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Abstract

This paper develops a model in which traders receive a stream of private sig-

nals, and differ in their information processing speed. In equilibrium, the fast

traders (FTs) quickly reveal a large fraction of their information, and generate

most of the volume, volatility and profits in the market. If a FT is averse to hold-

ing inventory, his optimal strategy changes considerably as his aversion crosses a

threshold. He no longer takes long-term bets on the asset value, gets most of his

profits in cash, and generates a “hot potato” effect: after trading on information,

the FT quickly unloads part of his inventory to slower traders. The results match

evidence about high frequency traders.
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1 Introduction

Today’s markets are increasingly characterized by the continuous arrival of vast amounts

of information. A media article about high frequency trading reports on the hedge fund

firm Citadel: “Its market data system, for example, contains roughly 100 times the

amount of information in the Library of Congress. [...] The signals, or alphas, that

prove to have predictive power are then translated into computer algorithms, which are

integrated into Citadel’s master source code and electronic trading program.” (“Man

vs. Machine,” CNBC.com, September 13th 2010). The sources of information from

which traders obtain these signals usually include company-specific news and reports,

economic indicators, stock indexes, prices of other securities, prices on various other

trading platforms, limit order book changes, as well as various “machine readable news”

and even “sentiment” indicators.1

At the same time, financial markets have seen in recent years the spectacular rise of

algorithmic trading, and in particular of high frequency trading.2 This coincidental ar-

rival raises the question whether or not at least some of the HFTs do process information

and trade very quickly in order to take advantage of their speed and superior computing

power. Recent empirical evidence suggests that this is indeed the case.3 But, despite the

large role played by high frequency traders (HFTs) in the current financial landscape,

there has been relatively little progress in explaining their strategies in connection with

information processing.

We consider the following questions regarding HFTs: What are the optimal trading

strategies of HFTs who process information? Why do HFTs account for such a large

share of the trading volume? What explains the race for speed among HFTs? What are

the effects of HFTs on measures of market quality, such as liquidity and price volatility?

1“Math-loving traders are using powerful computers to speed-read news reports, editorials, company
Web sites, blog posts and even Twitter messages—and then letting the machines decide what it all means
for the markets.” (“Computers That Trade on the News,” New York Times, December 22nd 2010).

2Hendershott, Jones, and Menkveld (2011) report that from a starting point near zero in the mid-
1990s, high frequency trading rose to as much as 73% of trading volume in the United States in 2009.
Chaboud, Chiquoine, Hjalmarsson, and Vega (2014) consider various foreign exchange markets and find
that starting from essentially zero in 2003, algorithmic trading rose by the end of 2007 to approximately
60% of the trading volume for the euro-dollar and dollar-yen markets, and 80% for the euro-yen market.

3See Brogaard, Hendershott, and Riordan (2014), Baron, Brogaard, and Kirilenko (2014), Kirilenko,
Kyle, Samadi, and Tuzun (2014), Hirschey (2013), Benos and Sagade (2013), Brogaard, Hagströmer,
Nordén, and Riordan (2013).
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How can HFT order flow anticipate future order flow and returns? What explains

the “intermediation chains” or “hot potato” effects found among HFTs? Why do some

HFTs have low inventories? Regarding the last question, some recent literature identifies

HFTs as traders with both high trading volume and low inventories (see Kirilenko et al.

2014, SEC 2010). But then, a natural question arises: why would having low inventories

be part of the definition of HFTs?

In this paper, we provide a theoretical model of informed trading which parsimo-

niously addresses these questions. Because we want to study speed differences among

informed traders, we start with the standard framework of Kyle (1985), and modify

it along several dimensions.4 First, the asset’s fundamental value is not constant but

follows a random walk process, and each risk-neutral informed trader, or speculator,

gradually receives signals about the asset value increments. Second, there are multiple

speculators who differ in their speed, in the sense that some speculators receive their

signal with a lag. Third, each speculator can trade only on lagged signals with a lag of

at most m, where m is an exogenously given number.

It is the last assumption that sets our model apart from previous models of informed

trading. A key effect of this assumption is to prevent the “rat race” phenomenon discov-

ered by Holden and Subrahmanyam (1992), by which traders with identical information

reveal their information so quickly, that the equilibrium breaks down at the “high fre-

quency” limit, when the number of trading rounds approaches infinity. In our model,

the speculators reveal only a fraction of their total private information, and this has

a stabilizing effect on the equilibrium. Economically, we think of this assumption as

equivalent to having a positive information processing cost per signal (and per trading

round).5 Indeed, since one of our results is that the value of information decays fast,

even a tiny information processing cost would make speculators optimally ignore their

signals after a sufficiently large number of lags m.

4As in Kyle (1985), we assume that informed traders submit only market orders; this is a plausible
assumption for informed HFTs (see Brogaard, Hendershott, and Riordan 2014). Also, we set the model
in continuous time, which makes it easier to solve for the equilibrium.

5Intuitively, information processing is costly because speculators need to avoid trading on stale
information, and this involves (i) constantly monitoring public information to verify that their signal
has not been incorporated into the price, and (ii) extracting the predictable part of their signal from
past order flow, so that speculators trade only on the unpredictable (non-stale) part.
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To simplify the analysis, we restrict our attention to the particular case when m = 1,

which we call the benchmark model. In this model, speculators can trade using only their

current signal and its lagged value. Thus, there are two types of speculators: fast traders

(or FTs), who observe the signal instantly; and slow traders (or STs), who observe the

signal after one lag. The benchmark model has the advantage that the equilibrium can

be described in closed form. In the Internet Appendix we verify numerically that the

main results in the benchmark model carry through to the general case (m > 1).

Our first main result in the benchmark model is that the FTs generate most of the

trading volume, volatility, and profits. To understand why, consider the decision of N

fast traders about what weight to use on the last signal they have received. Because

the dealer sets a price function which is linear in the aggregate order size, each FT

faces a Cournot-type problem and trades such that the price impact of his order is on

average 1/(N + 1) of his signal. That brings the expected aggregate price impact to

N/(N+1) of the signal, and leaves on average only 1/(N+1) of the signal unknown to the

dealer. Thus, once the STs observe the lagged signal, they now have much less private

information to exploit. Moreover, the ST profits are further diminished by competition

with FTs, who also trade on the lagged signal. Empirically, Baron, Brogaard, and

Kirilenko (2014) find out that the profits of HFTs are concentrated among a small

number of incumbents, and the profits appear to be correlated with speed.

Our second main result is that volume, volatility and liquidity are increasing with

the number of FTs. First, more competition from FTs makes the prices more infor-

mative overall, and thus increases liquidity (measured, as in Kyle 1985, by the inverse

price impact coefficient). As the market is more liquid, FTs face a lower price impact,

and therefore trade even more aggressively. This creates an amplification mechanism

that allows the aggregate FT trading volume to be increasing roughly linearly with the

number of FTs. The effect of FTs on volatility is more muted but still positive; this

is because in our model price volatility is bounded above by the fundamental volatility

of the asset. Empirically, in line with our theoretical results, Hendershott, Jones, and

Menkveld (2011), Boehmer, Fong, and Wu (2014), and Zhang (2010) document a pos-

itive effect of HFTs on liquidity. Moreover, the last two papers find a positive effect

of HFTs on volatility. We should point out, however, that our model is more likely to
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apply only to the subcategory of informed, market taking HFTs, and not to all HFTs.

Thus, our results should be interpreted with caution.

Our third main result in the benchmark model is the existence of anticipatory trad-

ing: the order flow of fast traders predicts the order flow of slow traders in the next

period. This comes from the fact that the fast traders’ signal does not fully get incor-

porated into the price, hence the slow traders have an incentive to use the signal in

the next period, after they remove the stale (predictable) part. Anticipatory trading

is therefore related to speculator order flow autocorrelation. Our model predicts that

the speculator order flow autocorrelation is positive, although it is small if the number

of fast traders is large. Empirically, Brogaard (2011) finds that the autocorrelation of

aggregate HFT order flow is indeed small and positive. Also, using Nasdaq data on

high-frequency traders, Hirschey (2013) finds that HFT order flow anticipates future

order flow.

Despite being able to match several stylized facts about HFTs in our benchmark

model, a few questions remain. Why do many HFTs have low inventories, both intraday

and at the day close?6 Why do HFTs engage in “hot potato” trading (or “intermediation

chains”), in which HFT pass their inventories to other traders?7 What is the role of

speed in explaining these phenomena?

To provide some theoretical guidance on these issues, we extend our benchmark

model to include one trader with inventory costs. These costs can arise from risk aversion

or from capital constraints, but we take a reduced form approach and assume the costs

are quadratic in inventory, with a coefficient called inventory aversion (see Madhavan

and Smidt 1993). We call this additional trader the Inventory-averse Fast Trader, or

IFT.8 We call this extension the model with inventory management. In addition to

choosing the weight on his current signal, the IFT also chooses the rate at which he

6SEC (2010) characterizes HFTs by their “very short time-frames for establishing and liquidating
positions” and argues that HFTs end “the trading day in as close to a flat position as possible (that
is, not carrying significant, unhedged positions over-night).” See also Kirilenko et al. (2014), Brogaard,
Hagströmer, Nordén, and Riordan (2013), or Menkveld (2013).

7Weller (2014) analyzes both theoretically and empirically “intermediation chains” in which unin-
formed HFTs unwind inventories to slower, fundamental traders. Kirilenko et al. (2014) mention “hot
potato effect” during the Flash Crash episode of May 6, 2010, when some HFTs would churn out their
inventories very quickly to trade with other HFTs.

8We do not introduce more than one IFT since the model would be much more difficult to solve.
The IFT is assumed fast because without slower traders it is not profitable to manage inventory.

5



mean reverts his inventory to zero each period. Without discussing yet optimality,

suppose the IFT does inventory management, i.e., chooses a positive rate of inventory

mean reversion. What are the effects of this choice?

The first effect of inventory management is that the IFT keeps essentially all his

profits in cash. To see this, suppose the IFT chooses a coefficient of mean reversion

of 10%. This translates into the inventory being reduced by a fraction of 10% in each

trading round. Therefore, the IFT’s inventory tends to become small over many rounds,

and because our model is set in the high frequency limit (in continuous time), the

inventory becomes in fact negligible.9 We call this result the low inventory effect.

The second effect is that the IFT no longer makes profits by betting on the funda-

mental value of the asset. This stands in sharp contrast to the behavior of a risk-neutral

speculator, such as the fast trader in the benchmark model. Indeed, the FT accumulates

inventory in the direction of his information, since he knows his signals are correlated

with the asset’s liquidation value. By contrast, although the IFT initially trades on

his current signal, he subsequently fully reverses the bet on that signal by removing a

fraction of his inventory each trading round. Thus, the IFT’s direct revenue from each

signal eventually decays to zero. We call this result the information decay effect.

The third effect of inventory management is that, in order to make a profit, the IFT

must (i) anticipate the slow trading, and (ii) trade in the opposite direction to slow

trading. By slow trading here we simply mean the part of order flow that involves the

speculators’ lagged signals.10 To understand this effect, consider how the IFT uses a

given signal. The information decay effect means that the IFT’s final revenues from

betting on his signal are zero. Therefore, the IFT must benefit from inventory reversal.

Since any trade has price impact, inventory reversal makes a profit only if gets pooled

with order flow in the opposition direction, so that the IFT’s price impact is negative.

But in order to be expected profit, the opposite order flow must come from speculators

who use lagged signals, i.e., from slow trading. We call this result the hot potato effect,

or the intermediation chain effect.11

9Formally, the inventory follows an autoregressive process, hence its variance has the same order as
the variance of the signal, which at high frequencies is negligible.

10A subtle point is that slow trading does not need to come from actual slow traders. Slow trading
can also arise from fast traders who use their lagged signals as part of their optimal trading strategy.

11In our simplified framework, the intermediation chain only has one link, between the IFT and the
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The reason behind this terminology is that the IFT’s current signal (the “potato”)

produces undesirable inventory (is “hot”) and must be passed on to slower traders in

order to produce a profit. Thus, speed is important to the IFT. Without slower trading,

there is no hot potato effect, and the IFT makes a negative expected profit from any

trading strategy that mean reverts his inventory to zero. Note also that the hot potato

generates a complementarity between the IFT and slow traders: Stronger inventory

mean reversion by the IFT reduces the price impact of the STs, who can trade more

aggressively. But more aggressive trading by the STs allows stronger mean reversion

from the IFT.

The optimal strategy of the IFT produces two contrasting types of behavior, depend-

ing on how his inventory aversion compares to a threshold. Below the threshold, the IFT

behaves like a risk-neutral speculator, and lowers his inventory costs simply by reducing

the weight on his signals. He does not manage inventory at all, because the information

decay effect ensures that even a small but positive inventory mean reversion eventually

destroys all revenues from the fundamental bets. With inventory aversion above the

threshold, the IFT manages inventory and has all his profits in cash. The IFT benefits

not from fundamental bets on his signals, but from the hot potato effect.

Figure 1 illustrates the optimal mean reversion for the IFT as a function of his

inventory aversion coefficient. We see that, as his inventory aversion rises, the IFT

changes discontinuously from the regime with no inventory mean reversion to the regime

with positive inventory mean reversion. The threshold at which this discontinuity occurs

depends on the number of fast traders (FTs) and slow traders (STs) in the model.

This threshold is decreasing in both parameters, because the amount of slow trading

is increasing in both parameters. Slow trading is clearly increasing in the number of

slow traders. But it is also increasing in the number of fast traders because (i) the fast

traders also use their lagged signals, and (ii) more fast traders make the market more

liquid, which allows slow trading to be more aggressive.

Our results speak to the literature on high-frequency trading. One may think that

in practice HFTs have very low inventories because either (i) HFTs have very high

slow traders. But we conjecture that in a model where speculators use more than one lag for their
signals, the intermediation chains become longer, depending on the number of lags.
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Figure 1: Optimal Inventory Mean Reversion. This figure plots the optimal mean

reversion coefficient of an inventory-averse fast trader (IFT), when he competes with NF fast

traders (FTs) and NS slow traders (STs), with NF , NS ∈ {1, 5, 25}. On the horizontal axis is

the IFT’s inventory aversion coefficient. The optimal mean reversion coefficient is computed

using the results of Section 5, in the inventory management model with parameters NF and

NL = NF +NS . The other parameter values are: σw = 1, σu = 1.
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risk aversion, or (ii) HFTs do not have superior information and wish to maintain

zero inventory to avoid averse selection on their positions in the risky asset. Our results

suggest that this is not necessarily the case. Indeed, Figure 1 suggests (and we rigorously

prove in Proposition 6) that in the limit when the number of speculators is large, the

threshold inventory aversion converges to zero, and the optimal mean reversion is close

to one. In other words, even with low inventory aversion, the IFT chooses very large

mean reversion. Yet, even at these high rates of mean reversion the IFT does not loses

more than about 50% of his average profits from inventory management (the advantage

being that he has all his profits in cash).

We predict that in practice the fast speculators are sharply divided into two cate-

gories. In both categories speculators trade with a large volume. But in one category

speculators accumulate inventory by taking fundamental bets. In the other category

speculators have very low inventories; they initially trade on their signals but then
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quickly pass on part of their inventory to slower traders. These covariance patters

produce testable implications of our model.

The division of fast speculators in two categories appears consistent with the empiri-

cal findings of Kirilenko et al. (2014), who study trading activity in the E-mini S&P 500

futures during several days around the Flash Crash of May 6, 2010. The “opportunistic

traders” described in their paper resembles our risk-neutral fast traders: opportunistic

traders have large volume, appear to be fast, and accumulate relatively large inventories.

By contrast the “high frequency traders” in their paper, while they are also fast and

trade in large volume, keep very low inventories. Indeed, HFTs in their sample liquidate

0.5% of their aggregate inventories on average each second.

Related Literature

Our paper contributes to the literature on trading with asymmetric information. We

show that competition among informed traders, combined with noisy trading strate-

gies, produces a large informed trading volume and a quick information decay.12 The

market is very efficient because competition among informed traders makes them trade

aggressively on their common information. This intuition is present in Holden and Sub-

rahmanyam (1992) and Foster and Viswanathan (1996). The former paper finds that

the competition among informed traders is so strong, that in the continuous time limit

there is no equilibrium in smooth strategies. Our contribution to this literature is to

show that that there exists an equilibrium in noisy strategies. This rests on two key as-

sumptions: (i) noisy information, i.e., speculators learn over time by observing a stream

of signals, and (ii) finite lags, i.e., speculators only use a signal for a fixed number of

lags—which is plausible if there is a positive information processing cost per signal.

Without the finite lags assumption, noisy information by itself does not gener-

ate noisy strategies, as Back and Pedersen (1998) show. Chau and Vayanos (2008),

Caldentey and Stacchetti (2010), and Li (2012) find that noisy information coupled with

either model stationarity or a random liquidation deadline produces strategies that are

still smooth as in Kyle (1985), but towards the high frequency limit they have almost

12A speculator’s strategy is smooth if the volatility generated by that speculator’s trades is of a lower
magnitude compared to the volatility from noise trading; and noisy if the magnitudes are the same.
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infinite weight. Thus, the market in these papers is nearly strong-form efficient, which

makes speculators’ strategies appear noisy (there is no actual equilibrium in the limit).

By contrast, in our model the market is not strong-form efficient even in the limit, yet

strategies are noisy. Foucault, Hombert, and Roşu (2015) propose a model in which

a single speculator receives a signal one instant before public news. The speculator’s

strategy is noisy, but for a different reason than in our model: the speculator optimally

trades with a large weight on his forecast of the news. Yet a different mechanism oc-

curs in Cao, Ma, and Ye (2013). In their model, informed traders must disclose their

trades immediately after trading, and therefore traders optimally obfuscate their signal

by adding a large noise component to their trades.

Our paper also contributes to the rapidly growing literature on High Frequency

Trading.13 In much of this literature, it is the speed difference that has a large effect

in equilibrium. The usual model setup has certain traders who are faster in taking

advantage of an opportunity that disappears quickly. As a result, traders enter into

a winner-takes-all contest, in which even the smallest difference in speed has a large

effect on profits. (See for instance the model with speed differences of Biais, Foucault,

and Moinas (2014), or the model of news anticipation of Foucault, Hombert, and Roşu

(2015).) By contrast, our results regarding volume and volatility remain true even if

all informed traders have the same speed. This is because in our model the need for

speed arises endogenously, from competition among informed traders. In our model,

being “slow” simply means trading on lagged signals. Since in equilibrium speculators

also use lagged signals (the unanticipated part, to be precise), in some sense all traders

are slow as well. Yet, it is true in our model that a genuinely slower trader makes less

money, since he can only trade on older information that has already lost much of its

value.

Our results regarding the optimal inventory of informed traders are, to our knowl-

edge, new. Theoretical models of inventory usually attribute inventory mean reversion

to passive market makers, who do not possess superior information, but are concerned

13See Biais, Foucault, and Moinas (2014), Aı̈t-Sahalia and Saglam (2014), Budish, Cramton, and
Shim (2014), Foucault, Hombert, and Roşu (2015), Du and Zhu (2014), Li (2014), Hoffmann (2014),
Pagnotta and Philippon (2013), Weller (2014), Cartea and Penalva (2012), Jovanovic and Menkveld
(2012), Cvitanić and Kirilenko (2010).

10



with absorbing order flow.14 Our paper shows that an informed investor with inventory

costs (the “IFT”) can display behavior that makes him appear like a market maker, even

though he only submits market orders (as in Kyle 1985). Indeed, in our model the IFT

does not take fundamental bets, passes his risky inventory to slower traders (the hot

potato effect), and keeps essentially all his money in cash. To obtain these results, even

a small inventory aversion of the IFT suffices, but only if enough slow trading exists.

A related paper is Hirshleifer, Subrahmanyam, and Titman (1994). In their 2-period

model, risk averse speculators with a speed advantage first trade to exploit their infor-

mation, after which they revert their position because of risk aversion; while the slower

speculators trade in the same direction as the initial trade of the faster speculators. The

focus of Hirshleifer, Subrahmanyam, and Titman (1994) is different, as they are inter-

ested in information acquisition and explaining behavior such as “herding” and “profit

taking.” Our goal is to analyze the inventory problem of fast informed traders in a fully

dynamic context, and to study the properties of the resulting optimal strategies.

The paper is organized as follows. Section 2 describes the model setup. Section 3

solves for the equilibrium in the particular case with two categories of traders: fast

and slow. Section 4 discusses the effect of fast and slow traders on various measures

of market quality. Section 5 introduces and extension of the baseline model in which a

new trader (the IFT) has inventory costs. Then, it analyzes the IFT’s optimal strategy

and its effect on equilibrium. Section 6 concludes. All proofs are in the Appendix or

the Internet Appendix. The Internet Appendix solves for the equilibrium in the general

case, and analyzes several modifications and extensions of our baseline model.

2 Model

Trading for a risky asset takes place continuously over the time interval [0, T ], where we

use the normalization:15

T = 1. (1)

14See Ho and Stoll (1981), Madhavan and Smidt (1993), Hendershott and Menkveld (2014), as well
as many references therein.

15To eliminate confusion with later notation, we often use T instead of 1. This way, we can denote
below t− dt by t− 1 without much confusion.
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Trading occurs at intervals of length dt apart. Throughout the text, we refer to dt as

representing one period, or one trading round. The liquidation value of the asset is

vT =

∫ T

0

dvt, with dvt = σvdB
v
t , (2)

where Bv
t is a Brownian motion, and σv > 0 is a constant called the fundamental

volatility. We interpret vT as the “long-run” value of the asset; in the high frequency

world, this can be taken to be the asset value at the end of the trading day. The

increments dvt are then the short term changes in value due to the arrival of new

information. The risk-free rate is assumed to be zero.

There are three types of market participants: (a) N ≥ 1 risk neutral speculators,

who observe the flow of information at different speeds, as described below; (b) noise

traders; and (c) one competitive risk neutral dealer, who sets the price at which trading

takes place.

Information and Speed. At t = 0, there is no information asymmetry between

the speculators and the dealer. Subsequently, each speculator receives the following flow

of signals:

dst = dvt + dηt, with dηt = σηdB
η
t , (3)

where t ∈ (0, T ] and Bη
t is a Brownian motion independent from all other variables.

Denote by

wt = E(vT
∣∣ {sτ}τ≤t) (4)

the expected value conditional on the information flow until t. We call wt the value

forecast, or simply forecast. Because there is no initial information asymmetry, w0 = 0.

Denote by σw the instantaneous volatility of wt, or the forecast volatility. The increment

of the forecast wt, and the forecast variance are given, respectively, by

dwt =
σ2
v

σ2
v + σ2

η

dst, σ2
w =

Var(dwt)

dt
=

σ4
v

σ2
v + σ2

η

. (5)

When deriving empirical implications, we call σw the signal precision, as a precise signal

(small ση) corresponds to a large σw.
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Speculators obtain their signal with a lag ` ∈ {0, 1, 2, . . .}. A `-speculator is a trader

who at t ∈ (0, T ] observes the signal from ` periods before, dst−` dt. To simplify notation,

we use the following convention:

Notation for trading times: t− ` instead of t− ` dt. (6)

For instance, instead of dst−` dt we write dst−`.

Trading and Prices. At each t ∈ (0, T ], denote by dxit the market order submitted

by speculator i = 1, . . . , N at t, and by dut the market order submitted by the noise

traders, which is of the form dut = σudB
u
t , where Bu

t is a Brownian motion independent

from all other variables. Then, the aggregate order flow executed by the dealer at t is

dyt =
N∑
i=1

dxit + dut. (7)

The dealer is risk neutral and competitive, hence she executes the order flow at a price

equal to her expectation of the liquidation value conditional on her information. Let

It = {yτ}τ<t be the dealer’s information set just before trading at t. The order flow at

date t, dyt, executes at

pt = E
(
vT | It ∪ dyt

)
. (8)

Together with the price, another important quantity is the dealer’s expectation at t of

the k-lagged signal dwt−k:

zt−k,t = E
(
dwt−k | It

)
. (9)

Equilibrium Definition. In general, a trading strategy for a `-speculator is a

process followed by his risky assset position, xt, which is measurable with respect to his

information set J (`)
t = {yτ}τ<t∪{sτ}τ≤t−`. For a given trading strategy, the speculator’s

expected profit πτ , from date τ onwards, is

πτ = E

(∫ T

τ

(vT − pt)dxt | J (`)
τ

)
. (10)

As in Kyle (1985), we focus on linear equilibria. Specifically, we consider strategies
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which are linear in the unpredictable part of their signals,16

dwt−k − zt−k,t, k = `, `+ 1, . . . (11)

We restrict strategies to exclude signals older than a fixed number of lags m (which

is allowed to depend on the speculator’s speed parameter `). This assumption can

be justified by costly information processing, as explained at the end of this section.

Formally, the `-speculator’s strategy is of the form:

dxt = γ`,t(dwt−`−zt−`,t) + γ`+1,t(dwt−`−1−zt−`−1,t) + · · · + γm,t(dwt−m−zt−m,t). (12)

A linear equilibrium is such that: (i) at every date t, each speculator’s trading

strategy (12) maximizes his expected trading profit (10) given the dealer’s pricing policy,

and (ii) the dealer’s pricing policy given by (8) and (9) is consistent with the equilibrium

speculators’ trading strategies.

Finally, the speculators consider the covariance structure of zt−k,t to be independent

of their strategy. More precisely, for all j, k ≥ 0, the speculators consider the numbers

Zj,k,t = Cov
(
dwt−j, zt−k,t

)
(13)

to depend only on j, k, and t. Thus, the covariance terms Zj,k,t are interpreted as being

computed by the dealer, as part of her (publicly known) pricing rules.17

Model Notation. If all speculators in the model have a strategy of the form (12)

with the same m ≥ 0, we call it the model with m lags, and writeMm. In the paper, we

focus on the particular case with m = 1 lags. In this setup, the 0-speculators are called

the fast traders, and the 1-speculators are called the slow traders; thus, we call M1 the

16Intuitively, if the strategy had a predictable component, the dealer’s price would adjust and reduce
the speculator’s profit. We formalize this intuition in a discrete version of our model in Internet
Appendix M. In the paper, however, we work in continuous time since it is easier to obtain analytical
solutions. Similarly, Kyle (1985) directly assumes that the speculator’s strategy in continuous time is
linear in the unpredictable part of the fundamental value, v − pt.

17For instance, the coefficient ρt in the dealer’s pricing rule zt−1,t = ρtdyt is computed using the
covariance term Cov(dwt,dyt) (see equation (A11)). Hence, even though a speculator affects dyt by his
strategy, he can consider the covariance term Cov(dwt,dyt) to be independent of his strategy. In Internet
Appendix M.3, we explore an alternative specification in which the speculator takes into account his
effect on dyt. We find, however, that the overall effect on the equilibrium coefficients is very small.
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model with fast and slow traders.

If some `-speculators have strategies of the form (12) with different m`, we call this

the mixed model with m lags, where m is the maximum of all m`. We are particularly

interested in the mixed model with m = 1 lags in which 0-speculators (fast traders)

only trade on their current signal (m0 = 0) and the 1-speculators (slow traders) only

use their lagged signal (m1 = 1). We call this the bechmark model with fast and slow

traders, and denote it by B1. In Section 3, we solve for the equilibrium in bothM1 and

B1, and show that M1 can be regarded as a particular case of B1.

Information Processing. The assumption that speculators cannot use lagged

signals beyond a given bound can be justified by introducing an information processing

cost δ > 0 per individual signal and per unit of time. More precisely, we consider an

alternative model in which a `-speculator can use all past signals, but must pay a fixed

cost δ` dt each time he trades with a nonzero weight (γk,t) on his k-lagged signal (see

equation 12). Then, intuitively, because the value of information decays with the lag,

and the speculator does not want to accumulate too large a cost, he must stop using

lagged signals beyond an upper bound. In Result 1 we show that for a particular value

of δ the alternative model is equivalent to M1.

In this paper, we do not model the exact nature of the speculators’ signals and their

processing costs. But, intuitively, an information processing cost per signal (and per

trading round) is plausible, because in practice speculators must constantly monitor

each signal in order to avoid trading on stale (predictable) information. In our model,

this can be done by simply removing the predictable part (zt,t−k) from the lagged signal

(dwt−k). In practice, however, speculators must monitor various sources of public infor-

mation (such as news reports, economic data, or trading information in various related

securities), to extract the part of the signal has not yet been incorporated into the price.

Note that an individual processing cost implicitly means that speculators cannot

simply rely on free public signals, such as the price, to shortcut the learning process. This

is because in reality prices may contain other relevant information about the fundamental

value, along which the speculators are adversely selected. We formalize this intuition in

Internet Appendix L, where we introduce an orthogonal dimension of the fundamental

value, and show that trading strategies that rely on prices make an average loss.
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3 Equilibrium with Fast and Slow Traders

In this section, we analyze the important case in which speculators use signals with a

maximum lag of one. There are two types of speculators: (i) the Fast Traders, or FTs,

who observe the signal with no delay (called 0-speculators in Section 2); and (ii) the Slow

Traders, or STs, who observe the signal with a delay of one lag (called 1-speculators).

The trading strategy of FTs and STs is of the form (see (12)):

dxt = γt(dwt − zt,t) + µt(dwt−1 − zt−1,t), t ∈ (0, T ], (14)

where the weight γt must be zero for a ST. There are two possibilities: either the FT

can trade on both the current and the lagged signals, or the FT can trade only on the

current signal, i.e., the FT’s weight γt must be zero.18 The former case is the model

denoted by M1, the model with fast and slow traders. The latter case is the model

denoted by B1, the benchmark model.

In Section 3.1, we solve for the equilibrium of the model M1 in closed form. One

important implication is that the FTs and STs trade identically on their lagged signal

(µt is the same for all). Therefore, if we require the FTs to use only their current signal

(as in B1) and introduce an equal number of additional STs, then the aggregate behavior

remains essentially the same. Hence, the modelM1 can be regarded as a particular case

of B1, and we are justified in calling B1 the benchmark model with fast and slow traders.

This more general model can also be solved in closed form, by using essentially the same

formulas as in Section 3.1. We discuss the benchmark model in Section 3.2.

3.1 The Model with Fast and Slow Traders

In this section, we solve for the equilibrium of the modelM1 with fast and slow traders.

From (14), the FTs have a strategy of the form dxt = γt(dwt− zt,t) +µt(dwt−1− zt−1,t),

while the STs have a strategy of the same form, except that µt must be zero. The

current signal (dwt) is not predictable from the past order flow, hence the dealer sets

zt,t = 0. The lagged signal (dwt−1) has already been used by the FTs in the previous

18Intuitively, this can occur if the FT must pay a higher processing cost per signal than the ST; see
the discussion at the beginning of Section 3.2.
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trading round, hence the dealer can use the past order flow to compute the predictable

part zt−1,t.
19 To simplify notation, let d̃wt−1 be the unanticipated part at t of the lagged

signal:

d̃wt−1 = dwt−1 − zt−1,t. (15)

In Theorem 1, we show that there exists a closed-form linear equilibrium of the

model. The equilibrium is symmetric, in the sense that the FTs have identical trading

strategies, and so do the STs. We also provide asymptotic results when the number NF

of fast traders is large. We say that X∞ is the asymptotic value of a number X which

depends on NF , if the ratio X/X∞ converges to 1 as NF approaches infinity, and we

write:

X ≈ X∞ ⇐⇒ lim
NF→∞

X

X∞
= 1. (16)

Let “F” refer to the fast traders, and “S” to the slow traders. Denote by NF the

number of fast traders, and by NS the number of slow traders. We denote the total

number of speculators by

NL = NF +NS. (17)

This is the same as the number of speculators who use their lagged signals, hence the

“L” notation. We also call NL the number of lag traders.

Theorem 1. Consider the model M1 with NF > 0 fast traders and NS ≥ 0 slow

traders; let NL = NF + NS. Then, there exists a symmetric linear equilibrium with

constant coefficients, of the form (t ∈ (0, T ]):

dxFt = γdwt + µd̃wt−1, dxSt = µd̃wt−1,

d̃wt−1 = dwt−1 − ρdyt−1, dpt = λdyt,
(18)

where the coefficients γ, µ, ρ, λ are given by:

γ =
1

λ

1

NF + 1
, µ =

1

λ

1

NL + 1

1

1 + b
,

ρ =
σw
σu

√
(1− a)(a− b2), λ = ρ

NF

NF − b
,

(19)

19In Theorem 1, we show that that the dealer sets zt−1,t = ρdyt−1 for some constant coefficient ρ.
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with

ω = 1 +
1

NF

NL

NL + 1
, b =

√
ω2 + 4 NL

NL+1
− ω

2
, a =

NF − b
NF + 1

. (20)

We have the following asymptotic limits when NF is large:

ω∞ = a∞ = 1 b∞ =

√
5− 1

2
, λ∞ = ρ∞ =

σw
σu

1√
NF

. (21)

The number b is increasing in both NF and NS. Moreover, ω ∈ [1, 2), a ∈ (0, 1),

b ∈ [0, b∞).

One consequence of the Theorem is that FTs and STs trade with the same intensity

(µ) on their lagged signals. This is true because the current signal dwt is uncorrelated

with the lagged signal d̃wt−1, which implies that the FTs and the STs get the same

expression for the expected profit that comes from the lagged signal.20

We now discuss some comparative statics regarding the optimal weights γ and µ

(for brevity, we omit the proofs). The fast traders’ optimal weight γ is decreasing in

the number of fast traders, yet it is increasing in the number of slow traders. The first

statement simply reflects that, when the number of fast traders is larger, these traders

must divide the pie into smaller slices. The same logic applies to the coefficient on the

lagged signal: µ is decreasing in both NF and NS, as the fast and slow traders compete

in trading on their common lagged signal. This last intuition also shows that the fast

traders’ weight γ is increasing in the number of slow traders. Indeed, when there is

more competition from slow traders, the fast traders have an incentive to trade more

aggressively on their current signal, as the slow traders have not yet observed this signal.

The next Corollary helps to get more intuition for the equilibrium.

20This result does not generalize to the case when there are more lags (M > 1). In Internet
Appendix I, we see that there is a positive autocorrelation between the signals of higher lags, which
reflects a more complicated covariance structure. Mathematically, this translates into the covariance
matrix A having non zero entries Ai,j when i > j ≥ 1.
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Corollary 1. In the context of Theorem 1, we have the following formulas:

λ γ̄ =
NF

NF + 1
, λ µ̄ =

1

1 + b

NL

NL + 1
,

Var
(
d̃wt
)

dt
= (1− a)σ2

w =
1 + b

NF + 1
σ2
w,

Cov
(
d̃wt, wt

)
dt

=
1− a
1 + b

σ2
w =

σ2
w

NF + 1
.

(22)

The first equation in (22) implies that λγ̄dwt = NF
NF+1

dwt, which shows that most of

the current signal (dwt) is incorporated into the price by the fast traders. The intuition

comes from the Cournot nature of the equilibrium. Indeed, when trading on the current

signal, the benefit of each of each FT increases linearly with the intensity of trading γ

on his signal; while the price at which he eventually trades increases linearly with the

aggregate quantity demanded. Given that the price impact of the other NF − 1 fast

traders aggregates to NF−1
NF+1

dwt, the FT is a monopsonist against the residual supply

curve, and trades such that his price impact is half of 2
NF+1

dwt, i.e., his price impact

equals 1
NF+1

dwt.

After incorporating NF
NF+1

dwt in trading round t, the fast traders must compete with

the slow traders for the remaining 1
NF+1

dwt in the next trading round. As explained

before, the speculators must trade a multiple of the unanticipated part of the lagged

signal, d̃wt = dwt − ρdyt. Thus, when trading on the lagged signal, the benefit of each

speculator—fast or slow—increases linearly with the intensity of trading µ, and is pro-

portional to the covariance Cov
(
d̃wt, wt

)
. At the same time, each speculator faces a price

that increases linearly with the aggregate quantity demanded, and which is proportional

to the lagged signal variance Var
(
d̃wt
)
. The argument is now similar to the Cournot

one above, except that everything gets multiplied by the ratio Cov(d̃wt, wt)/Var(d̃wt),

which according to (22) is equal to 1/(1 + b). This justifies the second equation in (22).

It also implies that in the case of the lagged signal only a fraction 1/(1 + b) of it is

incorporated by the speculators into the price.

We use the results in Theorem 1 to compute the expected profits of the fast traders

and the slow traders.

Proposition 1. In the context of Theorem 1, the expected profit of the FTs and STs at
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t = 0 from their equilibrium strategies are given, respectively, by:

πF

σ2
w

=
γ

NF + 1
+

1

NF + 1

µ

NL + 1
,

πS

σ2
w

=
1

NF + 1

µ

NL + 1
.

(23)

The ratio of slow profits to fast profits is therefore

πS

πF
=

1

1 + (NL+1)2(1+b)
NF+1

=⇒ πS

πF
≈ NF

(NF +NS)2

1

1 + b∞
. (24)

Thus, even if there is only one ST (NS = 1), the ST profits are small compared

to the FT profits. The reason is that FTs trade also on their lagged signals, and thus

compete with the STs. Indeed, FTs compete for trading on dwt only among themselves,

while they also compete with the STs for trading on the lagged signal d̃wt−1.

Finally, Proposition 1 gives an estimate for the information processing cost δ that

would be sufficient to discourage speculators from trading on lagged signals beyond one,

if that were not imposed by the model. We state the following numerical result.

Result 1. Consider the alternative model setup with NF fast speculators and NS slow

speculators, in which each speculator can use past signals at any lag, but must pay for

each signal (used with nonzero weight) an information processing cost of

δ =
1

NF + 1

µ

NL + 1
σ2
w. (25)

Then, the alternative model is equivalent to the model with fast and slow traders (M1).

3.2 The Benchmark Model

We now consider the benchmark model B1, in which the fast traders use only the current

signal, while the slow traders use only the lagged signal.21 The strategies of the FTs

21As in Result 1, M0,1 is equivalent to an alternative setup with information processing costs, in
which (i) the STs pay the cost δ from (25), while (ii) the FTs pay a cost slightly higher than δ. Indeed,
if a FT paid δ, he would be indifferent between using his lagged signal and not using it; while with a
slightly higher cost, he would be strictly worse off and would ignore his lagged signal.
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and STs are, respectively, of the form

dxFt = γtdwt, dxSt = µtd̃wt−1, (26)

where d̃wt−1 = dwt−1 − ρtdyt−1. The dealer sets the price using the rule dpt = λtdyt.

Let NF ≥ 1 be the number of FTs and NL ≥ 0 the number of STs.

The next result shows that the modelM1 with NF fast traders and NS slow traders

produces essentially the same outcome as the benchmark model B1 with NF fast traders

and NL = NF +NS slow traders.

Corollary 2. Consider (a) the model M1 with NF ≥ 1 fast traders and NS ≥ 0 slow

traders; and (b) the benchmark model B1 with NF fast traders and NL = NF +NS slow

traders. Then, the equilibrium coefficients γ, µ, λ, ρ in the two models are identical.

This Corollary is obtained by simply following the proof of Theorem 1 to solve for

the equilibrium in the B1 model. The key step is to observe that in Theorem 1 the fast

trader’s choice of µ is the same as the slow trader’s choice of µ, and therefore it does

not matter who does the optimization, as long as the total number of speculators using

their lagged signal is the same.

We finally note that the benchmark model B1 with NF > 0 fast traders and NL slow

traders has two important particular cases:

• If NL ≥ NF , B1 is equivalent to the model M1 with NF fast traders and NS =

NL −NF slow traders;

• If NL = 0, B1 is the model M0 (with 0 lags).

4 Market Quality with Fast and Slow Traders

In this section, we study the effect of fast and slow trading on various measures of market

quality. The setup is the benchmark model B1 with NF ≥ 1 fast traders and NL ≥ 0 slow

traders. In this context, “fast trading” is the speculators’ aggregate trading on their

current signal, and “slow trading” is the speculators’ aggregate trading on their lagged

signal. The measures of market quality analyzed are illiquidity (measured by the price
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impact coefficient), trading volume, price volatility, price informativeness, the speculator

participation rate, and the speculator’s order flow autocorrelation. The main conclusion

of this section is that fast trading has the strongest effect on most of our measures of

market quality, while slow trading has a relatively smaller effect. The only measure that

depends crucially on slow trading is the speculators’ order flow autocorrelation, which

becomes positive only in the presence of slow trading. This is shown to be related to

anticipatory trading: the order flow coming from fast traders anticipates the order flow

coming from the slow traders in the next period.

4.1 Measures of Market Quality

We first decompose the aggregate speculator order flow into fast trading and slow trad-

ing. Denote by dx̄t be the aggregate speculator order flow. Let γ̄ be the aggregate weight

on the current signal (dwt), and µ̄ the aggregate weight on the lagged signal (d̃wt−1). We

decompose the aggregate speculator order flow dx̄t into two components: fast trading,

which represents the aggregate trading on the current signal; and slow trading, which

represents the aggregate trading on the lagged signal:

dx̄t = γ̄ dwt︸ ︷︷ ︸
Fast Trading

+ µ̄ d̃wt−1︸ ︷︷ ︸
Slow Trading

, with γ̄ = NFγ, µ̄ = NLµ. (27)

As in Theorem 1, we define b = ρµ̄. We call b the slow trading coefficient. Then, slow

trading exists (is nonzero) only if the number of traders who use their lagged signal is

positive, or equivalently if b > 0:

Slow Trading exists ⇐⇒ NL > 0 ⇐⇒ b > 0. (28)

Note that the case when there is no slow trading coincides with the model M0 with 0

lags from Section 2. In that model, NF fast traders use only their current signal.

We now define the measures of market quality. Recall that the dealer sets a price

that changes in proportion to the total order flow dy = dx̄t + dut:

dpt = λ dyt = λ
(
γ̄ dwt + µ̄ d̃wt−1 + dut

)
, (29)
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First, as it is standard in the literature, we define illiquidity to be the price impact

coefficient λ. Thus, the market is considered illiquid if the price impact of a unit of

trade is large, i.e., if the coefficient λ is large.

Second, we define trading volume as the infinitesimal variance of the aggregate order

flow dyt:

TV = σ2
y =

Var(dyt)

dt
. (30)

We argue that this is a measure of trading volume. Indeed, in each trading round the

actual aggregate order flow is given by dyt. Thus, one can interpret trading volume as

the absolute value of the order flow: |dyt|. From the theory of normal variables, the

average trading volume is given by E
(
|dyt|

)
=
√

2
π
σy. With our definition TV = σ2

y,

we observe that TV is monotonic in E
(
|dyt|

)
, and thus TV can be used a measure of

trading volume. Using (29), we compute the trading volume in our model by the formula

TV = γ̄2 σ2
w + µ̄2 σ2

w̃ + σ2
u, with σ2

w̃ =
Var
(
d̃wt
)

dt
. (31)

The trading volume measure TV can be decomposed into the speculator trading volume

and the noise trading volume:

TV = TV s + TV n, with TV s = γ̄2 σ2
w + µ̄2 σ2

w̃, TV n = σ2
u. (32)

Third, we define price volatility σp to be the square root of the instantaneous price

variance:

σp =

(
Var(dpt)

dt

)1/2

. (33)

From (29), it follows that the instantaneous price variance can be computed simply as

the product of the illiquidity measure λ and the trading volume TV = σ2
y. Thus,

σ2
p = λ2 TV = λ2

(
γ̄2 σ2

w + µ̄2 σ2
w̃ + σ2

u

)
. (34)

Fourth, we define price informativeness as a measure inversely related to the forecast

error variance Σt = Var
(
(wt − pt−1)2

)
. Thus, if prices are informative, they stay close

to the forecast wt, i.e., the variance Σt is small. In Internet Appendix I, in the general

23



model with at most m lagged signals (Mm) we show that Σt evolves according to

Σ′t = σ2
w − σ2

p, where σ2
p is the price variance (Proposition I.1). Therefore, since Σ′t is

inversely monotonic in the price variance, we do not use it as a separate measure of

market quality.

Fifth, the speculator participation rate is defined as the ratio of speculator trading

volume over total trading volume:

SPR =
TV s

TV
=

γ̄2 σ2
w + µ̄2 σ2

w̃

γ̄2 σ2
w + µ̄2 σ2

w̃ + σ2
u

. (35)

SPR can also be interpreted as the fraction of price variance due to the speculators.

Figure 2: Market Quality with Fast and Slow Traders. This figure plots the

following measures of market quality: (i) illiquidity λ; (ii) trading volume TV ; (iii) price

volatility σp; and (iv) speculator participation rate SPR. Panel A plots the dependence of the

four market quality measures on the number of fast traders NF , while taking the number of

slow traders NL = 5. Panel B plots the dependence of the four market quality measures on

NL, while taking NF = 5. The other parameters are σw = 1, σu = 1.
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4.2 Comparative Statics on Market Quality

We now give explicit formulas for our measures of market quality. As before, we use

asymptotic notation when NF is large: X ≈ Y stands for lim
NF→∞

X
Y

= 1.
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Proposition 2. Consider the benchmark model with NF ≥ 1 fast traders and NL ≥ 0

slow traders. Then, the price impact coefficient, trading volume, price volatility, and

speculator participation rate satisfy:

λ =
σw
σu

√
(1 + b)(a− b2)√

NF + 1

NF

NF − b
, TV = σ2

u(NF + 1)
a

(1 + b)(a− b2)
,

σ2
p = σ2

w

N2
F

(NF + 1)(NF − b)
, SPR = a+

b2(1 + b)

NF − b
,

(36)

where b2 + b
(
1 + 1

NF

NL
NL+1

)
= NL

NL+1
, and a = NF−b

NF+1
.

Panel A of Figure 2 shows how the four measures of market quality vary with the

number of fast traders NF , while holding the number of slow traders NL constant.

Panel B of Figure 2 shows how the four measures of market quality vary with NL, while

holding NF constant. We find that all four market quality measures vary in the same

direction with respect to NF and NL. Nevertheless, the number of fast traders has a

much stronger effect on these measures than the number of slow traders.

To get more intuition about the effect of fast trading on market quality, we consider

the simplest case, when NL = 0. Since all speculators trade only on their current

signal, this case coincides with the model M0 as defined in Section 2. In this model

there is no slow trading (µ̄ = 0), hence the slow trading coefficient b is zero. Moreover,

a = NF−b
NF+1

= NF
NF+1

. Thus, we can solve the model M0 by simply using Proposition 2.

Nevertheless, it is instructive to solve for the equilibrium of M0 independently.

Proposition 3. Consider the model M0, with NF fast traders whose trading strategy

is of the form dxt = γtdwt. Then, the optimal coefficient γ is constant and equal to

γ = 1
λ

1
NF+1

= σu
σw

1√
NF

. The price impact coefficient, trading volume, price volatility,

and speculator participation rate satisfy, respectively,

λ =
σw
σu

√
NF

NF + 1
, TV = σ2

u(NF + 1), σ2
p = σ2

w

NF

NF + 1
, SPR =

NF

NF + 1
.

(37)

Using Proposition 3, we now discuss in more detail the effect of the number NF of

fast traders on the measures of market quality. First, we note by quickly inspecting the

formulas in Proposition 3, that we obtain the same qualitative results as those displayed
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in Figure 2. Namely, illiquidity is decreasing in NF , while the other three measures are

increasing in NF .

An important consequence of Proposition 3 is that in our model the speculator

participation rate can be made arbitrarily close to 1 if the number of fast traders is

large. Thus, noise trading volatility is only a small part of the total volatility. This

stands in sharp contrast for instance with the models of Kyle (1985) or Back, Cao, and

Willard (2000), in which virtually all instantaneous price volatility is generated by the

noise traders at the high frequency limit (in continuous time).

The market is more efficient when the number of fast traders is large. Indeed, in the

proof of Proposition 3 we show that the rate of change of the forecast error variance

Σ′ is constant and equal to σ2
w

NF+1
. Since by assumption there is no initial informational

asymmetry (Σ0 = 0), it follows that Σt ≤ σ2
w

NF+1
for all t. In other words, the price stays

close to the fundamental value at all times. Thus, a larger number NF of fast traders,

rather than destabilizing the market, makes the market more efficient.

The trading volume TV strongly increases with the number of fast traders. This

occurs because of the competition among FTs make them trade more aggressively. By

trading more aggressively, FTs reveal more information, which as we see later lowers

the traders’ price impact. This has an amplifier effect on the trading aggressiveness,

such that the trading volume grows essentially linearly in the number of speculators

(see equation (37)). Moreover, the speculator participation rate SPR also increases in

NF , since SPR is the fraction of trading volume caused by the speculators.

Surprisingly, a larger number of fast traders make the market more liquid, as more

information is revealed when there are more competing speculators. This appears to be

in contradiction with the fact that more informed trading should increase the amount

of adverse selection. To understand the source of this apparent contradiction, note that

illiquidity is measured by the price impact λ of one unit of volume. But, while the

trading volume TV strongly increases in NF in an unbounded way, its price impact is

bounded by magnitude of the signal dwt.
22 Thus, the price impact per unit of volume

actually decreases, indicating that prices are more informative. This makes the market

22In Internet Appendix I, we make this intuition rigorous in the general case; see the discussion
surrounding Proposition I.4.
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overall more liquid. This result is consistent with the empirical studies of Zhang (2010),

Hendershott, Jones, and Menkveld (2011), and Boehmer, Fong, and Wu (2014).

To understand the effect of fast traders on the price volatility σp, consider the pricing

formula dyt = λdyt, which implies σ2
p = λ2TV . There are two effects of NF on the price

volatility σP . First, the trading volume TV strongly increases in NF , which has a

positive effect on σP . Second, price impact λ decreases in NF , which has a negative

effect on σP . The first effect is slightly stronger than the second, hence the net effect

is that price volatility σP increases in NF . This result is consistent with the empirical

studies of Boehmer, Fong, and Wu (2014) and Zhang (2010).

A few caveats are in order. First, all these studies analyze the effects of HFT activity,

where activity is proxied either by turnover or by intensity of order-related message

traffic, and not by the number of HFTs present in the market. An answer to this

concern is that, as we have seen, trading volume does increase in NF . Second, in our

paper we do not model passive HFTs, that is, HFTs that offer liquidity via limit orders.

Therefore, it is possible that an increase in the number of passive HFTs decreases price

volatility, which would cancel the opposite effect of the number of active HFTs. For

instance, Hasbrouck and Saar (2012) document a negative effect of HFTs on volatility,

possibly because they also consider passive HFTs, which by providing liquidity have a

stabilizing effect on price volatility. Moreover, Chaboud, Chiquoine, Hjalmarsson, and

Vega (2014) find essentially no relation. In our model, the dependence of price volatility

on NF is weak, which may explain the mixed results in the empirical literature.

Next, we discuss how the various measures of market quality depend on the spec-

ulators’ signal precision σw. Note that, according to equation (5), the signal precision

is related to the fundamental volatility σv by a monotonic relation: σw = σv
(1+σ2

η/σ
2
v)1/2 .

Therefore, we only analyze the dependence of market quality on signal precision, while

keeping in mind that these results apply equally to the fundamental volatility.

The price volatility σp increases in signal precision, indicating that speculators trade

more aggressively when they have a more precise signal. Indeed, σp is the volatility

of dpt, which is the price impact of the aggregate order flow. In particular, the order

flow coming from the FTs has an aggregate price impact which is proportional to dwt.
23

23From Proposition 3, the FTs’ order flow equals λNF γdwt = NF

NF+1dwt.
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Thus, price volatility increases in the signal precision.

A larger signal precision σw generates more adverse selection between fast traders

and the dealer, hence the illiquidity λ is increasing in the signal precision. However, the

trading volume TV is independent of σw. To get some intuition for this result, note that

TV =
σ2
p

λ2 . Since both the numerator and denominator increase with signal precision,

the net effect is ambiguous. Proposition 3 shows that the two effects exactly offset each

other.

4.3 Order Flow Autocorrelation and Anticipatory Trading

We start by analyzing the autocorrelation of the components of the order flow. Since the

dealer is competitive and risk neutral, the total order flow dyt has zero autocorrelation.

But because the dealer cannot identify the part of the order flow that comes from

speculators, the speculator order flow can in principle be autocorrelated.

As in Section 4.1, in the benchmark model with fast and slow traders, the aggregate

speculator order flow decomposes into its fast trading and slow trading components:

dx̄t = dx̄Ft︸︷︷︸
Fast Trading

+ dx̄St︸︷︷︸
Slow Trading

, with dx̄Ft = γ̄ dwt, dx̄St = µ̄ d̃wt−1, (38)

with γ̄ = NFγ and µ̄ = NLµ. As before, we say that slow trading exists if b = ρµ̄ > 0,

or equivalently NL > 0.

We define speculator order flow autocorrelation by Corr
(
dx̄t, dx̄t+1

)
. Because dx̄Ft+1

is orthogonal to both components of dx̄Ft , we obtain the decomposition:

ρx̄ = Corr
(
dx̄t, dx̄t+1

)
=

Cov
(
dx̄Ft , dx̄

S
t+1

)
Var(dx̄t)︸ ︷︷ ︸

Anticipatory Trading

+
Cov
(
dx̄St , dx̄

S
t+1

)
Var(dx̄t)︸ ︷︷ ︸

Expectation Adjustment

. (39)

We denote the anticipatory trading part by ρAT and the expectation adjustment part by

ρEA. The first component arises because fast trading at t anticipates slow trading at

t+ 1. Indeed, there is a positive correlation between fast trading at t and slow trading

at t+ 1 (µ̄d̃wt). The second component arises because slow trading at t+ 1 is based on

lagged signals, adjusted by subtracting the dealer’s expectation which incorporates past
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lagged signals. Because of this expectation adjustment, we see below that the slow order

flow is negatively autocorrelated. Formally, slow trading at t+ 1 (µ̄d̃wt) is proportional

to the lagged signal minus dealer’s expectation, d̃wt = dwt − ρdyt. But the dealer’s

expectation is proportional on the total order flow at t, which includes the previous slow

trading (dyt = γ̄ dwt + µ̄ d̃wt−1 + dut). We compute:

ρx̄ = ρAT + ρEA, with ρAT = µ̄γ̄
Var
(
dwt
)

Var(dx̄t)
, ρEA = − ρµ̄3 Var

(
d̃wt−1

)
Var(dx̄t)

. (40)

Figure 3: Speculator Order Flow Autocorrelation. This figure plots the speculator

order flow autocorrelation ρx̄ (solid line) and the anticipatory trading component ρAT (dashed

line) as a function of the number NF of fast traders. The four graphs correspond to four values

of the number NL of speculators using their lagged signal: NL = 1, 3, 5, 20.
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Proposition 4. Consider the benchmark model with NF ≥ 1 fast traders and NL ≥ 0

slow traders. Then, the speculator order flow autocorrelation and its components satisfy

ρx̄ =
b(b+ 1)(a− b2)

a2 + b2(1− a)

1

NF + 1
,

ρAT
ρx̄

=
a

a− b2
,

ρEA
ρx̄

= − b2

a− b2
, (41)

where a and b are as in Proposition 2. Moreover, ρx̄ is strictly positive if and only if

there exists slow trading, i.e., NL > 0.

One implication of Proposition 4 is that, as long as there exists slow trading, the

speculator order flow autocorrelation ρx̄ is nonzero. To understand why, note that both

the anticipatory trading component and the expectation adjustment component depend

on the existence of slow trading. Formally, if there is no slow trading, µ̄ = 0 implies

that both components of the speculator order flow autocorrelation are zero.
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Figure 3 shows how the speculator order flow autocorrelation (ρx̄) and its anticipatory

trading component (ρAT ) depend on the number of fast traders (NF ) for four different

values of the number of slow traders (NL = 1, 3, 5, 20). We see that both ρx̄ and ρAT

are decreasing in NF . Indeed, when the number of fast traders is large, there is only

1
NF+1

of the signal left in the next period for the slow traders. Hence, one should expect

the autocorrelation to decrease by the order of 1
NF+1

, which is indeed the case. For

instance, when NL = 5, we see that the speculator order flow autocorrelation is 22.56%

when there is one FT, but decreases to 2.84% when there are 20 FTs. Our results are

consistent with the empirical literature on HFTs. For instance, Brogaard (2011) finds

that the autocorrelation of aggregate HFT order flow is small but positive.

The anticipatory trading component ρAT is increasing in the number of slow traders

NL (to see this, fix for instance NF = 10 in each of the four graphs in Figure 3). The

intuition is simple: when the number of slow traders is larger, fast trading in each period

can better predict the slow trading the next period, hence the correlation ρAT is larger.

Using Nasdaq data on high-frequency traders, Hirschey (2013) finds that HFT order

flow anticipates non-HFT order flow. But Nasdaq defines HFTs along several criteria

including the use of large trading volume and low inventories. In our model, these are

indeed the characteristics of fast traders, but not those of slow traders (see the next

section for a discussion about traders’ inventories). Thus, if in our model we classified

fast traders as HFTs and slow traders as non-HFTs, our previous results would imply

that HFT order flow anticipates non-HFT order flow.

5 Inventory Management

In this section, we analyze the inventory problem of fast traders. Because the benchmark

model cannot address this problem (when speculators are risk-neutral, their inventory

follows a random walk), we modify the model by introducing an additional trader with

inventory costs.24 We call this new trader the Inventory-averse Fast Trader, or IFT, and

the resulting setup the model with inventory management, or the model with an IFT.

24Introducing more than one inventory-averse trader makes the problem considerably more compli-
cated, as the number of state variables increases.
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To get intuition for the model with inventory management, we first solve for the

optimal strategy of the IFT in a partial equilibrium framework, taking as fixed the

behavior of the other speculators and the dealer. The solution of this problem is provided

in closed form. Then, we continue with a general equilibrium analysis. We show that

the equilibrium reduces to a non-linear equation in one variable, which can be solved

numerically. We then study the properties of the general equilibrium, and the effect of

the inventory management on market quality.

5.1 Model

To define the model with inventory management, we consider a setup similar to the

benchmark model, but we replace one risk-neutral fast trader with an inventory-averse

fast trader (IFT). Specifically, the IFT maximizes an expected utility U of the form

(recall that T = 1):

U = E

(∫ T

0

(v1 − pt)dxt
)
− CI E

(∫ T

0

x2
tdt

)
, (42)

where xt is his inventory in the risky asset, and CI > 0 is a constant. We call CI the

inventory aversion coefficient. We do not identify the exact source of inventory costs

for the IFT, but these can be thought to arise either from capital constraints or from

risk aversion.

In this model, there are NF fast traders, NL slow traders, and one IFT. The equi-

librium concept is similar to the linear equilibrium from Section 2. But, because the

inventory problem is very difficult in a more general formulation, we assume directly

that the speculators’ strategies have constant coefficients, and that the dealer has pric-

ing rules as in the benchmark model. Thus, the fast trader i = 1, . . . , NF and the slow

trader j = 1, . . . , NL have strategies, respectively, of the form:

dxFi,t = γidwt, dxSj,t = µjd̃wt−1. (43)
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The dealer has pricing rules of the form:

dpt = λdyt, zt−1,t = ρdyt−1, (44)

where dyt is the aggregate order flow at t, and zt−1,t = Et(dwt−1) is the dealer’s expec-

tation of the current signal given the past order flow. The coefficient λ is chosen so that

the dealer breaks even, meaning that her expected profit is zero.25

Since the IFT has quadratic inventory costs, it is plausible to expect that his opti-

mal trading strategy is linear in the inventory.26 Therefore, we assume that the IFT’s

strategy is of the following type:

dxt = −Θxt−1 +G dwt, (45)

with constant coefficients Θ ∈ [0, 2) and G ∈ R. Equivalently, the IFT’s inventory xt

follows an AR(1) process

xt = φxt−1 +G dwt, φ = 1−Θ, (46)

with autoregressive coefficient φ ∈ (−1, 1].27

If Θ > 0, in each trading round the IFT removes a fraction Θ of his current inventory,

with the goal of bringing his inventory eventually to zero. One measure of how quickly

the inventory mean reverts to zero is the inventory half life. This is defined as the

average number of periods (of length dt) that the process needs to halve the distance

from its mean, i.e.,

Inventory Half Life =
ln(1/2)

ln(φ)
dt =

ln(1/2)

ln(1−Θ)
dt. (47)

25Note that because of inventory management, the aggregate order flow is no longer completely
unpredictable by the dealer. Nevertheless, the only source of predictability is the IFT’s inventory, and,
as we prove later, this inventory in equilibrium is very small because of fast mean reversion. Moreover,
not being able to properly compute the expectation of IFT’s inventory does not mean that the dealer
loses money. Indeed, we have assumed that the dealer chooses λ so that her expected profit is zero.

26This is standard in the literature. See for instance Madhavan and Smidt (1993), but also Hender-
shott and Menkveld (2014), or Ho and Stoll (1981).

27A standard result is that the AR(1) process becomes explosive (with infinite mean and variance)
if φ is outside [−1, 1], or equivalently if Θ is outside [0, 2].
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Hence, the inventory half life is of the order of dt. This in practice can be short (minutes,

seconds, milliseconds), which means that when Θ > 0 the IFT does very quick, “real-

time” inventory management.

We end this section with a brief discussion of the different types of inventory man-

agement. In Section 5.2 we will see that there is a discontinuity between the cases Θ = 0

and Θ > 0. To explain this discontinuity, we introduce a new case, Θ = 0+, in which

the IFT mean reverts his inventory, but much more smoothly (formal details are be-

low). It turns out that this intermediate inventory management regime indeed connects

continuously the other two. Thus, there are three different cases (regimes):

• Θ = 0, the neutral regime: the IFT’s strategy is of the form dxt = Gdwt, similar

to the strategy of a (risk-neutral) fast trader.

• Θ > 0, the fast regime: the IFT’s strategy is of the form dxt = −Θxt−1 + Gdwt.

In this regime, the inventory half life is of the order of dt.

• Θ = θdt, the smooth regime: the IFT’s strategy is of the form dxt = −θxt−1dt +

Gdwt, with θ ∈ (0,∞).28 In this regime, the inventory half life ln(1/2)
ln(1−θdt) dt = ln(2)

θ
,

which is much larger than the inventory half life in the fast regime.

The smooth regime is discussed in detail in Internet Appendix K. We find that

indeed the smooth regime connects continuously the cases Θ = 0 (neutral regime) with

the case Θ > 0 (fast regime).29 However, we show that the smooth regime is not optimal

for the IFT when there is enough slow trading (this is true for instance if the NL ≥ 2

and NF ≥ 1). Therefore, in the rest of the paper we assume that there is enough slow

trading, and ignore the smooth regime.

5.2 Optimal Inventory Management

In this section, we do a partial equilibrium analysis, and solve for the optimal strategy

of the IFT while fixing the behavior of the other players. This allows us to get insight

28This is called an Ornstein-Uhlenbeck process.
29More precisely, θ = 0 in the smooth regime coincides with Θ = 0; while the limit when θ ↗∞ in

the smooth regime coincides with the limit when Θ↘ 0 in the fast regime.
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about the IFT’s behavior, without having to do a full equilibrium analysis. We leave

this more general analysis to Section 5.3.

Consider the inventory management model with one IFT, NF fast traders and NL

slow traders. Let γ, µ be the coefficients arising from the strategies of the FTs and

STs (not necessarily optimal), and λ, ρ the coefficients from the dealer’s pricing rules.

Define additional model coefficients by:

R =
λ

ρ
, γ− = NFγ, µ̄ = NLµ, a− = ργ−, b = ρµ̄. (48)

Proposition 5 analyzes the inventory management regime, where by definition the

IFT has a trading strategy with positive mean reversion (Θ > 0). For this result, the

strategy need not be optimal.

Proposition 5. In the inventory management model, let dxt = −Θxt−1 +Gdwt be the

IFT’s strategy (not necessarily optimal), with Θ > 0. Suppose b ∈ (−1, 1). Then, the

IFT has zero inventory costs, and all his expected profits are in cash. His expected profit

π satisfies:

π = λ

(
µ̄G

1− a−

1 + φb
−G2

b+ 1
1+φ

1 + φb

)
σ2
w. (49)

Because the IFT reduces his inventory by a fraction Θ > 0 in each trading round, his

inventory decays exponentially on average. As our model is set at the high frequency

limit (in continuous time), the decrease in IFT inventory is very quick, and the inventory

remains infinitesimal at all times.30

In general, the expected profit π of any speculator satisfies:

π = E

∫ T

0

(vT − pt)dxt = E
(
vT xT

)︸ ︷︷ ︸
Risky Component

+ E

∫ T

0

(−pt) dxt︸ ︷︷ ︸
Cash Component

. (50)

The risky component is the expected profit due to the accumulation of inventory in the

risky asset. This does not translate into cash profits until the liquidation date, T = 1.

The cash component is the expected profit that comes from changes in the cash account

due to trading. Because the IFT has an infinitesimal inventory, his risky component of

30Mathematically, the average squared inventory E(x2t ) is of the order of dt; see equation (A32).
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profits is negligible. Hence, all IFT profits come from the cash component, as stated in

Proposition 5.

As a result of keeping all his profits in cash, the behavior of the IFT is very different

than the behavior of a risk-neutral speculator. Indeed, while the risk-neutral speculator

trades directly on his private information, the IFT benefits only indirectly, from timing

his trades and unloading his inventory to slower traders.

To understand why the IFT behaves differently, suppose he observes a new signal

dwt. Initially, the IFT trades on his signal (Gdwt), but subsequently he fully reverses

his trade by unloading a positive fraction of his inventory each period. Therefore, the

only way for the IFT to make money is to ensure that the inventory reversal is done at

a profit. This can occur for instance if the IFT expects that when he sells, other traders

buy even more, and as a result his overall price impact is negative. But this is only

possible if there exist slow traders, whose lagged signals can be predicted by the IFT.

In general, the expected profit of a speculator who manages inventory satisfies the

following formula:31

π = E

∫ T

0

xt−1 dpt. (51)

Thus, inventory management is profitable only when the speculator can use his past

inventory (xt−1) to forecast the current price change (dpt). In particular, this formula

explains why the IFT trades at t − 1 an amount Gdwt−1 even though he knows that

subsequently he will fully reverse his trade. He trades like this because his signal dwt−1

anticipates the slow trading at t, which in turn affects dpt. To make this intuition more

precise, the next result specializes the formula (51) to our model.

Corollary 3. In the context of Proposition 5, the IFT’s expected profit satisfies:

π = E

∫ T

0

xt−1

(
λ µ̄ d̃wt−1

)
− λΘ E

∫ T

0

x2
t−1. (52)

If there is no slow trading (µ̄ = 0), the IFT’s makes negative expected profits.

Using Corollary 3, we see that the IFT’s speculative trade Gdwt−1 is part of the

31For the IFT, see equation (A35). The result is true in general when the speculator has infinitesimal
inventory. Indeed, if we integrate d(xtpt) = ptdxt +xt−1dpt, we get xT pT , which is zero in expectation

since xT is infinitesimal. Hence, π = E
∫ T
0

(−pt)dxt = E
∫ T
0
xt−1dpt.
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IFT’s inventory xt−1, and is also correlated with the price change dpt via the slow

trading component of the order flow µ̄ d̃wt−1. Without slow trading (µ̄ = 0), there is

no correlation, hence no revenue source for the IFT. Therefore, the IFT makes negative

profits on average, as he loses from the price impact of his trades.

The main result of this section describes the IFT’s optimal strategy when there is

enough slow trading, i.e., the slow trading coefficient b is above a threshold.

Figure 4: Optimal IFT Inventory Management. This figure plots the coefficients

of the IFT’s optimal trading strategy (dxt = −Θxt−1 +G dwt) in the inventory management

model with NF = 5 fast traders and NL = 5 slow traders. On the horizontal axis is the IFT’s

inventory aversion, CI . The parameter values are σw = 1, σu = 1. For the model coefficients,

we use the equilibrium values from Section 5.3: a− = 0.7088, b = 0.5424, λ = 0.3782, ρ =

0.3439. The formulas for G, Θ, and C̄I are from Theorem 2.
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Theorem 2. In the inventory management model, suppose the model coefficients satisfy

0 ≤ a−, b < 1 and λ, ρ > 0. In addition, suppose b >
√

17−1
8

= 0.3904.32 Let C̄I =

2λ
(

(1−Ra−)2(1+
√

1−b)2

R2b(1−a−)2 − 1
)

. Then, if CI < C̄I , the optimal strategy of the IFT is to set

Θ = 0, G =
1−Ra−

2λ+ CI
. (53)

If CI > C̄I , the optimal strategy of the IFT is to set

Θ = 2−
√

1− b
b

∈ (0, 2), G =
1− a−

2ρ
(

1 + 1√
1−b

) . (54)

32In equilibrium (section 5.3) we have the following numerical results: the condition b < 1 is always

satisfied, and the condition b >
√
17−1
8 is equivalent to having (i) NL ≥ 2 and (ii) NL ≥ 6 if NF = 0.
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Thus, there are two different types of behavior (regimes) for the IFT, depending on

how his inventory aversion compares to a threshold value (C̄I).

• (Neutral regime) If the inventory aversion coefficient is small (below C̄I), the IFT

sets Θ = 0 and controls his inventory by choosing his weight G. As his inventory

aversion gets larger, the IFT reduces his inventory costs by decreasing G. The

tradeoff is that a smaller G also reduces expected profits. The behavior of the IFT

when Θ = 0 is essentially the same as the behavior of a FT.

• (Fast regime) If the inventory aversion is large (above C̄I), the IFT manages his

inventory by choosing a positive mean reversion coefficient (Θ > 0). There is no

longer a tradeoff between expected profit and inventory costs, as the IFT has zero

inventory costs. Hence, the IFT chooses the weight G and the mean reversion Θ

to maximize expected profit (more details below).

Theorem 2 implies that a small change in IFT’s inventory aversion can have a large

effect on the IFT’s behavior. Figure 4 plots the coefficients of the optimal strategy

when NF = 5, NS = 5. We see that when the IFT’s inventory aversion rises above

the threshold C̄I = 0.1021, his optimal mean reversion coefficient jumps from Θ = 0 to

Θ = 0.7530. Also, his optimal weight jumps from G = 0.1186 (the left limit of G at the

threshold) to G = 0.1708 (the constant value of G above the threshold).

The sharp discontinuity between the two regimes arises because the IFT has zero

inventory costs in the fast regime (Θ > 0). Let U∗
Θ>0

and U∗
Θ=0

be the maximum expected

utility of the IFT respectively when he manages inventory versus when he does not.

Because the IFT has zero inventory costs in the fast regime, U∗
Θ>0

does not depend on

CI ; while in the neutral regime U∗
Θ=0

is decreasing in CI and is precisely equal to U∗
Θ>0

at

the threshold value CI = C̄I .
33 This implies that the neutral regime is optimal when CI

is below the threshold, while the fast regime is optimal when CI is above the threshold.

Note that a necessary condition for Theorem 2 is the existence of enough slow trading.

Formally, the slow trading coefficient must be larger than the threshold b = 0.3904,

which numerically is true for instance if there are NF ≥ 1 fast traders and NL ≥ 2 slow

traders. If slow trading is below the threshold, we show that a similar analysis holds,

33Formally, these statements follow from equations (A43) and (A39) in the Appendix.
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but with the fast regime replaced by the smooth regime, in which the IFT still manages

inventory but with a strategy of the form: dxt = −θxtdt + Gdwt. (See Section J.1 in

the Internet Appendix.) To simplify presentation, we assume that there is enough slow

trading, and ignore the smooth regime in the rest of the paper.

Using our results, we predict that in practice fast speculators are sharply divided into

two categories. In both categories speculators generate large trading volume. But in

one category the speculators make fundamental bets and accumulate inventories, while

in the other category speculators mean revert their inventories very quickly, and keep

their profits in cash. Our results appear consistent with the “opportunistic traders” and

the “high frequency traders” described in Kirilenko et al. (2014). Both opportunistic

traders and HFTs have large volume and appear to be fast. But while opportunistic

traders have relatively large inventories, the HFTs in their sample (during several days

around the Flash Crash of May 6, 2010) liquidate 0.5% of their aggregate inventories

on average each second. This implies that HFT inventories have an AR(1) half life of a

little over 2 minutes.

We finish this section with a brief discussion of how the IFT’s optimal strategy is

correlated with slow trading. Corollary 3 shows that if there is no slow trading, the IFT

cannot make positive profits. Theorem 2 shows that with enough slow trading, the IFT

can manage inventory and make positive profits (see equation (A43) in the Appendix).

In the previous discussion, we have argued that this is possible only if the IFT trades

in the opposite direction to the slow trading. We now prove this is indeed the case.

Corollary 4. In the context of Theorem 2, suppose the IFT is sufficiently averse (CI >

C̄I). Denote by dx̄St = µ̄d̃wt−1 the slow trading component of the speculator order flow.

Then, the IFT’s optimal strategy is negatively correlated with slow trading:

Cov
(
dxt, dx̄

S
t

)
= −ΘCov

(
xt−1, dx̄

S
t

)
< 0. (55)

We call this phenomenon the hot potato effect, or the intermediation chain effect.

The intuition is that the IFT’s current signal generates undesirable inventory and must

be passed on to slower traders in order to produce a profit. The passing of inventory

can be thought as the beginning of an intermediation chain. Kirilenko et al. (2014) and
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Weller (2014) document such hot potato effects among high frequency traders.

5.3 Equilibrium Results

In this section, we solve for the full equilibrium of the inventory management model.

For simplicity, we assume that the IFT is sufficiently averse, meaning that his inven-

tory aversion is above a certain threshold (formally, above the threshold value C̄I from

Theorem 2). Then, the solution can be expressed almost in closed form, except for the

slow trading coefficient b, which satisfies a non-linear equation in one variable.

Theorem 3. Consider the inventory management model with one sufficiently averse

IFT, NF fast traders, and NL slow traders. Suppose there is an equilibrium in which

the speculators’s strategies are: dxt = −Θxt−1 + Gdwt (the IFT), dxFt = γdwt (the

FTs), dxSt = µd̃wt−1 (the STs); and the dealer’s pricing rules are: dpt = λdyt, d̃wt =

dwt − ρdyt. Denote the model coefficients R, a−, b as in (48). Suppose
√

17−1
8

< b < 1.

Then, the equilibrium coefficients satisfy equations (A44)–(A46) from the Appendix.

Conversely, suppose the equations (A44)–(A46) have a real solution such that
√

17−1
8

<

b < 1, a < 1, λ > 0. Then, the speculators’ strategies and the dealer’s pricing rules with

these coefficients provide an equilibrium of the model.

Rather than relying on numerical results to study the equilibrium, we start by pro-

viding asymptotical results when the number of FTs and STs is large. The advantage

is that the asymptotic results can be expressed in closed form, and thus help provide a

clearer intuition for the equilibrium. Let C̄I be the threshold aversion from Theorem 2.

Let π be the expected profit of a sufficiently averse IFT (CI ≥ C̄I), and π
CI=0

the max-

imum expected profit of a risk-neutral IFT (CI = 0), where the behavior of the other

speculators and the dealers is taken to be the same. Let γ0 the benchmark FT weight,

and πF0 = γ0

NF+2
σ2
w the benchmark profit of a FT, as in Proposition (1). We use the

asymptotic notation: X ≈ X∞ stands for lim
NF ,NL→∞

X
X∞

= 1.

Proposition 6. Consider (i) the inventory management model with one sufficiently

averse IFT, NF fast traders, and NL slow traders, and (ii) the benchmark model with

NF + 1 fast traders and NL slow traders. Then, the equilibrium coefficients γ, µ, λ, ρ
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are asymptotically equal across the two models when NF and NL are large. Also, a ≈ 1,

b ≈ b∞ = 0.6180, and we have the following asymptotic formulas:

Θ ≈ 1,
G

γ0

≈ 1− b∞ = 0.3820,
π

πF0
≈ 2b∞ − 1 = 0.2361,

π

π
CI=0 ≈ 4

5
b∞ = 49.44%, C̄I ≈ 1+5b∞

2
λ∞ ≈ 2.0451

σw
σu

1√
NF + 1

.

(56)

The first implication of Proposition 6 is that model with inventory management is

asymptotically the same as the benchmark model when both NF and NL are large. This

is not surprising, since when there are many other speculators, the IFT has a relatively

smaller and smaller role in the limit.

The behavior of the IFT is more surprising. First, when there are many other

speculators, the IFT’s inventory mean reversion becomes extreme (Θ approaches 1).

This means that the IFT’s inventory half life becomes essentially zero, as the IFT

removes most of his inventory each period. This extreme mean reversion is possible

because the existence of a sufficient amount of slow trading allows the hot potato effect

to generate positive profits for the IFT. Furthermore, the equation π ≈ 49.44%× πCI=0

implies that even under extreme inventory mean reversion (Θ = 1) the IFT can trade

so that he only loses on average only about 50% of his maximum expected profits when

he has zero inventory aversion.34

The equation C̄I ≈ 2.0451 σw
σu

1√
NF+1

implies that the threshold inventory aversion

above which the IFT chooses to mean revert his inventory becomes very small when the

number of competing fast traders is large. This is perhaps counterintuitive, since one

may think that the IFT chooses fast inventory mean reversion because he has very high

inventory aversion. This is not the case, however. Indeed, even when the IFT has small

inventory aversion, a sufficient amount of slow trading is enough to convince the IFT to

engage in very fast inventory mean reversion. This is because inventory management is

a zero/one proposition. Once the IFT engages in inventory management (Θ > 0), any

profits from fundamental bets become zero, and the hot potato effect is the sole source

of profits.

34This recalls the saying attributed to Joseph Kennedy (the founder of the Kennedy dynasty) that
“I would gladly give up half my fortune if I could be sure the other half would be safe.”
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We now compare the IFT with the other speculators. For the IFT, we consider

the following variables: (i) IFT’s trading volume, measured by the his order flow

variance TV x = Var(dxt)/dt, as in Section 4.1, (ii) IFT’s order flow autocorrelation,

ρx = Corr(dxt, dxt+1); and (iii) βx,x̄S = Cov(dxt, dx̄
S
t )/Var(dx̄St ), which is the regression

coefficient of the IFT’s strategy (dxt) on the slow trading component (dx̄St ). We are

also interested in the individual FT volume, TV xF ; the aggregate FT volume, TV x̄F ;

and the aggregate ST volume, TV x̄S ; the aggregate FT order flow autocorrelation, ρx̄F ;

and the aggregate ST order flow autocorrelation, ρx̄S .

The next result computes all these quantities, and provides asymptotic results when

both NF and NL are large. Some of these results provide new testable implications,

regarding the relationship between trading volume, order flow covariance, and inventory.

Proposition 7. In the context of Theorem 3, consider a sufficiently averse IFT. Then,

the variables defined above satisfy the following formulas:

TV x

TV xF
=

2G2

(1 + φ)γ2
≈ 4− 6b∞ = 0.2918,

TV x̄S

TV x̄F
=

b2(1− a)

(a−)2
≈ b∞

NF + 1
,

ρx = −Θ

2
≈ −1

2
, ρx̄F = 0, ρx̄S ≈ −b∞ = −0.6180,

βx,x̄S = − Θ(1− a−)

2b(1 + 2
√

1− b)
≈ − 3 + b∞

5(NF + 1)
= − 0.7236

NF + 1
.

(57)

The last result illustrates the hot potato effect. The IFT’s order flow has a negative

beta on the STs’ aggregate order flow, which means that the IFT and the STs trade in

opposite directions. As the number of FTs becomes larger, there is more information

released to the public by the trades of the fast traders, hence there is less room for slow

trading. As a result, the hot potato effect is less intense when there is a large number

of FTs.

Proposition 7 implies that in the limit when NF and NL are large, the IFT’s trading

volume is about 30% of the individual FT trading volume. This implies that the IFT’s

trading volume is comparable to that of a regular FT. By contrast, just as in the

benchmark model, the volume coming from STs is much smaller than the volume coming

from FTs. This confirms our intuition that in an empirical analysis which selects traders

based on volume, the IFT and the FTs are in the category with large trading volume,
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while the STs are in the category with small trading volume.

If we compare order flow autocorrelations, we see that the IFT is similar to the STs,

but not to the FTs. Indeed, the IFT and the STs have negative and large order flow

autocorrelation. By contrast, the FTs have zero order flow autocorrelation.35 Finally,

if we compare inventories, the IFT has infinitesimal inventory, while the variance of the

other speculators’ inventory increases over time.36 Nevertheless, the STs’ inventories

are smaller relative to the FTs’ inventories, since the STs have smaller volume.

We now present some numerical results for the equilibrium coefficients. Figure 5

plots the equilibrium coefficients (Θ, G, γ, µ, λ, ρ). We normalize some variables X in

the inventory management model by the corresponding variable X0 in the benchmark

model. Panel A of Figure 5 plots the variables against NF , while holding NL constant.

Panel B plots the same variables against NL, while holding NF constant.37

Figure 5: Equilibrium Coefficients with Inventory Management. This figure

plots the equilibrium coefficients that arise in the inventory management model. Some variables

X are normalized by the corresponding variable X0 in the benchmark model. The coefficients

are Θ, G, γ, µ, λ, ρ. Panel A plots the dependence of the six variables on the number of fast

traders NF , while taking the number of slow traders NS = 5. Panel B plots the dependence

of the six variables on NS , while taking NF = 5. The other parameters are σw = 1, σu = 1.
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As expected, we find that the mean reversion coefficient Θ is increasing in the number

35Even if we allowed FTs to trade on lagged signals, one can see that the FTs would still have very
small order flow autocorrelation (of the order of 1

NF+1 ) because of their large trading volume.
36For the IFT, Var(xt) = G2

1−φ2 σ
2
w dt (see equation (A25) in the Appendix); while for the FT,

Var(xFt ) = tσ2
w, as the FT’s inventory follows a random walk.

37We consider NF , NL ≥ 2. The reason is that in order to apply Theorem 2, we need to have

b >
√
17−1
8 . This is true in equilibrium if NF , NL ≥ 2.
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of slow traders NL. This is because the IFT needs slow traders in order to make profits.

The IFT’s weight G is less than half the benchmark weight γ0, indicating that the IFT

shifts towards inventory management in order to make profits. This leaves more room

for fundamental profits, which explains why both the FTs and the STs are better off

with inventory management than in the benchmark model (γ/γ0 and µ/µ0 are both

above one), despite the price impact λ being larger than in the benchmark (we see that

λ/λ0 > 1). The reason why the market is more illiquid in the inventory management

model is that the IFT trades much less intensely on his signal (G is less than half of γ0),

and therefore the informational efficiency is lower. To see directly that the market is

less informationally efficient in the inventory management model, we use the fact that

in our model price volatility is a proxy for informational efficiency (see the discussion

in Section 4). Then, we verify numerically that indeed σp/σp,0 < 1, which implies that

with inventory management the market is less informationally efficient.

6 Conclusion

We have presented a theoretical model in which traders continuously receive signals over

time about the value of an asset, but only use each signal for a finite number of lags

(which can be justified by an information processing cost per signal). We have found

that competition among speculators reveals much private information to the public,

and the value of information decays fast. Therefore, a trader who is just one instant

slower than the other traders loses the majority of the profits by being slow. Another

consequence is that the market is very efficient and liquid. As a feedback effect, because

of the small price impact (high market liquidity), the informed traders are capable

of trading even more aggressively. In equilibrium, the fast speculator trading volume

is very large and dominates the overall trading volume. We have also considered an

extension of the model in which a fast speculator, called the inventory-averse fast trader

(IFT), has quadratic inventory costs. We find that a sufficiently averse IFT has a very

different behavior compared to a risk-neutral fast trader. The IFT keeps his profits in

cash, makes no fundamental bets on the value of the risky asset, and quickly passes

his inventory to “slow traders,” who use their lagged signals. This hot potato effect is
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possible because the existence of slower traders more than reverses the price impact of

the IFT.

Appendix A. Proofs

Notation Preliminaries

Recall that t+ 1 is notation for t+ dt, and

T = 1. (A1)

In general, a tilde above a symbol denotes normalization by σw. For instance, if σu

is the instantaneous volatility of the noise trader order flow, and σy the instantaneous

volatility of the total order flow, we denote by

σ̃u =
σu
σw
, σ̃y =

σy
σw
, with σ2

u =
Var(dut)

dt
, σ2

y =
Var(dyt)

dt
. (A2)

Consider a trading strategy dxt for t ∈ (0, T ], where T = 1. Denote by π̃ the normalized

expected profit at t = 0 from the strategy dxt:

π̃ =
1

σ2
w

E

(∫ T

0

(wt − pt)dxt
)
. (A3)

For variances and covariances, a tilde the symbol means normalization by both σ2
w and

dt. For instance, denote by

Ṽar
(
d̃wt
)

=
Var
(
d̃wt
)

σ2
wdt

= At, C̃ov
(
wt, d̃wt

)
=

Cov
(
wt, d̃wt

)
σ2
wdt

= Bt. (A4)

Proof of Theorem 1. We look for an equilibrium with the following properties: (i)

the equilibrium is symmetric, in the sense that the FTs have identical trading strategies,

and the same for the STs; (ii) the equilibrium coefficients are constant with respect to

time.

To solve for the equilibrium, in the first step we take the dealer’s pricing functions as

given, and solve for the optimal trading strategies for the FTs and STs. In the second

44



step, we take the speculators’ trading strategies as given, and we compute the dealer’s

pricing functions. In Section 2, we have assumed that the speculators take the signal

covariance structure as given (see equation (13)). In the current context, this means

that the speculators take the following covariances as given and constant:

At = Ṽar
(
d̃wt
)

=
Var
(
d̃wt
)

σ2
wdt

, Bt = C̃ov
(
wt, d̃wt

)
=

Cov
(
wt, d̃wt

)
σ2
wdt

(A5)

Thus, in the rest of the Appendix we consider that the dealer also sets A and B, in

addition to setting λ and ρ.

Speculators’ Optimal Strategy (γ, µ)

Since we search for an equilibrium with constant coefficients, we assume that the spec-

ulators take as given the dealer’s pricing rules dpt = λdyt and zt−1,t = ρdyt−1, and also

the covariances A = Ṽar(d̃wt) and B = C̃ov(wt, d̃wt).

Consider a FT, indexed by i = 1, . . . , NF . He chooses dxit = γitdwt + µitd̃wt−1, and

assumes that at each t ∈ (0, T ], the price satisfies:

dpt = λ dyt, with dyt =
(
γit + γ−it

)
dwt +

(
µit + µ−it

)
d̃wt−1 + dut, (A6)

where the superscript “−i” indicates the aggregate quantity from the other speculators.

Since dwt and d̃wt−1 are both orthogonal on the public information set It, and pt−1 ∈ It,

it follows that dxit is orthogonal to pt−1 as well. The normalized expected profit of FT

i at t = 0 satisfies:

π̃F =
1

σ2
w

E

∫ T

0

(
wt − pt−1 − λ

(
(γit + γ−it )dwt + (µit + µ−it )d̃wt−1 + dut

))
dxit

= γit − λγit
(
γit + γ−it

)
+ µitB − λµit

(
µit + µ−it

)
A.

(A7)

This is a pointwise optimization problem, hence it is enough to consider the profit at

t = 0, and maximize the expression over γit and µit. The solution of this problem is

λγit =
1−λγ−it

2
, and λµit =

B/A−λµ−it
2

. The ST j = 1, . . . , NS solves the same problem,

only that his coefficient on dwt is γjt = 0. Thus, all γ’s are equal for the FTs, and

all µ’s are equal for the FTs and STs. We also find that they are constant, and since
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NL = NF +NS, we have

γ =
1

λ

1

1 +NF

, µ =
B/A

λ

1

1 +NL

. (A8)

Dealer’s Pricing Rules (λ, ρ, A, B)

The dealer takes the speculators’ strategies as given, and assumes that the aggregate

order flow is of the form:

dyt = dut + γ̄ dwt + µ̄ d̃wt−1, with γ̄ = NF γ, µ̄ = NL µ. (A9)

Moreover, the dealer assumes that, in their trading strategy, the speculators set:

d̃wt−1 = dwt−1 − ρ∗ dyt−1. (A10)

Naturally, later we require that in equilibrium the dealer’s pricing coefficient ρ coincides

with the coefficient ρ∗ used by the speculators.

Since the order flow dyt is orthogonal to the dealer’s information set It, the dealer

sets λt, ρt, At, Bt such that the following equations are satisfied:

λt =
C̃ov(wt, dyt)

Ṽar(dyt)
=

γ̄ + µ̄ Bt−1

σ2
y,t

, dpt = λtdyt,

ρt =
C̃ov(dwt, dyt)

Ṽar(dyt)
=

γ̄

σ2
y,t

, d̃wt = dwt − ρtdyt,

σ2
y,t = Ṽar(dy2

t ) = σ̃2
u + γ̄2 + µ̄2At−1,

Bt = C̃ov
(
wt, dwt − ρ∗dyt

)
= (1− ρ∗γ̄)− ρ∗µ̄Bt−1,

At = Ṽar
(
dwt − ρ∗dyt

)
= 1− 2ρ∗γ̄ + (ρ∗)2σ2

y,t

= 1− 2ρ∗γ̄ + (ρ∗)2(σ̃2
u + γ̄2) + (ρ∗)2µ̄2At−1.

(A11)

Consider the last equation in (A11), At = 1−2ρ∗γ̄+(ρ∗)2(σ̃2
u+ γ̄2)+(ρ∗)2µ̄2At−1, which

is a recursive equation in At. Then, Lemma A.1 (below) implies that A does not depend

on t, as long as |ρ∗µ̄| < 1. But, since the dealer takes the speculators’ strategies as given,

we can use the equilibrium condition ρ∗µ̄ = b ∈ (0, 1). The same method shows that
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B does not depend on t. Moreover, Lemma A.1 can be used to compute the constant

values of A and B:

A =
(1− ρ∗γ̄)2 + (ρ∗)2σ̃2

u

1− (ρ∗µ̄)2
, B =

1− ρ∗γ̄
1 + ρ∗µ̄

. (A12)

Then, equation (A11) shows that λ, ρ, σ̃y are independent on t as well.

Equilibrium Conditions

We now use the equations derived above to solve for the equilibrium values of γ, µ, λ,

ρ = ρ∗, A, B, σ̃y. Denote by

a = ρ γ̄, b = ρ µ̄, R =
λ

ρ
. (A13)

From (A12) we have A = (1−a)2+ρ2σ̃2
u

1−b2 . Then, substitute A in σ̃2
y = σ̃2

u + γ̄2 + µ̄2A

from (A11), to obtain ρ2σ̃2
y = ρ2σ̃2

u+(a2+b2−2ab2)
1−b2 . To summarize,

B =
1− a
1 + b

, A =
(1− a)2 + ρ2σ̃2

u

1− b2
, ρ2σ̃2

y =
ρ2σ̃2

u + (a2 + b2 − 2ab2)

1− b2
. (A14)

Using (A11), we get R = λ
ρ

= γ̄+µ̄B
γ̄

=
a+b 1−a

1+b

a
= a+b

a(1+b)
. Also, the equation for ρ implies

ρ = γ̄
σ̃2
y

= ρa
ρ2σ̃2

y
. Using the formula for ρ2σ̃2

y in (A14), we compute ρ2σ̃2
u = (1− a)(a− b2).

Using this formula, we obtain ρ2σ̃2
y = a and A = 1− a. To summarize,

R =
λ

ρ
=

a+ b

a(1 + b)
, ρ2σ̃2

u = (1−a)(a−b2), ρ2σ̃2
y = a, A = 1−a. (A15)

From (A8), we have NF
NF+1

= λγ̄ = λ
ρ
a = a+b

1+b
. From this, a = NF−b

NF+1
, and B = 1−a

1+b
=

1+b
NF+1

1+b
= 1

NF+1
. Also, B

A
NL
NL+1

= λµ̄ = λ
ρ
b = b(a+b)

a(1+b)
. Since B

A
= 1

1+b
, we have NL

NL+1
= b(a+b)

a
,

or a
b(1+b)

NL
NL+1

= a+b
1+b

. The two formulas for a+b
1+b

imply b(1 + b) NF
NF+1

= a NL
NL+1

. To

summarize,

a =
NF − b
NF + 1

, B =
1

NF + 1
, b(1 + b)

NF

NF + 1
=

NF − b
NF + 1

NL

NL + 1
. (A16)

From λ
ρ
a = NF

NF+1
and a = NF−b

NF+1
, we get λ

ρ
= NF

NF−b
, as stated.
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From (A16), we obtain the quadratic equation b2 + bω = NL
NL+1

, with ω = 1 +

1
NF

NL
NL+1

. One solution of this quadratic equation is b =
ω+
(
ω+4

NL
NL+1

)1/2

2
≥ 1, which

leads to a negative σ̃2
y (see (A14)). Thus, we must choose the other solution, b =

−ω+
(
ω+4

NL
NL+1

)1/2

2
≥ 0. Let b∞ =

√
5−1
2

. Since b2
∞ + b∞ = 1 and ω ≥ 1, we have

b2
∞+ b∞ω ≥ 1. Moreover, since b2 + bω = NL

NL+1
< 1, we get b2 + bω < b2

∞+ b∞ω. But the

function b2 + bω is strictly increasing in b when b ≥ 0, hence we obtain b < b∞. Thus,

b ∈ [0, b∞), as stated in the Theorem. We also obtain a = NF−b
NF+1

∈ (0, 1). The proof of

the exact formulas in (19) is now complete.

We now derive the asymptotic formulas in (19). When NF is large, note that a =

NF
NF−b

≈ a∞ = 1, ω = 1 + 1
NF

NL
NL+1

≈ ω∞ = 1. Therefore, we also get b ≈ b∞ =
√

5−1
2

.

One can now verify that the formulas for γ∞, µ∞, λ∞, and ρ∞ are as stated in (19).

We now show how b depends on NF and NL (the dependence on NS is the same as the

dependence onNL = NF+NS). Consider the function F (β, ω) =
√
ω2 + 4β−ω, and note

that b = F (β, ω)/2, with β = NL
NL+1

and ω = 1+ β
NF

. We compute ∂β
∂NF

= ∂β
∂NL

= 1
(NL+1)2 ,

∂ω
∂NF

= −NL(NL+1)−NF
N2
F (NL+1)2 < 0, ∂ω

∂NL
= 1

NF (NL+1)2 > 0. Also, ∂F
∂β

= 2√
ω2+4β

> 0, and

∂F
∂ω

= β√
ω2+4β

− 1 = − b√
ω2+4β

< 0. Then, ∂(2b)
∂NF

= ∂F
∂β
· ∂β
∂NF

+ ∂F
∂ω
· ∂ω
∂NF

> 0, and

∂(2b)
∂NL

= ∂F
∂β
· ∂β
∂NL

+ ∂F
∂ω
· ∂ω
∂NL

= 1

(NL+1)2
√
ω2+4β

(
2 − b

NF

)
> 0, where the last inequality

follows from b ∈ (0, 1).

We end the analysis of the equilibrium conditions, by proving several more useful

inequalities for a and b. Denote by βF = NF
NF+1

and recall that β = NL
NL+1

. Then, b

satisfies the quadratic equation b2 + bω = β, with ω = 1 + β
NF

. Now start with the

straightforward inequality β < βF + 1, and multiply it by βF . We get ββF < β2
F + βF .

Since βF = 1− βF
NF

, we get β(1− βF
NF

) < β2
F + βF , or equivalently β < β2

F + βF (1 + β
NF

).

Since b2 + bω = β and ω = 1 + β
NF

, we get b2 + bω < β2
F + βFω. Because the function

f(x) = x2 + xω is increasing in x ∈ (0, 1), we have b < βF = NF
NF+1

. This inequality is

equivalent to NF − b > NF b. Dividing by NF + 1, we get a = NF−b
NF+1

> NF b
NF+1

= bβF . But

we have already seen that βF > b, hence a > bβF > b2. To summarize,

b <
NF

NF + 1
, a > b2. (A17)
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Lemma A.1 can now be used to show that the coefficients A and B are constant.

Indeed, in the proof of the Theorem, we have seen that both At and Bt satisfy recursive

equations of the form Xt = α + βXt−1, with β ∈ (−1, 1). Then, Lemma A.1 implies

that Xt converges to a fixed number α
1−β , regardless of the starting point. But, since

we work in continuous time, and t+ 1 actually stands for t+ dt, the convergence occurs

in an infinitesimal amount of time. Thus, Xt is constant for all t, and that constant is

equal to α
1−β .

We now state the Lemma that is used in the proof of Theorem 1.

Lemma A.1. Let X1 ∈ R, and consider a sequence Xt ∈ R which satisfies the following

recursive equation:

Xt − βXt−1 = α, t ≥ 2. (A18)

Then the sequence Xt converges to X̄ = α
1−β , regardless of the initial value of X1, if and

only if β ∈ (−1, 1).

Proof. First, note that X̄ is well defined as long as β 6= 1. If we denote by Yt = Xt−X̄,

the new sequence Yt satisfies the recursive equation Yt − βYt−1 = 0. We now show that

Yt converges to 0 (and X̄ is well defined) if and only if β ∈ (−1, 1). Then, the difference

equation Yt − βYt−1 = 0 has the following general solution:

Yt = Cβt, t ≥ 1, with C ∈ R. (A19)

Then, Yt is convergent for any values of C if and only if all β ∈ (−1, 1]. But in the latter

case, 1− β = 0, which makes X̄ nondefined.

Proof of Corollary 1. In the proof of Theorem 1, equation (A8) implies λγ̄ = NF
NF+1

,

λµ̄ = B
A

NL
NL+1

. But from (A14) and (A15), we have B
A

= 1
1+b

, which proves the first

row in (22). The second row in (22) just rewrites the formulas for A and B from

equations (A14) and (A15).

Proof of Proposition 1. From Corollary 1, λγ̄ = NF
NF+1

and λµ̄ = B
A

NL
NL+1

. From (A7),
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the equilibrium normalized expected profit of the FT is

π̃F = γ − λγγ̄ + µB − λµµ̄A = γ
(

1− NF

NF + 1

)
+Bµ

(
1− NL

NL + 1

)
(A20)

From (A16), B = 1
NF+1

, which proves the desired formula for πF . The profit of the ST

is the same as for the FT, but with γ = 0. The last statement now follows from the

asymptotic results in Theorem 1.

Justification of Result 1. According to Proposition 1, δ dt is the expected profit

that speculators get per unit of time dt from trading on their lagged signal (d̃wt−1).

Given that all speculators break even on this lag, they would not trade on any signal

with a larger lag, as this would cost them the same (δ), but would bring a lower profit.

For this last statement we use the results of Internet Appendix I (Proposition I.3), where

we show numerically and asymptotically that the profit generated by lagged signals is

decreasing in the number of lags.

Proof of Proposition 2. Since 1−a = 1+b
NF+1

, equation (19) implies that λ = ρ NF
NF−b

=

σw
σu

√
(1− a)(a− b2) NF

NF−b
= σw

σu

√
(1+b)(a−b2)
√
NF+1

NF
NF−b

, which proves the first equation in (36).

By definition, the trading volume is TV = σ2
y. From (A15), TV = σ2

y = σ̃2
yσ

2
w = aσ2

w

ρ2 .

From (19), ρ2 = σ2
w

σ2
u

(1−a)(a−b2), hence TV = σ2
u

a
(1−a)(a−b2)

. Substituting 1−a = 1+b
NF+1

,

we get TV = σ2
u(NF + 1) a

(1+b)(a−b2)
, which proves the second equation in (36).

The price volatility is σ2
p = λ2TV =

(
λ
ρ

)2
ρ2TV =

(
λ
ρ

)2
aσ2

w. From (19), λ
ρ

= NF
NF−b

,

hence σ2
p =

(
NF
NF−b

)2 NF−b
NF+1

σ2
w =

N2
F

(NF+1)(NF−b)
σ2
w, which proves the third equation in (36).

The speculator participation rate is SPR =
γ̄2 σ2

w+µ̄2 σ2
w̃

TV
=

ρ2(γ̄2 σ2
w+µ̄2 σ2

w̃)

aσ2
w

. Since ργ̄ =

a, ρµ̄ = b, and σ2
w̃ = (1− a)σ2

w, we get SPR = a2+b2(1−a)
a

. This proves the last equation

in (36), since 1−a
a

= 1+b
NF−b

.

Proof of Proposition 3. As in Theorem 1, we start with the FT’s choice of optimal

trading strategy. Each FT i = 1, . . . , NF observes dwt, and chooses dxit = γitdwt to

maximize the expected profit:

π0 = E

(∫ T

0

(
wt − pt−1 − λt(dxit + dx−it + dut)

)
dxit

)
=

∫ T

0

γitσ
2
wdt−λtγit

(
γit+γ

−i
t

)
σ2
wdt,

(A21)
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where the superscript “−i” indicates the aggregate quantity from the other FTs. This

is a pointwise quadratic optimization problem, with solution λtγ
i
t =

1−λtγ−it
2

. Since this

is true for all i = 1, . . . , NF , the equilibrium is symmetric and we compute γt = 1
λt

1
1+NF

.

The dealer takes the FTs’ strategies as given, thus assumes that the aggregate order

flow is of the form dyt = dut + NFγtdwt. To set λt, the dealer sets pt such that dpt =

λtdyt, with λt = Cov(wt,dyt)
Var(dyt)

= NF γtσ
2
w

σ2
u+N2

F γ
2
t σ

2
w

. This implies λ2
tσ

2
u+(NFγtλt)

2σ2
w = NFγtλtσ

2
w.

But NFλtγt = NF
NF+1

. Hence, λ2
tσ

2
u +

(
NF
NF+1

)2
σ2
w = NF

NF+1
σ2
w, or λ2

tσ
2
u = NF

(NF+1)2σ
2
w, which

implies the formula λ = σw
σu

√
NF

NF+1
. We then compute γt = 1

λt

NF
1+NF

= σu
σw

1√
NF

.

We have TV = σ2
y = N2

Fγ
2σ2

w + σ2
u. But NFγ = σu

σw

√
NF , hence TV = σ2

u(1 +

NF ). Next, σ2
p = λ2TV = σ2

w

σ2
u

NF
(NF+1)2 σ

2
u(NF + 1) = σ2

w
NF
NF+1

. Also, SPR = TV−σ2
u

TV
=

σ2
u(NF+1)−σ2

u

σ2
u(NF+1)

= NF
NF+1

.

Finally, we compute Σ′. From the formula above for λ, we get Var(dpt) = λ2 Var(dyt) =

λCov(wt, dyt) = Cov(wt, dpt). Since Σt = Var(wt− pt−1) = E
(
(wt− pt−1)2

)
, we compute

Σ′t = 1
dt
E
(
2(dwt+1 − dpt)(wt − pt−1) + (dwt+1 − dpt)

2
)

= −2Cov(wt,dpt)
dt

+ σ2
w + Var(dpt)

dt
=

σ2
w − σ2

p = σ2
w

NF+1
.

Proof of Proposition 4. We use the formulas from the Proof of Theorem 1. Since

d̃wt is orthogonal on dyt, we have C̃ov
(
d̃wt, dwt

)
= C̃ov

(
d̃wt, d̃wt

)
= A = 1− a = 1+b

NF+1
.

Then, C̃ov
(
d̃wt, d̃wt−1

)
= C̃ov

(
dwt − ργ̄dwt − ρµ̄d̃wt−1, d̃wt−1

)
= −ρµ̄A. Therefore,

C̃ov
(
dx̄t+1, dx̄t

)
= C̃ov

(
γ̄dwt+1 + µ̄d̃wt, γ̄dwt + µ̄d̃wt−1

)
= µ̄γ̄A+ µ̄2

(
−bA

)
Ṽar
(
dx̄t
)

= Ṽar
(
γ̄dwt + µ̄d̃wt−1

)
= γ̄2 + µ̄2A.

(A22)

By multiplying both the numerator and denominator by ρ2, we compute

ρx̄ =
µ̄γ̄A

γ̄2 + µ̄2A
− bµ̄2A

γ̄2 + µ̄2A
=

ab(1− a)

a2 + b2(1− a)
− b3(1− a)

a2 + b2(1− a)
= ρAT + ρEA. (A23)

Then, ρx̄ = ab−b3
a2+b2(1−a)

(1− a) = (a−b2)b
a2+b2(1−a)

1+b
NF+1

, which implies the desired formulas.

We now prove that ρx̄ > 0 if and only if there exists slow trading. When there is

no slow trading, b = ρµ̄ = 0, hence ρx̄ = 0. When there is slow trading, we show that

ρx̄ = b(b+1)(a−b2)
a2+b2(1−a)

1
NF+1

> 0. Indeed, we have b > 0, a < 1, and from equation (A17),

a− b2 > 0.
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Proof of Proposition 5. If xt is the IFT’s inventory in the risky asset, denote by

Ωxx
t =

E
(
x2
t

)
σ2
wdt

, Ωxe
t =

E
(
xt(wt − pt)

)
σ2
wdt

, Xt =
E
(
xtd̃wt

)
σ2
wdt

Ωxw
t =

E
(
xtwt

)
σ2
wdt

, Ωxp
t =

E
(
xtpt

)
σ2
wdt

, Zt =
E
(
xt−1dyt

)
σ2
wdt

.

(A24)

Since Θ > 0, we have Θ ∈ (0, 2), or φ = 1 − Θ ∈ (−1, 1). From (46), xt satisfies the

recursive equation xt = φxt−1 + Gdwt. We compute Ωxx
t = E((xt)2)

σ2
wdt

= E((φxt−1+Gdwt)2)
σ2
wdt

=

φ2Ωxx
t−1 + G2. Since φ2 ∈ (−1, 1), we apply Lemma A.1 to the recursive formula Ωxx

t =

φ2Ωxx
t−1 +G2. Then, Ωxx

t is constant and equal to:

Ωxx =
G2

1− φ2
=

G2

Θ(1 + φ)
, (A25)

which is the usual variance formula for the AR(1) process. The order flow at t is

dyt = −Θxt−1 + γ̄dwt + µ̄d̃wt−1 + dut, with γ̄ = γ−+G. Then, Zt is a function of Xt−1:

Zt =
E
(
xt−1dyt

)
σ2
wdt

= −ΘΩxx
t−1 + µ̄Xt−1 = − G2

1 + φ
+ µ̄Xt−1. (A26)

The recursive formula for Xt is Xt = E(xtd̃wt)
σ2
wdt

= E((φxt−1+Gdwt)(dwt−ρdyt))
σ2
wdt

= −φρZt + G−

Gργ̄ = −φρµ̄Xt−1 + φ ρG
2

1+φ
+ G − Gργ̄ = −φbXt−1 + G(1 − a−) − ρG2

1+φ
. By assumption,

0 ≤ b < 1, hence φb ∈ (−1, 1). Lemma A.1 implies that Xt is constant and equal to

X =
G(1− a−)− ρG2

1+φ

1 + φb
. (A27)

From (A26), Zt is also constant and satisfies:

Z = µ̄X − G2

1 + φ
= µ̄G

1− a−

1 + φb
−G2

b+ 1
1+φ

1 + φb
. (A28)

We are interested in Ωxe
t = Ωxw

t −Ωxp
t . The recursive equation for Ωxw

t is Ωxw
t = E(xtwt)

σ2
wdt

=

E
(

(φxt−1+Gdwt)(wt−1+dwt)
)

σ2
wdt

= φΩxw
t−1 + G. Since φ ∈ (−1, 1), Lemma A.1 implies that Ωxw

t

is constant and equal to

Ωxw =
G

Θ
. (A29)
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The recursive formula for Ωxp
t is Ωxp

t = E(xtpt)
σ2
wdt

=
E
(

(φxt−1+Gdwt)(pt−1+λdyt)
)

σ2
wdt

= φΩxp
t−1 +

λφZ + λGγ̄. Lemma A.1 implies that Ωxp
t is constant and equal to Ωxp = λφZ+λGγ̄

Θ
. It

follows that Ωxe
t = Ωxw

t − Ωxp
t is constant and satisfies:

−ΘΩxe = −
(
ΘΩxw −ΘΩxp

)
= −G+ λφZ + λGγ̄. (A30)

The IFT’s expected profit satisfies π
Θ>0

= E
∫ T

0
(wt − pt)dxt = E

∫ T
0

(
wt−1 − pt−1 +

dwt − λdyt
)(
Gdwt − Θxt−1

)
. Hence, the IFT’s normalized expected profit is π̃

Θ>0
=∫ T

0

(
−ΘΩxe +G− λγ̄G+ λΘZ

)
dt. If we use the formula (A30) for Ωxe, we obtain:

π̃
Θ>0

= λZ = λ

(
µ̄G

1− a−

1 + φb
−G2

b+ 1
1+φ

1 + φb

)
, (A31)

where the second equality comes from (A28). This proves (49).

We now show that the inventory costs are zero, which implies that the IFT’s expected

utility is the same as his expected profit. According to equation (A25), Ωxx
t = G2

Θ(1+φ)
is

constant. Then, by the definition (A24) of Ωxx
t , we have

E
(
x2
t

)
=

G2

Θ(1 + φ)
σ2
wdt, (A32)

which implies that the expected squared inventory of the IFT is infinitesimal, and there-

fore becomes zero when integrated up over [0, 1] (dt2 = 0). Hence, from the defini-

tion (42), the inventory costs of the IFT are CI
∫ T

0
E
(
x2
t

)
dt = 0.

To show that all IFT’s expected profits are in cash, consider the decomposition

π
Θ>0

= E

∫ T

0

(vT − pt)dxt = E

∫ T

0

wtdxt − E

∫ T

0

ptdxt, (A33)

which is the same as (50). We need to show that the first term (the risky component)

is zero. From (A29), Ωxw
t = G

Θ
. Thus, we compute

E
∫ T

0
wtdxt

σ2
w

=
E
∫ T

0

(
wt−1 + dwt

)(
−Θxt−1 +Gdwt

)
σ2
w

= −ΘΩxw +G = 0. (A34)
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which implies that the risky component is indeed zero. This finishes the proof.

Proof of Corollary 3. From (A24), Zt = E(xt−1dyt)
σ2
wdt

, which implies E(xt−1dyt) = Ztσ
2
wdt.

From this, E
∫ T

0
xt−1dpt = λ

∫ T
0
Ztσ

2
wdt = λZσ2

w, since Zt is constant. But from (A31),

the IFT’s expected profit is π
Θ>0

= λZσ2
w. Therefore,

π
Θ>0

= E

∫ T

0

xt−1dpt. (A35)

Now, write dpt = λdyt = λ
(
−Θxt−1 + γ̄dwt + µ̄d̃wt−1 + dut

)
. Since xt−1 is orthogonal to

dwt and dut, we get dpt = λ
(
µ̄d̃wt−1 − Θxt−1

)
. If we substitute this formula in (A35),

we obtain (52).

Proof of Theorem 2. Let Θ = 0. Then, the IFT’s strategy is of the form dxt = Gdwt.

We compute the IFT’s expected profit π
Θ=0

= E
∫ T

0
(wt−pt)dxt = E

∫ 1

0

(
wt−1−pt−1+dwt−

λdyt
)(
Gdwt

)
= E

∫ 1

0

(
dwt − λdyt

)(
Gdwt

)
= E

∫ 1

0

(
dwt − λγ̄dwt

)(
Gdwt

)
= G(1− λγ̄)σ2

w.

But λγ̄ = λG+ λγ− = λG+Ra−. The normalized IFT’s expected profit is:

π̃
Θ=0

= G(1− λγ̄) = G(1−Ra−)− λG2. (A36)

To compute the IFT’s inventory costs, denote by Ωxx
t =

E(x2
t )

σ2
w

. We compute
dΩxxt

dt
=

1
σ2
wdt

E
(
2xt−1dxt + (dxt)

2
)

= 1
σ2
wdt

E
(
2Gxt−1dwt + G2(dwt)

2
)

= G2. Since Ωxx
0 = 0, the

solution of this first order ODE is Ωxx
t = tG2, for all t ∈ [0, 1]. Hence, the inventory

costs are equal to

CI E

∫ 1

0

x2
tdt = CI G

2

∫ 1

0

tdt =
CI
2
G2, (A37)

From (A36) and (A37), the IFT’s normalized expected utility when Θ = 0 is:

Ũ
Θ=0

= G
(
1−Ra−

)
−G2

(
λ+

CI
2

)
. (A38)

The function Ũ
Θ=0

attains its maximum at G = 1−Ra−
2λ+CI

= 1−Ra−

2λ
(

1+
CI
2λ

) , as stated in the

Theorem. The maximum value is:

Ũ
max

Θ=0
=

(
1−Ra−

)2

2(2λ+ CI)
. (A39)
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Let Θ > 0, which is equivalent to φ = 1−Θ ∈ (−1, 1). In the proof of Proposition 5,

we have already computed the IFT’s expected profit (see (49)) and showed that the

IFT’s inventory costs are zero. Hence, the IFT’s expected utility is the same as his

expected profit, and satisfies Ũ
Θ>0

= π̃
Θ>0

= λ
ρ

(
bG1−a−

1+φb
− ρG2 b+

1
1+φ

1+φb

)
. The first order

condition with respect to G implies that at the optimum G = b(1−a−)

2ρ
(
b+ 1

1+φ

) , as stated in

the Theorem. The second order condition for a maximum is λ
b+ 1

1+φ

1+φb
> 0, which follows

from λ > 0, b ∈ [0, 1), and φ ∈ (−1, 1). For the optimum G, the normalized expected

utility (profit) of the IFT is:

Ũ
Θ>0

=

(
Rb(1− a−)

)2

4λ(1 + φb)
(
b+ 1

1+φ

) . (A40)

We now analyze the function

f(φ) = (1 + φb)

(
b+

1

1 + φ

)
=⇒ f ′(φ) =

b2(1 + φ)2 + b− 1

(1 + φ)2
. (A41)

The polynomial in the numerator has two roots:

φ1 = −1 +

√
1− b
b

φ2 = −1−
√

1− b
b

. (A42)

By assumption b < 1, hence both roots are real. Clearly, we have φ2 < −1. We show

that φ1 ∈ (−1, 1). First, note that φ1 is decreasing in b. For b = 1 we have φ1 = −1;

while for b =
√

17−1
8

(which satisfies 4b2 + b = 1) we have φ1 = 1. Since by assumption
√

17−1
8

< b < 1, it follows that indeed φ1 ∈ (−1, 1). Thus, f ′(φ) is negative on (−1, φ1)

and positive on (φ1, 1). Hence, f(φ) attains its minimum at φ = φ1, which implies that

the normalized expected utility Ũ
Θ>0

from (A40) attains its maximum at φ = φ1, or

Θ = 2−
√

1−b
b

, as stated in the Theorem. The maximum value (over both G and Θ) is:

Ũ
max

Θ>0
=

(
Rb(1− a−)

)2

4λb(1 +
√

1− b)2
. (A43)

To determine the cutoff value for the inventory aversion coefficient CI , we set Ũ
max

Θ=0
=

Ũ
max

Θ>0
. From (A39) and (A43), algebraic manipulation shows that the cutoff value is
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C̄I = 2λ
(

(1−Ra−)2(1+
√

1−b)2

R2b(1−a−)2 − 1
)

, as stated in the Theorem.

Proof of Corollary 4. Let Θ > 0. We are in the context of Theorem 2, where b >
√

17−1
8

> 0 and ρ > 0, hence µ̄ = b
ρ
> 0. The IFT’s strategy is dxt = −Θxt−1 +

Gdwt, while the slow trading component is dx̄St = µ̄d̃wt−1. Since dwt is orthogonal

to d̃wt−1, Cov(dxt, dx̄
S
t ) = −ΘCov(xt−1, dx̄

S
t ) = −Θµ̄Cov(xt−1, d̃wt−1). This proves

the equality in (55). Since Θ > 0 and µ̄ > 0, it remains to prove the inequality

Cov(xt−1, d̃wt−1) > 0. But Cov(xt−1, d̃wt−1) = Xσ2
wdt (see (A24)). From (A27), X =

G(1−a−)− ρG
2

1+φ

1+φb
. Substituting the optimal G and φ = 1−Θ from Theorem 2, we obtain X =

(1−a−)2

4(1+
√

1−b) . As in Theorem 2, a−, b ∈ [0, 1), hence X > 0 and the proof is complete.

Proof of Theorem 3. Consider the following implicit equation in b

2b(1 + b)(2B + 1)

nL
=

Q

B2(a− + b)
+

3bB + 2b2B − 1− b
b

(1− a−) − 2, (A44)

where the following substitutions are made:38

B =
1√

1− b
, q = (B + 1)

(
2(B2 − 1)− nF (3B2 − 2)

)
,

a− =
−q ±

√
q2 + nFB5

(
(4− nF )B + 2(2− nF )

)
B2
(
(4− nF )B + 2(2− nF )

) ,

Q = B3(a−)2 + 2(3B3 + 3B2 − 2B − 1)a− + (B3 + 2B2 − 2).

(A45)

We write the equations for the other coefficients:

R =
4(B + 1)B2

(
a− + b

)
Q

, a =
(2B + 1)a− + 1

2(B + 1)

ρ2 =

(
(a− b2) +

2bB − 1

2B + 1
(1− a)

)
(1− a)

σ2
w

σ2
u

, λ = Rρ

Θ = 2−
√

1− b
b

, G =
1− a

ρ(2B + 1)
, γ =

a−

ρNF

, µ =
b

ρNL

.

(A46)

The proof is now left to Internet Appendix J (see Sections J.4 and J.5).

Proof of Proposition 6. See Internet Appendix J (Section J.5).
38To be rigorous, we have included the case when a− is negative. However, numerically this case never

occurs in equilibrium, because it leads to λ < 0, which contradicts the FT’s second order condition (J56)
in Internet Appendix J.
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Proof of Proposition 7. See Internet Appendix J (Section J.5).
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