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Abstract. Hodrick-Prescott (HP) filtering of (most often, seasonally adjusted)
quarterly series is analysed. Some of the criticism to the filter are adressed. It
is seen that, while filtering strongly affects autocorrelations, it has little effect
on crosscorrelations. It is argued that the criticism that HP filtering induces a
spurious cycle in the series is unwarranted. The filter, however, presents two
serious drawbacks: First, poor performance at the end periods, due to the size
of the revisions in preliminary estimators, and, second, the amount of noise in
the cyclical signal, which seriously disturbs its interpretation. We show how the
addition of two model-based features (in particular, applying the filter to the
series extended with proper ARIMA forecasts and backcasts, and using as input
to the filter the trend-cycle component instead of the seasonally adjusted series)
can considerably improve the filter performance. Throughout the discussion, we
use a computationally and analytically convenient alternative derivation of the HP
filter, and illustrate the results with an example consisting of 4 Spanish economic
indicators.
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1 Introduction

There are two different uses of trends in applied work. First, in short-term mon-
itoring and seasonal adjustment, trends are equal topt = xt − (st + ut ), where
xt is the observed series,st is the seasonal component, andut is the irregular
component, that typically captures white (or close to it) noise behavior. Examples
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of these trends are the ones produced by the Henderson filters in X11 or X12,
or the ones obtained in the model-based decomposition of a series, as in pro-
grams STAMP or SEATS (see Findley et al 1998; Koopman et al 1996; Gómez
and Maravall 1996). Since they only differ from the seasonally adjusted (SA)
series by a highly erratic component, often they will contain variation of the
series within the range of cyclical frequencies. As a consequence, these trends
will only be of interest as a short-term signal to monitor, for example, period-to-
period growth. An example is provided by the continuous lines in Fig. 1.1a and
1.1b: The gain of the filter extends over a wide range of cyclical frequencies,
and the trend is seen to contain short-term cyclical oscillations. Throughout the
paper, these short-term trend will be referred to as trend-cycles, and denotedpt ;
on occasion, they will also be called ”noise free” SA series.
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Fig. 1a,b. Short-term versus long-term trends

The second use of trends is in business cycle analysis, where short-term
trends cannot be used because they are contaminated with cyclical variation;
longer-term trends are needed. Despite its importance, decades of attention have
shown that formal modeling of economic cycles is a frustrating issue. Therefore,
applied research and work at policy making institutions has relied heavily on
ad-hoc filters, the most popular of which is the Hodrick-Prescott (HP) one (see
Prescott 1986). Thus a standard procedure to estimate economic cycles is to apply
the HP filter to X11-SA series. The dotted lines in Fig. 1.1a and b represent the
HP long-term trend gain and estimator. Long-term trends will be called simply
trends, and represented bymt .

The use of the HP filter for business-cycle estimation has been the subject
of academic discussion. Criticisms are found in, for example, Canova (1998),
Cogley and Nason (1995), Harvey and Jaeger (1993), King and Rebelo (1993),
and Maravall (1995). Norwithstanding the criticisms, its widespread use in prac-
tice may evidence (besides its simplicity) the empirical fact that, as a first (or
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rough) approximation, analysts find the results useful. The decision of which is
the cutting point between a trend and a cycle is, ultimately, arbitrary, and to
some extent depends on the purpose of the analysis. For example, from a month
to month horizon, a periodic 10-year component may well be considered trend;
if business cycle is the objective, it should be considered cycle.

Be that as it may, the HP filter presents some serious limitations. First, it
is generally accepted that economic cycles have non-linear features (see, for
example, Hamilton 1989); in this paper we do not deal with non-linear improve-
ments. We address, first, the well-known criticism of spurious results due to
the ad-hoc character of the filter, and the (often ignored yet important) limita-
tion implied by revisions, which produce imprecision in the cycle estimator for
recent periods. Then, we show how the integration of some relatively simple
ARIMA-model-based (AMB) techniques can produce important improvements
in the performance of the cyclical signal.

2 The Hodrick-Prescott filter: Wiener-Kolmogorov derivation

We start by providing an alternative representation of the HP filter that provides
an efficient and simple computational algorithm and turns out to be useful for
analytical discussion. Letxt (t = 1, . . . , T) denote an observed series. The HP
filter decomposesxt into a smooth trend (mt ) and a residual (ct ), where the trend
is meant to capture the long-term growth of the series, and the residual (equal
to the deviation from that growth) represents the cyclical component. For the
moment we shall assume that the series contains no seasonality.

The HP filter is a low-pass filter and can be seen as a Whittaker-Henderson
type A filter and as a member of the Butterworth family of filters (see Gómez
1998). The filter was derived as the solution of a problem that balances a trade-off
between fit and smoothness in the following way. In the decomposition

xt = mt + ct , (2.1)

the HP filter provides the estimator ofct andmt such that the expression

T∑
t=1

c2
t + λ

T∑
t=3

(∇2mt )
2 (2.2)

is minimized (∇ = 1 − B is the difference operator,B is the backward operator
Bj zt = zt−j , andF denotes the forward operator,F j zt = zt+j ) The first summation
in (2.2) penalizes bad fitting, while the second one penalizes lack of smoothness.
The parameterλ regulates the trade-off: whenλ = 0, m̂t = xt , whenλ → ∞, m̂t

becomes a deterministic linear trend. The solution to the problem of minimizing
(2.2) subject to the restriction (2.1) is given by (see Danthine and Girardin 1989)

m̂ = A−1x, A = I + λK ′K , (2.3)
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wherem̂ andx are the vectors ( ˆm1, . . . , m̂T )′ and (x1, . . . , xT )′ respectively, and
K is an (n − 2) × n matrix with its elements given byKij = 1 if i=j or i =
j + 2, Kij = −2 if i = j + 1, Kij = 0 otherwise.

Clearly, the estimator of the trend for a given period depends on the length
of the series. Consider the trend for periodT, the last observed period. Appli-
cation of (2.3) yields an estimator to be denoted ˆmT|T , where the first subindex
refers to the period under estimation, and the second to the last observed period.
This estimator will be called the concurrent estimator. When one more quarter
is observed andx becomes (x1, . . . , xT+1)′, application of (2.3) yields a new es-
timation of mT , namely m̂T|T+1. As more quarters are added, the estimator is
revised. It can be seen that, for large enoughk, m̂T|T+k converges to a final or
historical estimator, to be denoted ˆmT . Therefore, for a long enough series, the
final estimator may be assumed for the central periods, while estimators for the
last years will be preliminary. This two sided interpretation of the HP filter seems
unavoidable. Because additional correlated new information cannot deteriorate a
projection,m̂T|T+1 should improve upon ˆmT|T . Moreover, actual behavior of the
US Business Cycle Dating Committee (or similar institutions) reveals in fact a
two-sided filter, which starts with a preliminary estimator, and reaches the final
decision with a lag of perhaps two years.

As shown in King and Rebelo (1993), the HP filter can be given a model-
based interpretation. Letct in (2.1) be white noise with varianceVc andmt follow
the model

∇2mt = amt, (2.4)

where amt is a white noise variable (with varianceVm) uncorrelated toct .
Throughout the paper, the expression “white noise” will denote a zero-mean
normally identically independently distributed variable. Letλ = Vc/Vm so that,
without loss of generality, we can setVc = λ, Vm = 1. The minimum mean
squared error (MMSE) estimator ofmt can be obtained in a straightforward
manner via the Kalman filter (see Harvey and Jaeger 1993). The interpretation
of λ, the HP filter parameter, varies according to the rationalization of the filter.
It regulates the trade-off between fitness and smoothness when the function (2.2)
is minimized, it is equal to the ratio of the cycle and trend innovations in the
model-based approach, and, when expressed as a Butterworth type filter, it is
equal to,λ = [4sin2(ω0/2)]−2, whereω0 is the frequency for which 50% of the
filter gain has been completed (see Gómez and Maravall 1998).

Alternatively, the same MMSE estimator can be obtained with the so-called
Wiener Kolmogorov (WK) filter. In terms of the observations, the previous model
can be rewritten as the IMA (2,2) model

∇2xt = (1 +θ1B + θ2B2)bt = θHP(B)bt , (2.5)

where bt are the innovations in thext series. The variance ofbt , Vb, and the
θ1, θ2-parameters are found by factorizing the spectrum from the identity

(1 + θ1B + θ2B2)bt = amt + ∇2ct . (2.6)
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As an example, for quarterly series the standard value ofλ is 1600, in which
case

θHP(B) = 1− 1.77709B + 0.79944B2; Vb = 2001.4. (2.7)

For an infinite realization of the series, the MMSE estimator ofmt is given by
(see, for example, Maravall 1995)

m̂t = km(HP)
1

θHP(B)θHP(F )
xt = νm

HP(B, F )xt , (2.8)

wherekm(HP) = Vm/Vb. The filterνm
HP(B, F ) is symmetric and, since (2.6) implies

thatθHP(B) is invertible, also convergent. Following Cleveland and Tiao (1976),
for a finite series, expression (2.8) can still be applied, withxt replaced by the
series extended with forecast and backcasts. A simple and efficient algorithm to
apply the filter, based on that in Burman (1980), is given in the Appendix. For
the estimator of the cycle,

ĉt = [1 − νm
HP(B, F )]xt = νc

HP(B, F )xt , (2.9)

whereνc
HP(B, F ) is also a two-sided centered, symmetric, and convergent linear

filter, which can be rewritten as,

ĉt = νc
HP(B, F )xt =

[
kc(HP)

∇2∇̄2

θHP(B)θHP(F )

]
xt , (2.10)

wherekc(HP) = Vc/Vb, and a bar over an operator denotes the same operator with
B replaced byF . When properly applied, the Danthine and Girardin, the Kalman
filter, and the WK solutions are numerically identical (see Gómez, 1999). The
last two are considerably more efficient than the first, and can be applied to series
of any length. The WK filter turns out to be convenient for analytical discussion.

For seasonal series, since the seasonal variation should not contaminate the
cycle, the HP filter is typically applied to X11 SA quarterly series. Throughout the
paper, “X11” will denote the default linear filter for an additive decomposition,
as in Ghysels and Perron (1993). To adjust a series, the filter X11 will always be
applied (in the X11ARIMA spirit) to the series extended at both extremes with
ARIMA forecast and backcasts. We shall center attention, first, on historical (or
final) estimation. IfνX11(B, F ) denotes the X11-SA filter, andνc

HP(B, F ) the HP
filter (2.9), letνc

HPX(B, F ) denote the convolution of the two. Because both, the
X11 and the HP filters, are symmetric, centered, and convergent, so will their
convolution. For seasonal series, the estimator of the cycle (2.9) should thus be
replaced by

ĉt = νc
HPX(B, F )xt . (2.11)

Throughout the paper we assume quarterly series and denote byS the annual
aggregation operator,S = 1 + B + B2 + B3. Further, in all decompositions of a
series into unobserved stochastic components, the components will be assumed
orthogonal, and innovations in their models normally distributed.
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3 Revisions

3.1 Preliminary estimation of end points and revisions

If ĉT|T denotes the estimator of the cycle for the last observed period (i.e., the
concurrent estimator,) as new periods are observed the estimator will be revised
to ĉT|T+1, ĉT|T+2, . . . until it converges to the final estimator ˆcT . The difference
between the final estimator and the concurrent one measures the revision the latter
will undergo, and can be interpreted as a measurement error in the concurrent
(more generally, preliminary) estimator. Although the poor behavior of the HP
filter for recent periods has often been pointed out (see Baxter and King 1995),
the revisions implied by HP filtering have not been analyzed . Two main features
of the revision are of interest: a) the magnitude, and b) the duration of the revision
process (i.e., the value ofk for which ĉT|T+k has, in practice, converged). To look
at these features we use the WK version of the filter.

Assume the observed series follows the general ARIMA model

φ(B)xt = θ(B)at , (3.1)

where, without loss of generality, we assumeφ(B) contains the factor∇d, 0 ≤
d ≤ 4. Because the numerator ofνc

HP in (2.10) cancels the unit roots inxt , the
estimator of the cycle can be expressed as

ĉt = ξ(B, F )at , (3.2)

where the weights of the polynomialξ(B, F ) can be obtained through the identity
ξ(B, F )φ(B) = νc

HP(B, F )θ(B). Expression (3.2) can be rewritten as

ĉt = ξ−(B)at + ξ+(F )at+1, (3.3)

whereξ−(B) =
∑

j ≥0 ξ−j Bj , andξ+(F ) =
∑

j ≥0 ξj F j are convergent polynomi-
als. The first one contains the effect of the innovations up to and including period
t, and the second one includes the effect of innovations posterior to period t. Be-
causeEt (at−j ) = at−j when j ≥ 0, andEt (at−j ) = 0 whenj < 0, the concurrent
estimator equal to the expectation at time t of the estimator (3.3), is given by the
first term in the right hand side of the equation. The revision in the concurrent
estimator will thus be given by

rt|t = ĉt|t − ĉt = ξ+(F )at+1 =
k∑

j =1

ξj at+j , (3.4)

where the last equality uses a finite approximation based on the convergence of
ξ+(F ). From (3.4), it is straightforward to compute the variance and autocorre-
lations of the revision process. (We have focussed on the concurrent estimator;
the analysis is trivially extended to any preliminary estimator ˆct|T .)

Although the filterνc
HP(B, F ) is fixed, the coefficients of the forward filter

ξ+(F ) depend on the ARIMA model for the observed series. Without loss of
generality, we setVar(at ) = 1, so that the variance of the revision
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Var(rt|t ) =
k∑

j =1

(ξj )
2 (3.5)

is then expressed as a fraction of the variance of the series innovationVa. To
give some examples of the magnitude of the revision error, for a random walk
seriesσ(rt|t ) = 0.91σa, and for the IMA(2,2) model (2.5) with the parameters
equal to (2.7), the model for which the HP filter is optimal,σ(rt|t ) = 0.34σa.
Defining convergence as having removed 95% of the revision variance, in both
examples it takes 9 quarters for the estimator to converge. Of more empirical
relevance is the case of the HP filter applied to X11-SA series (i.e., the filter
νXHP(B, F )). It is well known that X11, another two-sided filter, also produces
revisions. Therefore, the revisions associated with the filterνXHP will reflect the
combined effect of the two filters. For illustration, we select the so-called “Airline
model”, discussed in Box and Jenkins (1970), given by the expression

∇∇4xt = (1 +θ1B)(1 + θ4B4)at . (3.6)

The model fits well many series with trend and seasonality (see the results for
14000 series from 17 countries in Fischer and Planas 1998), and has became a
standard example. For the most relevant range for the parametersθ1 andθ4, Table
1 presents the fractionσ(revision)/σ(at ) and the number of periods (τ ) needed
for convergence. The standard deviation of the revision represents between 0.4
and 1.5 ofσ(at ), and convergence takes, roughly, between 2 and 5 years. Given
that θ1 close to -1 implies very stable trends, whileθ4 close to -1 implies very
stable seasonals, what Table 2 shows is that series with highly moving trends
and seasonals will be subject to bigger, longer lasting, revisions. It is worth
pointing out that, for the range of values most often found in practice which
is the botton right corner, the revision period lasts between 9 and 15 quarters.
The two examples clearly indicate two features. First, that the revision error
is quantitatively important, of a magnitude often comparable to that of the 1-
period-ahead forecast; and, second, that the revision period lasts more than 2
years.

Table 1. Revisions implied by the HP-X11 filter

θ4 = 0 θ4 = −.2 θ4 = −0.4 θ4 = −0.6 θ4 = −0.8
σr /σa τ σr /σa τ σr /σa τ σr /σa τ σr /σa τ

θ1 = 0.4 1.53 19 1.44 18 1.36 17 1.28 9 1.21 9
θ1 = 0.2 1.34 19 1.26 18 1.18 17 1.12 9 1.06 9
θ1 = 0 1.15 19 1.08 18 1.02 16 0.96 9 0.90 9
θ1 = −0.2 0.97 19 0.91 18 0.85 15 0.80 9 0.76 9
θ1 = −0.4 0.79 18 0.74 17 0.70 14 0.65 9 0.61 9
θ1 = −0.6 0.64 15 0.60 14 0.55 9 0.51 9 0.47 9
θ1 = −0.8 0.52 9 0.48 9 0.44 9 0.40 9 0.36 9
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Fig. 2. Short-term economic indicator: original series

3.2 An example

An application, that will also be used in later sections, will complete the dis-
cussion. We consider four quarterly Spanish economic indicators that could be
related to the business cycle. The series are the industrial production index (IPI),
cement consumption (CC), car registration (CR) and airline passengers (AP), for
the 26-year period 1972/1 - 1997/4, and contain 104 observations. (For the IPI
series, the first 12 observations were missing and the period was completed using
backcasts). The series were log transformed (following proper comparison of the
BIC criteria), and the application will be discussed for the additive decomposition
of the logs. So as to facilitate comparisons, we standardize the 4 logged series
to have zero mean and unit variance. The 4 series are represented in Fig. 2; their
trend and seasonal features are clearly discernible. ARIMA modeling of the 4
series produced similar results: the models were of the type (3.6) and a sum-
mary of results is given in Table 2; none of the series appeared to be in need of
outlier adjustment. (Estimation was made with the program TRAMO run in an
automatic mode, see Gómez and Maravall 1996). Using the ARIMA models to
extend the series, the X11 filter was applied to obtain the SA series. Then, the
HP (λ = 1600) filter was applied. The 4 cycles obtained are displayed in Fig. 3.
For the series CC and CR the short-term contribution of the cyclical variation is
relatively more important than for the series IPI and, in particular, AP.

The cycles of Fig. 3 are a combination of concurrent, preliminary, and final
estimators. Since, on occasion, the filter is treated as a one-sided filter (see
Prescott 1986), an interesting comparison is the following. Using the first and
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Table 2. Summary of ARIMA estimation results

Parameter Estimates Residual BL test Normality
θ1 θ4 VarianceVa Q(< χ2

14) N (< χ2
2)

CC -0.405 -0.957 0.175 18.4 0.32
IPI -0.299 -0.721 0.054 23.3 0.14
CR -0.387 -0.760 0.156 18.7 0.79
AP -0.392 -0.762 0.017 21.1 2.76
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Fig. 3. X11-HP cycles

last 22 periods for safe convergence of the X11 and the HP filters, we obtained
the sequence of concurrent and final estimators of the trend and cycle for the 60
central periods of the 4 series. Then, we evaluated the standard loss function of
the HP filter, given by (2.2), for the concurrent and final estimators of the trend
and cycle; the results are given in Table 3.

Table 3. HP loss-function for concurrent and final estimator

CC IPI CR AP
Concurrent Final Concurrent Final Concurrent Final Concurrent Final

624.7 13.3 172.8 2.9 513.4 11.9 43.2 1.0

The improvement achieved by using final estimators instead of concurrent
ones is indeed large. Figure 4 compares the series of concurrent and final es-
timators, for the cycle. A clear phase effect in the concurrent estimator can be
observed for the 4 series, a well-known feature of one-sided filters.
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A point of applied relevance is to asses the imprecision of the estimator of
the cycle for recent periods, as measured by the standard error of the revision. In
so far as the revision represents a measurement error, its variance can be used to
build confidence intervals around the cycle estimator. Figure 5 displays the 95%
confidence interval for the 4 series. Direct inspection shows that, although the
estimators converges in 2 (at most 3) years, for recent periods it is unreliable.
This large increase in the measurement error of the most recent signals implies
that forecasts would be of little use.

4 Spurious results

While the problem of revisions has been often overlooked, the danger of obtaining
spurious results induced by HP filtering has been frequently mentioned. The
squared gain ofνc

HPX(B, F ) is shown in Fig. 6. It displays zeros for the zero and
seasonal frequencies. The application of this fixed structure brings the possibility
of spurious results. On the one hand, it will affect the autocorrelation structure of
the series and spurious correlations between series may be obtained (in the line
of Granger and Newbold 1974). On the other hand, the first peak may induce a
spurious periodic cycle.

4.1 Spurious crosscorrelation

We performed a simulation inMATLAB, whereby 10.000 independent random
samples of 600 observations each were drawn from aN (0, 1) distribution. Each
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white-noise series was filtered through the X11 and HP filters and the last 100
values were selected. Next, 10.000 lag-zero crosscorrelation between two series
were sampled (in what follows, all crosscorrelations are lag-zero ones). The same
exercise was performed to generate independent random walks series. Table 4
presents the first four moments of the distribution of ˆρ0, the crosscorrelation
estimator between the original series and between the cycles.

Table 4. Crosscorrelation between filtered series

a. White noise Mean Std.deviation Skewness Kurtosis
Original -0.001 0.11 -0.03 2.9
Cycle -0.001 0.11 -0.05 2.9
b. Random walk Mean Std. deviation Skewness Kurtosis
Original -0.000 0.10 -0.04 2.9
Cycle 0.000 0.19 -0.01 2.8

Clearly, for the white-noise case no spurious crosscorrelations has been induced.
For the random walk model the zero-mean normality assumption can still be
accepted but the spread of the distribution of ˆρ0 for the cycle becomes wider.
A spurious, though moderate, crosscorrelation effect can thus be detected. A
similar simulation was performed for the more complex airline model (3.6), with
the parameter values set atθ1 = −0.4 andθ4 = −0.6. Figure 7 plots the densities
of the crosscorrrelation estimator for the stationary transformation of the original
and SA series and of the X11-SA and HP detrended series. The filter X11 is
seen to have virtually no effect while, as before, the HP filter induces a small
increase in the spread of the distribution. Still, the HP-X11 filter seems to induce
a small amount of spurious crosscorrelations and hence the detection of relatively
large crosscorrelation between cycles obtained with it is unlikely to be spurious.
(Although the filter will have distorting effects when the series are correlated;
see Cogley and Nason 1995.)

4.2 Spurious autocorrelation; calibration

Assume that a theoretical economic model implies that an economic variable
follows the 4-year cycle AR(2) process:

(1 − 1.293B + 0.490B2)ct = act, Var(act) = 1, (4.1)

with act a white-noise innovation, and that simulations of the model yield in
fact an ACF for the variable equal to the theoretical ACF of (4.1), shown in
the second column of Table 5. The basic idea behind calibration is to validate
the economic model by comparing the previous ACF with the one implied by
the observed economic variable. To compute the latter, the non-stationary trend
and seasonal component need to be removed. (Besides, seasonality and often the
trend are typically excluded from the theoretical economic model.)
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Table 5. Theoretical ACF of the component model and of its estimators

Lag-k ACF True X11-HP filtered MMSE
component component estimator

Vp = 0.1, Vp = 0.1, Vp = 1 Vp = 0.1,
Vs = 0.1 Vs = 1 Vs = 1 Vs = 1

k=1 0.87 0.71 0.19 0.37 0.83
k=2 0.63 0.44 0.22 0.30 0.43
k=3 0.39 0.10 -0.06 0.00 -0.02
k=4 0.20 -0.05 0.22 0.18 -0.35
k=5 0.06 -0.25 -0.23 -0.15 -0.45
k=6 -0.01 -0.30 -0.19 -0.16 -0.43
k=7 -0.05 -0.34 -0.27 -0.26 -0.31
k=8 -0.06 -0.27 -0.01 -0.07 -0.20
k=9 -0.05 -0.25 -0.18 -0.20 -0.10

k=10 -0.04 -0.19 -0.12 -0.16 -0.04
k=11 -0.02 -0.16 -0.17 -0.20 -0.00
k=12 -0.01 -0.09 0.06 -0.03 -0.02
k=13 -0.00 -0.08 -0.07 -0.12 -0.03
k=14 -0.00 -0.05 -0.03 -0.08 -0.03
k=15 -0.03 -0.04 -0.11 -0.13 -0.02
k=16 -0.00 -0.01 -0.13 0.05 -0.01

Let the observed series be generated by the cycle given by (4.1), contaminated by
a random walk trend (pt ) and a seasonal component (st ) as in the Basic Structural
Model of Harvey and Todd (1983). Thus the observed seriesxt is given by
ct + pt + st , wherect is generated by (4.1), and∇pt = apt, Sst = ast, with act, apt

andast mutually orthogonal innovations, with variancesVc, Vp andVs. Seasonally
adjusting with X11 and detrending with the HP filter the observed series, the
estimator of the cycle is obtained. Its variance and ACF (the ”observed moments”
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in the calibration comparison) are straightforward to derive analytically; they are
given in the third, fourth and fifth column of Table 5, for the three casesVp =
Vs = 0.1; Vp = 0.1, Vs = 1; andVp = Vs = 1. Comparing these columns with the
second, although the theoretical model is perfectly correct, the second moments
obtained from the observed series would seem to indicate the contrary. The
distortion that seasonal adjustment and detrending induce also occurs when the
components are estimated as MMSE estimators in a model based approach; the
ACF of the cycle obtained in this case is given in the 6th row of Table 5. Still, the
distortion induced by MMSE estimation is considerably smaller than that induced
by HP-X11 filtering. Calibration of models using filtered series seems, thus, an
unreliable procedure. If the theoretical economic model is correct, then calibration
should not look for similarities between the ACF of the theoretical model and
of the empirical series. It should compare instead the empirical moments with
the theoretical ones that include the effect of filtering the data. Performing this
comparison, however, requires incorporating into the model trend and seasonality.

4.3 Spurious periodic cycle

4.3.1 Random-walk input.We consider the simplest case of a model with trend,
namely the random-walk model,∇xt = at ; for which, the cycle is estimated
through (2.12). Lettingω denote the frequency in radians, if ˜νc

HPX(ω) is the
Fourier transform ofνc

HPX(B, F ), the spectrum of the estimator of the cycle is
given by,

ĝc
HPX(ω) =

[
ν̃c

HPX(ω)
]2

gx(ω), (4.2)

wheregx(ω) is the pseudospectrum ofxt (see Harvey 1989); thereafter the term
spectrum will also be used to refer to a pseudospectrum. (To simplify notation,
all spectra will be implicitly expressed in units of 1/2π.) Figure 8 plots the
spectra of the series (dotted line) and of the cycle (continuous line). The latter
displays a peak for a frequency in the cyclical range associated with a period
of 31-32 quarters, or, approximately, 8 years. Yet, by its own definition, does it
make sense to see a random walk as generated by a trend and a 8-year cycle? Is
it not rather a case of “overreading” the data? The answer to this question is not
quite so obvious, as we proceed to discuss.

4.3.2 Spectral characteristics of the cycle.The cycle obtained with X11-HP filter-
ing displays a stochastic structure which depends on the ARIMA model followed
by the observed series, and on theλ-parameter of the HP filter. To look, first at
the effect of the model, we setλ = 1600. Figure 9 compares the cycles obtained
when the series follows the IMA(1,1) model∇xt = (1 +θB)at , with Va = 1, for
a range of values forθ. In all cases, the period associated with the spectral peak
of the cycle is approximately constant, and very close to 8 years. The amplitude
of the cycle varies, adapting to the width of the spectral peak forω = 0 in the
series model, which is determined by the parameterθ.

The relative constancy of the period with respect to the model parameter is
also shown in Table 6 for a MA(1) and an IMA(2,1) models. What the table seems
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to indicate is that, for a fixed value ofλ, the period of the cycle is determined
fundamentally by the order of integration of the series, rather than by the model
parameters. As the order of integration increases, so does the period of the cycle.

Table 6. Period of cycle (in years)

Theta 0 -0.3 -0.6
MA(1) 2 3 3.2
IMA(1,1) 7.9 7.9 7.9
IMA(2,1) 10.5 10.5 10.5
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When the HP filter is applied to an X11 SA series, a similar effect is seen to
occur. For the Airline model (3.6) we computed the period associated with the
spectral peak of the cycle for the range−0.9 < θ1 < 0.5 and−0.9 < θ4 < 0, and
in all cases the period was approximately equal to 10 years. For fixed parameter
λ, three conclusions emerge: (1) Given the type of ARIMA model for the series,
the associated cyclical period becomes roughly fixed. (2) The period seems to be
mostly determined by the order of integration at the zero frequency; the stationary
part of the model has little influence. (3) For most actual time series containing
a trend (d=1 or 2), the standard value ofλ = 1600 implies a period between 8
and 10 years.

Fixing now the model to that of a random walk, the dependence of the cycle
period onλ is shown in Fig. 10. The line represents the value ofλ associated with
the period of the spectral peak of the cycle when only the HP filter is applied.
It can be seen that the convolution of X11 has little effect on the period of the
cycle spectral maximum (in fact the two figures would be indistinguishable). The
relationship between this period andλ is highly nonlinear. Whenλ is small (and
the period of the cycle relatively short) small changes inλ have a very strong
impact on the period; for long cycles, very large values ofλ need to be used.

Fig. 10. Period of cycle as a function of lambda

The effect ofλ is illustrated in Fig. 11, which compares the spectra of the
cycles obtained withλ = 1600 andλ = 25000 for the same random walk se-
ries (the periods associated with the spectral peaks are about 8 and 15 years,
respectively). The figure shows that the longer period implies a stochastic cycle
more concentrated around its peak (i.e., a more stable cycle). The estimators of
the trend and cycle for the twoλ values are compared in Fig. 12 and Fig. 13,
respectively. The difference between the two trends is seen to consist of a cycle
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with a relatively long period. Comparison of the cycle shows that its short-term
profile remains basically unchanged, the main effect being a ”pulling away” from
the zero line, which allows for longer cycles.

As a consequence, the use of the X11-HP filter (or simply the HP filter)
to measure the cycle implies an a-priori choice: The analyst should first decide
the length of the period around which he wishes to measure economic activity.
Then, given d (the number of unit roots at the zero frequency in the series),
he can choose the appropiate value ofλ. For example, a business cycle analyst
involved in policy making may be interested in using 8 or 10-years cycles; an
economic historian looking at several centuries, may be interested in spreading
activity over longer periods. Viewed in this way, the HP cycle cannot be seen
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as spurious but as an arbitrary yet perhaps sensible way to look at the data. This
statement will be made more precise at the end of Section 6.

5 Improving the Hodrick-Prescott filter

In Section 3 we saw that the filter implies large revisions for the last 2 years.
The imprecision in the cycle estimator for the last quarters implies, in turn, a
poor performance in the detection of turning points. Further, direct inspection
of Figure 3 shows another limitation of the filter: the cyclical signal it provides
seems rather uninformative. Seasonal variation has been removed, but a large
amount of noise remains in the signal. Averaging over the 4 series, the number
of times the series crosses the zero line is 31 times, over a period of 26 years!
In the next two sections, we show how these two shortcomings can be reduced
with relatively simple modifications.

5.1 Reducing revisions

Estimation of the cycle for the end periods of the series by the HP filter implies a
truncation of the filter. In terms of the model based interpretation, this truncation
is equivalent to the assumption that model (2.5) is always the model that generates
forecasts to extend the series at both end points. The assumption will in general
be false, and proper optimal forecasts (obtained with the appropriate ARIMA
model for the series) can be used instead to improve the filter extension. This
idea is the same as the one behind X11 ARIMA (see Dagum 1980) and the HP
filter applied to the series extended with ARIMA forecasts will be referred as the
Hodrick-Prescott ARIMA (HPA) filter. The poor performance of the HP filter at
the end of the series has been often pointed out (see, for example, Apel et al



Estimation of the business cycle 193

1996; Baxter and King 1995) and application of the filter to series extended with
forecasts is often recommended in practice (see EU Commission 1995).

For any positive integerk, write the final estimator of the cycle as

ĉt = νc
HP(B, F )xt =

∞∑
j =0

νj +kxt+k−j +
∞∑
j =1

νj +kxt+k+j , (5.1)

and assume a series long enough so as to ignore starting values. Because the
preliminary estimator ˆct|t+k is a projection onto a subset of the set onto which ˆct

is projected, it follows that ˆct|t+k = Et+k(ct ) = Et+k(ĉt ), or

ĉt|t+k =
∞∑
j =0

νj +kxt+k−j +
∞∑
j =1

νj +kEt+k(xt+k+j ), (5.2)

which expresses the preliminary estimator as a function of the series extended
with forecasts. Substracting (5.2) from (5.1), the revision in ˆct|t+k is equal to

rt|t+k =
∞∑
j =1

νj +ket+k(j ),

where et+k(j ) denotes the forecasts error associated with forecasting j periods
ahead the variable at timet + k. It follows that, reducing these forecasts errors,
revisions should decrease (and early detection of turning points should improve).

We performed a simulation exercise. First, we consider the IMA(1,1) model
for different values of theθ-parameter. Then, we consider the ARIMA (2,1,1)
model, where the AR(2) polynomial is given by (1− 0.16B + 0.35B2). This
polynomial is the one found in Jenkins(1975) for the mink-muskrat Canadian
data, and contains a cycle of period 4.4. The AR(2) structure will therefore
produce an increase in the number of turning points. (In order to avoid effects
due to the SA filter, no seasonality was entered into the models.) Again, different
values of theθ-parameter were considered. A total of 14.000 series of length 100
each were simulated, and for each series the HP filter was compared to the HPA
one extended with 16 ARIMA forecasts and backcasts. Table 7 compares the
variances of the revision in the concurrent estimator and in the estimator revised
after 1, 2, 3 and 4 more years of data are added. It is seen that, in all 70 cases,
the HPA filter reduces considerably revisions. This is particularly noticeable for
the ARIMA(2,1,1) model, where the use of the standard HP filter may more than
triplicate the revision variance.

As for the detection of turning points, we use the following simple criterion
(along the lines of method B in Boldin 1994): a turning point is the first of at
least two successive periods of negative/positive growth. Table 8 compares the
performance of the HP and HPA filters in the first and last 8 observations of the
simulated series, both in terms of the mean number of turning points that are
dated on the original series and missed by the filtered one, and in terms of the
mean number of turning points detected on the filtered series but not present in
the original one (”peaks” and ”throughs” are considered separately). Of the 56
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Table 7. Variance of the revision in estimator. Values are multiplied by 100

Concurrent 1 year rev. 2 year rev. 3 year rev. 4 year rev.
Model HPA HP HPA HP HPA HP HPA HP HPA HP

IMA(1,1)
θ = −0.8 0.31 0.41 0.08 0.10 0.02 0.03 0.01 0.01 0.00 0.01
θ = −0.5 0.94 1.34 0.24 0.33 0.07 0.11 0.03 0.06 0.02 0.04
θ = −0.3 1.58 2.54 0.39 0.63 0.11 0.19 0.06 0.12 0.04 0.08

θ = 0 2.86 4.84 0.71 1.18 0.21 0.39 0.12 0.24 0.08 0.15
θ = 0.3 4.51 8.29 1.11 2.03 0.32 0.64 0.19 0.38 0.13 0.24
θ = 0.5 5.44 11.02 1.40 2.62 0.44 0.86 0.26 0.50 0.17 0.32
θ = 0.8 7.33 14.89 1.87 3.70 0.60 1.17 0.34 0.70 0.22 0.46

ARIMA(2,1,1)
θ = −0.8 0.12 0.55 0.05 0.14 0.01 0.03 0.00 0.01 0.00 0.01
θ = −0.5 0.41 1.27 0.15 0.33 0.04 0.09 0.01 0.04 0.00 0.03
θ = −0.3 0.74 2.23 0.25 0.56 0.06 0.15 0.02 0.08 0.01 0.05

θ = 0 1.35 4.26 0.44 1.09 0.12 0.29 0.03 0.15 0.02 0.10
θ = 0.3 2.06 7.00 0.71 1.77 0.18 0.46 0.05 0.25 0.03 0.18
θ = 0.5 2.75 9.68 0.95 2.44 0.23 0.64 0.06 0.33 0.03 0.22
θ = 0.8 3.70 12.95 1.20 3.25 0.31 0.88 0.09 0.47 0.05 0.33

Table 8. Mean number of turning points (First and last 8 observations)

Original Missed False Alarms
Peaks Throughs Peaks Throughs Peaks Throughs

IMA(1,1) HPA HP HPA HP HPA HP HPA HP
θ = −0.8 1.49 1.50 0.10 0.16 0.10 0.15 0.18 0.19 0.19 0.20
θ = −0.5 1.51 1.52 0.18 0.22 0.19 0.23 0.29 0.31 0.26 0.28
θ = −0.3 1.52 1.52 0.22 0.28 0.24 0.30 0.36 0.37 0.38 0.39

θ = 0 1.62 1.59 0.23 0.32 0.25 0.37 0.49 0.51 0.47 0.49
θ = 0.3 1.69 1.72 0.29 0.40 0.29 0.41 0.49 0.59 0.55 0.63
θ = 0.5 1.77 1.79 0.32 0.46 0.29 0.41 0.54 0.68 0.51 0.63
θ = 0.8 1.83 1.86 0.30 0.43 0.34 0.48 0.52 0.65 0.54 0.69

ARIMA(2,1,1)
θ = −0.8 1.78 1.79 0.05 0.13 0.05 0.13 0.21 0.18 0.19 0.18
θ = −0.5 1.78 1.77 0.09 0.19 0.11 0.19 0.25 0.24 0.26 0.26
θ = −0.3 1.84 1.77 0.12 0.23 0.10 0.20 0.25 0.31 0.25 0.30

θ = 0 1.87 1.84 0.13 0.25 0.16 0.27 0.27 0.38 0.26 0.36
θ = 0.3 1.93 1.89 0.17 0.27 0.20 0.31 0.25 0.40 0.25 0.41
θ = 0.5 1.94 1.96 0.18 0.31 0.17 0.32 0.24 0.40 0.25 0.42
θ = 0.8 2.02 1.95 0.18 0.32 0.16 0.31 0.22 0.38 0.24 0.41

comparisons, in 53 cases the gain from using the HPA filter is substantial. Table 9
compares the performance of the two filters when all observations in each series
are considered, in terms of correctly detected turning points and spurious turning
points (indicated by the filtered series and not present in the original one).F0 is
the relative frequency of cases in which the two filters coincide,F1 denotes the
relative frequency of cases in which HPA performs better, whileF−1 denotes the
relative frequency of cases in which HP performs better. The HPA filter performs
(in all 56 cases) consistently better.

In summary, the results of the simulation exercise show that applying the HP
filter to the series extended at both ends with appropriate ARIMA forecasts and
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Table 9. Relative performance of HP vs HPA: captured and spurious turning points

Capt. peaks Capt. Throughs False peaks False Throughs
Model F1 F0 F−1 F1 F0 F−1 F1 F0 F−1 F1 F0 F−1

IMA(1,1)
θ = −0.8 0.07 0.92 0.01 0.07 0.93 0.00 0.06 0.91 0.03 0.05 0.91 0.04
θ = −0.5 0.07 0.91 0.02 0.07 0.89 0.04 0.09 0.85 0.06 0.10 0.84 0.06
θ = −0.3 0.11 0.84 0.05 0.10 0.86 0.04 0.12 0.81 0.07 0.13 0.78 0.09

θ = 0 0.14 0.80 0.06 0.16 0.80 0.04 0.15 0.74 0.11 0.15 0.74 0.11
θ = 0.3 0.17 0.78 0.05 0.17 0.78 0.05 0.22 0.68 0.09 0.20 0.70 0.10
θ = 0.5 0.18 0.76 0.06 0.19 0.74 0.07 0.23 0.68 0.09 0.20 0.70 0.10
θ = 0.8 0.18 0.76 0.06 0.20 0.75 0.05 0.25 0.64 0.11 0.24 0.65 0.11

ARIMA(2,1,1)
θ = −0.8 0.11 0.88 0.01 0.11 0.88 0.01 0.07 0.86 0.07 0.06 0.84 0.10
θ = −0.5 0.14 0.84 0.02 0.13 0.84 0.03 0.10 0.80 0.10 0.10 0.81 0.09
θ = −0.3 0.17 0.79 0.04 0.16 0.80 0.04 0.15 0.77 0.08 0.14 0.78 0.08

θ = 0 0.18 0.77 0.04 0.18 0.77 0.05 0.19 0.74 0.07 0.19 0.75 0.06
θ = 0.3 0.18 0.77 0.05 0.20 0.73 0.07 0.28 0.66 0.06 0.25 0.67 0.08
θ = 0.5 0.21 0.73 0.06 0.23 0.71 0.06 0.23 0.70 0.07 0.23 0.70 0.07
θ = 0.8 0.21 0.74 0.05 0.22 0.73 0.05 0.28 0.66 0.06 0.25 0.69 0.06

backcasts is likely to provide a cycle estimator for recent periods that requires
smaller revisions and improves detection of turning points.

5.2 Improving the cyclical signal

Concerning erraticity of the cycle estimator, illustrated in Figure 3, one possible
improvement could come from using a more appropiate SA procedure. Since
the width of the spectral peaks associated with seasonal frequencies vary across
series, fixed filters such as X11 may over or underestimate seasonality. Hav-
ing obtained an ARIMA model for the series, one could use, instead of X11, an
ARIMA-model-based (AMB) type of adjustment, following the approach of Bur-
man (1980) and Hillmer and Tiao (1982). We use the program SEATS (Gómez
and Maravall, 1996) to seasonally adjust the 4 series of the example in Section
3. Figure 14 compares the cycles obtained by applying the HP filter to the AMB
and X11 SA series, and Fig. 15 exhibits the spectra of the two cycles for the 4
series. It is seen that the estimates of the cycle obtained with the two SA series
are close: Turning points are basically unchanged and the cyclical signal remains
very noisy. (Figure 15 illustrates the overestimation of seasonality implied by
the X11 filter for the case of the CC series: The ”holes” that X11 induces for the
seasonal frequencies are obviously too wide. The AMB method, instead, adjusts
the width of the hole to the width of the peak.)

Given that the SA series produces a cyclical signal with too much noise it
would seem that this signal could be improved by removing the noise from the
SA series,nt . Thus we decomposent as in

nt = pt + ut , (5.3)

where for the case of the Airline model, the trend-cyclept follows an IMA (2,2)
model, say,
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∇2pt = θp(B)apt, Var(apt) = Vp, (5.4)

where apt is white-noise and the polynomialθp(B) can be factorized as (1−
αB)(1 + B), with the second root reflecting a spectral zero for the frequency
π, andα not far from 1. The irregularut , and the component innovationsast,
andapt are mutually orthogonal white noises. Ifθ(B) = (1 +θ1B)(1 + θ4B4), the
MMSE estimator ofpt is given by,

p̂t =

[
kp

θp(B)S
θ(B)

θp(F )S̄
θ(F )

]
xt , (5.5)

whith kp = Vp/Va. From (5.3), the trend-cycle componentpt is seen to be the
noise-free SA series. Using the HP filter on the trend-cycle estimator ˆpt , the
estimated cycles are displayed in Fig. 16 (continuous line). The use of the trend-
cycle instead of the SA series drastically improves the cyclical signal, which
becomes much cleaner. Figure 17 compares the spectra of the cycles obtained
with the two series (pt and nt ). The difference is due to the fact that the cycle
based onpt has removed variance associated with frequencies of no cyclical
interest and, as shown in Fig. 18, the spectrum of the difference is close to that
of white noise. So to speak, the band-pass features of the cycle are much better
defined. This improvement of the cyclical signal allows for a clearer comparison
of cycles among series, as is evidenced by comparing Figs. 19 and 20. (Figure 16
showed that for the series AP the cyclical component has become very small and
hence it is not included.) Figure 20 shows that the series CC, IPI, and CR have
fairly similar cyclical patterns, moving roughly in phase.

One further advantage of using the more stable signalpt is that it produces a
decrease in the size of the revisions in the cyclical estimate for the last periods,
as shown in Fig. 21. Although the full revision process takes close to 10 years, in
practice after two years most of the revision has been completed. Finally, Fig. 22
displays the 95% confidence interval for the cycle estimator for the full period,
based on the associated revisions when the trend-cycle component is used as
input. In our view, if cyclical analysis of the 4 series had to be summarized in
one figure, Fig. 22 would be the appropiate choice.

6 Final remarks

We have seen how two serious drawbacks of the standard application of HP-X11
filtering to estimate cycles, namely the poor behavior of the estimator at the
end of the series and the excessive noise in the cyclical signal, can be signif-
icantly reduced with two modifications that are straightforward to incorporate.
The ”modified HP filter” consists of appliying the HPA filter to the trend-cycle
component of the series, which requires extending the trend-cycle with optimal
backcasts and forecasts. One simple way to implement the procedure is to run
first TRAMO-SEATS in an automatic manner (this also yields forecasts of the
trend-cycle); then, to apply the HP filter to the extended trend-cycle series. The
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Fig. 16. HP cycle based on SEATS trend and on X11 SA series

two steps can be done as a single one in the following manner. Let the model
identified for the series be

∇∇4xt = θ(B)at , (6.1)

whereθ(B) is invertible. Convoluting the HP filter (2.10) with the filter (5.5) for
the trend-cycle component yields the estimator of the cycle as a linear filter of
the observations,

ĉt =

[
k

θp(B)∇∇4

θHP(B)θ(B)
θp(F )∇̄∇̄4

θHP(F )θ(F )

]
xt , (6.2)

wherek = Vpkc(HP). (In the discussion, we use the expresion for the final esti-
mator. For preliminary estimators it is assumed that the series has been extended
with the appropriate ARIMA forecasts.) Direct inspection shows that the filter in
(6.2) is the autocovariance function (ACVF) of the stationary model

θHP(B)θ(B)zt = θp(B)∇∇4bt , (6.3)

with Var(bt ) = k. It is well-known (see, for example, Maravall 1987) that if an
ARIMA model is decomposed into signal plus white noise, the filter that yields
the MMSE estimator of the noise is given by the ACVF of the inverse model
(multiplied by the variance of the noise). The inverse model is the one that results
from interchanging the AR and MA parts, that is, the expression in brackets in
(6.2) is the ACVF of the inverse model of

θp(B)∇∇4xt = θ(B)θHP(B)dt . (6.4)
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Fig. 17. Spectrum of cycle (SEATS trend and X11 SA series)
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Fig. 19. HP cycles based on X11 SA series

CC cycle 
IPI cycle
CR cycle 

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

periods

Fig. 20. HP cycles based on SEATS trend

It follows that ĉt , given by (6.2), is the estimator of the noise in the decompo-
sition of (6.4) into signal plus white-noise when the variance of the latter isk.
This model-based interpretation of the modified HP filter provides a convenient
algorithm (ACVF of ARIMA models are easy to compute; see the appendix in
Box et al. 1978), but does not provide a sensible interpretation since, to start
with, the cycle is not white noise. A full model-based interpretation of the com-
plete decomposition into trend, cycle, seasonal, and irregular components, where
the last two are the same as in the standard AMB decomposition, the trend and
the cycle aggregate into the trend-cycle component of the AMB decomposition,
the cycle is the modified HP filter advocated in this paper, and the components
aggregate into the model specified for the series, is presented in Kaiser and Mar-
avall (1999). Basically, meaningful model-based interpretations of the filter can
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Fig. 21. Standard deviation of revision from concurrent to final estimation
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Fig. 23. Spectra of the series and of the cycle
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Fig. 24. Spectra of the difference (original series minus cycle)
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be found by noticing that (6.2) is also the MMSE estimator of a cycle that follows
the model

θHP(B)ct = θp(B)act, (6.5)

when the ARIMA model for the series is (6.1) andVar(act)/Var(at ) = k. Fig-
ure 23 displays the spectrum of the seriesxt and of the cyclect . Figure 24 shows
what is left of the series once the cycle is removed. In all 4 cases it consists of a
stable trend, seasonal effects, and noise. This brings us back to the spuriousness
issue. Assuming the ARIMA model identified for the series is acceptable, so will
be the decomposition of Figs. 23 and 24, which aggregate into the series spec-
trum. One may prefer other components, but there would be nothing spurious
about the results.

Appendix

Wiener-Kolmogorov version of the Hodrick-Prescott filter

We present an algorithm to compute the HP trend with the Wiener Kolmogorov
filter applied to the finite series [x1, . . . , xT ] using an approach similar to the one
in Burman (1980). The algorithm is explained in Kaiser and Maravall (1999).

I. Prior computations

a) Givenλ (the HP-filter parameter), from (2.6) the system of equations

(1 + θ2
1 + θ2

2)Vb = 1 + 6λ

θ1(1 + θ2)Vb = −4λ

θ2Vb = λ

yields the parametersθ1, θ2 andVb. [They can also be easily obtained from the
spectral factorization of (2.6).] Forλ = 1600, the solution is given by (2.7).
Removing the subscript ”HP”, the WK filter to estimatemt , given by (2.8), can
be expressed as

ν(B, F ) =
km

θ(B)θ(F )
= km

[
G(B)
θ(B)

+
G(F )
θ(F )

]
, (A.1)

whereG(B) = g0 + g1B + g2B2. Removing denominators in the above identity
and equating the coefficients of the terms inB0, B1 and B2, yields a system of
equations that can be solved forg0, g1 andg2. If

A =


 1 0 0

θ1 1 0
θ2 θ1 1


 +


 0 0 θ2

0 θ2 θ1

θ2 θ1 1


 ,

the solution is given by
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[g2 g1 g0]′ = A−1[0 0 1]′. (A.2)

(For λ = 1600, one obtainsg0 = −44.954, g1 = 11.141, and g2 = 56.235.)
Compute the matrix

H =




1 −2 1 0
0 1 −2 1
1 θ1 θ2 0
0 1 θ1 θ2




−1

.

Thus the expressionsθ(B), km, G(B) andH are obtained simply from the value
of λ. They can be stored for further use, since they will be the same for all series.
b) Using an ARIMA model for the seriesxt , extend the series with 4 backcasts
and 4 forecasts. The extended series is given by

[x−3, . . . , x0, x1, . . . , xT , xT+1, . . . , xT+4].

When the ARIMA model is correctly specified, the HPA filter is obtained; when
model (2.5) and (2.7) are used, the filter becomes the standard HP filter.

II. The Algorithm

Step I. For t = 1, . . . , T + 2, compute

yt = g0xt + g1xt+1 + g2xt+2,

[xF
T+1, . . . , xF

T+4]′ = H [0, 0, yT+1, yT+2]′,
and, fort = T, . . . , 1, obtain recursively

xF
t = −θ1xF

t+1 − θ2xF
t+2 + yt .

Step II. For t = −1, 0, 1, . . . , T + 4 compute

zt = g0xt + g1xt−1 + g2xt−2,

[xB
0 , xB

−1, xB
−2, xB

−3]′ = H [0, 0, z0, z−1]′,
and, fort = 1, . . . , T + 4, obtain recursively

xB
t = −θ1xB

t−1 − θ2xB
t−2 + zt .

Step III. For t = 1, . . . , T + 4, obtain

m̂t|T = km[xF
t + xB

t ].

This yields the MMSE estimator of the trend for the sample periodt =
1, . . . , T, and the forecasting periodt = T + 1, . . . , T + 4, equal toE(mt |
x1, . . . , xT ). The algorithm is fast and reliable, even for a series with (say) a
million observations. It is remarkable that 4 forecasts and backcasts are enough
to reproduce the full effect of the infinite filter.
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19. Gómez, V., Maravall, A. (1996) Programs TRAMO and SEATS; Instructions for the User.
Working paper 9628, Servicio de Estudios, Banco de España

20. Ghysels, E., Perron, P. (1993) The Effect of Seasonal Adjustment Filters on Tests for a Unit
Root. Journal of Econometrics55: 57–98

21. Hamilton, J.D. (1989) A New Approach to the Economic Analysis of Nonstatinary Time Series
and the Business Cycle.Econometrica57: 357–84

22. Harvey, A.C. (1989)Forecasting Structural Time Series and the Kalman Filter.Cambridge Uni-
versity Press, Cambridge

23. Harvey, A.C., Todd, P.H.J. (1983) Forecasting Economic Time Series with Structural and Box-
Jenkins Models; A Case Study.Journal of Business and Economic Statistics1: 299–306

24. Harvey, A.C., Jaeger, A. (1993) Detrending, Stylized Facts and the Business Cycle.Journal of
Applied Econometrics8, 231–247

25. Hillmer, S.C., Tiao, G.C. (1983) An ARIMA-Model Based Approach to Seasonal Adjustment.
Journal of the American Statistical Association77: 63–70

26. Jenkins, G.M. (1975) The Interaction between the Muskrat and the Mink Cycles in North Canada.
Proceedings of the 8th International Biometric Conference, Editura Acadamiei Republicii So-



206 R. Kaiser, A. Maravall

cialiste Romania, pp. 55–71
27. Kaiser, R., Maravall, A. (1999) Short-Term and Long-Term Trends, Seasonal Adjustment, and

the Business Cycle. Working Paper 99-10(2). Statistics and Econometrics Series, Universidad
Carlos III de Madrid

28. King, R.G., Rebelo, S.T. (1993) Low Frequency Filtering and Real Business Cycles.Journal of
Economics Dynamics and Control17: 207–233

29. Koopman, S.J., Harvey, A.C., Doornik, J.A., Shephard, N. (1996)Stamp: Structural Time Series
Analyser, Modeller and PredictorChapman and Hall, London

30. Maravall, A. (1995) Unobserved Components in Economic Time Series. In: Pesaran, H., Wick-
ens, M. (eds.)The Handbook of Applied Econometrics, vol. 1. Basil Blackwell, Oxford

31. Maravall, A. (1987) On Minimum Mean Squared Error Estimation of the Noise in Unobserved
Component Models,Journal of Business and Economic Statistics5: 115–120

32. Prescott, E. (1986) Theory ahead of Business Cycle Measurement.Carnegie-Rochester Confer-
ence Series on Public Policy25: 11–66


