
of view, deleting these trades destroys the auto-correlation structure of the data and consequently
biases the estimation. From a financial point of view, trades with zero price revision or with zero
duration convey key information that is valuable for certain types of strategies that AT and in
particular HFTs employ regularly (we discuss such strategies in Section 5).

One of the reasons why in previous studies zero duration trades were deleted is because it was
assumed that trades arrive at a rate where it is not (mathematically) possible to have two trades
arrive at the same point in time. For instance, if trades arrive according to a Poisson process or any
other counting process where the arrival rate is finite there can only be at most one trade over an
infinitesimally small time-step. In or model we are able to keep these trades for two reasons: (i) the
model for price revisions is a mixture model, in which zero price revisions are captured separately
from non-zero price revisions (ii) we use censoring to account for the fact that data are reported
only to the nearest smallest second which allows us to effortlessly include zero waits. In Table 2, we
report some relevant statistics concerning data deletion for each data set.

Markets tend to be more active during the morning and afternoon than in the middle of the day.
Thus, one expects that durations are shorter around the hours when the market opens and closes,
and longer around midday. Depending on the goal of the model for stock dynamics one option
is to diurnally adjust durations to account for this intra-day seasonal pattern, eg. Engle (2000),
or to employ the duration data without adjustments, eg. Cartea and Meyer-Brandis (2010). The
results we obtain are qualitatively the same whether we estimate the HMM using diurnally adjusted
durations or do not make any adjustments for intraday seasonality. In what follows we show the
results when no adjustments are made because in the two examples we discuss in reference to HF
trading and AT, the HMM parameters must be estimated online and it seems more plausible to
assume that the duration data are not adjusted as it is processed in real time.

3.3 Picking the Number of States

Since we are utilizing an HMM, one key step is to estimate the number of hidden regimes. One
often used performance measure is the Bayesian Information criterion (BIC). That is,

BIC = lnL∗ − νK
2

lnn ,

where νK = 4K + K ∗ (K − 1) is the number of model parameters for a model with K regimes,
n is the number of observations, and L∗ is the maximum log-likelihood (in this context, since we
are using the EM algorithm, it is our best estimate of the maximum log-likelihood, see Appendix A
for more details). Another often used performance measure is the Integrated Completed Likelihood
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FEB 01 FEB 08

Symbol Raw Data Correc Std Dev Data Raw Data Correc Std Dev Data

AA 35,137 2,623 0 32,514 979,211 16 165 979,030
AMZN 163,400 229 2 163,169 1,144,832 39 445 1,144,348
HNZ 14,786 29 0 14,757 232,983 1 33 232,949
IBM 98,311 343 26 97,942 805,380 609 344 805,380
KO 41,877 130 3 41,744 777,876 26 231 777,619
PCP 5,149 4 0 5,145 197,784 7 67 197,710

Table 2: This table summarizes how data were cleaned. Column ‘Raw Data’ shows all the trades
reported on the TAQ database; column ‘Correc’ are trades that were deleted because the Field
Correction was different from 0 and the Field Condition was equal to Z; column ‘Std Dev’ shows
the total number of log-returns outside 15 standard deviations that were deleted; and column ‘Data’
shows the number of trades that we use in the empirical analysis.

year criteria AA AMZN HNZ IBM KO PCP

2001
BIC 4 5 3 5 4 2
ICL 4 3 2 3 3 1

2008
BIC 6 7 6 7 6 7
ICL 3 2 2 2 3 2

Table 3: The preferred number of regimes using the BIC and ICL criteria based on estimation of
all data sets.

(ICL). Biernacki, Celeux, and Govaert (2001) propose to use a BIC-like approximation of the ICL
leading to the criterion

ICL =
n∑
t=1

ln fθ
Ẑt

(τt, Xt)−
νK
2

lnn ,

where the sequence of missing states are replaced by the most probable value Ẑt based on the
estimated parameters (as computed for example from the Viterbi (1967) algorithm). The optimal
number of states is the one which maximizes the criterion. However, as described in Celeux and
Durand (2008), the BIC criterion tends to overestimate the number of hidden states while the ICL
criterion tends to underestimate the number of hidden states.

In our implementation for assessing the number of states we use the following cross validation
approach

1. The parameters for a fixed number of regimes were estimated using all but one single day’s
data – this provided 19 (for 2001) or 20 (for 2008) parameter estimates.

2. The performance criterion (both BIC and ICL) were computed for the missing day’s data only
– providing 19 (for 2001) or 20 (for 2008) measures of BIC and ICL.

3. These measures were then averaged and the process repeated from step 1 with an increased
number of regimes.

Table 3 shows the results of this estimation procedure. For the 2001 data, the average number of
regimes is 3 while in 2008 the average number of regimes is 4. In the remainder of the article we
use 4 regimes in our HMM.

Below in Section 4 we present and interpret the parameter estimates of the HMM for each
stock we study. But before proceeding we discuss how the HMM is able to capture the empirical
distribution of the waiting times. When looking at data that involve the random arrival of trades
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Figure 3: The model fit to the empirical distribution of duration and price revision based on four
regimes for Feb 2008. The estimated model parameters are provided in Table 4.

it is customary to look at the survival function, which represents the probability that the waiting-
time between two consecutive trades is greater than t. One of the empirical features of durations
in tick-by-tick data is that the unconditional survival function is not exponential. The common
assumption that durations are exponentially distributed fails because the tail of the exponential
distribution decays too fast and in the market we frequently observe long durations, see Cartea and
Meyer-Brandis (2010). In our HMM model we have assumed that within the intra-day state the
waiting time distribution is exponential, but the transit from one state to another state (with state
dependent parameters) allows us to capture the unconditional survival function extremely well. As
an example, in Figure 3 we show the empirical fit to the PCP data for both the trade duration and
the price revisions – which illustrate the model’s goodness of fit.

4 Discussion of results

The estimated parameters for the HMM with 4 regimes for the PCP dataset are reported in Table
4 – the remaining results for 6 other stocks are reported in the same format in Appendix D. The
standard errors, computed through a bootstrap procedure,3 are reported in the braces below each
parameter. In Table 4 we organized the intra-day regimes starting with the fastest by trade arrival

3The bootstrap was performed by simulating data from the estimated model. The simulated data had the same
number of segments (days) as the original data, and the same number of trades on each day as the original data.
Given the simulated data, the model was then re-estimated, and this procedure repeated ten times. The sample 95%
confidence intervals (based on student-t with 9-degrees of freedom) are reported.
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(or equivalently with the shortest durations) which is given by the highest estimate of the within
regime hazard function λ. The last three columns of the table provide information about the
distribution of price innovations. Column p denotes the probability that the trade arriving within
that state occurs at the same price as the previous trade; column σ (× 10−4) contains the volatility
of the price revision conditioned on the price innovation being different from zero; and column
σ
√

1− p (× 10−4) provides the within regime unconditional volatility of the price revision.

PCP – FEB 2001

Transition Probability Matrix A Conditional Parameters

Regime 1 2 3 4 λ p σ (× 10−4) σ
√

1− p (× 10−4)

1 22.89% 33.61% 24.38% 19.13% 0.232 99.97% 5.917 0.099
( 5.72% ) ( 14.00% ) ( 11.94% ) ( 6.80% ) ( 0.048 ) ( 4.57% ) ( 15.261 )

2 15.63% 69.40% 1.85% 13.13% 0.019 18.66% 21.817 19.677
( 4.72% ) ( 7.16% ) ( 5.77% ) ( 3.66% ) ( 0.003 ) ( 6.20% ) ( 1.385 )

3 3.72% 3.40% 87.67% 5.22% 0.015 44.64% 8.529 6.346
( 1.92% ) ( 3.50% ) ( 5.49% ) ( 2.10% ) ( 0.001 ) ( 2.51% ) ( 0.758 )

4 6.70% 9.11% 13.77% 70.43% 0.006 23.84% 12.534 10.938

( 4.89% ) ( 5.57% ) ( 8.56% ) ( 7.10% ) ( 0.001 ) ( 3.56% ) ( 1.131 )

PCP – FEB 2008

Transition Probability Matrix A Conditional Parameters

Regime 1 2 3 4 λ p σ (× 10−4) σ
√

1− p (× 10−4)

1 66.22% 16.17% 0.62% 16.99% 1.803 91.32% 1.355 0.399
( 0.81% ) ( 0.95% ) ( 0.22% ) ( 0.41% ) ( 0.045 ) ( 0.41% ) ( 0.079 )

2 6.29% 75.27% 2.16% 16.28% 1.112 29.23% 3.004 2.527
( 0.86% ) ( 0.74% ) ( 0.24% ) ( 0.55% ) ( 0.009 ) ( 1.06% ) ( 0.031 )

3 3.70% 8.11% 81.72% 6.48% 0.635 21.68% 11.559 10.230
( 1.18% ) ( 1.59% ) ( 1.14% ) ( 0.69% ) ( 0.011 ) ( 1.11% ) ( 0.219 )

4 24.25% 18.51% 0.38% 56.86% 0.123 16.87% 5.121 4.669

( 0.54% ) ( 0.68% ) ( 0.19% ) ( 0.80% ) ( 0.002 ) ( 0.34% ) ( 0.021 )

Table 4: Estimated 4-regime model parameters on PCP data for the months of February 2001 and
2008. The reported numbers in the braces are the 95% standard errors based on a bootstrap of the
estimated model.

Tables 6 to 10 in the appendix show the parameter estimates for the other stocks we study.
We find that across all stocks in February 2008: the regime where trading occurs at the highest
(lowest) activity is regime 1 (regime 4); the lowest volatility of price revisions (last column of tables)
is in regime 1; the highest probability of observing a zero price revision is in regime 1; and the least
persistent is regime 4. In most cases we find that the lowest probability of seeing a zero price revision
is in regime 4. The results for the same stocks in February 2001 are less clear cut in terms of visible
patterns across different stocks. The intra-day states with lowest durations are not necessarily the
ones with lowest volatility of price revisions; in half the cases the most persistent state is regime 3;
in most cases the state with highest (lowest) probability of observing zero price revisions is regime
1 (regime 4); and there is no one state which is the least or most persistent.

In Table 5 we show the total number of trades for each stock and the proportion of trades4

that took place in every intra-day state during February 2001 and February 2008. As expected, the
number of trades for each stock increased considerably between the two dates, implying that the

4Calculated using the most likely path of the Markov chain, see Viterbi (1967).
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overall trading pace has also increased and average durations decreased. This increase in pace is
also observed at the intra-day regime level, where we see that for all stocks durations have become
shorter – i.e., the hazard rate λ for every state increases from 2001 to 2008.

From the tables that report the HMM parameter estimates and from Table 5 we also observe
that in Feb 2001 regime 1 is both the fastest and the least visited across all stocks. Contrastingly,
in Feb 2008 it is the slowest regimes where intra-day trading spends the least amount of time, with
the exception of IBM where approximately 63% of trades occurred in regimes 2 and 3. Furthermore,
if we look at all stocks combined, in 2001 less than 10% of trades occurred in the fastest state and
less than 25% in the second fastest state, whereas in 2008 more than 30% of trades occurred in the
fastest state and more than 36% in the second fastest state.

FEB 2001 FEB 2008

Regime Z = 1 Z = 2 Z = 3 Z = 4 Total trades Z = 1 Z = 2 Z = 3 Z = 4 Total trades

AA 0.007 0.038 0.564 0.391 32,514 0.315 0.418 0.166 0.101 979,010

AMZN 0.176 0.463 0.218 0.143 163,150 0.241 0.672 0.018 0.069 1,144,327

HNZ 0.011 0.033 0.697 0.260 14,738 0.374 0.135 0.274 0.218 232,930

IBM 0.032 0.068 0.552 0.347 97,923 0.222 0.056 0.627 0.094 804,427

KO 0.035 0.037 0.716 0.212 41,725 0.461 0.275 0.039 0.225 777,600

PCP 0.089 0.198 0.595 0.118 5,126 0.337 0.366 0.053 0.245 197,691

Table 5: Proportion of trades per intra-day state.

Undoubtedly, the recent increase in volume of trades in equity markets is mainly due to AT. In our
sample of data we see that the number of trades between 9.30am and 4.00pm for all stocks has seen
an explosion in the last years. For instance, Table 5 shows that trading volume for KO increased
from 41,725 trades in February 2001 to 777,600 in the same month of 2008. Other qualitative
changes that we observe in the data, which are most certainly a consequence of AT, are: i) From
2001 to 2008 we observe that for most stocks the intra-day states have become less persistent.5 ii)
In Table 5 we see that the fastest regime(that with the shortest average durations) in 2008 is also an
intra-day state where a great deal of trades take place which contrasts with the 2001 results where
the fastest regime was where the least amount of trades took place. One plausible explanation is
that competition among different superfast computer-based algorithmic traders (which include HF
trading) is very active in regime 1. This also confirms the theoretical predictions of Cvitanić and
Kirilenko (2010) who show that the introduction of HFTs increases trading activity (by reducing
the waiting time between trades) and modifies the distribution of price revisions by increasing mass
around the center and thinning the tails.

We can also view our results in light of the microstructure literature. This literature has mixed
results concerning the link between durations and volatility. One of the conclusions in the early
work of Diamond and Verrechia (1987) is that long durations should be positively correlated with
price volatility. Admati and Pfleiderer (1988) also conclude that slow trading means high volatility.
This is confirmed by the empirical results of Dufour and Engle (2000) who find that short durations
and thus fast trading follow large returns and large trades; and those of Manganelli (2005) who
finds that for frequently traded stocks short durations increase the price variance of the next trade.
On the other hand, Easley and O’Hara (1992) find that periods of low variance tend to occur in
periods where there is little trading, i.e. low variance is linked to long durations. This is empirically
verified by Engle (2000) who finds evidence that longer durations and longer expected durations are
associated with lower volatilities.

5From the six stocks, we see that only 6 out of 24 (recall that there are four states per stock) regimes became less
persistent in 2008.
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Our empirical findings clearly indicate that for the 2008 data set the regime where trading is most
active is always the one where the volatility of price revisions is lowest. In this sense our findings
confirm the theoretical predictions of Diamond and Verrechia (1987) and Admati and Pfleiderer
(1988) and the empirical findings in Dufour and Engle (2000) and (for frequently trade stocks)
Manganelli (2005). The slowest regimes on the other hand, are not necessarily the ones with highest
volatility of price revisions.

5 What the states say about potential Algorithmic and High Fre-
quency Trades

One of the key aspects of AT is how the arrival of information is processed in order to make trading
decisions. Information are marks associated to the trade and quote flow (prices, duration, volume,
seller initiated trade, buyer initiated trade, etc.) as well as other pieces of news (announcement of
firm specific information; and macroeconomic variables such as unemployment, growth, etc.) that
are released to the market and trading activity reacts until this new information is impounded in
stock prices. Therefore, if the objective is to design trading algorithms, one of the challenges is how
can these algorithms incorporate this information as soon as it arrives. The HMM we propose here
has the advantage that the model parameters and the states can be estimated simultaneously and
“online” (see e.g. Mongillo and Deneve (2008)). Consequently, trading algorithms can use all of
this information and in particular ‘know’ the intra-day state of the market as well as the parameters
relating to price revisions, duration, and probability of migrating to another state. Below we discuss
two trading strategies that can be implemented based on the HMM.6

5.1 High frequency trading for liquidity rebates

Within AT there are activities that are carried out by what is known in the market as HFTs. These
traders are different from the rest because they: i) submit a vast number of orders over short time
intervals and, more importantly, a large number of these orders are canceled immediately if they
are not executed in a split second. For example, February 5 2008 is a typical day for AA in Nasdaq
where 96% of all orders were cancelled. More interestingly, 12% of all orders were cancelled within
100 milliseconds of being sent, 25% were cancelled within 500 milliseconds, and 33% within 1 second.
ii) they aim at being flat, that is to hold no inventories, ideally within the day or at most at the
end of the day, see Cvitanić and Kirilenko (2010). HFTs’ inventories quickly mean revert to zero
throughout the day because of the time scale over which the HF strategies are designed to profit
from buying and selling assets. HFTs use their superior speed to process information and act ahead
of other slower traders. Admittedly, there are a great deal of HF strategies and all we know is
that their success depends on being able to profit from roundtrip trades. Therefore, because HFTs’
competitive edge is speed, their strategies seek opportunities to enter and exit the market very
quickly (milliseconds, seconds, or minutes) and, as a result, holding periods are extremely short,
see Cartea and Jaimungal (2012). Furthermore, HFTs aim at ending the day with no inventories
to avoid having to post collateral overnight and to avoid the risk of adverse price movements when
trading resumes the following day.

HFTs deploy different strategies depending on market conditions and depending on what the
aim of the set of trades is. For instance, HFTs may trade with the sole purpose of making what
is known as ‘liquidity rebates’. Some exchanges incentivise liquidity provision by paying a rebate
of up to 0.3 cents per share. Exchanges typically charge a somewhat higher access fee than the
amount of their liquidity rebates but these access fees are paid by those who hit a bid or lift the

6See Bouchard, Dang, and Lehalle (2011) for a framework that discusses when and how to use different trading
algorithms.
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offer posted by the liquidity provider because they are aggressive order types, i.e. they are liquidity
takers. Sometimes, however, exchanges have offered “inverted” pricing and pay a liquidity rebate
that exceeds the access fee, see SEC (2010).

To illustrate exactly how an HFT may take advantage of rebates, consider the following example
of a rebate trade: Assume that the exchange offers 0.25 cents per share to dealers who post orders.
If this particular order is filled, the liquidity provider takes the 0.25 cents rebate and the trader that
lifted the offer or hit the bid pays the access fee. One of the many ways in which the HFT spots a
rebate opportunity is to ‘observe’ that a big buy order that has been broken up in small batches is
being put through the market by an algorithmic trader. The current price is $10.00 per share and
the HFT uses her speed advantage and sends out a buy order for $10.01 per share. This posting
is considered as providing liquidity because it ups the price by one cent and sits there until it is
hit by another party (presumably those that were initially selling at $10.00 to the AT). After the
HFT’s buy order is filled, she immediately turns around and posts an order to sell them for $10.01
per share (again the HFT is providing liquidity) which is lifted by the algorithmic trader who is still
liquidating his position. This round trip trade generates 0.5 cents profit per share as a result of the
rebates despite the fact that the HFT makes zero profit on the shares themselves.7

In the set of rebate trades discussed above the HFT had to up the buy price by one cent to be
treated as a liquidity provider by the exchange. Had the HFT got ahead of the AT and bought
shares at $10.00 she would have been seen as a liquidity taker (aggressive order) and would have
incurred an access fee. Even if she made the rebate on the second leg of the trade by selling at $10.00
per share the one way rebate trip would have delivered a loss of 0.05 cents per share (assuming an
access fee of 0.3 cents per share). However, if exchanges offer an inverted pricing scheme to ‘attract’
liquidity, then even in trades where only one leg of the round trip earns the rebate, the HFT post
positive net profits.

Collecting rebates is not risk-free, since there are scenarios where the risk is adverse move in
prices. However there are regimes in which the risk of these adverse moves are lower. The information
provided by our HMM can be used to assess how likely a rebate trade, or set of rebate trades, is able
to produce a positive profit.8 Take for example AA and the information in Table 6. There we can
see that in February 2008 there are regimes that look ‘safer’ than others to execute rebate trades.
There are three aspects we must consider: first, how persistent the regime is; second, what is the
probability that trades within that regime have a zero price revision; and third, if the price revision
is not zero, what is the volatility of the change in prices. For example regime 1 appears to be an
ideal regime for HFTs to profit from rebates alone on all three accounts. The persistence of regime
1 is the highest across all regimes (80.67%), the probability of observing zero price revisions is also
the highest across all regimes (99.97%), and if there is a price change in regime 1, the volatility of
the price innovation is the lowest across all regimes (3.010× 10−4), and volatility of a price revision
(without distinguishing between zero and non-zero price revision) is 0.050×10−4. Moreover, 308,840
trades took place within this state which is around 31.5% of the total trades during that month,
showing that rebate opportunities are not a rare occurrence. Therefore, an HFT that finds herself in
regime 1 for AA shares can engage in rebate trading with a very high probability of making profits
while bearing very little risk.

5.2 Limit order algorithmic trading

Another form of AT involves submitting buy and sell limit-orders around the mid-price in hopes of
posting profits from the bid-ask spread. We pose this problem in a similar manner to Avellaneda

7For example, BATS pays a $0.0029 rebate per share for adding displayed liquidity, see
https://batstrading.com/FeeSchedule/. And the NYSE Arca also pays a rebate of 0.0030 per share and this
figure could vary depending on different characteristics, for more information see www.nyse.com.

8This example is for illustrative purposes where for simplicity we assume that the model parameters and intra-day
states were estimated online, but use the expost results in Table 6 as reference.
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and Stoikov (2008); however, here we use a continuous-time mid-price model based on our HMM
to accurately reflect the autocorrelation of durations as well as the co-dependence of duration and
price revisions.9 Although the discrete HMM performs extremely well for empirical analysis, it poses
mathematical difficulties when solving the optimal control problem arising in this AT setup, hence
we utilize a continuous-time model counterpart (in Appendix B we show how to map between the
two models). To this end, we assume that the mid-price St is a regime switching Brownian motion:

dSt = σt dWt . (4)

Here, the volatility parameter σt = σ(Ht) is indexed by the continuous-time finite-state Markov chain
Ht (taking on values {1, . . . ,K}) with generator matrix B. The process Ht determines the volatility
of the mid-price, resulting in a regime-dependent volatility, and is the continuous-time counterpart
of the discrete time Markov chain Zt introduced earlier.

In this framework, the goal of the HF investor is to submit bid and ask limit orders (which
are canceled shortly if not filled) at (St − δ−t ) and (St + δ+

t ) respectively, so as to maximize her
expected utility of terminal wealth at the end of the day (or, e.g., mid-day or hour which is a normal
investment horizon for HFTs in one set of trades). We assume that the HFT is sufficiently small not
to affect other market makers’ strategies when sending limit orders to the book.10 The investor has
control over δ∓, which represent the distance from the mid-price of the bid/ask orders. To achieve
this goal, it is important for us to model the rate at which the orders are executed; consequently, we
assume that if orders are placed at the mid-price, then the order is executed at a rate λt = λ(Ht).
This rate of execution depends on the regime of the market and is the direct analog of the rate
of arrival of trades in our discrete time HMM. However, as is well known, when orders are placed
deeper into the limit-order queue (i.e. further away from the mid-price), the order is filled at a
decreased rate. To account for this effect, we assume that the buy/sell limit-orders get filled at

the rate Λ∓t = λt e
−κ∓,tδ∓t where, κ∓,t = κ

(Ht)
∓ is a within-regime constant and is related to the

shape of the limit-order book in the observed state Ht. In regimes when trades occur quickly, our
earlier results imply that the volatility of trades is low and we expect that the limit-order book is
concentrated near the mid-price; moreover, we expect this regime to have a small bid-ask spread.
Therefore, in such regimes we expect that κ is large – because orders placed far from the mid-price
are less likely to be filled. On the other hand, in regimes when trades occur slowly, our earlier
results imply that the volatility of trades is high and we expect that the limit-order book is flatter –
i.e. that as quotes move away from the mid-price the volume bid or offered does not change much;
further, we expect this regime to have a larger bid-ask spread. Consequently, in such regimes we
expect that κ is small – because orders placed deeper into the limit-order book are more likely to
be executed in this regime.

The only parameter which does not have a counterpart in our discrete time HMM are the decay

rates κ
(Ht)
∓ which can in principle be estimated from level-II data11 and is left for future work. An

example of the form of this execution rate is show in Figure 4.
Having the same underlining Markov chain Ht drive both the volatility of the mid-price and

the rate at which trades are executed allows us to capture the co-dependence between durations
and price innovations just as in the discrete model. Furthermore, as can be seen from any of the

9For recent work on optimal market making see Guilbaud and Pham (2011); and for optimal liquidation and
trade execution in limit order books see Alfonsi and Schied (2010), Kharroubi and Pham (2010) and Bayraktar and
Ludkovski (2011).

10It is argued that HF market makers are constantly updating their quotes every time there is a change in the
LOB. Thus, order flow information is key to the behavior of HF market participants and this explains in part the vast
number of orders and cancellations that we see during trading hours.

11Level-II data contains the status of the entire limit-order book showing all current bid/sell offers and the number
of shares being offered at that these price levels. This is in contrast to level-I data which contains only best-bid and
best-ask. The shape of the limit-order book is directly related to the probability that a specific limit-order is executed
and can be used to infer the decay factors κ(k) in our model.
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Figure 4: A sample plot of the rate at which limit buy/sell orders are executed as function of the
distance to the mid-price. The dependence on the regime is also shown for a two-regime model. The
second regime has slower rate of execution and a flatter limit-order book than the first regime.

calibrated parameters in the discrete model, the rate at which trades arrive is much larger than the
rate at which the chain leaves a given state. This is an important point because one of the crucial
elements in AT and HF trading in particular is to avoid having stale quotes in the book. In our
model a quote becomes stale if the market migrates to another intra-day state or if a trade takes
place. In states where the probability of migration is low relative to the arrival rate of the trade,
coupled with the ability of submitting immediate-execution-or-cancel orders, makes it very unlikely
for the AT to be filled right after the market has changed to another state or a trade takes place.
The key dangers are both a change in the arrival rate of trades and the volatility of price revisions
which are determinant variables for picking the optimal spread when submitting buy and sell orders
to the book. Below we show how the optimal spread is chosen by the AT and how it depends on
the volatility of prices and durations between trades.

To formalize the investor’s problem we need to introduce some more notation. Let N−t and N+
t

denote the counting processes for the executed buy and sell limit-orders (recall that buy/sell orders
are executed at the rate Λ∓t ). Further, let qt = N−t −N

+
t denote the total inventory of the investor.

Upon a buy/sell order being filled, the investor pays (St − δ−t ) and gains (St + δ+
t ) respectively.

Consequently, the investor’s wealth Xt upon executing this strategy satisfies the SDE

dXt = (St + δ+
t ) dN+

t − (St − δ−t ) dN−t , (5)

and the investor seeks the strategy (δ±s )t≤s≤T which maximizes the expected utility of terminal
wealth (e.g. for a HFT this would be at end of day, or end of hour). The investor’s regime-dependent
value function V (k)(t, x, S, q) is finally defined as

V (k)(t, x, S, q) = sup
(δ+u , δ

−
u )t≤u≤T

E [ u(XT + qT ST ) ] (6)

with exponential utility u(x) = 1
γ (1− e−γx).

Here γ is the risk-aversion parameter and we assume that algorithmic and HFTs executing
these limit-order strategies are large enough to be considered as near risk-neutral investors with
γ � 1. In this case, utility u(x) ∼ x − 1

2γx
2, so that an HF investor who seeks to maximize (6)

is essentially maximizing expected return while penalizing risk. As we discuss below, the optimal
strategy induces a mean reversion toward zero in the inventories qt, which is precisely one of the
most revealing features of HFTs.

Proposition 1 The optimal strategy for the HFTs with state dependent value function (6) is given
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by

δ±t =
1

κ
(Ht)
±,t

+ γ

[
− 1

2 (κ
(Ht)
±,t )2

∓ (qt ∓ 1
2) b(Ht)(t)

]
+ o(γ) , (7)

where the regime dependent function b(k)(t) is b(1)(t, T )
...

b(K)(t, T )

 = V −1diag

(
(T − t), e

d2(T−t) − 1

d2
, . . . ,

edK(T−t) − 1

dK

)
V

 (σ(1))2

...

(σ(K))2

 . (8)

Here, d2, . . . , dK are the non-zero eigenvalues12 of the transition rate matrix B and V is the matrix
of the eigenvectors.

For a proof see Appendix C.
By inspecting (8) we see that b(k)(t, T ) ≥ 0. This function plays a key role in setting the distance

between the two limit-orders. An important point is that it is an increasing function of the volatility
of the price revisions – therefore the higher the volatility of the price revision the wider the spread the
investor posts. Further, as the transition rates between regimes increases, the non-zero eigenvalues
become more negative implying that the function b approaches zero faster and the posted spreads
are tighter.13 Moreover, it is interesting to see that as the terminal time T approaches, the function
b(k)(t, T ) approaches zero implying that the optimal policy requires posting limit-orders with tighter
spreads. This is once again a consequence of the investor’s risk aversion which induces her to have
a zero terminal inventory. Placing postings with tighter spreads increases the probability of being
filled and increases the speed at which inventories revert to zero.

There are other interesting features of the bidding strategy in (7). Firstly, if the HF investor has

no inventory and κ
(k)
+,t = κ

(k)
−,t, then the limit-orders are placed symmetrically around the mid-price.

As the investor accumulates a long position, the investor’s bid-price moves away from the mid-price
and their ask-price moves in towards it – inducing the investor to sell assets. Contrastingly, as the
investor accumulates a short position, the investor’s ask price moves away from the mid-price and
their bid-price moves in towards it – inducing the investor to buy assets. Therefore we see that the
optimal strategy induces the HF investor’s inventory qt to mean revert towards zero.

Secondly, if the intra-day state of the market changes, the volatility of the price revisions will also
change. If in the new state the volatility is higher (lower) the investor’s bid-ask is adjusted via two

channels: a larger (smaller) b(k)(t, T ) and a smaller (larger) κ
(Ht)
±,t both of which increase (decrease)

the spread posted by the investor. As discussed above, the function b(k)(t, T ) is responsible for
adjusting the spread of the postings (from the mid-price) taking into account how much longer the

investor has left before winding up her strategy, and the parameter κ
(Ht)
±,t captures how likely a

posting deep in the book is to be filled. On this last point, the intuition is that when volatility is
high (low) it is more (less) likely to see trades occurring further (closer) away from the mid-price St,

hence the optimal strategy is to post wider (tighter) spreads as a result of a smaller (larger) κ
(Ht)
±,t .

Finally, all else equal, as time approaches the investment horizon T , the investor submits buy
and sell limit-orders which are tighter around the mid-price; a strategy that stresses the fact that
the HF investor aims at holding zero inventories at time T .

12Recall that the generator matrix of an irreducible Markov chain must have a single zero eigenvalue, while the
remaining eigenvalues have strictly negative real part. See e.g. Corollary 4.9, pg. 55 in Asmussen (2003).

13This point results from realizing that higher transition rates induces the Markov chain to reach its invariant
distribution more quickly. Consequently, the system behaves more like a single regime model with a volatility equal
to the (invariant weighted) average of regime specific volatilities.
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5.2.1 Performance of strategies: informed and uninformed market making

We demonstrate some features of the market making strategy developed here by performing a
simulation experiment in which sample paths of the mid-price for PCP are generated and HFTs
make markets to profit from roundtrip trades. To simulate the mid-price of PCP we use a two-regime
model where regime 1 is the fast regime (short waiting times between trades) with low volatility
of price revisions and regime 2 is the slow regime (long waiting times between trades) with high
volatility of price revisions. The model is calibrated to the discrete HMM in Table 1 which contains
the parameters for the PCP Feb 2008 data set.14

To test the performance of the strategies we assume that there are two HFTs who use the same
strategy to make markets at high frequencies, equation (7), but one HFT is better informed than the
other. The better informed HFT knows that PCP trades in two regimes and she is able to correctly
estimate the model parameters, whereas the other HFT is less informed because he assumes that
there is only one regime in the market. We simulate 5,000 mid-price paths, both HFTs submit limit
buy/sell orders which are cancelled an instant later if not filled, the trading horizon is one hour, and
for every simulation we record the PnL of the strategy.

One sample path of this experiment is shown in the top panel of Figure 5. The picture shows
the postings of both traders and the mid-price. We depict the mid-price with circles when PCP is
in regime 1 (the fast regime with low volatility) and with rhomboids when PCP is in regime 2 (slow
regime with high volatility). The dashed lines above and below the mid-price show the postings of
the informed trader, and the solid lines above and below the mid-price show the postings of the less
informed trader. By looking at the postings of the informed trader we notice that in regime 1 orders
are placed closer to the mid-price because the HFT knows that PCP is in the fast regime with low
volatility, while in regime 2 the spread is larger because the HFT knows that PCP is in the slow
regime with high volatility of price revisions.

On the other hand, by looking at the postings of the less informed trader it is clear that he
cannot differentiate which regime PCP is in so he is unable to adjust his posts in the same way
that the informed trader does. Thus, this will affect the overall profitability of his market making
activities, and, additionally, there will be many instances in which his limit orders will be taken
advantage of by better informed market participants who adversely pick off his ‘uninformed’ limit
orders – i.e. the less informed trader will be adversely selected.

Moreover, it is interesting to see how the optimal postings are adjusted every time the inventory
changes. Let us focus on the postings of the informed HFT between seconds 50 and 55. During that
five-second interval we see that two market buy orders were filled by the informed HFT’s resting sell
orders (the two stars on the sell side in that interval). Note that as soon as the HFT sells one share
she immediately increases her sell half-spread and decreases her buy half-spread. This reflects the
inventory management component of the strategy which is always exerting pressure on inventories
so that they mean revert to zero. Finally, note that in business time, the chain spends most of its
time in regime 1; however, in calendar time it spends most of its time in regime 2 – this is because
the mean time to a trade in the slow regime is longer than in the fast regime.

In Figure 5 we also show the HFTs’ PnLs resulting from the 5,000 simulations. We assume that
the HFTs obtain zero rebates for providing liquidity and that their level of risk aversion is γ = 1.
The left-hand picture of the bottom panel shows the distribution of the PnLs of both HFTs. The
histogram in black shows the PnL distribution of the informed HF market maker (mean 13.30 and

14The calibrated transition rate matrix B =

(
−0.3193 0.3193
0.0980 −0.980

)
using the results in Appendix B, σ1 = 0.016%

and σ2 = 0.155%, and λ1 = 1.37 and λ2 = 0.14. We further assume κ
(1)
+ = κ

(1)
− = 100 and κ

(2)
+ = κ

(2)
− = 50 to reflect

a flattening of the order book in regime 2 and that orders in the book of more than 5¢ from the mid-price occur with
a probability of less than 0.1%. Further, an investment horizon of T = 1 hour is used and the investor is assumed to
have a risk-aversion parameter of γ = 1. For the single regime case we use the invariant distribution of the Markov
chain to compute the average vol σ = 0.135%, intensity λ = 0.44 and fill probability parameter κ = 62.33.
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standard deviation 0.61) and the histogram in grey shows the PnL distribution of the less informed
HF market maker (mean 12.30 and standard deviation 0.59). The right-hand picture of the bottom
panel shows the difference between the informed and less informed PnLs (mean 1.00, standard
deviation 0.30 and the 5th percentile is 0.52). As expected, the less informed trader is less profitable
because he trades on lesser quality information which precludes him from sending optimal orders to
the LOB to profit from knowledge of PCP’s market state and also exposes him to adverse selection
costs.

To appreciate how the profitability of market making depends on the quality of information
employed by the HFTs, Figure 6 shows the Sharpe ratio (left panel) and Risk/Return frontier (right
panel) for γ ∈ [0, 10].15 As expected, for any level of risk aversion the Sharpe ratio of an informed
strategy is always higher than that of a less informed strategy. In addition, it is interesting to note
that for low values of the risk aversion coefficient γ the Sharpe ratio is increasing in γ, peaks at
around γ = 1, and then is decreasing in γ. The right panel of the figure shows that for low levels
of risk aversion there are clear gains from being a better informed market maker. And although it
is always more profitable to be better informed, the risk/return frontier of the two HFTs become
closer because risk aversion plays a key role in the optimal halfspreads.

6 Conclusions

We develop an HMM to understand the key behavior of stock dynamics at a tick-by-tick level.
The HMM modulates different intra-day states of the high-frequency market dynamics and within
every state we model price revisions and durations. As a whole, the model is able to capture
the unconditional distribution of waiting times as well as the conditional (within regime) duration
between trades and distribution (within regimes) of price revisions. An important feature of our
model is that we are able to differentiate between trades with zero-price revision and trades that
change prices relative to the previous observation. This distinction is important not only to correctly
model the tick-by-tick dynamics of stock prices, but it is also crucial in the design of trading
algorithms which these days are responsible for approximately 70% of the volume in US stocks.

Our approach allows us to discuss how the market has changed in recent years where the major-
ity of trades are designed and executed by computer algorithms. Over the last decade the increasing
presence of AT has changed not only the speed at which trades take place, but also other funda-
mental intra-day characteristics of stock price behavior have changed. We start by describing the
characteristics that have changed only incrementally in the two periods, February 2001 and Febru-
ary 2008. i) For all but one asset, the states with shortest average durations is where we observe
the highest probability of observing zero price innovations; and ii) The states with longest average
durations are generally the ones where the probability of observing a zero price innovation is lowest.
Some of the changes between the two periods are: i) Across all stocks we study in 2008, the intra-day
states with shortest average durations are also the states with lowest volatility of price revisions.
The same is not true for 2001 where there is no general connection between states of high activity
and volatility. ii) For all stocks in 2001, the intra-day state with the shortest durations is also the
state where the least amount of trades took place. On the other hand, in 2008 we find the opposite
result where, generally, the intra-day states with the longest durations have the least number of
trades.

Finally, we provide two concrete examples of how HF trading and AT strategies can be imple-
mented based on the specific information derived from our model. The first example looks at rebate
trading during February 2008 in AA stock. We discuss how given the large proportion of zero-price
revisions (99.97%), and the low volatility of the non-zero-price revision of the remaining trades in

15The Sharpe ratio is calculated as (µ− r)/σ where µ is the mean PnL, σ is the standard deviation of the PnL, and
the risk-free rate r = 0.
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Figure 5: The top panel shows a sample path of the mid-price together with the optimal bid/ask
strategy and the executed trades for a trader who uses two regimes (dashed-lines) and a trader who
uses one regime (solid lines). The stars and boxes show filled limit orders events. The bottom left
panel shows the distribution of the investors terminal PnL by investing in the two regime strategy,
while the bottom right panel shows the excess PnL the two regime trader receives over the one-regime
trader where both investors have a coefficient of risk aversion γ = 1.

that regime, coupled with the high persistence of the regime (80.67%), and the fact that over 30%
of all AA trades during that month occurred in that state, trades with the sole purpose of collecting
liquidity rebates are an important source of low-risk profits for HFTs.

In the second example of HF trading strategies, we first derive the optimal tick-by-tick strategy
that an HF investor who uses limit-orders to profit from the bid-ask-spread should follow. In
general, our analytical results provide the (immediate-or-cancel) buy and sell optimal strategy that
the investor should post and how to update them every time a trade has occurred. These quantities
depend on: the rate of arrival of trades, the intra-day-state of the market, the within state volatility
of price revisions, the inventories which track the investor’s accumulated stock, the shape of the
limit-order book, and finally, the proximity to the investment horizon T . We show that the spread
posted by the HF investor is wider (tighter) when the volatility of the price innovation is high
(low). Moreover, as the investor accumulates a long (short) position, the investor’s bid-price (ask-
price) moves away from the mid-price and the ask-price (bid-price) moves in towards it – inducing
the investor to sell (buy) assets and at the same time causing mean reversion toward zero in the
inventories. The strategy also considers how likely a posting deep in the book is to be filled and thus
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Figure 6: The left-hand panel shows the Sharpe ratio as a function of the risk aversion parameter.

adjusts the buy and sell orders accordingly– which depend on the within-state arrival rate, volatility
of trades and shape of the book. Finally, all else equal, as the investment horizon approaches T ,
the investor submits buy and sell limit-orders which are tighter around the mid-price – a strategy
that stresses the fact that the HF investor aims at holding zero inventories at the end of investment
horizon.

Moreover, we illustrate how the HF market making strategy performs under different assumptions
about information and risk aversion. As expected, we show that better informed HFTs are more
profitable and that those who make markets with lesser quality information see a reduction in their
profits. This reduction in profits is a consequence of not being able to submit optimal limit orders
to profit from periods of trade clustering or periods of heightened volatility and because some of
the less informed limit orders can be picked off by better informed traders. Finally, we show that
as the level of risk aversion increases, the gains from better quality information diminish because,
everything else equal, the trader posts more conservative quotes in the book – i.e. limit orders are
sent deeper into the book.
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Cappé, O., E. Moulines, and t. Rydén (2005). Inference in Hidden Morkov Models. Springer.
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A The EM Algorithm for HMMs

In this appendix, we provide a quick review of the EM algorithm for HMMs. More details on the
Baum-Welch approach and HMMs in general can be found in for example Cappé, Moulines, and
Rydén (2005).

• The E-step amounts to computing the conditional expectation of the complete-data log-likelihood
given the current estimate of the full model parameters Θ(k−1) = {A(k−1), π(k−1), θ(k−1) =
{λ(k−1),p(k−1), bfσ(k−1)}}. That is compute

Q(Θ,Θ(k−1)) = E
[

ln p({(τt, Xt);Zt}t=1,...,n |Θ)
∣∣∣ {(τt, Xt)}t=1,...,n ; Θ(k−1)

]
=

n∑
t=1

K∑
j=1

ln f
θ
(k−1)
j

({(τt, Xt)}) P
(
Zt = j

∣∣∣{(τt, Xt)}t=1,...,n ; Θ(k−1)
)

+
n−1∑
t=1

K∑
j=1

K∑
k=1

lnAjk P
(
Zt = j, Zt+1 = k

∣∣∣{(τt, Xt)}t=1,...,n ; Θ(k−1)
)

+

K∑
j=1

lnπj P
(
Z1 = j

∣∣∣{(τt, Xt)}t=1,...,n ; Θ(k−1)
)
.

The Baum-Welch forward-backward (or α-β) algorithm is used to compute the two types of
conditional probabilities arising in the above expression: (i) the Markov chain responsibilities

rt,j = P
(
Zt = j

∣∣∣{(τt, Xt)}t=1,...,n ; Θ(k−1)
)

and (ii) the conditional transition probabilities

ξt,jk = P
(
Zt = j, Zt+1 = k

∣∣∣{(τt, Xt)}t=1,...,n ; Θ(k−1)
)

.

• In the M-step, Q(Θ,Θ(k−1)) is maximized (subject
∑K

k=1Ajk = 1 and
∑

j πj = 1). For our
with-in continuous-mixture model of price-revisions and (censored) exponential durations, the
resulting parameter update rules are

λ∗j = − ln

∑n
t=1 rt,j τt∑n

t=1 rt,j (τt + 1)
, (9a)

p∗j =

∑
t:Xt=0 rt,j∑

t rt,j
, (9b)

σ∗j =

√∑
t:Xt 6=0 rt,j X2

t∑
t:Xt 6=0 rt,j

, (9c)

A∗jk =

∑n−1
t=1 ξt,jk∑n−1
t=1 rt,j

, (9d)

π∗j = r1,j . (9e)

The EM steps are then repeated until the relative increase in the complete-data-log-likelihood
is less than 10−6.

B Matching Discrete & Continuous Models

In this appendix, we describe how to match the continuous HMM to any given estimated discrete
HMM. The regime dependent rate of arrival of trades λ(k) are identical in both models. For the

volatility matching we set the within regime volatility σ
(k)
c of the continuous model such that its
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variance (at the expected time of execution) is equal to the unconditional variance of the discrete
model. Consequently,

σ(k)
c =

√
1− p(k)

λ(k)
σ

(k)
d . (10)

The only remaining parameters which require calibration are the transition rates Bkl of the
continuous Markov chain Ht. For this purpose, we propose to match the probability that the chain
begins in regime k, a single trade occurs, and the chain ends in regime l at time t. For the discrete
time HMM this probability is

P dkl(t) , P(N(t) = 1, Z1 = l|Z0 = k)

=

∫ t

0

(
λke
−λku

)
Akl

(
e−λl(t−u)

)
du

=


λ(k)

λ(k)−λ(l) Akl

(
e−λ

(l)t − e−λ(k)t
)
, k 6= l ,

Akl λ
(k) e−λ

(k)t t, k = l .

(11)

For the continuous time HMM this probability is

P ckl(t) , P(N(t) = 1, Ht = l|H0 = k) =
(

Ω e(B−Ω)t
)
kl
t , (12)

where Ω = diag(λ(1), . . . , λ(K)) and the exponentiation is the matrix version.
It is not possible to match these two probabilities for every t; however, given that the trades arrive

more quickly than transitions in the continuous time chain, we propose to match these probabilities
at the expected time of a trade. Consequently, we choose the transition rates Bjk in the continuous
time chain such that

P ckl

(
1
λ(k)

)
= P dkl

(
1
λ(k)

)
∀k, l = 1, . . . ,K .

This is a highly non-linear system of equations, but they pose no numerical difficulties. For our
implementations, we used Matlab’s fminsearch function.

C Limit-Order Algorithmic Trading Strategy

In this Appendix we show that the feedback solution to the optimal control problem (6) is indeed
given by (7). The dynamic programming principle implies that the value function V (k)(t, x, S, q)
satisfies the HJB equation

V
(k)
t (t, x, s, q) + 1

2(σ(k))2 V (k)
ss (t, x, s, q)

+ max
δ−

{
λ(k)e−κ

(k)
− δ−

(
V (k)(t, x− (s− δ−), s, q + 1)− V (k)(t, x, s, q)

)}
+ max

δ+

{
λ(k)e−κ

(k)
+ δ+

(
V (k)(t, x+ (s+ δ+), s, q − 1)− V (k)(t, x, s, q)

)}
+

M∑
l=1

Bkl

(
V (l)(t, x, s, q)− V (k)(t, x, s, q)

)
= 0 ,

V (k)(T, x, s, q) = u(x+ sq) .

(13)

Substituting the ansatz

V (k)(T, x, s, q) =
1

γ

(
1− exp

{
−γ
(
x+ q S + g(k)(t, q)

)})
,
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reduces the HJB equation to

g
(k)
t − 1

2(σ(k))2 γ q2 + max
δ−

{
λ(k)e−κ

(k)
− δ− 1− e−γ(δ−+∆∗g(k))

γ

}

+ max
δ+

{
λ(k)e−κ

(k)
+ δ+ 1− e−γ(δ++∆∗g(k))

γ

}

+

M∑
l=1

Bkl
1− e−γ(g(l)−g(k))

γ
= 0 ,

g(k)(T, q) = 0 .

(14)

Here, the shift operators ∆∗ and ∆∗ act on functions h(t, q) as follows

∆∗h(t, q) = h(t, q + 1)− h(t, q) , and ∆∗h(t, q) = h(t, q − 1)− h(t, q) .

Applying the first order conditions provides us with the feedback control solutions

δ+
t = −∆∗g

(Ht)(t, qt) +
1

γ
ln

(
1 +

γ

κ+,t

)
, and (15a)

δ−t = −∆∗g(Ht)(t, qt) +
1

γ
ln

(
1 +

γ

κ−,t

)
. (15b)

Substituting the feedback controls into the HJB equation (14) then results in the non-linear integro-
differential equation

g
(k)
t − 1

2(σ(k))2 γ q2 + α
(k)
− eκ

(k)
− ∆∗g(k) + α

(k)
+ eκ

(k)
+ ∆∗g(k) +

K∑
l=1

Bkl
1− e−γ(g(l)−g(k))

γ
= 0 ,

g(k)(T, q) = 0 .

(16)

Here the constant

α
(k)
± =

λ(k)

κ
(k)
± + γ

(
1 +

γ

κ
(k)
±

)−κ(k)±
γ

,

is introduced to reduce notation. The remaining task is to solve (16). Once armed with its solution,
the feedback controls given in (15) provide the investor with the optimal limit-order strategy.

We have not found an exact solution to this equation, however, it is possible to obtain a per-
turbation expansion. In contrast to Avellaneda and Stoikov (2008), who have a single regime
model, have a different ansatz and perform a perturbation expansion16 in the inventory level q, we
perform an expansion in the risk-aversion parameter γ. For this purpose, first write g(k)(t, q) =

g
(k)
0 (t) + γ g

(k)
1 (t, q) + o(γ). Notice that the first order term is assumed independent of q. Inserting

16It is not strictly correct to expand in the inventory level q, since q is an integer and can take on values significantly
larger than 1.
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this expression into (16) and collecting terms in powers of γ we find that

g
(k)
0,t + (β

(k)
+ + β

(k)
− ) +

K∑
l=1

Bkl(g
(l)
0 − g

(k)
0 ) = 0 , (17)

g
(k)
1,t −

1

2
(σ(k))2q2 − 1

2

(
β

(k)
−

κ
(k)
−

+
β

(k)
+

κ
(k)
+

)
+

K∑
l=1

Bkl(g
(l)
0 − g

(k)
0 )2

+e−1λ(k)
(

∆∗g
(k)
1 + ∆∗g

(k)
1

)
+

K∑
l=1

Bkl(g
(l)
1 − g

(k)
1 ) = 0 ,

(18)

where β
(k)
± = λ(k)/(eκ

(k)
± ). The solution for g

(k)
1 can further be decomposed as g

(k)
1 (t, q) = a(k)(t) +

b(k)(t) q2 – this is not another approximation, rather it is the form of the exact solution. Moreover,
since the optimal investment strategy, through the feedback controls (15), depend on g(k) only

through ∆∗g(k) and ∆∗g
(k), it is only necessary to solve for b

(k)
t and not a(k) or g

(k)
0 . To this end,

we find that b(k)(t) solves the system of ODEs

b
(k)
t −

1

2
(σ(k))2 +

∑
l

Bklb
(l) = 0 . (19)

Standard techniques can be used to solve this system of ODEs. Let D = diag(d1, . . . , dK) denote
the matrix of eigenvalues of the transition rate matrix B, and V be the matrix of eigenvectors so
that B = V −1DV . Since the transition matrix sums to zero along rows, there is one zero eigenvalue
which we label as d1 = 0. Assuming distinct eigenvalues,17 then the solution is given by (8). On
substituting the solution into the feedback control (15) one finds the result quoted in (7). This
completes the proof.

17This assumption is easily removed if necessary, but it is likely that the eigenvalues will be distinct.
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D The Estimated Model Parameters

Comparison of all data sets with four regimes.

AA – FEB 2001

Transition Probability Matrix A Conditional Parameters

Regime 1 2 3 4 λ p σ (× 10−4) σ
√

1− p (× 10−4)

1 91.05% 8.95% 0.00% 0.00% 1.468 100.00% 3.238 0.000
( 3.93% ) ( 8.75% ) ( 8.89% ) ( 13.82% ) ( 1.200 ) ( 34.95% ) ( 9.794 )

2 1.71% 85.37% 0.00% 12.92% 0.105 47.34% 24.338 17.661
( 2.33% ) ( 9.81% ) ( 27.05% ) ( 18.20% ) ( 0.023 ) ( 9.05% ) ( 18.573 )

3 0.00% 0.30% 95.55% 4.15% 0.078 54.67% 4.363 2.937
( 1.31% ) ( 52.32% ) ( 62.51% ) ( 11.36% ) ( 0.006 ) ( 14.83% ) ( 3.503 )

4 0.00% 1.68% 5.62% 92.70% 0.068 32.69% 9.712 7.968

( 2.00% ) ( 33.62% ) ( 8.02% ) ( 40.54% ) ( 0.001 ) ( 10.24% ) ( 3.389 )

AA – FEB 2008

Transition Probability Matrix A Conditional Parameters

Regime 1 2 3 4 λ p σ (× 10−4) σ
√

1− p (× 10−4)

1 80.67% 17.21% 2.12% 0.00% 2.871 99.97% 3.010 0.050
( 0.32% ) ( 15.06% ) ( 15.09% ) ( 0.00% ) ( 0.034 ) ( 0.11% ) ( 0.995 )

2 14.88% 79.97% 1.71% 3.44% 1.782 47.32% 3.578 2.597
( 12.63% ) ( 10.79% ) ( 0.45% ) ( 23.10% ) ( 0.015 ) ( 46.76% ) ( 16.079 )

3 2.14% 1.18% 69.39% 27.28% 1.779 98.85% 21.361 2.293
( 12.69% ) ( 0.36% ) ( 11.14% ) ( 23.82% ) ( 0.013 ) ( 46.62% ) ( 16.377 )

4 8.08% 0.55% 32.78% 58.59% 0.389 36.86% 3.012 2.393

( 0.94% ) ( 34.54% ) ( 34.17% ) ( 0.34% ) ( 0.002 ) ( 0.32% ) ( 0.020 )

Table 6: Estimated 4-regime model parameters on AA data for the months of February 2001 and
2008. The reported numbers in the braces are the 95% standard errors based on a bootstrap of the
estimated model.
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AMZN – FEB 2001

Transition Probability Matrix A Conditional Parameters

Regime 1 2 3 4 λ p σ (× 10−4) σ
√

1− p (× 10−4)

1 81.36% 17.71% 0.93% 0.00% 1.073 99.25% 264.549 22.897
( 0.83% ) ( 0.91% ) ( 0.32% ) ( 0.15% ) ( 0.017 ) ( 0.15% ) ( 24.804 )

2 10.58% 85.09% 2.81% 1.51% 0.659 37.42% 47.748 37.771
( 0.76% ) ( 0.72% ) ( 0.30% ) ( 0.21% ) ( 0.004 ) ( 0.78% ) ( 0.428 )

3 0.11% 4.11% 77.10% 18.68% 0.403 99.97% 46.685 0.805
( 0.07% ) ( 0.26% ) ( 0.71% ) ( 0.77% ) ( 0.009 ) ( 0.32% ) ( 19.850 )

4 1.21% 1.97% 14.01% 82.81% 0.127 45.88% 47.656 35.059

( 0.33% ) ( 0.26% ) ( 1.00% ) ( 1.03% ) ( 0.002 ) ( 1.25% ) ( 0.643 )

AMZN – FEB 2008

Transition Probability Matrix A Conditional Parameters

Regime 1 2 3 4 λ p σ (× 10−4) σ
√

1− p (× 10−4)

1 79.89% 3.05% 0.04% 17.03% 2.614 85.57% 1.810 0.688
( 0.36% ) ( 0.13% ) ( 0.02% ) ( 0.35% ) ( 0.018 ) ( 0.19% ) ( 0.026 )

2 1.14% 94.48% 1.18% 3.20% 2.101 46.57% 2.931 2.143
( 0.17% ) ( 0.15% ) ( 0.07% ) ( 0.20% ) ( 0.011 ) ( 0.15% ) ( 0.011 )

3 3.05% 18.64% 75.96% 2.36% 1.203 26.34% 11.480 9.853
( 0.79% ) ( 1.21% ) ( 1.19% ) ( 0.55% ) ( 0.018 ) ( 0.95% ) ( 0.118 )

4 43.08% 0.60% 0.08% 56.24% 0.487 29.06% 2.496 2.102

( 0.50% ) ( 0.26% ) ( 0.03% ) ( 0.44% ) ( 0.004 ) ( 0.41% ) ( 0.012 )

Table 7: Estimated 4-regime model parameters on AMZN data for the months of February 2001
and 2008. The reported numbers in the braces are the 95% standard errors based on a bootstrap of
the estimated model.
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HNZ – FEB 2001

Transition Probability Matrix A Conditional Parameters

Regime 1 2 3 4 λ p σ (× 10−4) σ
√

1− p (× 10−4)

1 86.61% 10.80% 0.84% 1.76% 0.786 100.00% 4.498 0.000
( 3.62% ) ( 1.40% ) ( 1.64% ) ( 4.75% ) ( 0.010 ) ( 8.82% ) ( 2.625 )

2 0.69% 84.90% 0.01% 14.39% 0.052 45.99% 23.266 17.099
( 2.21% ) ( 32.16% ) ( 35.35% ) ( 10.94% ) ( 0.002 ) ( 7.56% ) ( 0.411 )

3 0.06% 0.93% 92.86% 6.14% 0.038 57.17% 3.506 2.295
( 7.92% ) ( 17.99% ) ( 10.48% ) ( 18.70% ) ( 0.005 ) ( 8.57% ) ( 1.038 )

4 0.04% 2.03% 10.13% 87.80% 0.025 31.54% 9.193 7.606

( 1.34% ) ( 12.38% ) ( 14.32% ) ( 4.16% ) ( 0.001 ) ( 3.68% ) ( 0.396 )

HNZ – FEB 2008

Transition Probability Matrix A Conditional Parameters

Regime 1 2 3 4 λ p σ (× 10−4) σ
√

1− p (× 10−4)

1 71.95% 3.02% 25.03% 0.00% 2.257 100.00% 2.566 0.012
( 0.71% ) ( 0.98% ) ( 0.92% ) ( 0.92% ) ( 0.041 ) ( 0.07% ) ( 11.508 )

2 0.35% 54.26% 1.59% 43.80% 1.286 98.43% 17.567 2.198
( 0.23% ) ( 1.08% ) ( 0.97% ) ( 1.71% ) ( 0.019 ) ( 0.16% ) ( 1.206 )

3 17.73% 2.92% 69.28% 10.08% 0.906 42.42% 2.828 2.146
( 1.26% ) ( 0.73% ) ( 1.34% ) ( 0.86% ) ( 0.018 ) ( 1.20% ) ( 0.032 )

4 9.82% 31.09% 3.13% 55.96% 0.149 39.86% 2.975 2.307

( 1.07% ) ( 1.30% ) ( 0.57% ) ( 0.55% ) ( 0.002 ) ( 0.43% ) ( 0.019 )

Table 8: Estimated 4-regime model parameters on HNZ data for the months of February 2001 and
2008. The reported numbers in the braces are the 95% standard errors based on a bootstrap of the
estimated model.
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IBM – FEB 2001

Transition Probability Matrix A Conditional Parameters

Regime 1 2 3 4 λ p σ (× 10−4) σ
√

1− p (× 10−4)

1 91.98% 5.41% 2.46% 0.15% 1.699 99.04% 57.840 5.676
( 1.11% ) ( 1.03% ) ( 0.71% ) ( 0.38% ) ( 0.080 ) ( 0.47% ) ( 16.057 )

2 1.72% 88.45% 2.11% 7.72% 0.244 24.69% 17.123 14.859
( 0.60% ) ( 1.29% ) ( 0.55% ) ( 0.93% ) ( 0.007 ) ( 0.87% ) ( 0.378 )

3 0.28% 0.45% 90.45% 8.82% 0.195 40.79% 1.991 1.532
( 0.10% ) ( 0.21% ) ( 0.63% ) ( 0.79% ) ( 0.004 ) ( 0.70% ) ( 0.025 )

4 0.03% 2.06% 6.60% 91.31% 0.180 21.77% 6.019 5.324

( 0.07% ) ( 0.19% ) ( 0.53% ) ( 0.61% ) ( 0.002 ) ( 0.43% ) ( 0.053 )

IBM – FEB 2008

Transition Probability Matrix A Conditional Parameters

Regime 1 2 3 4 λ p σ (× 10−4) σ
√

1− p (× 10−4)

1 77.55% 0.00% 6.88% 15.58% 2.039 89.92% 1.154 0.366
( 0.41% ) ( 0.00% ) ( 0.24% ) ( 0.29% ) ( 0.015 ) ( 0.37% ) ( 0.018 )

2 0.80% 90.82% 6.93% 1.45% 1.851 31.70% 6.823 5.639
( 0.63% ) ( 0.41% ) ( 0.77% ) ( 0.30% ) ( 0.024 ) ( 0.66% ) ( 0.069 )

3 4.62% 0.97% 91.65% 2.76% 1.769 42.24% 1.708 1.298
( 0.39% ) ( 0.05% ) ( 0.23% ) ( 0.21% ) ( 0.011 ) ( 0.18% ) ( 0.006 )

4 28.73% 0.14% 0.98% 70.15% 0.413 33.15% 1.618 1.323

( 0.36% ) ( 0.02% ) ( 0.01% ) ( 0.36% ) ( 0.003 ) ( 0.43% ) ( 0.010 )

Table 9: Estimated 4-regime model parameters on IBM data for the months of February 2001 and
2008. The reported numbers in the braces are the 95% standard errors based on a bootstrap of the
estimated model.
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KO – FEB 2001

Transition Probability Matrix A Conditional Parameters

Regime 1 2 3 4 λ p σ (× 10−4) σ
√

1− p (× 10−4)

1 94.33% 4.43% 1.24% 0.00% 1.967 100.00% 1.898 0.000
( 7.18% ) ( 4.30% ) ( 1.51% ) ( 11.65% ) ( 1.994 ) ( 40.15% ) ( 34.216 )

2 1.90% 86.26% 1.96% 9.89% 0.113 45.15% 20.635 15.282
( 2.14% ) ( 50.97% ) ( 39.79% ) ( 17.97% ) ( 0.025 ) ( 8.73% ) ( 20.006 )

3 0.08% 0.65% 94.72% 4.55% 0.088 49.91% 2.602 1.842
( 0.64% ) ( 38.87% ) ( 55.46% ) ( 19.53% ) ( 0.004 ) ( 9.75% ) ( 0.678 )

4 0.00% 2.20% 7.06% 90.74% 0.080 27.75% 6.702 5.697

( 3.42% ) ( 8.89% ) ( 8.55% ) ( 4.49% ) ( 0.002 ) ( 1.47% ) ( 0.576 )

KO – FEB 2008

Transition Probability Matrix A Conditional Parameters

Regime 1 2 3 4 λ p σ (× 10−4) σ
√

1− p (× 10−4)

1 79.25% 8.37% 0.01% 12.37% 2.417 99.99% 31.499 0.310
( 1.22% ) ( 8.53% ) ( 9.20% ) ( 0.57% ) ( 0.024 ) ( 0.94% ) ( 30.033 )

2 11.75% 85.12% 0.40% 2.72% 1.729 54.19% 2.001 1.354
( 11.89% ) ( 48.51% ) ( 57.96% ) ( 2.45% ) ( 0.076 ) ( 8.08% ) ( 0.286 )

3 1.87% 4.87% 91.67% 1.59% 1.422 39.21% 8.062 6.286
( 21.81% ) ( 39.58% ) ( 59.73% ) ( 1.70% ) ( 0.213 ) ( 19.34% ) ( 5.024 )

4 28.79% 0.02% 0.08% 71.11% 0.387 43.55% 1.781 1.338

( 0.36% ) ( 0.34% ) ( 0.09% ) ( 0.44% ) ( 0.002 ) ( 0.46% ) ( 0.017 )

Table 10: Estimated 4-regime model parameters on KO data for the months of February 2001 and
2008. The reported numbers in the braces are the 95% standard errors based on a bootstrap of the
estimated model.

32


