
MQL4 COURSE
By Coders’ guru

www.forex-tsd.com

-16-
Your First Expert Advisor

Part 4

we have reached the edge of the moon in our way to the truth, I’m not under the impact
of alcoholic poisoning (I don’t drink at all), but I’m so happy to reach the last part of
explaining or first expert advisor. Yes! This is the last part of the expert advisor lesson.

I hope you enjoyed the journey discovering how to write our simple yet important expert
advisor.
Let’s take the final step.

The code we have:

//+--+
//| My_First_EA.mq4 |
//| Coders Guru |
//| http://www.forex-tsd.com |
//+--+
#property copyright "Coders Guru"
#property link "http://www.forex-tsd.com"

//---- input parameters
extern double TakeProfit=250.0;
extern double Lots=0.1;
extern double TrailingStop=35.0;
//+--+
//| expert initialization function |
//+--+
int init()
 {
//----

//----
 return(0);
 }
//+--+
//| expert deinitialization function |
//+--+
int deinit()
 {
//----

//----
 return(0);
 }

http://www.forex-tsd.com
http://www.forex-tsd.com\

int Crossed (double line1 , double line2)
 {
 static int last_direction = 0;
 static int current_direction = 0;

 if(line1>line2)current_direction = 1; //up
 if(line1<line2)current_direction = 2; //down

 if(current_direction != last_direction) //changed
 {
 last_direction = current_direction;
 return (last_direction);
 }
 else
 {
 return (0);
 }
 }
//+--+
//| expert start function |
//+--+
int start()
 {
//----

 int cnt, ticket, total;
 double shortEma, longEma;

 if(Bars<100)
 {
 Print("bars less than 100");
 return(0);
 }
 if(TakeProfit<10)
 {
 Print("TakeProfit less than 10");
 return(0); // check TakeProfit
 }

 shortEma = iMA(NULL,0,8,0,MODE_EMA,PRICE_CLOSE,0);
 longEma = iMA(NULL,0,13,0,MODE_EMA,PRICE_CLOSE,0);

 int isCrossed = Crossed (shortEma,longEma);

 total = OrdersTotal();
 if(total < 1)
 {
 if(isCrossed == 1)
 {

ticket=OrderSend(Symbol(),OP_BUY,Lots,Ask,3,0,Ask+TakeProfit*Point,
"My EA",12345,0,Green);
 if(ticket>0)
 {
 if(OrderSelect(ticket,SELECT_BY_TICKET,MODE_TRADES))
Print("BUY order opened : ",OrderOpenPrice());

 }
 else Print("Error opening BUY order : ",GetLastError());
 return(0);
 }
 if(isCrossed == 2)
 {

 ticket=OrderSend(Symbol(),OP_SELL,Lots,Bid,3,0,
Bid-TakeProfit*Point,"My EA",12345,0,Red);
 if(ticket>0)
 {
 if(OrderSelect(ticket,SELECT_BY_TICKET,MODE_TRADES))
Print("SELL order opened : ",OrderOpenPrice());
 }
 else Print("Error opening SELL order : ",GetLastError());
 return(0);
 }
 return(0);
 }
 for(cnt=0;cnt<total;cnt++)
 {
 OrderSelect(cnt, SELECT_BY_POS, MODE_TRADES);
 if(OrderType()<=OP_SELL && OrderSymbol()==Symbol())
 {
 if(OrderType()==OP_BUY) // long position is opened
 {
 // should it be closed?
 if(isCrossed == 2)
 {
 OrderClose(OrderTicket(),OrderLots(),Bid,3,Violet);
// close position
 return(0); // exit
 }
 // check for trailing stop
 if(TrailingStop>0)
 {
 if(Bid-OrderOpenPrice()>Point*TrailingStop)
 {
 if(OrderStopLoss()<Bid-Point*TrailingStop)
 {
 OrderModify(OrderTicket(),OrderOpenPrice(),Bid-
Point*TrailingStop,OrderTakeProfit(),0,Green);
 return(0);
 }
 }
 }
 }
 else // go to short position
 {
 // should it be closed?
 if(isCrossed == 1)
 {
 OrderClose(OrderTicket(),OrderLots(),Ask,3,Violet);
// close position
 return(0); // exit
 }
 // check for trailing stop
 if(TrailingStop>0)
 {
 if((OrderOpenPrice()-Ask)>(Point*TrailingStop))
 {

 if((OrderStopLoss()>(Ask+Point*TrailingStop)) ||
(OrderStopLoss()==0))
 {

OrderModify(OrderTicket(),OrderOpenPrice(),Ask+Point*TrailingStop,
OrderTakeProfit(),0,Red);
 return(0);
 }
 }
 }
 }
 }
 }
 return(0);
 }
//+--+

In the previous lesson, we checked the OrdersTotal is less than 1 in order to open a Buy
or a Sell orders in the case that there were no already opened orders.
We have used this code:

if(total < 1)
 {
 if(isCrossed == 1)
 {

 }
 if(isCrossed == 2)
 {

 }
 return(0);
 }

This was the Open New Order routine. Today we will study Modify-Close Opened
Orders routine.

for(cnt=0;cnt<total;cnt++)
 {

 }

In the above block of code we used a for loop to go through all the already opened orders.
We start the loop from the cnt = 0 and the end of the loop is the total number of already
orders. Every loop cycle we increase the number of cnt by 1 (cnt++).So, cnt will hold in
every cycle the poison of the order (0,1,2,3 etc) which we will use with OrderSelect
function to select each order by its position.

Our today's mission is studying what's going inside the heart of the above loop.

OrderSelect(cnt, SELECT_BY_POS, MODE_TRADES);
 if(OrderType()<=OP_SELL && OrderSymbol()==Symbol())
 {

 }

The OrderSelect function used to select an opened order or a pending order by the ticket
number or by index.

We used the OrderSelect here before using the OrderType and OrderSymbol functions
because if we didn't use OrderSelect, the OrderType and OrderSymbol functions will not
work.

Note: You have to use OrderSelect function before the trading functions which takes no
parameters:
OrderMagicNumber, OrderClosePrice, OrderCloseTime, OrderOpenPrice,
OrderOpenTime, OrderComment, OrderCommission, OrderExpiration, OrderLots,
OrderPrint, OrderProfit, OrderStopLoss, OrderSwap, OrderSymbol, OrderTakeProfit,
OrderTicket and OrderType

We used SELECT_BY_POS selecting type which means we want to select the order by its
index (position) not by its ticket number.

Note: The index of the first order is 0 and the index of the second one is 1 index etc.

And we used MODE_TRADES mode which means we will select from the currently
trading orders (opened and pending orders) not from the history.

The OrderType function returns the type of selected order that will be one of:
OP_BUY, OP_SELL, OP_BUYLIMIT, OP_BUYSTOP, OP_SELLLIMIT or
OP_SELLSTOP

We checked the type of the order to find is it equal or lesser than OP_SELL.
Which means it maybe one of two cases: OP_SELL or OP_BUY (because OP_SELL=1
and OP_BUY = 0). We did that because we will not work with pending orders.

We want too to work only with the order opened in the chart we loaded our expert
advisor on, so we check the OrderSymbol of the order with the return value of Symbol
function which returns the current chart symbol. If they are equal it means we are
working with the currently loaded symbol.

So, all the coming code will work only if the OrderType is OP_SELL or OP_BUY and the
Symbol = OrderSymbol.

if(OrderType()==OP_BUY) // long position is opened
 {

 }

We are working only with two types of orders, the first type is OP_BUY.
The code above means:

Is there a long (Buy) position opened? If yes! Execute this block of code….
Let's see what will do in the case of a long position has been opened

if(isCrossed == 2)
 {
 OrderClose(OrderTicket(),OrderLots(),Bid,3,Violet);
 // close position
 return(0); // exit
 }

We have opened a Buy order when the shortEma crossed the longEma upward.
It's a logical to close this position when the shortEma and longEma crosses each others in
reversal direction (downward).

So, we checked the isCrossed to find is it = 2 which means the reversal has been occurred
and in this case we close the Buy order.

We used the OrderClose function to close the order. OrderClose function closes a
specific opened order by its ticket. (Review appendix 2).

We’ve got the ticket number of the selected order using the OrderTicket function and
passed it as the first parameter for OrderClose function.
The second parameter in the OrderClose is Lots (the number of lots); we used the
OrderLots function to get the lots value of the selected order.
The third parameter in OrderClose is the preferred close price and we used the Bid
function to get the bid price of the selected order.
The fourth parameter is the slippage value and we used 3.
The fifth parameter is the color of the closing arrow and we used Violet color.

We didn't forget to terminate the start function with return(0) statement.

// check for trailing stop
 if(TrailingStop>0)
 {
 if(Bid-OrderOpenPrice()>Point*TrailingStop)
 {
 if(OrderStopLoss()<Bid-Point*TrailingStop)
 {
 OrderModify(OrderTicket(),OrderOpenPrice(),Bid-
Point*TrailingStop,OrderTakeProfit(),0,Green);
 return(0);
 }
 }
 }

Note: We are still inside the block of: if(OrderType()==OP_BUY).

We are going to apply our trailing stop technique for the opened Buy position in this
block of code.

Firstly, we have checked the TrailingStop variable the user supplied to check was it a
valid value or not (greater than 0).

Then we applied our trailing stop technique for the opened Buy orders which is:

We modify the stoploos of the order when the subtraction of the current bid price and
the opened price of order is greater than the TrailingStop
and
the current stoploss is lesser than the subtraction of the current bid price and the
TrailingStop.

We used the OrderModify function to make the desired modification.
These are parameters we used with OrderModify:

ticket: We've got the current order ticket with OrderTicket function.

price: We’ve got the open price of the order with OrderOpenPrice function.

stoploss: Here's the real work! Because we are in a Buy position we set our new stoploss
to the value of the subtraction of the current bid price and the TrailingStop.
That's our way trailing the stoploss point every time we make profits.

Note: Stop losses are always set BELOW the current bid price on a buy and ABOVE the
current asking price on a sell.

takeprofit: No changes, we've got the current profit value of the order with
OrderTakeProfit function.

expiration: We didn't set an expiration date to our order, so we used 0.

arrow_color: Still Green color.

Finally we terminate the start function.

else // go to short position
 {

 }

Note: else here belongs to the code:

if(OrderType()==OP_BUY) // long position is opened
 {

 }

We have studied the case of the type of the order is a Buy order.
So, we are working now a Sell order type.
Let's see what are we going to do in the case of a short (Sell) position has been already
opened?

if(isCrossed == 1)
 {

 OrderClose(OrderTicket(),OrderLots(),Ask,3,Violet);
 // close position
 return(0); // exit
 }

We’ve opened a Sell order when the shortEma crossed the longEma downward.
It's the time to close this position when the shortEma and longEma crosses each others in
reversal direction (upward). Which happens in the case of isCrossed = 1.

We used the OrderClose function to close the order, we used the same parameters we use
in the case of closing a Buy order except the third parameters the preferred close price, in
this case is the Ask price.
Then we terminated the start function.

// check for trailing stop
 if(TrailingStop>0)
 {
 if((OrderOpenPrice()-Ask)>Point*TrailingStop)
 {
 if((OrderStopLoss()>(Ask+Point*TrailingStop)) ||
(OrderStopLoss()==0))
 {

OrderModify(OrderTicket(),OrderOpenPrice(),Ask+Point*TrailingStop,
OrderTakeProfit(),0,Red);
 return(0);
 }
 }
 }

 We are going to apply our trailing stop technique for the opened Sell position in this
block of code.

Firstly, we’ve checked the TrailingStop variable the user supplied to check was it a valid
value or not (greater than 0).
Then we applied our trailing stop technique for the opened Sell orders which is:

We modify the stoploss of the order when the subtraction of the order's opened price
and the current ask price is greater than the TrailingStop
and
the current stoploss is greater than the addition of the current ask price and the
TrailingStop.

We used the OrderModify function to make the desired modification. And used the same
parameters we use in the case of modifying already opened Buy order except the third
parameter which indicates our stoploss value:
We set our new stoploss to the value of the addition of the current ask price and the
TrailingStop.

And the fifth parameter which indicates the color of the arrow in this case is Red.

Then we terminated the start function using return(0);

return(0);

This line terminates the start function in all other case; there are no conditions to open
new positions and there are no needs to close or modify the already opened orders.
Just don’t forget it.

I hope you enjoyed the lesson.
I welcome very much your questions and suggestions.

Coders’ Guru
28-12-2005

