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Introduction 

Active investors, such as hedge funds, mutual funds, proprietary traders, individuals 
and other asset managers, often have multiple strategies to predict returns. These 
predictors may have different mean reversion (alpha decay) rates. Short-term 
strategies will have a high mean reversion rate and long-term strategies have a low 
one.  The investors may seek to exploit all the predictors to form a strategy that 
predicts returns more accurately, minimizes risks and also minimizes transactions 
costs. Garleanu and Pedersen analyze this problem in “Dynamic Trading with 
Predictable Returns and Transaction Costs”. The paper has not been published yet, 
but a pre-print is available on their web site. 

 

1. Problem formulation 

1.1 Preliminaries 

An economy with S securities is considered, traded at each time t = 1,2,3,… The 
securities’ price changes between times t and t+1, pt+1 – pt , are collected in a vector 
rt+1 given by: 

 

where μt is the “fair return” vector (given e.g. by CAPM),  αt  are the predictable 
excess returns and ut+1  is an unpredictable noise term with variance vart(ut+1

As explained in the introduction, we wish to combine multiple predictors into one 
for the alphas. In this paper it is assumed that 

) = Σ. 

 

 

where ft is a K-vector of factors that predict returns and B is a S×K matrix of factor 
loadings. Φ is a K×K positive-definitive matrix of mean-reversion coefficients for the 
factors and εt+1 is the shock affecting the predictors. 



It is natural to assume that the agent uses certain characteristics of each security to 
predict its returns. Hence, each security has its own return-predicting factors 
(whereas in the general model above all the factors could influence all the 
securities). In this case, we let alpha for security s be given by: 

 

 

where   is characteristic i for security s and βi

1.2. Transaction Costs 

  is the predictive ability of 
characteristic i. 

The paper we studied considers the effect of transaction costs on the trading 
strategy. It is assumed that when trading Δxt = xt – xt+1 shares the transactions costs 
are given by: 

 

The intuition behind that is that trading Δxt  shares the (average) price is moved by 

  and this results in a total trading cost of Δxt   times the price move, which 
gives TC. We will assume that  . 

1.3 Optimization formulation 

The investor needs a strategy that provides the best possible portfolio at each time 
step. To do that he solves the following optimization problem: 

 

where  ρ is a discount factor and γ  is the risk aversion coefficient. This formulation 
tries to maximize the returns given the alphas, while taking into consideration the 
transaction costs and trying to minimize the risk involved. 

2. Theoretical Results 

To solve the above optimization problem, dynamic programming is used and the 
main result is the following: 

 



ie the optimal portfolio is a linear combination of the current portfolio and a moving 
‘target’ portfolio. Parameter a depends on γ, λ and ρ and the target portfolio is  
function of  a, γ, ρ, Σ, Φ, B and ft , where ft

The paper provides an expression for target

 is what makes it time-dependent. Matrices 
Σ, Φ and B need to be estimated from the data using regression, whereas setting the 
values for γ, λ and ρ is up to the discretion of the manager. 

t which is rather complicated. In order 
to simplify it, the additional assumption is made that the mean reversion of each 
factor fk  only depends on its own level, that is, Φ = diag(φ1, …, φK ) is diagonal. Under 
this assumption, the target portfolio is given by: 

 

where we can clearly see that the weight of each factor depends on its mean 
reversion rate. Notice that predictors with slower mean reversion get more weight. 
This agrees with our intuition, since these predictors lead to a favorite positioning 
both now and in the future. 

The paper also considers a static model, where the future is fully discounted (ρ = 1) 
and we are only interested in the current period. The investor simply solves: 

 

The solution in this case is a specialization of the previous one: 

 

The optimal portfolio is again a linear combination of the previous position and a 
moving target portfolio, but now the expressions for the weights and the target 
portfolio are much simpler. 

3. Application: Dynamic Trading of Commodity Futures 

3.1 Methodology 

Six different commodity futures are considered in order to test the performance of 
the trading strategy discussed. We collect data on the six commodities – Aluminum, 
Copper, Nickel, Zinc, Lead, and Tin – from London Metal Exchange (LME). Sample 
period ranges from 7/11/1995 to 4/24/2009 and we normalize the price series 
such that each commodity’s price changes have annualized volatility of 10%.    



Each commodity characteristic is its past returns at various time horizons. As such, 
in order to predict the 1-day, 1-year, and 5-year return factors for the commodities, 
pooled panel regression on the data set is run using the OLS method (the method of 
least squares) to obtain:  

 

pt +1
s = −0.002 + 0.0947 × f t

5D,s − 0.0161× f t
1Y ,s + 0.0084 × f t

5Y ,s + ut +1
s  

Here, 

 

ft
5D,s is the average past 5 days’ price changes divided by past month’s 

standard deviation of price changes, 

 

ft
1Y ,s  is the average past year’s price changes 

divided by the year’s standard deviation of price changes, and 

 

ft
5Y ,s is the same over 

the past 5 years. The coefficients of 

 

ft  are factor loadings, which we store in matrix 
B. Using regression, we also obtain mean reversion coefficients 

 

φ  to be [0.1992, 
0.0483, 0.107] for the three return factors.  

The variance-covariance matrix 

 

Σ  is estimated using the covariance of prices over 
the full sample. Absolute risk aversion is set at 

 

γ  = 10^-9 which can be thought of as 
the relative risk aversion of 1 for an agent with $1 billion under management. 
Transaction cost is taken to be 

 

λ = 5 ×10−7. In our experiments, we vary both 

 

γ  
and

 

λ  to see how it affects excess returns. The discount rate is set so that it 

corresponds to a 2% annualized rate, i.e. 

 

ρ =1− e
−0.02
260 . 

We consider two different trading strategies, both proposed by the same authors: 
the optimal dynamic strategy and the optimal static strategy (single-period 
optimization). For the static portfolio, the coefficient on 

 

xt−1 is chosen to be the same 
as the one for the optimal portfolio, which is numerically the same as choosing 
appropriate 

 

λ  to maximize the portfolio’s Sharpe Ratio.  

Implementation of this portfolio strategy requires constant readjustment of 
portfolio weights. Also, large amount of assets are traded on a given trading day. In 
order to check if the portfolio is self-financing, we calculate and plot the rebalancing 
costs of the portfolio throughout the trading period. The mean rebalancing cost is 
calculated to be close to 0, leading to a conclusion that the portfolio is self-financing 
for the set of 6 commodities we have chosen.  

 

3.2 Results 

Following chart shows the excess returns, 

 

α × ∆x(t) , for the optimal dynamic trading 
strategy and for its static counterpart. The dynamic strategy beats the static strategy 
for all trading days. The dynamic trading strategy trades slowly compared to the 
static one and trades towards the more persistent signals. Static, on the other hand, 
simply tries to control the trading speed but doesn’t differentiate between the 
signals and incurs larger transaction costs. This is the theoretical explanation 
behind dynamic strategy performing better than the static one.  



 

 

Figure: Excess returns for dynamic and static portfolios 

We also vary absolute risk-aversion coefficient and the transaction cost to see their 
effects on the excess returns. When the transaction cost is increased, the excess 
returns go down, which is as expected. Similarly, as the agent becomes more risk-
averse, the returns go down, consistent with the relationship between risk and 
reward.  

The performance of each strategy measured by Sharpe Ration is shown in the table 
below. We see that dynamic strategy achieves higher Sharpe Ratio than the static 
strategy.  

 

Dynamic Strategy 0.49 

Static Strategy 0.47 

Table: Sharpe Ratio comparison for Dynamic and Static strategies 

 

 



 

Figure: Excess returns for different transaction costs 

 

 

Figure: Excess returns for different risk-aversion coefficient 

 

The plot of the rebalancing costs for different trading days is shown below. The 
costs fluctuate between positive and negative values, reflecting buying and selling of 
assets. The mean of the rebalancing costs at the end of the trading period is close to 



0, which means the trading strategy for the given portfolio of commodities is self-
financing.  

 

Figure: Rebalancing costs on different trading days 

 

4. Evaluation of the Dynamic trading strategy with EVA’s data 

 We now evaluate the dynamic trading strategy with EVA Fund’s data. Here we try to 
construct an optimal dynamic trading strategy using short term and long term 
predictions. The short term return predictors were derived from the EVA’s 
Statistical Arbitrage data and the long term predictors were derived from EVA’s 
Equity Market Neutral (EMN) portfolio data.   

The time period for the analysis was from 03/01/2005 to 27/03/2009 and we had 
the return values for 1089 securities. We had daily data for the Statistical Arbitrage 
portfolio and monthly data for the EMN portfolio. Since, our trading strategy 
requires both the predictors to be of the same frequency, we had to interpolate the 
EMN monthly data to get daily return values. 

The logic for interpolation is as follows, say we are at the first day of the month and 
we have the monthly return values for the current month and previous month and 
we shall compute the daily return for the first day as (1 + r1)^20 = 
(r_current/r_prev). And solve for r1. Now, in order to get the daily return for the 
second day of the month, we shall use the value of r1 obtained earlier and do 
(1+r1)*(1+r2)^19 = (r_current)/(r_prev). And solve for r2. This way we can obtain 
the daily return values for all the days in the month. 

 



4.1 Determining the Mean reversion coefficients 

As with the commodities data, we determine the mean reversion coefficients by 
regression. We first obtain the B matrix by doing OLS on the predictors with the 
normalized returns. We then determine the mean reversion coefficients by 
regressing Ft on Ft-1 , where F is the matrix that contains all the predictors. 

 

4.2 Performance with all the assets included in the portfolio 

As a first step we evaluated the performance of the dynamic trading strategy 
including all the 1089 assets in our portfolio. We found the results to be pretty 
unsatisfactory. Upon further analysis, we realise that the covariance between the 
assets plays a huge role in determining the returns of the strategy. And when we 
have a large number of assets, we will get poorer values of covariance since we are 
trying to estimate a large number of parameters using a limited amount of data 
points. Thus, our first conclusion was that we should not be using all the 1089 assets 
in our portfolio. Our optimal portfolio will have just a subset of these assets. 

The following plot shows the performance of the strategy with all the assets 
included in the portfolio. As we see, the excess returns are very unsatisfactory for all 
the trading strategies i.e., the dynamic, the static and the one with no transaction 
costs. 

 

Thus, we see the need to reduce the size of the portfolios. To this end , we tried to 
plot the excess returns generated by the optimal trading strategy for various values 
of N (the number of assets) . The plots are as shown below: 

 

                   For N = 500 Assets                                                                   N = 750 Assets 



 

For N = 250 Assets                                                           For N = 100 Assets 

 

From the above plots we found that as we decreased the number of assets in the 
portfolio, the excess returns kept getting better and better. This led us to the 
conclusion that the optimal number of assets that we should have in our portfolio is 
less than 100.  

4.3 Performance of the Dynamic Trading Strategy Versus EVA’s Stat-Arb and 
EMN Strategies 

In this section we shall evaluate the performance of the dynamic trading strategy 
and see how it compares with EVA’s Stat-Arb and EMN strategies. That is, for a given 
number of randomly chosen assets, how many times does the dynamic trading 
strategy outperform the Stat-Arb and EMN strategies? This is an important indicator 
as this shows the effectiveness of the Dynamic Trading strategy. 

To this end , we first fix a number of assets that we plan to have in our portfolio and 
then we take a random subset of the assets from the 1089 stocks  and run both the  
dynamic trading strategy and EVA’s Stat-Arb and EMN strategies on these assets. 
We then repeat this for 10000 simulations and find out how many times the overall 
returns from the dynamic trading strategy are higher than that of EVA’s Stat-Arb 
and EMN strategies. 



There are two ways in which one could measure the performance. One is the overall 
returns and another is in terms of the Sharpe Ratios. We evaluate the performance 
of the dynamic trading strategy using both these metrics. 

The results from our simulation are as follows (for N = 19 Assets):  

Trading Strategy 

4.3.1 Performance in Terms of Excess Returns 

Stat-Arb EMN 

Dynamic Trading 
Strategy 

3.4% 91.6% 

Static Trading Strategy 5.5% 91.8% 

NO TC (Target Portfolio) 17.7% 99.1% 

 

Thus, we find that the Dynamic Trading Strategy outperforms the Stat-Arb strategy 
only 3.4% of the times. This shows that the dynamic trading strategy on the whole 
does not work well with equities as it does with Commodities. 

Also, the performance of the dynamic trading strategy decreases even further as we 
increase the number of assets in the portfolio. For example for N = 100 Assets, 
following are the performance results: 

Trading Strategy Stat-Arb EMN 

Dynamic Trading 
Strategy 

0.0% 98% 

Static Trading Strategy 0.0% 98% 

NO TC (Target Portfolio) 0.0% 99% 

 

We can also evaluate the performance of the dynamic trading strategy in terms of 
sharpe ratios i.e., find out if the dynamic trading strategy  

4.3.2 Performance evaluation in terms of sharpe ratios 

 For N = 19 Assets the results are as follows: 

Trading Strategy Stat-Arb EMN 

Dynamic Trading 
Strategy 

8.564% 87.34% 



Static Trading Strategy 12.84% 86.24% 

NO TC (Target Portfolio) 12.46% 80.19% 

 

Once again we find that the dynamic trading strategy does not “consistently” beat 
the Stat-Arb and EMN Strategies in terms of Sharpe Ratios. However, the results are 
better than the one we obtained for excess returns. 

For N = 100 Assets the results are as follows: 

Trading Strategy Stat-Arb EMN 

Dynamic Trading 
Strategy 

0.0% 99% 

Static Trading Strategy 0.0% 99% 

NO TC (Target Portfolio) 1.2% 91% 

Thus, once again we see that increasing the number of assets has a detrimental 
effect on the performance of the dynamic trading strategy. 

4.4 Determining the Optimal Portfolio 

We know from the previous section, that the dynamic trading strategy does not 
outperform EVA’s Stat-Arb and EMN strategies for all assets. Hence, there is a need 
to determine the optimal set of stocks for which one could obtain higher returns 
using the dynamic trading strategy.  

In this section, we describe an algorithm which we can use to find such an optimal 
portfolio of assets that maximizes the excess returns.  

To this end , we used the following algorithm: 

1) Fix the number of assets (Num_assets) in the portfolio 

2) Choose a random subset of assets from the 1089  

3) Get the cumulative excess returns, sharpe ratio and rebalancing costs for the 
portfolio constructed from step (2) 

4) Repeat steps (2) and (3) with N = 10000 simulations and find the optimal 
portfolio that achieves maximum returns on a given optimization criterion 
(like highest excess return or sharpe ratio etc) 

5) Repeat steps 1 through 4 for different values of Num_assets 



Thus, using the above algorithm one could obtain a portfolio of assets which would 
give us highest excess return or highest sharpe ratio.  

4.5 Optimal Portfolio obtained by maximizing Excess Return 

We know from earlier analysis that the value of Num_assets must be less than 100. 
Hence we simulated for different values of Num_assets less than 100 to obtain the 
optimal portfolio of assets .  

When we optimized on maximizing the excess return, we obtained the following 
plot for the best portfolio. We found the optimal number of assets to be N = 19 

 

The Keys of the set of assets that gave maximum excess returns are:  

841  849 45 1034 823 214 323 1089 843 225 621  631 605 181 839 984 752 
117 693 

In the above plot, we find that the dynamic trading strategy nearly equals the target 
portfolio (the one with no transaction costs). Also, we find that all the trading 
strategies Dynamic, Static and No Transaction costs produce better excess returns 
than the ones which rely solely on either short term or long term prediction. This 
means that, it makes sense to trade using a dynamic trading strategy that uses both 
short and long term prediction than   relying solely on short term or long term 
predictions. 

 

 



However, the excess returns generated by this strategy have a large standard 
deviation which results in a pretty low value of Sharpe Ratio. The Sharpe Ratio 
values for this portfolio is:  

4.5.2 Sharpe Ratios 

Portfolio Dynamic Static No TC EVA’s 
Stat-
Arb 

EVA’s 
EMN 

Sharpe Ratio 0.26131 0.2904 0.34306 0.5102 0.2123 

 

Whenever we analyze a dynamic trading strategy, it is very important to take the 
rebalancing costs in to account. We have to ensure that we are not getting higher 
excess returns at the expense of paying more money in rebalancing the portfolio. In 
the dynamic strategy, we rebalance the portfolio by calculating the new values of X 
at each instance.  So, there is definitely a rebalancing cost involved.  

4.5.3 Rebalancing Costs  

We can say that our strategy is optimal if on an average we do not pay a very high 
amount of rebalancing costs i.e., the rebalancing costs average out over time, so that 
we do not make or lose money by rebalancing daily.  

The rebalancing costs for the above portfolio is plotted below: 

 

The mean rebalancing costs are as follows:  



Portfolio Dynamic Static No TC EVA’s Stat-
Arb 

EVA’s EMN 

Rebalancing 
Cost 

-$24.21 -$17.67 -$207.20 $-32.23 7.24 

 

We find the rebalancing costs for the NO TC portfolio to be very high , this is because 
one would be rebalancing the portfolio more when we know that there are no 
transaction costs involved in the process. Thus the Xi – Xi-1 (change in the number 
of shares) would be higher for the target(no TC) portfolio.  

On the whole we find the rebalancing costs for all the portfolios to be reasonable. In 
the sense the values are not extremely high. Also, we find that the rebalancing costs 
for the dynamic strategy to be comparable to that of the Stat-Arb and EMN 
strategies. So, we don’t stand to lose a lot of money by investing in the dynamic 
trading strategy. 

4.6 Optimal Portfolio obtained by maximizing Sharpe Ratio 

In this section we describe another method of obtaining the optimal portfolio. 
Instead of maximizing the excess returns we maximize the Sharpe Ratio. Following 
is the plot for the optimal portfolio thus obtained  

 

The Optimal Set of assets to be included in the portfolio are:  

537 773 582 879 934 747 520 1034 898 72 663 1001 382 1019 954 881 133 

From the above plot we find that the excess returns obtained using both the 
dynamic and the Stat-Arb strategies are more are less similar.  



We find that the Sharpe ratio for the Static strategy is higher than that of the Stat-
Arb strategy. Following are the Sharpe Ratios for the various strategies. 

4.6.1 Sharpe Ratios 

 Portfolio Dynamic Static No TC EVA’s 
Stat-
Arb 

EVA’s 
EMN 

Sharpe Ratio 1.0843 1.1252 1.1436 0.9841 0.4071 

 

Thus, we find that the Sharpe ratio for the Dynamic Trading strategy is higher than 
that of the Stat-Arb and EMN strategies. Hence, one can say that for the optimal set 
of assets obtained above it is more profitable to trade using the dynamic strategy.  

Here we plot the rebalancing costs for the optimal portfolio obtained by maximizing 
the Sharpe Ratio.  

4.6.2 Rebalancing Costs 

 

The mean rebalancing costs are as follows:  

Portfolio Dynamic Static No TC EVA’s Stat-
Arb 

EVA’s 
EMN 

Rebalancing 
Cost 

$2.2524 $3.5372 $-71.3071 $14.31 $-14.69 

 

Thus, we find that the optimal portfolio obtained by maximizing the Sharpe Ratios 
has a lesser rebalancing cost when compared to the Stat-Arb and EMN portfolios. 



Thus, one gets a higher Sharpe ratio with lower rebalancing costs. Hence, it makes 
sense to trade using the dynamic trading strategy for this optimal set of assets. 

5. Conclusion 

We find that the dynamic trading strategy, which combines the short term and long 
term predictions, gives us consistently good results with commodities. One of the 
reasons for this could be the fact that since, all the commodities belong to the same 
sector they tend to be more correlated with each other.  

However, when we try to implement the dynamic trading strategy for a diverse set 
of stocks, the results are less convincing. We find that the dynamic trading strategy 
does NOT consistently outperform the Stat Arb and EMN strategies for all stock 
portfolios. Also, the performance of the dynamic trading strategy deteriorates 
further as we increase our portfolio size.  

But, one could construct an optimal portfolio of stocks for which the dynamic 
trading strategy would give a higher value of Sharpe Ratio with lower rebalancing 
cost. Thus, there is a need to find an optimal portfolio of stocks for which one could 
obtain a higher excess return by using the dynamic trading strategy. 
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