
Co-Evolving Online High-Frequency Trading 

Strategies Using Grammatical Evolution 

Patrick Gabrielsson, Ulf Johansson and Rikard König 

School of Business and Information Technology 

University of Borås 

Borås, Sweden 

{patrick.gabrielsson, ulf.johansson, rikard.konig}@hb.se

 

 
Abstract—Numerous sophisticated algorithms exist for 

discovering reoccurring patterns in financial time series. 

However, the most accurate techniques available produce opaque 

models, from which it is impossible to discern the rationale 

behind trading decisions.  It is therefore desirable to sacrifice 

some degree of accuracy for transparency. One fairly recent 

evolutionary computational technology that creates transparent 

models, using a user-specified grammar, is grammatical 

evolution (GE). In this paper, we explore the possibility of 

evolving transparent entry- and exit trading strategies for the E-

mini S&P 500 index futures market in a high-frequency trading 

environment using grammatical evolution. We compare the 

performance of models incorporating risk into their calculations 

with models that do not. Our empirical results suggest that 

profitable, risk-averse, transparent trading strategies for the E-

mini S&P 500 can be obtained using grammatical evolution 

together with technical indicators. 

I. INTRODUCTION 

Since the introduction of electronic exchanges in the late 
20

th
 century, a number of sophisticated algorithms have been 

developed for discovering reoccurring patterns in financial 
time series. However, the most accurate techniques available 
produce opaque models, from which it is impossible to discern 
the rationale behind trading decisions.  It is therefore desirable 
to sacrifice some degree of accuracy for transparency. One 
fairly recent evolutionary computational technology that 
creates transparent models, using a user-specified grammar, is 
grammatical evolution (GE) [1, pp. 9-24]. 

When developing trading models, it is necessary to 
consider both entry- and exit strategies. The entry strategy 
decides when to enter a bid or offer into the market (or when to 
remain idle), whereas the exit strategy decides when to cut 
losses short or when to take profit by closing open positions in 
the market. Furthermore, a highly desirable property of any 
trading model is a high return-to-risk ratio with a low trading 
cost. Therefore, a trading model needs to consistently produce 
positive returns whilst minimizing risk and trading costs. 

The most lucrative form of trading is high-frequency 
trading, i.e. when trading decisions are made intra-day, usually 
using a minute-, second- or millisecond time resolution. In a 
high-frequency setting, the availability of timely, fundamental 
economic and financial information is scarce, hence technical 
indicators are employed in this study. Furthermore, the nature 
of high-frequency trading requires that information be 

processed in real-time. Therefore, we employ a moving 
window to train, validate and test our trading strategies in order 
to create a method suitable for an online trading system. 

The above discussion constitutes the rationale behind our 
study, i.e. to co-evolve profitable, high-frequency entry- and 
exit strategies using grammatical evolution, while minimizing 
risk and trading costs. The choice of using historical tick data 
from the E-mini S&P 500 index future market in our study is 
due to its high liquidity and because it is a leading indicator for 
US equity. 

This paper is structured as follows. Chapter II introduces 
the theoretical framework on which this study is based with 
regards to financial market analysis and evolutionary method. 
Chapter III reviews related work. Chapter IV presents the 
methodology adopted in this paper, including the experimental 
approach used to evolve and validate our trading strategies. 
The results from the experiments are presented in Chapter V, 
followed by conclusive remarks and an elaboration on 
suggested future work in Chapter VI. 

II. BACKGROUND 

A. Technical Analysis and Dow Theory 

Using a high-level taxonomy, market analysis methods can 
be divided into fundamental analysis, technical analysis and 
quantitative analysis. Fundamental analysis involves a detailed 
study of the underlying economical-, financial- and political 
factors affecting the fair value of an asset, in order to determine 
if the actual market value of an asset is either undervalued or 
overvalued, hence creating an opportunity for investment. 
Quantitative analysis assumes markets are random, and hence, 
models the price-development of an asset as a stochastic 
process (a random walk), where investment opportunities are 
identified from the statistical properties of the financial time 
series. Technical analysis is based on the assumption that all 
available information is aggregated into the price of an asset 
and that there is a serial correlation between past-, current- and 
future prices. Therefore, technical analysis involves the study 
of historical price movements with the intention of forecasting 
future price movements. 

Technical analysis has its roots in Dow Theory, developed 
by Charles Dow in the late 19

th
 century and later refined and 

published by William Hamilton in the first edition (1922) of 
his book “The Stock Market Barometer” [2]. Robert Rhea 



developed the theory even further in “The Dow Theory” [3], 
first published in 1932. The six basic tenets of Dow Theory 
assume that; averages (prices) discount everything (i.e. the 
market reflects all available information), markets have three 
trends (a primary trend, a secondary trend and a minor trend), 
major trends have three phases (accumulation during the peak 
of a downtrend, public participation during a mature trend and 
distribution during the peak of an uptrend), averages must 
confirm each other (Dow required similar patterns in the Dow 
Jones Industrial Average and the Dow Jones Rails Average 
before a signal was confirmed), volume must confirm a trend 
(i.e. trading volume should increase in the direction of the 
major trend) and a trend is assumed to be in effect until it gives 
definite signals that it has reversed (a trend will maintain its 
momentum until an ambiguous signal verifies that a trend 
reversal is imminent). 

Modern day technical analysis [4] is based on the tenets 
from Dow Theory, in which prices discount everything, price 
movements are not totally random and the only thing that 
matters is what the current price levels are. The reason why the 
prices are at their current levels is not important (in contrast to 
fundamental analysis). The basic method in technical analysis 
starts with an identification of the overall trend by using 
moving averages, peak/trough analysis and support and 
resistance lines. Once a trend has been identified, technical 
indicators are used to measure the momentum of the trend and 
the buying/selling pressure in the market. In the final step, the 
strength and maturity of the current trend, the reward-to-risk 
ratio of a new position and potential entry levels for new long 
or short positions are determined. 

This paper adopts the theory underlying technical analysis, 
where technical indicators are used to discover price trends and 
to time market entry and exit. 

B. Grammatical Evolution 

Grammatical evolution (GE) [5], pioneered by Ryan, 
Collins and O'Neill, is an evolutionary algorithm which can be 
used to create computer programs in an arbitrary language. It 
draws its inspiration from genetics and evolution in the 
biological system. In the biological system, genetic information 
is stored as strings of nucleotides in DNA molecules. Each 
nucleotide triplet, called a codon, constitutes a code for a 
specific amino acid. In turn, sequences of amino acids form 
proteins, which are the building blocks for all life. The genetic 
code of an individual is called the individual's genotype, 
whereas the resulting set of proteins obtained through the 
expression of the genetic code  is called the individual's 
phenotype. Proteins are created from the genetic code through 
the two processes of transcription and translation. Firstly, 
parts of the DNA string is transcribed into RNA molecules, in 
which codons are mapped onto anti-codons. An anti-codon 
contains the complement nucleotides found in DNA molecules. 
Once the DNA string has been transcribed into a RNA string, 
the string is traversed and each anti-codon triplet maps a 
sequence of amino acids. Finally, sequences of amino acids 
constitute the proteins which make up an individual 
(phenotype). 

In GE, the DNA string is represented as a binary string, 
where eight consecutive bits represent a codon. The binary 

string is then transcribed into an integer string, where each 
integer results from the mapping of the eight consecutive bits 
in the binary string. The integer string is then traversed, where 
each integer codes for a specific production rule. This is 
equivalent to the translation process in the biological system 
where a set of RNA anti-codons code for a sequence of amino 
acids, resulting in a protein. In GE, the sequence of rules make 
up a complete executable computer program [6, pp. 74-76]. 

In GE, the mapping process between the genotype (bit 
string) and the phenotype (computer program) is accomplished 
through a grammar definition. A grammar in GE is expressed 
in Backus-Naur (BNF) form, which is represented by the 4-
tuple {N,T,P,S}, where N represents non-terminal elements and 
T represents terminal elements of a programming language. P 
represents production rules, which transform non-terminal 
elements into terminal elements. S is just a start symbol which 
itself is a non-terminal element [1, pp. 11-13]. For example, the 
simple grammar below has 7 production rules and consists of 
the following non-terminals N={<signal>, <forecast>, <var>, 
<op>, <value>, <int>, <real>} and terminals T={snow, rain, 
humidity, temperature, 0, 0.5}: 

<S> ::= if(<signal>) {<forecast>;} else 

{<forecast>;} 

<signal> ::= <var> <op> <value> | (<signal>) and 

(<signal>) 

<forecast> ::= snow | rain 

<var> ::= humidity | temperature 

<op> ::= < | > 

<value> ::= <int> | <real> 

<int> ::= 0 

<real> ::= 0.5 

Following the mapping process from genotype to 
phenotype, assume the bit string has been transcribed to the 
following integer string: 

23 5 8 12 33 7 1 14 15 17 6 9 16 5 1 2 3 

The translation process works by scanning the grammar 
from left-to-right, top-to-bottom, looking for non-terminals. 
The integer string is also scanned from left-to-right, where 
each integer (codon) is decoded to decide how to turn non-
terminals into terminals. In the above example, the first non-
terminal is the start symbol <S>. When this non-terminal is 
encountered, the first integer (codon) in the integer string is 
read, i.e. the number 23. Since the non-terminal <S> only has 
one choice for its production rule, i.e. "if(<signal>) 
{<forecast>;} else {<forecast>;}", the codon does not need to 
be decoded, and hence the <S> symbol is replaced with the 
string "if(<signal>) {<forecast>;} else {<forecast>;}". The 
next non-terminal symbol is "<signal>" in the statement 
"if(<signal>)". The "<signal>" symbol's production rule, i.e. 
"<var> <op> <value> | (<signal>) and (<signal>)", has two 
choices, separated with the pipe "|" character. Therefore the 
next codon in the integer string needs to be decoded. A codon 
is decoded by taking the modulus of the integer codon value by 
the number of choices for the current production rule according 
to "c mod n" where c is the integer codon value and n is the 
number of choices for the current production rule. Since the 
integer codon value is 5 and the number of choices is 2 their 



modulus yields the value "c mod n = 5 mod 2 = 1". If there are 
n choices, each choice is numbered consecutively from 0 and 
up to n-1. Therefore, the second choice is selected from the 
result of the modulus operation, i.e. "(<signal>) and 
(<signal>)". This is then substituted into the original string in 
place of the "<signal>" symbol in the "if(<signal>)" string, 
which yields the resulting string "if((<signal>) and 
(<signal>)) {<forecast>;} else {<forecast>;}". This process is 
repeated until all the non-terminals have been replaced by 
terminals. 

Selection, crossover and mutation on the bit string 
(genotype) is handled in the same way as in the traditional 
genetic algorithm (GA). Likewise, the population size and the 
number of generations are used to control the evolutionary 
process as in the genetic algorithm. 

Since grammatical evolution (GE) produces transparent 
models, it was selected as the evolutionary strategy for our 
study. Version 2.0 of the freely available GE software GEVA 
(Grammatical Evolution in jaVA) [7] was used to evolve our 
trading models. A comprehensive list of research relating to 
GE can be found in [8]. 

III. RELATED WORK 

In [6, pp. 183-192], Grammatical Evolution (GE) was used 
to create  trading models for the daily prices of the indices 
FTSE, Nikkei and DAX. Two technical indicators, moving 
average and momentum, were used. The induced models 
produced buy and sell signals for market entry, using a fixed 
horizon for the exit strategy. The fitness function used for the 
GE, included the average return and the maximum drawdown 
in its calculations. The produced models outperformed their 
benchmark, based on a buy and hold strategy. The study 
showed that, by incorporating risk (maximum drawdown), into 
the fitness function, less riskier models were obtained, as 
compared to the benchmark strategy. 

In [6, pp. 193-201], a similar study was conducted, where a 
moving window was used to retrain the model every 5 trading 
days. During training, information from the newly added 5 
days of market data were used, together with the model's 
previous data, to adapt the model to prevailing market 
conditions. Only a single technical indicator, moving average, 
was included as a component in the GE grammar, but the size 
of each trade was based on the strength of the trading signal 
produced by then model. In this study, the fitness function was 
based on the model's total return and did not include any 
trading costs. The adaptive model was benchmarked against a 
static model (no memory), in which the static model was 
completely retrained every 5 trading days. The results imply 
that an adaptive model performs better than a static model. 

In [6, pp. 203-210], intra-day trading models were created 
with GE. Three models, each using a different exit strategy, 
were benchmarked against each other. The first model closed a 
position after 30 minutes, whereas the second model extended 
the open position for another 30 minutes if the model's 
prediction was still valid. The third model used an exit strategy 
based on a 0.1% stop-loss and a 0.8% take-profit. The fitness 
function used for all three models did not include any risk or 
trading costs in its calculations. The study showed that the exit 

strategy based on a stop-loss/take-profit, outperformed the 
other two strategies. In turn, the extended close strategy 
outperformed the standard close strategy. 

In [9] and [10], the entry- and exit strategies were 
coevolved using GE. In [9], the fitness function incorporated 
risk and trading costs into its calculations, where the standard 
deviation of the total return was used as a proxy for risk. In 
[10], four different fitness functions were benchmarked against 
each other, although trading costs were not included in the 
calculations. Both studies showed clear benefits of coevolving 
entry- and exit strategies with regards to profitability. 

This study combines the approaches used above to co-
evolve profitable, high-frequency entry- and exit strategies 
using grammatical evolution, while minimizing risk and 
trading costs. A moving window is used to retrain the models 
after each fourth trading day on minute data. Three different 
trading models are benchmarked against each other. The first 
model's fitness function incorporates trading costs and risk, 
based on the maximum drawdown, in its calculations. The 
second model's fitness function incorporates trading costs, but 
does not consider risk. The third model is based on a random 
trading strategy. This combination constitutes the novelty in 
the study. 

IV. METHOD 

A. Data Acquisition and Feature Extraction 

The S&P (Standard and Poor’s) 500 E-mini index futures 
contract (ES), traded on the Chicago Mercantile Exchange, was 
chosen for the research work. Two months worth (5

th
 July – 2

nd
 

September 2011) of tick data was downloaded from Slickcharts 
[11] which provides free historical intra-day data for E-mini 
contracts. 

A tick is the minimum amount a price can be incremented 
or decremented for a certain contract. For the E-mini S&P 500, 
the minimum tick size is 0.25 points, where each tick is worth 
$12.50 per tick and contract. 

The data was aggregated into one-minute bars, each 
including the open-, high-, low- and close prices, together with 
the 1-minute trade volume. Missing data points, i.e. missing 
tick data for one or more minutes, was handled by using the 
same price levels as the previously existing aggregated data 
point. 

Two technical indicators were chosen in order to extract 
trend and momentum information from the aggregated data; 
the simple moving average indicator and the relative strength 
indicator [4]. The parameter values for these indicators were 
optimized by the grammatical evolution process. 

B. Dataset Partitioning 

The dataset was split into ten folds, each of size k=5610 
data points (5610 minute bars), equivalent to 4 trading days, in 
order to support a "train-validate-test" (i.e. an online "train-
backtest-trade") approach. This was accomplished by creating 
a large enough window of size N=22440 data points (4 folds = 
16 trading days), to be used as the initial training set. The 
trading model was then trained using the training window, 
validated (backtested) on the closest two folds preceding the 



training window and tested (traded) on the closest fold 
succeeding the training window. Following this, the training 
window was rolled forward one fold (4 trading days) and the 
train-validate-test procedure was repeated. In total, four 
training windows were used over the chosen dataset. The 
training, validation and test datasets are shown in Fig.1. The 
initial training window (training window 1) is show in the 
middle of the figure, bounded by a black box, preceded by its 
two validation folds and succeeded by its single test fold. The 
range of training windows 1-4 are shown along the bottom of 
the figure. 

C. Fitness Function and Performance Measures 

A fitness function can be based on simple returns, 
calculated according to (1), where Pt-1 denotes the price of the 
asset when the position is opened, Pt denotes the price of the 
asset when the position is closed and   is equal to 1 if the asset 
was bought when the position was opened or equal to -1 if the 
asset was short-sold. 

    
       

    
 

The problem with such a fitness function is its inability to 
incorporate risk into its calculation. Therefore, one commonly 
used measure of a trading strategy's fitness is the Sharp Ratio 
[6, pp. 124]. The Sharp Ratio determines the rate of a model's 
average return (adjusted for the risk-free rate) and its standard 
deviation according to (2) where (3) is the average return and 
(4) is the standard deviation of the return. 

    
       

    
 

      
 

 
   

 
    

       
 

   
            

    

The risk-free rate (federal funds) is only applicable if a 
trade is carried over night (from one trading day to another), 
which is not the case in high-frequency trading where all open 

positions are closed before the end of the trading day. 
Therefore, the Sharp Ratio for high-frequency trading is 
calculated according to (5). 

    
    

    
 

However, the Sharp Ratio only gives an accurate measure if 
the returns are normally distributed. This is due to (4) and is 
easily seen by observing that both positive and negative 
deviations from the average return are incorporated in its 
calculation. Hence, the Sharp Ratio summarizes the average 
deviation from the average return and does not account for the 
risk of extreme negative effects that can be detrimental to 
profits. Therefore, a better risk-adjusted measure is the Calmar 
Ratio (6), which uses the maximum drawdown (MD) as its risk 
measure [6, pp. 124]. The maximum drawdown measures the 
largest drop in returns during a trading period which is a better 
measure of risk as compared to the standard deviation. 

    
       

   
 

Once again, the risk-free rate is only applicable if a trade is 
carried over night. Therefore, the Calmar Ratio for high-
frequency trading is calculated according to (7). 

    
    

   
 

Finally, trading costs need to be incorporated in the fitness 
function. Trading costs consist of commission fees, transaction 
fees, brokerage fees, interest fees, tax fees and slippage in the 
form of market impact, liquidity and other unforeseen 
circumstances causing a discrepancy between the estimated- 
and actual trading costs. Interest fees (risk free rate) are not 
applicable in high-frequency trading and can therefore be 
omitted. This study does not consider taxes on returns or 
slippage due to market impact and liquidity (liquidity issues are 
reduced since we only trade one-lots), hence the effects of 
larger, dynamically sized market orders are not assessed. This 
leaves us with commission fees, transaction fees and brokerage 
fees. These fees are highly dependent on which brokerage is 

 
   

Fig. 1.  The dataset for the E-mini S&P 500. 

 



used, exchange membership and other circumstantial factors. 
Nevertheless, fees of 20%-30% on returns are reasonable 
estimates. Therefore, we will incorporate an approximate 
trading cost in our performance measure by deducting $3 per 
roundtrip, i.e. every time we close an open position, we will 
deduct $3 from the return regardless if the return is positive or 
negative. Our resulting fitness function is calculated according 
to (8), i.e. as the average cost-adjusted return divided by the 
maximum drawdown, where the maximum drawdown is based 
on the cumulative cost-adjusted returns. 

                               
 

 
        

   

   
 

In order to evaluate the performance of the trading models 
obtained by using a risk-adjusted fitness function, we 
benchmark them against models obtained using a fitness 
function based solely on return (9). 

                              
 

 
        

    

Numerous performance measures are used to evaluate the 
performance of a single trading model and to compare 
performances of multiple trading models [6, pp. 137-140]. The 
most common measures have already been described, i.e. the 
return, mean and standard deviation of the return, Sharp ratio 
and maximum drawdown. Furthermore, it is of interest to 
know the number of trades produced by a trading model, the 
trade frequency (i.e. trades per trading day) and the average 
time a trade remains in the market. These last three measures 
are all proxies for risk. Besides these single-number 
performance measures, equity curves are used to visualize the 
continuous performance and risk associated with the trading 
models. We include all the above performance measures and 
equity curves in our analysis. 

D. Experiments 

The grammar for the grammatical evolution of the entry- 
and exit strategies was defined as below. Here we permit any 
combination of technical indicators and values. We include 
"domain" knowledge in the form of our if-statements, i.e. we 
know we need a ternary decision for the entry strategy (buy, 
sell or remain idle) and for the exit strategy (exitlong, exitshort 
and remain idle) [9]. 

<enterrule> ::= if(<signal>) {<trade>;} else 

{<trade>;} 

 | if(<signal>) {<trade>;} else if {<signal>} 

{<trade>;} else {<trade>;} 

<trade> ::= buy(i) | sell(i) | idle() 

<signal> ::= <var> <relop> <var> 

           | <var> <relop> <value> 

           | (<signal>) "&&" (<signal>) 

           | (<signal>) "||" (<signal>) 

<var> ::= px(i) | sma(i,<int>) | rsi(i,<int>) 

<relop> ::= "<=" | ">=" | "==" | "<" | ">" 

<value> ::= <int> | <real> | <int><real> 

<int> ::= <GECodonValue(1,300)> 

<real> ::= .1|.2|.3|.4|.5|.6|.7|.8|.9 

<exitrule> ::= if(<signal>) {<exit>;} else {<exit>;} 

 | if(<signal>) {<exit>;} else if {<signal>} 

{<exit>;} else {<exit>;} 

<exit> ::= exitlong() | exitshort() | idle() 

<signal> ::= <var> <relop> <var> 

           | <var> <relop> <value> 

           | (<signal>) "&&" (<signal>) 

           | (<signal>) "||" (<signal>) 

<var> ::= px(i) | sma(i,<int>) | rsi(i,<int>) 

<relop> ::= "<=" | ">=" | "==" | "<" | ">" 

<value> ::= <int> | <real> | <int><real> 

<int> ::= <GECodonValue(1,300)> 

<real> ::= .1|.2|.3|.4|.5|.6|.7|.8|.9 

The parameters for the grammatical evolution were set 
according to Table I. 

Different GE parameter settings were experimented with, 
before arriving at the settings presented in Table I, such as 
various combinations of population sizes, selection operators, 
crossover schemes and elitism sizes. Especially, it was found 
that using a higher mutation rate destroyed heritability and 
increasing the number of generations beyond 50 did not 
severely affect the convergence of the population. Steady state 
replacement was not considered, although it is hypothesized 
that this could be beneficial for a continuous adaption of the 
trading strategy to changing market conditions. 

The evolutionary procedure commenced as follows. 
Initially, 1000 individuals were randomly created to populate 
the first generation and each individual's genotype was mapped 
to its phenotype by decoding the individual's codons using the 
grammar. Each individual was then evaluated on the training 
set using the fitness function. The individuals in the current 
generation were then used to populate the next generation 
using tournament selection, crossover and mutation. Since a 
generational replacement strategy was used, the entire current 
generation was replaced by the next generation (as opposed to 
the steady state approach used in [6, pp. 193-201]). 
Additionally, the fittest individual in the current generation was 
copied, unaltered, to the next generation. The fitness 
evaluation, selection, crossover, mutation and replacement 
process was then repeated for a total of 50 generations. The 
fittest individual in the final generation was then chosen as the 
winner and its phenotypic strategies were back tested and 
evaluated on the validation dataset. 

TABLE I 

GE PARAMETERS 

Parameter Setting 

Generations 50 
Population Size 1000 

Selection Operator Tournament Selection 

Tournament Size 3 
Crossover Operator Single Point Crossover 

Crossover Probability 0.8 

Mutation Operator Bit Flip 
Mutation Probability 0.01 

Replacement Type Generational 

Elitism True 
Elite Size 1 

 

 



This process was repeated 30 times in order to calculate an 
average performance measure on the validation dataset, since 
the results produced by GE are non-deterministic. Furthermore, 
the individual with the highest performance measure on the 
validation dataset was chosen as the optimal trading strategy 
for the test dataset. Although, to yield an average performance 
measure on the test dataset (for comparison purposes), all 30 
individuals from the validation set were evaluated on the test 
set. 

The training window was then rolled forward and the 
process above was repeated. This was done for all four training 
windows. Finally, the results were examined, together with the 
trading strategies for all datasets. 

The above procedure was carried-out for both the risk-
adjusted fitness function and the fitness function based solely 
on return. Furthermore, the procedure was repeated for a 
random trading strategy. The random trading strategy 
randomly selected an entry decision from the set {buy, sell, 
idle} every minute. The exit strategy was time-based, i.e. each 
order was kept in the market a random amount of minutes, 
from the range [0,100], followed by closing the position. 

V. RESULTS 

The performance measures for the risk-adjusted fitness 
function are tabulated in Table II. The table displays the 
various measures for each window (1-4), each consisting of a 
training-, validation- and test dataset. All measures are 
averages of 30 runs. There is also a total average given over all 
datasets at the bottom of the table. The first column displays 
the dataset, followed by the total return in the second column. 
The remaining columns show the Sharp Ratio (SR), Maximum 
Drawdown (MD), Trade Count (TC), Trade Frequency (TF) 
and Time In Market (TIM) respectively. The trade frequency is 
based on trades per day and the time in market is expressed in 
minutes. 

 

 

By inspecting Table II, it is obvious that all average returns 
are positive. Furthermore, the mean and standard deviation of 
the returns reveal that most individual trades yielded positive 
returns. The Sharp Ratio is above 2 in all but two data sets 
(window 3), which indicates a relatively low risk investment 
(values above 2 are indicative of a good return-to-risk ratio). 
Besides the validation- and test datasets in window 3, the 
maximum drawdown is virtually negligible. The trade count 
and trade frequency is kept at a minimum by the risk-averse 
objective function. The time in the market varies from dataset 
to dataset yielding relatively large values in one validation 
dataset (window 1) and one test dataset (window 3). The total 
average over all datasets, shows that the risk-adjusted fitness 
function produced profitable trading strategies across all 
datasets with relatively high average returns and low 
dispersions (good Sharp Ratio). The trade frequency was 
relatively low and no substantial sudden drops in returns 
(maximum drawdown) were recorded during trading. 
Therefore, as hypothesized, the fitness function has produced 
profitable, risk-averse trading strategies. 

The performance measures for the fitness function based 
solely on return are tabulated in Table III. 

 

 

The results presented in Table III show that the fitness 
function, based solely on return, yields positive average returns 
in all but two test datasets (in window 1 and 4). Noticeably, the 
returns have relatively low means and high standard deviations. 
This produces low Sharp Ratios and therefore risky 
investments, which is also confirmed by the substantial draw-
downs. The trade counts and trade frequencies are also high. 
On average, the time an order is in the market before it is 
closed lies between 16-68 minutes. Compared to the risk-
adjusted fitness function, the fitness function based solely on 
the return produces much higher returns, on average, whilst 
taking on much higher risk (draw-downs). This confirms the 

TABLE III 

Performance Results (Return-Only Fitness Function) 

Dataset Return ($) SR MD TC TF TIM 

WINDOW 1 

Train 663,477 0.18 -220,176 20077 1254 74.23 

Valid  220,720 0.22 -51130 9993 1249 72.15 

Test  -33,517 -0.02 -244264 5017 1254 87.93 

WINDOW 2 

Train 721,852 0.17 -243995 19888 1242 65.75 

Valid 143,972 0.07 -220008 15370 1921 90.95 

Test 90,727 0.13 -72281 4727 1181 56.92 

WINDOW 3 

Train 728,823 0.17 -242237 19207 1200 66.28 

Valid 14,990 0.01 -218548 9949 1243 88.65 

Test 317,502 0.43 -35126 4711 1177 60.49 

WINDOW 4 

Train 917,570 0.20 -242469 19613 1225 62.75 

Valid 199,594 0.21 -72918 9970 1246 64.36 

Test -99,742 -0,09 -260013 5148 1286 117.91 

TOTAL AVERAGE 

Train 757,931 0.18 -237219 19697 1231 67.25 

Valid 144,819 0.13 -140651 11321 1415 79.03 

Test 68,742 0.11 -152921 4901 1225 16.24 

 

 

TABLE II 

Performance Results (Risk-Adjusted Fitness Function) 

Dataset Return ($) SR MD TC TF TIM 

WINDOW 1 

Training 19,596 2.28 -0.52 44 2.76 59.91 

Validation  17 2.21 -3.47 12 1.54 330.10 

Test  113 2.05 -1.77 3 2.25 11.10 

WINDOW 2 

Training 20,937 2.16 -0.50 51 3.18 61.24 

Validation 85 2.37 -0.50 4 0.50 12.00 

Test 957 122.4 -0.15 3 0.77 46.74 

WINDOW 3 

Training 21,166 2.29 -0.50 47 2.91 56.55 

Validation 3 0.00 -6.50 22 2.75 0.36 

Test 65 0.69 -35.28 6 1.57 135.52 

WINDOW 4 

Training 21,104 2.38 -0.40 41 2.58 62.82 

Validation 27 2.26 0.00 6 0.75 11.17 

Test 2,568 4,49 -32.22 7 1.75 51.83 

TOTAL AVERAGE 

Training 20,701 2.28 -0.48 46 2.85 60.13 

Validation 33 1.71 -2.62 11 1.39 88.41 

Test 926 41.71 -17.35 5 1.58 61.30 

 

 



hypothesis that, using a risk-adjusted fitness function, produces 
more reliable investments. Although, on this particular set of 
datasets, the return-only fitness function creates substantially 
more wealth, on average. 

Finally, Table IV shows the results obtained using the 
random strategy. 

 

 

Except for the training- and test datasets on window 4, the 
random trading strategy produced negative returns on all 
datasets. The results show that the average return on all 
datasets is close to zero with a high standard deviation, which 
is expected from a random strategy. As a consequence, the 
Sharp Ratio is close to zero and the maximum drawdown is 
substantial. The trade count and trade frequency is also 
relatively high. The time an order is spent in the market is 
unimportant, since this was randomly chosen by the random 
trading strategy. 

The results for all three strategies are visualized as equity 
curves, on all datasets, in Fig. 2. The best results of all 

strategies on all datasets are tabulated in Table V. As can be 
seen in Fig. 2, the strategies acquired using the risk-adjusted 
fitness function, produce (almost) non-decreasing equity 
curves. Hence, these strategies are profitable and risk-averse. 
Compared to the return-only fitness function, the number of 
trades are considerably smaller for the risk-adjusted strategy. 

 

 

For the return-only equity curve, the GE algorithm still 
managed to find profitable trading strategies, albeit with a 
considerably larger amount of risk. The performance is 
relatively good on the validation set, with upward-trending 
equity curves in all windows. The average profits are also good 
on the test datasets, although the substantial drawdown is 
noticeable. 

As expected, the random strategy yields a highly stochastic 
behavior with substantial draw-down on most datasets. This 
compares to the performance of the zero-intelligence strategy 
used in [9]. 

TABLE V 

Performance Results (Best individuals in each dataset) 

Dataset Return ($) SR MD TC TF TIM 

TEST WINDOW 1 

RiskAdj 87.0 87.0 0.00 1 0.25 4.00 

Return  -2.730.50 0.00 -239339.50 5536 1384.00 77.97 

Random -1,519.50 -0.00 -23455.50 3714 928.50 18.00 

TEST WINDOW 2 

RiskAdj 1,934.00 1.65 -0.50 7 1.75 48.29 

Return 75860.00 0.07 -90408.00 5505 1376.25 44.52 

Random -3,437.00 -0.00 -87205.50 3649 912.25 55.00 

TEST WINDOW 3 

RiskAdj 444.00 0.47 -77.50 12 3.00 37.50 

Return 282308.00 0.50 -34345.50 3009 752.25 85.78 

Random -6,477.00 -0.01 -23782.50 3754 938.50 17.00 

TEST WINDOW 4 

RiskAdj 1,634.00 0,88 -25.50 7 1.75 31.71 

Return -78,907.50 -0.07 -228615.50 5190 1297.50 100.44 

Random 828.00 0.00 -30553.00 3694 923.50 26.00 

TOTAL AVERAGE 

RiskAdj 1,024.75 29.71 -25.87 7 1.69 30.37 

Return 93,086.83 0.13 -148177.13 4810 1202.50 77.18 

Random -2,651.37 0.00 -41249.13 3703 925.69 29.00 

 

 

TABLE IV 

Performance Results (Random Trading Strategy) 

Dataset Return ($) SR MD TC TF TIM 

WINDOW 1 

Train -15,604 0.00 -230,204 14917 932 51.80 

Valid  -5,108 0.00 -49577 7448 930 47.77 

Test  -1,519 0.00 -23455 3714 928 18.00 

WINDOW 2 

Train -4,867 0.00 -214128 14923 932 49.23 

Valid -7,792 0.00 -49279 11309 1413 45.97 

Test -3,437 0.00 -87205 3649 912 55.00 

WINDOW 3 

Train -6,684 0.00 -163740 14957 934 42.73 

Valid -6,144 0.00 -91101 7453 931 52.50 

Test -6,477 0.00 -23782 3754 938 17.00 

WINDOW 4 

Train 1,690 0.00 -170134 14933 933 56.63 

Valid -1,902 0.00 -74506 7432 929 44.40 

Test 828 0,00 -30553 3694 923 26.00 

TOTAL AVERAGE 

Train -6,366 0.00 -194552 14933 933 50.09 

Valid -5,237 0.00 -66116 8411 1051 47.67 

Test -2,651 0.00 -41249 3703 925 29.00 

 

 

 
   

Fig. 2.  Equity curves for the best individuals in each dataset. 

 



From the equity curves, the hypothesis that the GE 
managed to find profitable trading strategies in the provided 
search space holds. This fact is confirmed by the observable 
difference between the random strategy and the other two 
strategies. 

One specific profitable entry strategy obtained from the 
grammatical evolution is shown below. The first rule 
constitutes the entry strategy which is easily interpreted as "if 
the price is over its 100-period SMA and the 5-period RSI is 
below 15 then buy, else if the price is under its 150-period 
SMA and the 10-period RSI is above 80 then sell, otherwise do 
nothing". In other words, if the index is trending upwards and 
is considered oversold, then buy. Conversely, if the index is 
trending downwards and the index is considered overbought, 
then sell. 

if( ( px(i) > sma(i,100) ) && ( rsi(i,5) < 15 ) ) 

{buy(i);}else if( ( px(i) < sma(i,150) ) && ( 

rsi(i,10) > 80 ) ) {sell(i);} else {idle(i);} 

VI. CONCLUSIONS AND FUTURE WORK 

In this study we hypothesized that profitable trading 
strategies (entry and exit) could be coevolved for the E-mini 
S&P 500 using grammatical evolution (GE) together with 
technical indicators (SMA and RSI). We further hypothesized 
that the obtained trading strategies were based on patterns 
discovered in the historical prices and not simply caused by 
chance. This was confirmed by benchmarking the results with 
a random trading strategy. We compared the trading strategies 
obtained from a risk-adjusted fitness function and a return-only 
fitness function. The results suggest that risk-averse trading 
strategies can be obtained by incorporating risk together with 
return into an objective fitness function. Although, the return-
only fitness function yielded substantially higher returns on 
average, it took on considerably more risk than the risk-averse 
fitness function. The GE algorithm produced transparent, 
comprehensible models and the obtained trading rules were 
easily deciphered. 

In this study, we only considered two technical indicators 
as components in the grammar for the GE. It would be 
interesting to incorporate more indicators into a future study. 
Furthermore, we only considered the E-mini S&P 500 index 
future market. There are a plentitude of other markets that can 

be considered in a future study, including other asset classes 
and cross-market trading strategies. 

The study did not consider the effects of larger, 
dynamically sized market orders (or unfilled limit orders) with 
respect to market impact. For practical purposes, this needs to 
be incorporated into a future study. 

The GE framework provides an excellent opportunity to 
incorporate domain-specific knowledge into the search process 
through its grammar. This enables the possibility of evolving 
more targeted trading strategies. The GE framework's 
pluggable architecture also permits a future experimentation 
with various search strategies, besides the canonical form of 
GA used in this study, such as island-based GA or swarm-
based search methods. 

Finally, it is expected that better results can be obtained in a 
future study by using larger datasets and by exploring other 
fitness functions. 

REFERENCES 

[1] I. Dempsey, M. O'Neill and A. Brabazon, Foundations in Grammatical 
Evolution for Dynamic Environments, 1st ed. Springer-Verlag, 2009. 

[2] W. P. Hamilton, The Stock Market Barometer: Wiley, 1998. 

[3] R. Rhea, The Dow Theory: Fraser Publishing, 1994. 

[4] J. Murphy, Technical Analysis of the Financial Markets: New York 
Institute of Finance, 1999. 

[5] C. Ryan, J.Collins and M.O'Neill, Grammatical Evolution: Evolving 
programs for an arbitrary language. In: W. Banzhaf, R. Poli, M. 
Schoenauer, et al., eds. Proc of the First European Workshop on Genetic 
Programming (EuroGP98), LNCS, 1998, 1391: p 83–96. 

[6] A. Brabazon and M. O'Neill, Biologically Inspired Algorithms for 
Financial Modelling, 1st ed. Springer-Verlag, 2006. 

[7] GEVA, 2013. [Online]. Available: http://ncra.ucd.ie/Site/GEVA.html. 
[Accessed: 20-Apr-2013]. 

[8] Grammatical Evolution, 2013. [Online]. Available: 
http://www.grammatical-evolution.com/pubs.html. [Accessed: 20-Apr-
2013]. 

[9] R. Bradley, A. Brabazon, and M. O’Neill, Evolving Trading Rule-Based 
Policies, in Applications of Evolutionary Computation, C. Chio, et al., 
Editors. 2010, Springer Berlin Heidelberg. p. 251-260. 

[10] K. Adamu and S. Phelps, Coevolutionary Grammatical Evolution for 
Building Trading Algorithms, in Electrical Engineering and Applied 
Computing, S.-I. Ao and L. Gelman, Editors. 2011, Springer 
Netherlands. p. 311-322. 

[11] Slickcharts, 2011. [Online]. Available: http://www.slickcharts.com. 

 


