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A mis hijos. 
 
 
 
 
 

"Far better an approximate answer to the right question, 
which is often vague, 

than an exact answer to the wrong question, 
which can always be made precise." 

 
John W. Tukey (1915-2000) 

The future of data analysis 
Annals of Mathematical Statistics, 33 (1), (1962), p.13. 
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PREFACE 

 
 
 
 
 
 
 
Motivation 
My interest in High Frequency Finance began in early 2006, when I started to 
trade strategies with shorter holding periods. I quickly realized that many 
standard Microestructural, Financial and Econometric theories could not be 
exported into a framework where time and information have a different 
relationship. I knew the Low Frequency framework well, from my 
perspective of both a practitioner and an academic. The literature devoted to 
High Frequency Finance at that time was relatively small, fragmented, and in 
many cases developed by stretching Low Frequency models, forced to 
perform in an environment for which they had not been conceived. 
 
Thus began the work on my second doctoral thesis, which covers topics with 
important practical implications for optimal execution, liquidity provision, 
market risk, the risk of market failure, … and of course alpha generation by 
High Frequency strategies. Most of the profits harvested by High Frequency 
trading nowadays can be attributed to speed. But as our trading speed reaches 
the limits of Physical feasibility, being fast is no longer enough. Some critics 
of High Frequency trading argue that a speed limit should be imposed on 
market participants. We have news for them: That has already been taken care 
of. 
 
We are witnessing the dawn of a new paradigm in the science of investing. 
Those who ignore these principles are broadcasting their trading intentions, 
and become easy prey for predatory algorithms every day. In effect, they are 
paying a virtual tax for each transaction –enriching their competitors. Not to 
mention their underestimation of the risks induced by this new market 
microstructure. Some firms (and academic approaches) will evolve and adapt 
accordingly, but many will fade and vanish over time. 
 
 
Acknowledgements 
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Chairman of the Economics Department, and Prof. Dr. Maureen O’Hara, 
former President of the American Finance Association (AFA), resulted in the 
development of the VPIN Flow Toxicity Metric, and three patent applications. 
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INTRODUCTION 

 
 
 
 
 
 
 

High Frequency Strategies 
Recent legislative changes in the United States (“Regulation National Market 
System” of 2005, or “RegNMS”) and Europe (“Markets in Financial 
Instruments Directive” or “MiFID”, in force since November 2007), preceded 
by substantial technological advances in computation and communication, 
have revolutionized the financial markets. 
 
Europe’s MiFID fosters greater competition among brokers, with the 
objective of improving liquidity, cohesion and depth in financial markets. 
Similarly, U.S. RegNMS encourages competitiveness among exchanges by 
allowing market fragmentation. Cohesion is recovered through a mechanism 
for the consolidation of individual orders processed via multiple venues 
(NBBO, or “National Best Bid and Offer”). The result has been an “arms 
race” for developing the technology and quantitative methods that squeeze 
the last cent of profitability when serving the demands of market participants. 
 
High frequency strategies are of a very diverse nature. We will follow the 
general description proposed by Aldridge (2010), defining high frequency 
strategies as those characterized by a brief investment horizon, which may 
range from a split of a second to several hours. A main advantage comes from 
placing numerous independent bets every day on the same instrument or 
portfolio, because as the “Fundamental Law of Active Management” 
postulates, a tiny predictive power on a sufficiently large number of 
independent bets yields a high Information Ratio (Grinold (1989)). The goal 
is to exploit the inefficiencies derived from the market’s microstructure, such 
as rigidities, agents’ idiosyncrasy, asymmetric information, etc. As a 
consequence of this higher frequency, the identification of opportunities, risk 
control, execution and other investment management activities must be 
automated. Not all algorithmic trading occurs in high frequency, but all high 
frequency requires algorithmic trading. This in turn has made it possible to 
interact directly with the exchange’s auction mechanism (or “double auction 
order book”). 
 
High frequency traders often operate with proprietary capital, meaning that 
investors are also investment managers. Their actions are not derived from 
client orders but for their own benefit. Their servers reside in the proximity of 
the exchange’s matching engine (“co-location”), with the purpose of 
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minimizing the time that passes between the shipping of an order and the 
arrival of confirmation of reception by the exchange (“latency”). All of the 
above demands a considerable investment in terms of infrastructure and of 
course the development of trade secrets in the form of algorithms and 
quantitative models. 
 
According to Herdershott, Jones and Menkveld (2011), high frequency 
strategies overall benefit the investment community by lowering trading 
costs, improving the information in the order book, eliminating arbitrage 
opportunities across markets, narrowing the bid-ask spread, adding liquidity, 
etc. Cartea and Penalva (2010) conclude that high frequency strategies 
increase market impact, with mixed results depending on the type of 
participant. 
 
 
Fields of study 
The introduction to each chapter presents a detailed analysis of the state of the 
art regarding the subject discussed. Nevertheless, there exists a set of general 
and shared themes referred to in multiple occasions across this study that we 
find convenient to introduce now for the sake of clarity. 
 
Researching high frequency trading models encompasses a wide range of 
fields, which we could group in the areas of Financial Economics 
(measurement and management of risks), Statistics (estimation and 
forecasting of high frequency time series) and Economic Analysis 
(microstructure of financial markets, price formation and price discovery 
processes). 
 
a) Statistics 
Modern markets require real time pricing of products and risk management. 
Iati (2009) has estimated that over 70% of the volume of U.S. shares is 
transacted by high frequency participants. For the year 2010, TABB has 
estimated that number to be 60% in the U.S., and around 40% in Europa. 
 
The generalization of electronic markets and automation of financial 
transactions have accelerated the decision-making process to the point of 
rendering many old standing economic models obsolete. Higher frequency 
not only means that a large number of actions are taken every day, but also 
that these actions occur in stochastic time (i.e., with uncertainty regarding the 
time gap between these decisions). If ten years ago it was difficult to find 
research based upon tick-by-tick datasets, nowadays it is extraordinary to 
encounter recently published papers that use daily series. 
 
Goodhart and O’Hara (1997) describe many peculiarities characteristic of 
high frequency time series, finding that some of them are incompatible with 
the assumptions generally made by traditional statistical and econometric 
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models (e.g., Hamilton (1994)). As we shall see in Chapter I, high frequency 
returns time series are serially conditioned (Bollerslev and Domowitz 
(1993)), are subject to stochastic volatility (Andersen and Bollerslev (1996)), 
are irregularly spaced, and follow non-Gaussian distributions with elevated 
kurtosis and asymmetry. 
 

 
Figure 1 – Volume contributed by High Frequency Traders 

 
Some of these problems can be partially dealt with through complex 
specifications, such as the ACD models proposed by Engle and Russell 
(1996), Engle and Russell (2005), or variants discussed by Bauwens and Giot 
(1998), Dufour and Engle (2000) among others. Refenes et al. (1996) and 
Bolland et al. (1998) apply Neural Networks. The complexity inherent to 
many of these models makes them prone to numerical instability. 
Furthermore, most of them lack any theoretical foundation, becoming purely 
empirical exercises whose conclusions can hardly be rationalized. 
 
A different approach, consistent with microstructure theory, has attempted to 
model the impact that information arrival has on prices and bid-ask spreads. 
Some examples are Almeida et al. (1997), Goodhart et al. (1991), Low and 
Muthuswamy (1996). Most of this research has focused on FX, and its 
presence has decayed over the years. A possible explanation is that they relied 
on daily time series, and the aforementioned problems associated with the 
modeling of tick data prevented their evolution into the high frequency 
domain. 
 
Ané and Geman (2000) re-discovered an idea of Clark (1973) that allows for 
a partial recovery of the properties assumed by most traditional statistical 
models on high frequency datasets. Instead of sampling by regular time 
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intervals (chronological clock), the authors adopt a sampling subordinated to 
their measurement of stochastic volatility: The higher the volatility, the more 
samples are drawn per unit of time. The resulting high frequency time series 
are closer to normal. Unfortunately, the procedure requires the estimation of 
instantaneous volatility, which is inaccurate and not directly observable in 
real time. 
 
Chapter I will address the same problem as Ané and Geman (2000). We 
present a simple sampling procedure that delivers high frequency time series 
nearly normal, plus it allows for a reduction of serial correlation and 
heteroskedasticity. 
 
b) Economic Analysis 
O’Hara (1995) describes the purpose of market microstructure theory and 
explains its motivation: 
 

“The study of the process and outcomes of exchanging 
assets under a specific set of rules. While much of 
economics abstracts from the mechanics of trading, 
microstructure theory focuses on how specific trading 
mechanisms affect the price formation process.” 

 
It is a relatively new area of research that combines elements of economic 
analysis (agents, expectations, utility maximization) and financial economics 
(valuation, risks, asset management). 
 
As for this study, we begin with the basic model of sequential trading devised 
by Glosten and Milgrom (1985). Easley, Kiefer, O’Hara and Paperman 
(1996) much improved that model by recognizing the existence of 
participants with asymmetric information under event uncertainty. The 
outcome was the celebrated PIN (“Probability of Informed Trading”) model, 
which allows market makers to monitor information asymmetry and thus 
avoid adverse selection. Although a few PIN estimation procedures exist for 
low frequency data (Easley, Engle, O’Hara and Wu (2008), Easley, Kiefer, 
O’Hara and Paperman (1996)), there was no possibility of measuring PIN in 
the high frequency domain because of the intractability of those datasets. 
 
Chapter I is dedicated to solving the problem of estimating VPIN for high 
frequency data. 
 
c) Financial Economics 
The statistical and microstructure models developed in this book address a 
number of issues treated in the Financial Economics literature. In particular, 
our contributions aim to further the understanding of the following research 
topics: 
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� Models for valuation and risk measurement in the context of high 
frequency. 

� Forecasting of toxicity-induced volatility, as derived from the high 
frequency series of transactions. 

� Development of new financial instruments which may provide a 
hedge to the risks inherent in high frequency trading. 

� A benchmark to assess brokers’ performance on behalf of their 
clients. 

� Dealing with spreads and computation of optimal hedges based on 
time series, in the high as well as the low frequency domain. 

 
We believe that this study is pioneering in the aforementioned subjects. 
Chapter II provides evidence that volatility forecasting can be improved 
through microstructural models. Those models analyze the behavior of 
market makers operating under asymmetric information, and explain how 
their response to order flow toxicity is a source of volatility. Most volatility 
forecasting models do not incorporate in their specification a theory that 
explains the origin of volatility, thus they tend to treat volatility as an 
exogenous, generally univariate, filtered process. We are left with tools that 
attempt to forecast “something” without an understanding of why and how 
that “thing” comes to be. But how is an econometric model unsupported by a 
theory any better than a high-tech horoscope? Under these circumstances, we 
should consider the possibility that a large part of the results reported in the 
volatility forecasting literature are in fact spurious, numerically driven, and 
unrelated to any existing structure. Conversely, Chapter II presents a 
bivariate, dynamic equilibrium model that studies the interaction between 
toxicity (signal) and realized volatility (response). Out-of-sample results are 
superior to those derived from univariate specifications, especially in the 
context of forecasting beyond the immediate horizon. Empowered with this 
new analytical tool, Chapter III throws light upon the events of May 6th 2010 
(‘flash crash’). Chapter IV defines a futures contract that provides a hedge to 
market makers against the risk of order flow toxicity or adverse selection. 
Chapter V offers a new benchmark to assess the costs of trading under 
conditions of asymmetric information. 
 
Chapter VI reviews and improves some of the most used methods for hedging 
portfolios, plus it introduces two new methods with superior characteristics. 
These methods are applicable in a High Frequency space, but also in Low 
Frequency. Chapter VII reviews the scientific literature on Sharpe ratio, 
offers its projection on the probabilistic space (Probabilistic Sharpe ratio), 
and develops a new methodology which determines the minimum track 
record length required to evidence investment skill at a preset confidence 
level. High Frequency returns are non-Gaussian, so a new Sharpe Ratio 
Efficient Frontier is needed to address this feature. Chapter VIII introduces 
the EF3M algorithm, with important applications in the modeling of financial 
data. This new estimation procedure is particularly useful in Financial 
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applications, and satisfies the high frequency computational requirements 
established in Chapter VII. 
 
 
Objectives 
Cahan et al. (2010) argue that a large portion of the financial literature has 
devoted itself to measuring low frequency risks, to some extent ignoring the 
specific risks associated with high frequency trading. In particular, those 
authors call for research that may uncover the relationships between risks in 
both domains. 
 
A first objective of the present study is to put forth a procedure for 
transforming high frequency data in order to comply with the assumptions of 
traditional econometric models. Once we are able to deal with high frequency 
series with relative simplicity, we address the second objective, namely to 
provide a measurement of the risk of toxicity in the high frequency order flow 
(our VPIN model). In particular, we present abundant empirical evidence of 
the bidirectional relationship between order flow toxicity and future volatility. 
 
A third objective consists in answering the challenge formulated by Cahan et 
al. (2010). Consequently, we show how high frequency risks spill over into 
the low frequency domain and vice versa. We believe that this study is the 
first to propose such unified framework, in an attempt to explain the 
transmission of risk between both domains. A paradigmatic case of how high 
frequency risks unleash low frequency risks is evidenced by the ‘flash crash’ 
of May 6th 2010, an episode studied in detail in Chapter III. 
 
The fourth objective is to characterize market makers as sellers of an option 
to be adversely selected, at a premium determined by the range at which they 
are willing to provide liquidity. We will show that exchanges currently lack a 
mechanism or tool to protect market makers against the risk of adverse 
selection. As a solution, we propose a futures contract with VPIN as 
underlying, which could allow liquidity providers to dynamically manage 
toxicity risk, avoiding future repetitions of the ‘flash crash’. 
 
The fifth objective is to propose a new benchmark for measuring brokers’ 
efficiency when executing the clients’ orders. We argue that VWAP does not 
incorporate all available information in connection to the level of flow 
toxicity, thus being an incomplete benchmark. 
 
The sixth objective is to study the optimality of some of the most popular 
portfolio hedging methods. Solving the problem of portfolio hedging has 
critical applications in high frequency, not only for risk management but also 
in trading strategies. This study presents two new methodologies that 
overcome some of the caveats found in previous methods: DFO and MMSC. 
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The seventh objective is to analyze the characteristics of returns distributions 
which are responsible for “inflating” the Sharpe ratio. Such characteristics 
happen to be intrinsic to high frequency series, from which we can expect a 
certain upwards bias on the Sharpe ratios derived from high frequency 
strategies. The conclusions reached allow us to develop an alternative 
performance measure, named Probabilistic Sharpe ratio, which corrects the 
referred “inflation”, and translates Sharpe ratio readings into probabilities of 
skillful investing. One application of this model is to answer the key question 
of “how long should a track record be in order to have statistical confidence 
that its Sharpe ratio is above a given threshold?” The empirical evidence we 
present indicates that, despite the high Sharpe ratios publicized for several 
hedge fund styles, in many cases they may not be high enough to indicate 
statistically significant investment skill beyond a moderate annual Sharpe 
ratio of 0.5 for the analyzed period, confidence level and track record length. 
This in turn leads to the concept of Sharpe Ratio Efficient Frontier. As we 
would like to model distributions matching the empirically observed first four 
moments, we develop the EF3M methodology for the exact fit of a mixture of 
two Gaussian distributions. 
 
The analysis and management of investments in high frequency is an 
emerging field that will gradually attract the attention of more researchers. 
The present study confronts some of the most urgent questions on this 
subject, such as the measurement and control of high frequency risks, its 
contagion to the low frequency domain and the computation of hedges. Being 
a new field of research, the list of pending questions not addressed by this 
work, and for which (presently) no answer exists, is endless. In particular, we 
will not participate in the polemic regarding the social benefit or cost derived 
from high frequency trading. This is an extremely complex debate which 
would require a monographic book. 
 
 
Methodology 
We will employ an assortment of techniques drawn from mathematical and 
statistical analysis to answer questions derived from this confluence of areas 
(Finance, Statistics, Economic Analysis). In particular: 
 

� Probability and econometric methods for time series 
o Chapter II estimates VAR and Granger-causality models in 

order to analyze VPIN’s predictive power on volatility. 
o Chapter II estimates conditional distribution probabilities, 

correlation surfaces and threshold correlations. 
o Chapter VI makes use of cointegration and error correction 

models to estimate the optimal hedging vectors on spreads. 
o Chapter VII employs a mixture of Normal distributions to 

illustrate the inflationary effect that skewed and fat-tailed 
returns distributions have on Sharpe ratio. 
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o Chapter VII develops a projection of Sharpe ratio in the 
probabilistic domain (PSR). 

o Chapter VIII develops the EF3M algorithm for the exact fit 
of a Mixture of two Gaussian distributions. 

� Monte Carlo methods 
o Chapter I evaluates how accurately VPIN estimates PIN. 
o Chapter V simulates the impact that a variety of serial price 

correlation scenarios have on VPIN. 
o Chapter V simulates the performance of the VPINC 

execution algorithm in comparison to VWAP. 
o Chapter VIII applies a Monte Carlo to evaluate the 

Probability of Departure of an investment strategy. 
� Linear algebra 

o Chapter II computes an analytical spectral decomposition of 
the VAR coefficients matrix. 

o Chapter VI develops a generalized PCA hedging procedure, 
not bounded by number of instruments or asset class. 

� Differential calculus 
o Chapters I, II, V and VI apply optimization methods to 

identify the global maxima or minima on a variety of 
problems. 

o Chapter VI solves the analytical derivatives of the objective 
functions for the MMSC and DFO methods. 

o Chapter VI presents a customized algorithm for the 
optimization of the MMSC objective function. 

o Chapter VII computes the gradient of the “minimum track 
record length” due to sampling frequency. 

� Differential equations and equations in differences 
o Chapter II develops a dynamic equilibrium model for the 

determination of the state of the VPIN-Volatility system, in 
discrete and continuous time. 

� Historical simulations 
o Chapters I, II, V and VI estimate the historical performance 

of multiple variables based upon high frequency time 
series. 

o Chapter VII determines the minimum backtest size required 
in order to evidence skill subject to a predefined confidence 
level. 

 
 
Organization and format 
This study is organized in eight interrelated papers. Four have been peer-
reviewed and accepted for publication at scientific journals (the first three co-
authored with Profs. Easley and O’Hara): 
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� Chapter I is the basis for a paper accepted for publication in the 
Review of Financial Studies (forthcoming, 2012). 

� Chapter III is the basis for a paper accepted for publication in the 
Journal of Portfolio Management (Winter 2011). 
http://www.iijournals.com/doi/abs/10.3905/jpm.2011.37.2.118 

� Chapter IV is the basis for a paper accepted for publication in the 
Journal of Trading (Spring 2011). 
http://www.iijournals.com/doi/abs/10.3905/jot.2011.6.2.008  

� Chapter VI is the basis for a paper accepted for publication in the 
Journal of Investment Strategies (Risk Journals, forthcoming, 2012). 

 
According to “The Social Science Research Network” (SSRN), these papers 
have been downloaded by up to 35,000 social scientists members of this 
network (http://ssrn.com/author=434076). Some of the papers derived from 
this study have been included in the top 10 ranking for the most read papers 
in the history of SSRN, in the areas of Finance, Economic models and 
Econometrics: 

� http://papers.ssrn.com/sol3/topten/topTenResults.cfm?groupingId=1
152425&netorjrnl=jrnl 

� http://papers.ssrn.com/sol3/topten/topTenResults.cfm?groupingId=1
153655&netorjrnl=jrnl 

� http://papers.ssrn.com/sol3/topten/topTenResults.cfm?groupingId=1
153629&netorjrnl=jrnl 

 
Compliant with Complutense University’s regulations, we include an 
extensive summary of the findings and conclusions, written in Spanish.1 
 
 
Seminars 
A number of the models included in this work have been presented in 
international seminars: 
 

1. Opening Keynote Speech at “Best Execution USA 2010” 
conference: 

a. Title: “Flash Crash: Dissecting what happened and 
preventing it from happening again”. 

b. Location: New York City 
c. Date: October 6th 2010. 
d. Host: Risk Magazine. 
e. Link: http://ev153.eventive.incisivecms.co.uk/static/day11 

2. Seminar offered to CFTC Commissioners and Researchers: 
a. Title: “The Microstructure of the Flash Crash”. 

                                        
1 Art. 4.3 of UCM’s Directive of 12/02/2010, developing the Royal Decree 1393/2007 
of October 29th (B.O.E. 30/10/2007). 
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Carlin, Sousa Lobo and Viswanathan (2007) developed a model of how 
predatory trading can lead to episodic liquidity crises and contagion. We have 
found that, over the last three years, hundreds of extreme price actions can be 
associated with failures in the liquidity provision process. It is not our goal to 
demonstrate that predatory algorithms are to blame. We are content with 
making the case that: i) liquidity crises are becoming more recurrent and ii) 
that this is happening despite the extraordinary degree of sophistication 
achieved by high-frequency market makers. We believe that a plausible 
explanation to this apparent contradiction is that predatory algorithms are 
taking advantage of the commitment of high-frequency market makers, just as 
macro traders would not let pass an opportunity like U.K.’s ERM episode. 
 
Brunnermeier and Pedersen (2005) theorized that predatory trading could 
amplify contagion and price impact in related markets. This amplification 
would not be driven by a correlation in economic fundamentals or by 
information spillovers, but rather by the composition of the holdings of large 
traders who must significantly reduce their positions. 
 

 
Figure 32 – Discovering hidden liquidity in the GEH2 contract 

 
The dynamics of the order books are interrelated across multiple products. 
Figure 32 illustrates how, in order to decide at what level to place a client’s 
order on Eurodollar short futures, Quantitative Brokers’ algorithms analyze 6 
different relationships in real time, searching for hidden liquidity (liquidity 
that, although is not displayed in that particular book, is implied by the 
liquidity present in the related books). Consequently, in order to operate on 



Advances in High Frequency Strategies 

95 

2.4.1. Specification of the spill over mechanism 
A system of equations in differences suits our problem, since we can only 
estimate VPIN in discrete (volume) time, i.e. updated every time a new 
volume bucket is completed. 
 
The system is composed of two equations. The first one forecasts the absolute 
return over the next volume bucket as a function of the last absolute return 
and reading of log VPIN. The second equation forecasts the log VPIN as a 
function of the same variables as in the first equation. Evidently, the second 
equation is redundant for a unit forecasting horizon k, but as k>1 the second 
equation allows us to incorporate in the first one the feedback mechanism. 
 
Consider the system 
 

� � � � � �
� � � � � �tptptp

tptptp

22,211,22

22,111,11

1

1

��

��

���

���
 

with initial conditions � �01p , � �02p , where � � 1
1

1 ��
�t

t

P

P
tp  and 

� � � �tVPINLntp �2
.39 

 

Its matrix representation is � � � �tptp  1 ��� , where � �
� �
� ��	



�
�



�

�
��

1

1
1

2

1

tp

tp
tp , 

�
	



�
�


�

2,2

2,1

1,2

1,1

�

�

�

�
� . 

 
The key role played by the second equation can be illustrated with an 
example. Suppose that market makers are being impacted by excessive flow 
toxicity. As they widen their trading ranges, volatility increases. Those 
market makers who were ‘slow’ in adjusting will suffer losses and vanish, 
which will force the ‘fast’ market makers to re-adjust. Some of those ‘fast’ 
market makers may miss this re-adjustment, being driven away in a second 
wave of losses, and so on. At some point, the chain of events may be broken 
(e.g., by new market makers making their appearance, attracted by wide 
spreads), or lead to an ‘explosive’ state. The feedback dynamics do not affect 
volatility over the next bucket, but it adds information over the long run, 
explaining the mechanism by which high frequency risks spill over the low 
frequency domain. A univariate or single-equation specification fails to 
provide an explanation for such spillover. 
  

                                        
39 Centering these variables introduces an intercept, if so desired. 
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2.4.2. Eigenvalues of the characteristic matrix 
We know that �� WW� , which leads to the eigenvalue equation 

0��� I� , where W is the matrix of eigenvectors and �  is the matrix of 
eigenvalues. 
 

� �� � 00 1,22,12,21,1
2,21,2

2,11,1
������

�

�
������

���

���
, a second 

degree equation with roots in 
� � � �

2

42

1

���
�

��
�

TrTr
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� � � �
2

42

2

���
�

��
�

TrTr
, where � ��Tr  is the trace of �  and �  its 

determinant. Thus, �
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2

1

0

0

�

�
. 

 
2.4.3. Eigenvectors of the characteristic matrix 
�  has been found to make the matrix �� I�  singular. Let’s compute � ’s 
eigenvectors by finding �� I� ’s kernel. 
 

For 1� , we establish a system �
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Applying the especial solutions on the kernel allow us to conclude that 
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Let’s write � � W cp �0 , where c is, like before, the column vector that solves 
W for the initial conditions � �0p . Assuming that β has all independent 
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eigenvectors, we know that β is diagonalizable and 1��� WW� . Then, 

� � � �  cWW cWWpp ����� �101 � . Multiplying k times by β will yield 

� � � �  cWpkp kk ��� 0� , or what is the same, 

� �
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� �
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2.4.4. The solution 
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where � ��Tr  is the trace of �  and �  its determinant. 

� � � 201 cVPINLnc �� ; 
� �

1,12,1

1,10
0

1
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1
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P

P

c
�
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� . 

 
Our solution is analytical and the forecast can be estimated in a single 
calculation for any horizon (no sequential estimation is needed). This is an 
important advantage for the purpose of integrating our equations in 
optimization exercises. 
 
2.4.5. Stability conditions 
Now that we know how to estimate our dynamic system, we would like to 
understand what causes a crash from a mathematical standpoint. Later on, we 
will offer an interpretation from a market microstructure perspective. 
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The previous analysis is powerful in the sense of establishing the conditions 
for the system to be stable, steady or explosive in discrete time: 

� Stable state: 2,1;1 �� ii� . Both eigenvalues must be smaller 
than one in absolute value. If imaginary eigenvalues exist, their real 
part must be smaller than one in absolute value. 

� Steady state: 1,1, ��� jiji �� . The absolute value of one 

eigenvalue is equal to one, and the other is not greater than one in 
absolute value (or their real part, being imaginary). 

� Explosive state: 1�� ii � . The absolute value of any eigenvalue is 

greater than one (or their real part, being imaginary). 
 
 
2.5. The continuous time model 
2.5.1. Model specification 
Consider two variables with levels � � � �tptp 21 , , mutually related by a system 
of differential equations: 
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Let’s assume that �  is diagonalizable40, i.e. it has linearly independent 
eigenvectors. Under this assumption, we will solve this system and, 
furthermore, study its dynamics, stability conditions and possible equilibrium. 
 

                                        
40 A non-necessary but sufficient condition is having all different eigenvalues. 
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We have already derived �
	



�
�


��

2

1

0

0

�

�
, with 

� � � �
2

42

1

���
�

��
�

TrTr
 

and 
� � � �

2

42

2

���
�

��
�

TrTr
, as well as 

�
�
�

	




�
�
�

�



�

�

�

�

�

11
21,1

2,1

11,1

2,1

��

�

��

�

W . 

 
2.5.2. The solution 
The general solution of this system has the form41 
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Note how similar the solution to the system in differences is to the solution of 
the system of differential equations. However, this similarity is only in 
structure, because β (and therefore also Λ, W and c) will have different values. 
  

                                        
41 For a simple proof, see that 
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2.5.3. Stability conditions of the differential specification 
Looking at the general form of the solution, 
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ectp tt �� , we ought to distinguish among three 

alternative outcomes in continuous time: 
� Stable state: Both eigenvalues are negative. If imaginary eigenvalues 

exist, their real part must be negative. 
� Steady state: If at least one eigenvalue is null and the other is 

negative (or their real part, if imaginary). 
� Explosive state: If any eigenvalue is positive (or their real part, being 

imaginary). 
 
 
2.6. Empirical results 
Chapter I showed that a VAR model on log VPIN and Absolute Returns had 
more predictive power over the next observation in-sample than an AR model 
on Absolute Returns. We would like to test how much more predictive our 
dynamic system is in a multi-horizon out-of-sample forecast. 
 
After computing VPINs on our standard (V,n)=(50,250) combination, we 
have fitted our dynamic system every 50 buckets (equivalent to a day on 
average) starting January 1st 2008 on samples of 250 buckets (encompassing 
1 week worth on data on average). After every fit, we have computed out-of-
sample forecasts 1, 2, …, 50 buckets forward (equivalent to 1 day ahead on 
average). We have compared each k-horizon forecast with the realized 
absolute return, which gives us the out-of-sample forecasting error. 
 
Let’s denote τ the bucket at which a fit has occurred. As discussed, we can 
compute the k=1,…,50 forecasting errors that follow our fit at bucket τ as: 
 ��(�) = � ���������	 − 1� − 
� �� ���������	 − 1�� 
 
Table 3 and 4 compare the standard deviation of the out-of-sample 
forecasting errors of the autoregressive univariate specification with those of 
the dynamic system. 
 
Two important aspects can be extracted from these results: 

1. VPIN improves the single horizon forecast of volatility (k=1). The 
univariate forecast (20% StDev) is more unreliable than the bivariate 
forecast that includes VPIN (17%). We knew this from Section 2.3. 

2. As forecasts are produced beyond the immediate horizon (k>1), our 
dynamic system’s confidence does not significantly decay, while the 
confidence of the univariate forecast persistently deteriorates. 
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