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1 Introduction

Although vector autoregressive moving-average (VARMA) models have theoretical advantages

compared to simpler vector autoregressive (VAR) models, VARMA models are rarely used in

applied macroeconomic work. The likely reasons are estimation problems and, in particular,

the complexity of the identification stage. This paper investigates the relative performance of

several simple estimation methods for VARMA models that have not been compared system-

atically by means of a Monte Carlo study. The methods are also compared with maximum

likelihood estimation and pure vector autoregressive modeling using ordinary least squares.

The evaluation criteria are the accuracy of the parameter estimates, the accuracy of point

forecasts as well as the precision of the estimated impulse responses. I focus on sample lengths

and processes that could be considered typical for macroeconomic applications.

The problem of estimating VARMA models received considerable attention for several

reasons. Linear models such as VARs or univariate autoregressive moving-average (ARMA)

models have proved to be simple and analytically tractable, while capable of reproducing

complex dynamics. Linear forecasts often appear to be more robust than nonlinear alterna-

tives and their empirical usefulness has been documented in various studies (e.g. Newbold &

Granger 1974). A more recent example is the integrated moving-average model for US infla-

tion of Stock & Watson (2007). Therefore, VARMA models are of interest as generalizations

of successful univariate ARMA models.

In the class of multivariate linear models, pure VARs dominate in macroeconomic applica-

tions. However, VAR models may require a rather large lag length in order to describe a series

“adequately”. This means a loss of precision because many parameters have to be estimated.

The problem could be avoided by using VARMA models that may provide a more parsimo-

nious description of the data generating process (DGP). In contrast to the class of VARMA

models, the class of VAR models is not closed under linear transformations. For example, a

subset of variables generated by a VAR process is typically generated by a VARMA, not by a

VAR process (Lütkepohl 1984a,b). The VARMA class includes many models of interest such

as unobserved component models. It is well known that linearized dynamic stochastic general
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equilibrium (DSGE) models imply that the variables of interest are generated by a finite-order

VARMA process. Fernández-Villaverde, Rubio-Ramı́rez, Sargent & Watson (2007) show for-

mally how DSGE models and VARMA processes are linked. Also Cooley & Dwyer (1998)

claim that modeling macroeconomic time series systematically as pure VARs is not justified

by the underlying economic theory. The recent debate between Chari, Kehoe & McGrattan

(2008) and Christiano, Eichenbaum & Vigfusson (2006) on the ability of structural VARs to

uncover fundamental shocks also questions implicitly the ability of pure VARs to capture the

dynamics of an economic system.

However, there are also some complications that make VARMA modeling more difficult.

First, VARMA representations are not unique. That is, there are typically many parame-

terizations that can describe the same DGP (see Lütkepohl 2005). Therefore, a researcher

has to choose first an identified representation. In any case, an identified VARMA repre-

sentation has to be specified by more integer-valued parameters than a VAR representation

that is determined just by one integer parameter, the lag length. This aspect introduces ad-

ditional uncertainty at the specification stage of the modeling process, although procedures

for VARMA models do exist which could be used in a completely automatic way (Hannan

& Kavalieris 1984b, Poskitt 1992). An identified representation, however, is needed for con-

sistent estimation. Apart from a more involved specification stage, the estimation stage is

also affected by the identification problem because one usually has to examine many different

models which turn out not to be identified ex-post.

The literature on the estimation of VARMA models traditionally focussed on maximum

likelihood methods which are asymptotically efficient (e.g. Hillmer & Tiao 1979, Mauricio

1995, Metaxoglou & Smith 2007). However, several simpler estimation methods have also

been proposed as computationally less intense and more robust alternatives to maximum

likelihood (see e.g. Durbin 1960, Hannan & Rissanen 1982, Hannan & Kavalieris 1984b,

Koreisha & Pukkila 1990, Kapetanios 2003, Dufour & Pelletier 2008). In addition, they

can serve to initialize maximum likelihood procedures and they can be used in a foregoing

specification search.1 However, it is not clear which of these methods is preferable under
1Recently, subspace algorithms for state space systems, an equivalent representation of a VARMA process,

have become popular also among econometricians. Examples are the algorithms of Van Overschee & DeMoor
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which circumstances. The available comparisons in the literature are relatively limited. The

above cited papers include comparisons of some of the simple estimation algorithms but either

consider only a limited number of algorithms or only one or two VARMA DGPs. Kapetanios

(2003) considers a wide range of algorithms and DGPs but only considers one low-dimensional

and relatively well behaved VARMA process.

In contrast, this study focusses on simple algorithms and compares them using many dif-

ferent DGPs. The eigenvalues of both the autoregressive and the moving-average polynomial

of a given VARMA process are varied in order to investigate the algorithms’ performance

in favorable and difficult cases. This is important as the algorithms have to work well in

a variety of situations because the underlying DGP is unknown in applications. Also, in-

stead of focussing only on the accuracy of the parameter estimates, I consider the use of the

estimated VARMA models. After all, a researcher might be rather interested in the accu-

racy of the generated forecasts or the precision of the estimated impulse response function

than in the actual parameter estimates. To the best of my knowledge, this is the only study

on VARMA estimation that shares these features. I conduct Monte Carlo simulations for

four different DGPs with varying parameterizations. I consider the case when the orders of

the true process are known and I focus on stationary processes. Four different simple algo-

rithms are used and compared among each other and with two benchmark VARs. They are

benchmarked against a full information maximum likelihood procedure starting from the true

parameter values. The algorithms are the Hannan-Rissanen procedure (Durbin 1960, Hannan

& Rissanen 1982), the iterative least squares procedure of Kapetanios (2003), the generalized

least squares procedure of Koreisha & Pukkila (1990) and the Hannan-Kavalieris algorithm

(Hannan & Kavalieris 1984b). The obtained results suggest that the algorithm of Hannan &

Kavalieris (1984b) is generally preferable to the other algorithms and the benchmark VARs.

However, the procedure is technically not very reliable in that the algorithm very often yields

estimated models which are not stable or produces too many outliers for specific DGPs and

parameterizations. Therefore, the algorithm would have to be improved in order to make it

an alternative tool for applied researchers.

(1994) or Larimore (1983). See also the survey of Bauer (2005). A comparison with these estimators is however
beyond the scope of the paper.

4



The rest of the paper is organized as follows. In section 2 stationary VARMA processes

are introduced and the Echelon parameterization is presented. In section 3 the different

estimation algorithms are described. The setup and the results of the Monte Carlo study are

presented in section 4. Section 5 concludes. All programs are written in GAUSS and can be

obtained from the homepage of the author.

2 Stationary VARMA Processes

I consider linear, time-invariant, covariance - stationary processes (yt)t∈Z of dimension K that

allow for a VARMA(p, q) representation of the form

A0yt = A1yt−1 + . . .+Apyt−p +M0ut +M1ut−1 + . . .+Mqut−q (1)

for t ∈ Z, p, q ∈ N0. The matrices A0, A1, . . . , Ap and M0,M1, . . . ,Mq are of dimension

(K ×K). The term ut represents a white noise sequence of random variables with mean zero

and nonsingular covariance matrix Σ. In principle, equation (1) should contain an intercept

term and other deterministic terms in order to account for random series with non-zero mean

and/or seasonal patterns. This has not been done here in order to simplify the exposition

of the basic properties of VARMA models and the related estimation algorithms. For most

of the algorithms discussed later, it is assumed that the mean has been subtracted prior

to estimation. We consider models of the form (1) such that A0 = M0 and A0, M0 are

nonsingular. This does not imply a loss of generality as long as no variable can be written

as a linear combination of the other variables (Lütkepohl 2005). It can be shown that any

stationary and invertible VARMA process can then be expressed in the above form.

Let L denote the lag-operator, i.e. Lyt = yt−1 for all t ∈ Z, A(L) = A0−A1L− . . .−ApLp

and M(L) = M0 +M1L+ . . .+MqL
q. We can write (1) more compactly as

A(L)yt = M(L)ut, t ∈ Z. (2)

VARMA processes are stationary and invertible if the roots of these polynomials are all outside
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the unit circle. That is, if

|A(z)| 6= 0, |M(z)| 6= 0 for z ∈ C, |z| ≤ 1

is true, where | · | denotes the determinant of a matrix. These restrictions are important

for the estimation and for the interpretation of VARMA models. The first condition ensures

that the process is covariance-stationary and has an infinite moving-average or canonical

moving-average representation

yt =
∞∑

i=0

Φiut−i = Φ(L)ut, (3)

where Φ(L) = A(L)−1M(L). If A0 = M0 is assumed, then Φ0 = IK where IK denotes an

identity matrix of dimension (K ×K). The second condition ensures the invertibility of the

process, in particular the existence of an infinite autoregressive representation

yt =
∞∑

i=1

Πiyt−i + ut, (4)

where A0 = M0 is assumed and Π(L) = IK−
∑∞

i=1 ΠiL
i = M(L)−1A(L). This representation

indicates, why a pure VAR with a large lag length might well approximate mixed VARMA

processes.

It is well known that the representation in (1) is generally not identified unless special

restrictions are imposed on the coefficient matrices (Lütkepohl 2005). Precisely, all pairs of

polynomial matrices (A(L),M(L)) which lead to the same canonical moving-average opera-

tor Φ(L) = A(L)−1M(L) are equivalent. However, uniqueness of the pair (A(L),M(L)) is

required for consistent estimation. The Echelon representation is based on the Kronecker

index theory introduced by Akaike (1974). A VARMA representation for a K-dimensional

series yt is completely described by K Kronecker indices or row degrees, (p1, . . . , pK). Denote

the elements of A(L) and M(L) as A(L) = [αki(L)]ki and M(L) = [mki(L)]ki. The Echelon
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form imposes zero-restrictions according to

αkk(L) = 1−
pk∑

j=1

αkk,jL
j ,

αki(L) = −
pk∑

j=pk−pki+1

αki,jL
j , for k 6= j,

mki(L) =
pk∑

j=0

mki,jL
j with M0 = A0 ,

for k, i = 1, . . . ,K. The numbers pki are given by

pki =





min{pk + 1, pi}, if k ≥ i
min{pk, pi}, if k < i

k, i = 1, . . . ,K,

and denote the number of free parameters in the polynomials, αki(L), k 6= i. It can be shown

that this representation leads to identified parameters (see e.g. Hannan & Deistler 1988). In

this setting, a measure of the overall complexity of the multiple series can be given by the

McMillian degree
∑k

j=1 pj which is also the dimension of the corresponding state vector in a

state space representation. Note that equal Kronecker indices, i.e. p1 = p2 = . . . = pK , lead

to a standard, unrestricted VARMA representation.

3 Description of Estimation Methods

In the following, a description of the examined algorithms is given. Throughout, it is assumed

that the data has been mean-adjusted prior to estimation. I do not distinguish between raw

data and mean-adjusted data for notational ease. Most of the algorithms are discussed based

on the general representation (1) and it is assumed that restrictions are imposed on the

parameter vector of the VARMA model according to the Echelon form. The observed sample

is y1, y2, . . . , yT . The vector of total parameters is denoted by β (K2(p+q)×1) and the vector

of free parameters by γ (nγ × 1). Let A := [A1, . . . , Ap] and M := [M1, . . . ,Mq] be matrices
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collecting the autoregressive and moving-average coefficient matrices, respectively. Define

β := vec[IK −A0,A,M],

where vec denotes the operator that transforms a matrix to a column vector by stacking the

columns of the matrix below each other. This particular order of the free parameters allows to

formulate many of the following estimation methods as standard linear regression problems.

To consider zero and equality restrictions on the parameters, define a ((K2(p+q))×nγ) matrix

R such that β = Rγ. This notation is equivalent to the explicit formulation of restrictions on

β such as Cβ = c for suitable matrices C and c.

Hannan-Rissanen Method (HR): This is the simplest method. The procedure is easy to

implement and is sometimes called the Hannan-Rissanen method or Durbin’s method (Durbin

1960, Hannan & Rissanen 1982) because it corresponds to the second stage of the method

proposed in Hannan & Rissanen (1982) for univariate models. See Hannan & Kavalieris

(1984b) for the extension to the multivariate case. Recently, the estimator’s asymptotic

distribution in the vector case have been derived by Dufour & Jouini (2005) under quite

general conditions. The idea is to use the infinite VAR representation in (4) in order to

estimate the residuals ut in a first step. In finite samples, a good approximation is a finite-

order VAR, provided that the process is of low order and the roots of the moving-average

polynomial are not too close to unity in modulus. The first step of the algorithm consists of

a preliminary long autoregression of the type

yt =
nT∑

i=1

Πiyt−i + ut, (5)

where nT is the lag length that is required to increase with the sample size, T . In the second

stage, the residuals from (5), û(0)
t , t = nT + 1, . . . , T , are plugged in (1). After rearranging
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(1), one gets

yt = (IK −A0)[yt − û(0)
t ] +A1yt−1 + . . .+Apyt−p

+M1û
(0)
t−1 + . . .+Mqû

(0)
t−q + ut, (6)

where A0 = M0 has been used. Write the above equation compactly as

yt = [IK −A0,A,M]Y (0)
t−1 + ut,

where Y (0)
t−1 := [(yt − û(0)

t )′, y′t−1, . . . , y
′
t−p, (û

(0)
t−1)′, . . . , (û(0)

t−q)
′]′. Collecting all observations we

get

Y = [IK −A0,A,M]X(0) + U, (7)

where Y := [ynT+m+1, . . . , yT ], U := [unT+m+1, . . . , uT ] is the matrix of regression errors,

X(0) := [Y (0)
nT+m , . . . , Y

(0)
T−1] and m := max{p, q}. Thus, the regression is started at nT +m+1.

One could also start simply at m + 1, setting the initial errors to zero but we have decided

not to do so. Vectorizing equation (7) yields

vec(Y ) = (X(0)′ ⊗ IK)Rγ + vec(U),

and the HR estimator is defined as

γ̃ = [R′(X(0)X(0)′ ⊗ (Σ̂(0))−1)R]−1R′(X(0) ⊗ (Σ̂(0))−1)vec(Y ), (8)

because E[vec(U)vec(U)′] = IT ⊗ Σ and Σ̂(0) = 1/T
∑
û

(0)
t (û(0)

t )′ is the estimated covariance

matrix of the residuals. The corresponding estimated matrices are denoted by Ã0, Ã1, . . . , Ãp

and M̃1, M̃2 . . . , M̃q, respectively.

In their framework, Dufour & Jouini (2005) derive consistency of the parameter estimators

for nT increasing at a rate below T 1/2, i.e. nT →∞ nT /T
1/2 → 0 as T →∞, and asymptotic

normality for a rate below T 1/4. For univariate and multivariate models, different selection
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rules for the lag length of the initial autoregression have been proposed. For example, Hannan

& Kavalieris (1984a) propose to select nT by AIC or BIC, while Koreisha & Pukkila (1990)

propose choosing nT =
√
T or nT = 0.5

√
T . In general, choosing a higher value for nT

increases the risk of obtaining non-invertible or non-stationary estimated models (Koreisha

& Pukkila 1990). Throughout, we employ nT = 0.5
√
T .

Three technical details are worth mentioning at this point. First, it can happen that the

estimated autoregressive model (5) is not stationary. In this case, a Yule-Walker estimator

is employed (see e.g. Lütkepohl 2005, 3.3). Second, the estimated VARMA model might not

be invertible. We use a procedure proposed by Lippi & Reichlin (1994) in a different context

in order to obtain the corresponding invertible representation. A detailed account is given in

the appendix. Third, the estimated VARMA model might not be stable. In this case,different

lag orders nT in (5) are tried to obtain a stationary and invertible estimated VARMA model.

Hannan-Kavalieris-Procedure (HK): This method adds a third stage to the procedure

just described. It goes originally back to Hannan & Kavalieris (1984b) for multivariate pro-

cesses. See also Hannan & Deistler (1988, 6.5-6.7) for an extensive discussion. In contrast

to HR, the resulting estimator is asymptotically efficient for Gaussian innovations. It is a

Gauss-Newton procedure to maximize the likelihood function conditional on yt = 0, ut = 0

for t ≤ 0 but its first iteration has sometimes been interpreted as a three-stage least squares

procedure (Dufour & Pelletier (2008)). The method is computationally very easy to imple-

ment because of its recursive nature. Corresponding to the estimates of the HR algorithm,

new residuals, εt (K × 1), are formed. One step of the Gauss-Newton iteration is performed

starting from these estimates. Thus, given the output of the HR procedure, one calculates
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series, ξt (K × 1), ηt (K × 1) and X̂t (K × nγ) according to

εt = Ã0
−1


Ã0yt −

p∑

j=1

Ãjyt−j −
q∑

j=1

M̃jεt−j


 ,

ξt = Ã0
−1


−

q∑

j=1

M̃jξt−j + εt


 ,

ηt = Ã0
−1


−

q∑

j=1

M̃jηt−j + yt


 ,

X̂t = Ã0
−1


−

q∑

j=1

M̃jX̂t−j + (Ỹ ′t ⊗ IK)R


 ,

for t = 1, 2, . . . , T and yt = εt = ξt = ηt = 0K×1 and X̂t = 0K×nγ for t ≤ 0 and Ỹt is structured

as Y (0)
t with εt in place of û(0)

t . Given these quantities, we compute the HK estimate as

γ̂ =

(
T∑

m+1

X̂ ′t−1Σ̂−1
t X̂t−1

)−1( T∑

m+1

X̂t−1Σ̂−1(εt + ηt − ξt)
)
,

where Σ̂ := T−1
∑
εtε
′
t, m := max{p, q} as before and the estimated coefficient matrices are

denoted by Â0, Â1, . . . , Âp and M̂1, M̂2, . . . , M̂q, respectively.

Hannan & Kavalieris (1984b) showed consistency and asymptotic normality of these esti-

mators. It is possible to use this procedure iteratively, starting the above recursions in the

second iteration with the newly obtained parameter estimates from the HK procedure, and

so on until convergence.

Generalized Least Squares (KP): Also this procedure has three stages. Koreisha &

Pukkila (1990) proposed the method for univariate ARMA models and Kavalieris, Hannan &

Salau (2003) proved efficiency of the KP estimates in this case. The motivation is the same

as for the HR estimator. Given consistent estimates of the residuals, we can estimate the

parameters of the VARMA representation by least squares. However, Koreisha & Pukkila

(1990) note that in finite samples the residuals are estimated with error. This implies that

the actual regression error is serially correlated in a particular way due to the structure of
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the underlying VARMA process. The KP procedure tries to take this into account. Similar

approaches have been proposed by Flores de Frutos & Serrano (2002) and Choudhury &

Power (1998)

I consider a multivariate generalization of the three-stage procedure of Koreisha & Pukkila

(1990). In the first stage, preliminary estimates of the innovations are obtained by a long

autoregression as in (5). Koreisha & Pukkila (1990) assume that the residuals obtained from

(5) correspond to the true residuals up to an uncorrelated error term, ut = û
(0)
t + εt. If this

expression is inserted in (1), one obtains

A0yt =
p∑

j=1

Ajyt−j +A0(û(0)
t + εt) +

q∑

j=1

Mj(û
(0)
t−j + εt−j),

yt − û(0)
t = (I −A0)(yt − û(0)

t ) +
p∑

j=1

Ajyt−j

+
q∑

j=1

Mj û
(0)
t−j + ζt. (9)

ζt = A0εt +
q∑

j=1

Mjεt−j (10)

Thus, the error term, ζt, in a regression of yt − û(0)
t on its lagged values and the estimated

residuals is a moving-average process of order q. Thus, a least squares regression in (9) is not

efficient. In the second stage, one estimates the coefficients in (9) by ordinary least squares:

Let zt := yt−û(0)
t and Z := [znT+m+1, . . . , zT ]. The second stage estimate is given analogously

to the HR final estimate by

˜̃γ = [R′(X(0)X(0)′ ⊗ IK)R]−1R′(X(0) ⊗ IK)vec(Z),

and the residuals are computed in the usual way, that is

˜̃
ζt = zt − (Y (0)

t−1

′ ⊗ IK)R˜̃γ.

The covariance matrix of these residuals, Σζ , is estimated as usual. From (10) one obtains
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the covariance matrix of the approximation error as

vec(Σ̃ε) =

(
q∑

i=0

( ˜̃Mi ⊗ ˜̃Mi)

)−1

vec(Σ̃ζ),

where the ˜̃Mj are formed from the corresponding elements in ˜̃γ. These estimates are then

used to build the covariance matrix of ζ = (ζ ′nT+m+1 . . . ζ
′
T )′. Let Φ := E[ζζ ′] and denote its

estimate by Φ̂. In the third stage, we re-estimate (9) by GLS as

ˆ̃γ = [R′(X(0) ⊗ IK)Φ̂−1(X(0)′ ⊗ IK)R]−1R′(X(0) ⊗ IK)Φ̂−1vec(Z).

In comparison to the HR estimator, the main difference lies in the weighting with Φ̂−1.

Iterative Least Squares (IHR) Kapetanios (2003) suggested to use the HR algorithm

iteratively. The parameter estimates of the HR algorithm are employed to construct new

residuals which can be used to perform another least squares operation. Denote the estimate

of the HR procedure by γ̃(1). We may obtain new residuals by

vec(Û (1)) = vec(Y )− (X(0)′ ⊗ IK)Rγ̃(1).

Therefore, it is possible to set up a new matrix of regressors X(1) that is of the same structure

as X(0) but uses the newly obtained estimates of the residuals û(1)
t in Û (1). Generalized least

squares as in (8) in

vec(Y ) = (X(1)′ ⊗ IK)Rγ + vec(U)

yields a new estimate γ̃(2). Denote the vector of estimated residuals at the ith iteration by

Û (i). Then we iterate least squares regressions until ||vec(Û (i))− vec(Û (i−1))|| becomes small

relative to ||vec(Û (i−1))||, where ||.|| is some norm. According to Kapetanios (2003), the

IHR algorithm is consistent and has the same asymptotic properties as the HR method. In

contrast to the above-mentioned regression-based procedures, the IHR procedure is iterative
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but the computational load is still small.

Maximum Likelihood Estimation (MLE): The dominant approach to the estimation of

VARMA models has been of course maximum likelihood estimation. The exact likelihood of a

VARMA (p, q) model was first derived by Hillmer & Tiao (1979) and Nicholls & Hall (1979).2

The presentation here is summarizing the derivation of the exact likelihood as described

in Reinsel (1993, 5.3). Given the sample, y1, ..., yT , and assuming that the innovations ut

are normally distributed, one can summarize equation (1) by defining y := (y′1, . . . , y
′
T )′,

u := (u′1, . . . , u
′
T )′ and y0 := (y′−p+1, . . . , y

′
0, u
′
−q+1, . . . , u

′
0)′ and writing

Ay = A0y0 + Mu,

where A, A0, M are functions of A0, A1, . . . , Ap and M1, . . . ,Mq, see Reinsel (1993). Since

the ut are Gaussian and yt = A(L)−1M(L)ut, all terms in y0 as well as in u are Gaussian too

and y0 and u are independent. Thus, y, conditional on the parameters, is Gaussian as well

with

y ∼ N(0,A−1(A0E[y0y
′
0]A′0 + M(IT ⊗ Σ)M′)A′−1).

Denote the covariance by Γ0 := A−1(A0E[y0y
′
0]A′0 + M(IT ⊗ Σ)M′)A′−1. The log likelihood

function of the vector of free parameters, γ, and the covariance matrix of the residuals can

be expressed as

`(γ,Σ) ∝ −1/2 ln |Γ0| − 1
2
y′ (Γ0)−1 y, (11)

where the dependence of Γ0 on γ and Σ is omitted on the right hand side. The formulation

makes clear that the maximization of (11) is highly nonlinear. Exact maximum likelihood

estimation “backcasts” the initial values in that the term E[y0y
′
0] needs to be calculated. The

procedure is implemented using the formulation of the exact likelihood by Mauricio (1995)

as implemented in GAUSS 9.0 and the sqpSolveMT function is used to maximize it. The

starting values are the true parameter values and a limited number of iterations is allowed
2See also Deistler & Pötscher (1984) on the behavior of the likelihood function for ARMA models.
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and therefore the results from the exact maximum likelihood procedure must be regarded as

a benchmark rather than as a realistic estimation alternative.

Vector Autoregressive Approximations (VAR) An alternative to VARMA modeling

is using just a pure autoregressive model - as it is very often done in practice. As there is

no true lag order, we employ the AIC and BIC information criteria to choose a lag length.

The corresponding VARs are denoted by VAR(AIC) and VAR(BIC). This is done in order to

assess the potential merits of VARMA modeling compared to standard VAR modeling.

4 Monte Carlo Study

I compare the performance of different estimation methods using a variety of measures. The

parameter estimation precision, the accuracy of point forecasts and the precision of the esti-

mated impulse responses are compared. These measures are related. For instance, one would

expect that an algorithm that yields accurate parameter estimates performs also well in a

forecasting exercise. However, almost all results on the efficiency of different estimators rely

on asymptotic theory. There is no guarantee that the ranking of estimators based on large

samples is the same in small samples. This phenomenon is simply due to the limited informa-

tion in small samples. While it is not clear a priori whether there are important differences

with respect to the different measures used, it is worth investigating these issues separately

in order to uncover potential advantages or disadvantages of the algorithms.

Apart from the performance measures mentioned above, I am also interested in the “tech-

nical reliability” of the algorithms. This is not a trivial issue as the results will make clear.

First, I consider the number of cases when the algorithms yielded non-stationary models.

Second, the number of cases when the models yielded extreme outliers is counted. For the

IHR algorithm another relevant statistic is the number of replications where the iterations

did not converge. For all algorithms, the estimates of the HR procedure are adopted in the

case that a particular algorithm fails for one of the mentioned reasons.

I consider various processes and variations of them as described below. For all data

generating processes, I simulate N = 1000 series of length T = 100. The sample size could be
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regarded as typical for macroeconomic time series applications.3 I consider mostly processes

that have been used in the literature to demonstrate the virtue of specific algorithms but I

also consider examples taken from estimated processes.

4.1 Performance Measures

4.1.1 Parameter Estimates

The accuracy of the different parameter estimators are compared. The parameters may be

of independent interest to the researcher. Denote by γ̂A,n the estimate of γ obtained by

some algorithm A at the nth replication of the simulation experiment. The accuracy of an

estimator is summarized as the trace of the estimated MSE matrix

tr MSEA = tr

(
1
N

N∑

n=1

(γ̂A,n − γ)(γ̂A,n − γ)′
)
.

The index n refers to a particular replication of the simulation experiment, n = 1, . . . , N . In

the graphs, we compute the ratio of the trace of the MSE matrix of a particular algorithm

relative to those of the MLE method

tr MSEA/tr MSEMLE .

4.1.2 Forecasting

Forecasting is one of the main objectives in time series modeling. To assess the forecasting

power of different VARMA estimation algorithms, the traces of forecast mean squared error

(FMSE) matrices of 1-step and 4-step-ahead out-of-sample forecasts are compared. Specifi-

cally, the trace of the FMSE matrix at horizon h for the algorithm A is

tr FMSEA(h) = tr

(
1
N

N∑

n=1

(yT+h,n − ŷT+h|T,n)(yT+h,n − ŷT+h|T,n)′
)
,

3In an earlier version of the paper, the algorithms were also compared for a sample size of T = 200. The
results, however, did not differ much and are therefore omitted.
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where yT+h,n is the value of yt at T + h for the nth replication and ŷT+h|T,n denotes the

corresponding h-step ahead forecast at origin T and the dependence on A is suppressed

on the right hand side. For given estimated parameters and a finite sample at hand, the

corresponding estimate of the white noise sequence, ût, is used to compute forecasts recursively

according to

ŷT+h|T = A−1
0




p∑

j=1

Aj ŷT+h−j|T +
q∑

j=h

Mj ûT+h−j


 ,

for h = 1, . . . , q. For h > q, the forecast is simply ŷT+h|T = A−1
0

∑p
j=1Aj ŷT+h−j|T . The

forecast precision of an algorithm A is measured relative to the MLE method

tr FMSEA(h)/tr FMSEMLE(h).

4.1.3 Impulse Response Analysis

Researchers might also be interested in the accuracy of the estimated impulse response func-

tion as in (3),

yt =
∞∑

i=0

Φiut−i = Φ(L)ut,

since it displays the propagation of shocks to yt over time. I compute impulse response mean

squared errors (IRMSE) at two different horizons, h = 1 and h = 4. Let ψh = vec(Φh) denote

the vector of responses of the system to shocks h periods ago. A measure of the accuracy of

the estimated impulse responses is

tr IRMSEA(h) = tr

(
1
N

N∑

n=1

(ψh − ψ̂h,n)(ψh − ψ̂h,n)′
)
,
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where ψ̂h,n is the estimated response. The precision of the estimated responses for a particular

algorithm are again measured relative to the precision of the MLE method

tr IRMSEA(h)
tr IRMSEMLE(h)

.

4.2 Generated Systems

4.2.1 Small-Dimensional Systems

DGP I: The first two-dimensional process is a simplified version of the process fitted by

Reinsel (1993, pp. 253-255) to U.S. business investment and inventories data. It is a bivariate

VARMA(2,2) model with Kronecker indices (p1, p2) = (2, 1). Precisely, the process is given

by




1 0

0.4 1


 yt =




0.51 0

0.52 α22,1


 yt−1 +



−0.13 0

0 0


 yt−2

+




1 0

0.4 1


ut +




0 m21,1

0 0


ut−1 +




0 0

0 0


ut−2,

and

Σ =




4.97

1.69 15.96


 .

This admittedly small process is used here to check the performance of the algorithms in

the case A0 6= IK . In addition, many parameter values are zero even though the process is

identified.

The autoregressive polynomial has three non-zeros eigenvalues and the moving-average

polynomial has one eigenvalue different from zero. Denote the eigenvalues of the autoregres-

sive and moving-average part by λar and λma, respectively. These eigenvalues are varied

and the parameters α12,1, m21,1 are set accordingly. For this and the following DGPs, I

consider parameterizations with medium eigenvalues (MEV ), large positive autoregressive
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eigenvalues (LPAREV ), large negative autoregressive eigenvalues (LNAREV ), large posi-

tive moving-average eigenvalues (LPMAEV ) and large negative moving-average eigenvalues

(LNMAEV ). The parameter values corresponding to the different parameterizations can be

found in Table 1 for all DGPs.

For the present process the MEV parametrization corresponds to α22,1 = 0.66, m21,1 =

−0.13 with eigenvalues λar1 = 0.255−0.25i, λar2 = 0.255+0.25i, λar3 = 0.66 and λma1 = −0.052.

I fit restricted VARMA models in Echelon form to the simulated data.

DGP II: The second DGP is based on an empirical example taken from Lütkepohl (2005).

A VARMA(2,2) model is fitted to West-German income and consumption data. The variables

were the first differences of log income, y1, and log consumption, y2. More specifically, a

VARMA (2,2) model with Kronecker indices (p1, p2) = (0, 2) was assumed such that

yt =




0 0

0 α22,1


 yt−1 +




0 0

0 α22,2


 yt−2 + ut

+




0 0

0.31 m22,1


ut−1 +




0 0

0.14 m22,2


ut−2

and

Σ =




1.44

0.57 0.82


× 10−4.

While the autoregressive part has two distinct, real roots, the moving-average polynomial

has two complex-conjugate roots in the original specification. We vary again some of the

parameters in order to obtain different eigenvalues. In particular, we maintain the property

that the process has two complex moving-average eigenvalues which are less than one in

modulus.

The MEV parametrization corresponds to the estimated process with α22,1 = 0.23,

α22,2 = 0.06, m22,1 = −0.75 and m̂22,2 = 0.16. These values imply the following eigen-

values λar1 = 0.385 λar2 = −0.159, λma1 = −0.375 + 0.139i, λma2 = −0.375 − 0.139i. VARMA
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models with restrictions given by the Kronecker indices were used.

4.2.2 Higher-Dimensional Systems

DGP III: I consider a three-dimensional system that was used extensively in the literature

by e.g. Koreisha & Pukkila (1989), Flores de Frutos & Serrano (2002) and others for illustra-

tive purposes. Koreisha & Pukkila (1989) argue that the chosen model is typical for real data

applications in that “[...]the density of nonzero elements is low, the variation in magnitude of

parameter values is broad and the feedback/causal mechanisms are complex.”. The data is

generated according to

yt =




α11,1 0 0

0 0 0

0 0.4 0



yt−1 + ut +




0 1.1 0

0 −0.6 0

0 0 m33,1



ut−1

and

Σ =




1

−0.7 1

0.4 0 1



.

The Kronecker indices are given by (p1, p2, p3) = (1, 1, 1) and corresponding VARMA(1, 1)

models are fitted to the data. While this DGP is of higher dimension, the parameter matrices

are more sparse. This property is reflected in the fact that the autoregressive polynomial and

the moving-average polynomial have both few eigenvalues different from zero.

The parameters α11,1 and m33,1 are varied in order to generate particular eigenvalues

of the autoregressive and moving-average polynomials as in the foregoing examples. The

MEV specification corresponds to the process used in Koreisha & Pukkila (1989) and has

eigenvalues λar = 0.7 and λma1 = −0.6 and λma2 = 0.5.

DGP IV: This process has been used in the simulation studies of Koreisha & Pukkila

(1987). The process is similar to the DGP III. Here it is used in particular to investigate the
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performance of the algorithms for the case of high-dimensional systems. The five variables

are generated according to the following VARMA (1,1) structure

yt =




α11,1 0 0 0 0

0 0 0.8 0 0

0 −0.4 0 0 0

0 0 0 0 0

0.2 0 0 0 0




yt−1 + ut +




0 0 0 −1.1 0

0 0 0 0 −0.2

0 0 0 0 0

0.55 0 0 −0.8 0

0 0 0 0 m55,1




ut−1

and

Σ =




1

0.2 1

0 0 1

0 0 0.7 1

0 0 0 −0.4 1




.

The true Kronecker indices are (p1, p2, p3, p4, p5) = (1, 1, 1, 1, 1) and corresponding VARMA

models in Echelon form are fitted to the data. The MEV parametrization corresponds to

the one used by Koreisha & Pukkila (1987). That is, α11,1 = 0.5 and m55,1 = −0.6 with

eigenvalues λar1 = 0.5, λar2 = 0 + i0.57, λar3 = 0− i0.57, λma1 = −0.6, λma2 = −0.4 + i0.67 and

λma3 = −0.4− i0.67.

4.3 Results

The results are summarized in Table 2 and Figures 1 to 4. The table shows the frequency

of cases when the algorithms failed for different reasons. The figures plot the various MSE

ratios discussed above.

Table 2 displays the frequency of cases in which the algorithms yielded models that were

not stationary, yielded extreme outliers or, in the case of the IHR algorithm, did not converge.

The IHR algorithm is regarded as non-convergent if it did not converge after 500 iterations. As

expected, the algorithms yield non-stationary models more frequently when the eigenvalues of
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the autoregressive polynomial are close to one in absolute value but also when the eigenvalues

of the moving-average part become close to the non-invertibility region. The algorithms

yield non-stationary models most often for DGP I and much less frequently for the other

DGPs. The HK algorithm fails most often in this respect and especially for DGP I even when

the eigenvalues of the autoregressive part are well inside the stationary region. The most

reliable algorithms are HR and KP. The algorithms almost never yielded parameter estimates

which were extremely different from their true values. The convergence properties of the IHR

algorithm depend stronger on the simulated DGP than on the chosen parametrization. The

algorithm does not converge very often for the DGPs I and II which are more restricted by

the Echelon form. The problem is aggravated by large eigenvalues of the moving-average

part. In sum, the reliability of certain algorithms depends primarily on the structure of the

simulated DGP. The parameterizations are of minor importance and HR and KP are very

reliable irrespective of the DGP and parameterization.

With respect to parameter estimation accuracy, the differences between the algorithms

are generally more pronounced when the moving-average polynomial has eigenvalues that

are close to one in absolute value. The HR algorithm delivers the most precise forecasts for

DGP I for small moving-average values but is almost dominated by the other algorithms for

DGPs II and III while its performance is average for DGP IV. The relative performance of

the KP estimator varies considerably between DGPs. The algorithm’s parameter estimates

are quite precise for DGP I LPMAEV and LNMAEV and for DGP II. The KP estimator

is, however, the worst for DGP IV. Thus, it is competitive only for the small dimensional

processes in our study. The IHR estimator delivers the most precise parameter estimates

for the MEV parameterizations for DGP II and IV but otherwise yields parameter estimates

whose precision are close to the average of the investigated methods. Thus, in this respect,

the IHR estimator is relatively robust across DGPs. The HK estimator is worse in terms of

parameter estimation for DGP I but otherwise does quite well in relative terms. In particular,

the HK method is much better when the number of estimated parameters increases, that is

for DGP III and IV. Summarizing, the HK procedure is overall the best alternative to MLE

despite the high number of cases when the algorithm yielded non-stationary models or outliers
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in the case of DGP I. Nevertheless, even the best alternative can be quite imprecise compared

to MLE. This does not necessarily mean that HK is not a relatively good estimator because the

MLE procedure starts with the true parameter values and therefore the procedure represents

an ideal case in this context.

The differences in terms of forecasting precision are less pronounced. Additionally, even

though some algorithms estimate the parameters more accurately than others, they are not

necessarily superior in terms of forecasting accuracy. The ranking might change. Apart from

DGP I, the VARMA algorithms do better than the VARs specified by AIC or BIC. However,

given that the orders of the VARMA models are fixed and correspond to the true orders,

the comparison is biased in favor of VARMA modeling. Increasing the forecast horizon does

generally reduce the differences between the algorithms. An exception is the LNMAEV case

in which the HR estimator is performing poorly at h = 4. Increasing the complexity in terms

of Kronecker indices does have minor effects. The HR estimator yields usually comparable but

sometimes slightly worse forecasts than the other VARMA algorithms. However, it performs

often poorly in the case of large eigenvalues in the moving-average part. The KP and the

IHR procedure do quite well in forecasting depending on the specific DGP and number of

observations. The HK procedure, however, seems to be slightly preferable. Apart from DGP I,

the HK procedure is often superior to the other algorithms and, in any case, close to the best-

performing method. The MLE benchmark is always superior to all simple algorithms apart

from one case, DGP III, LNMAEV. In general, however, the differences are small, in particular

in comparison to the rather large differences in terms of parameter estimation accuracy. For

the simulated processes, HK is a good alternative algorithm to MLE if forecasting is the

objective.

The precision of the estimated impulse responses varies much more between the algo-

rithms. In most cases the VARMA algorithms do comparably or better than the VAR

approximations but, as mentioned above, this comparison is biased in favor of the use of

VARMAs. When the impulse response horizon is increased, VARMA modeling becomes

much more advantageous in comparison with the VAR approximations. At short horizons

the picture is rather mixed depending on the algorithms and DGPs. For the rather simple
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DGP I, there are few advantages from VARMA modeling. For the other DGPs there are

in principle considerable advantages in particular for h = 4. The HR algorithm estimates

the impulse responses with comparable or slightly worse accuracy than the other VARMA

algorithms. The precision of the impulse response estimates obtained by KP are typically on

average. The IHR algorithm is performing comparably or slightly better than the HR and

KP algorithms. Apart from DGP I, HK is often the preferable method, in particular for short

horizons. Generally, the impulse response estimates obtained by MLE are much more precise

than the corresponding estimates obtained by the other algorithms. These results correspond

to the statements made above about the algorithms’ relation in terms of parameter estimation

accuracy. Overall, VARMA modeling turns out to be potentially quite advantageous if one is

interested in the impulse responses of the DGP. The precision obtained by MLE is, however,

rarely obtained by any of the simpler VARMA estimation algorithms.

5 Conclusion

Despite the theoretical advantages of VARMA models compared to simpler VAR models,

they are rarely used in applied macroeconomic work. While Gaussian maximum likelihood

estimation is theoretically attractive, it is plagued with various numerical problems. There-

fore, simpler estimation algorithms are compared in this paper by means of a Monte Carlo

study. The evaluation criteria used are the precision of the parameter estimates, the accu-

racy of point forecasts and the accuracy of the estimated impulse responses. The VARMA

algorithms are also compared to two benchmark VARs in order to judge the potential merits

of VARMA modeling.

It has been shown in the simulations that VARMA modeling can be advantageous com-

pared to VAR modeling. While the advantages are potentially minor with respect to forecast-

ing precision, the results suggest that the impulse responses can be estimated more accurately

by using VARMA models, provided that the model is specified correctly. There can be large

differences between the algorithms. Overall, the algorithm of Hannan & Kavalieris (1984b)

which is closest to maximum likelihood estimation seems to be superior to the other simple
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estimation algorithms in terms of all three criteria. In particular, when the complexity of the

simulated systems increases. A concern, however is the instability and poor performance of

the algorithm for some DGPs. Thus, one might prefer to combine the results from different

estimation algorithms.

While this study suggests that there are potentially considerable gains from VARMA

modeling, a reliable, accurate as well as computationally efficient algorithm for the estimation

of VARMA models still remains to be developed. The results imply that this algorithm should

be close to a robust maximum likelihood method. Such an algorithm would have to be able

to deal with various issues which are not considered in this study. The algorithm should

work well in the case of integrated and cointegrated multivariate series. The algorithm must

give reasonable results with extremely over-specified processes as well as in the presence of

various data irregularities such as outliers, structural breaks etc. The applicability of such an

algorithm would also crucially depend on the existence of a reliable specification procedure.

These topics, however, are left for future research.
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A Inversion of Moving-Average Roots

This section summarizes how to obtain an invertible moving-average representation from a
non-invertible one. I draw on the results of Lippi & Reichlin (1994). Consider the general
VARMA representation given in the paper

A(L)yt = M(L)ut = M(L)Pvt = N(L)vt, (12)

where the matrix P is the Cholesky decomposition of the covariance matrix of ut, i.e. PP ′ =
Σ. We define N(L) := M(L)P such that vt is orthonormal white noise, i.e. E[vtv′t] = IK .

Assume the moving-average polynomial is not invertible. As the roots of M(z) are the
same as those of N(z), assume that in |N(z)| = τ

∏q̄
i=1(z − λi)mi the first root λ1 ∈ C of

multiplicity m1 has modulus smaller than one, |λ1| < 1. Therefore, N(λ1) is singular and
there exists a non-trivial solution to the system

N(λ1)y = 0. (13)

Denote one such vector by g, normalized such that g′g = 1. Form an orthogonal matrix
K (KK′ = IK) that contains in the first column g. This can be achieved e.g. by using a
Gram-Schmidt procedure.

Consider the first column of the matrix polynomial

Ñ(L) = N(L) ·K,

which consists of the polynomials ñk1(z), k = 1, . . . ,K. Then (ñ11(λ1), . . . , ñK1(λ1))′ =
N(λ1)g = 0K , i.e. λ1 is a root in all polynomials in the first column. Therefore, multiplication
by the Blaschke matrix

R−1
λ1

(L) :=

(
1−λ̄1L
L−λ1

0
0 IK−1

)
,

where λ̄1 denotes the conjugate of λ1, yields again a finite-order polynomial

N̂(L) = N(L)KR−1
λ1

(L) = N̂0 + N̂1L+ . . .+ N̂qL
q

and λ1 is a root of N̂(z) of multiplicity m1 − 1. That is, if m1 = 1 and λ1 is the only root
with modulus smaller than one, then N̂(L) is invertible.

Thus, we can transform the original representation (12) as

A(L)yt = N(L)vt, (14)
= N(L)KR−1

λ1
(L)Rλ1(L)K′vt, (15)

= N̂(L)v̂t. (16)

What is important here is that Rλ1(L)K′ is a Blaschke matrix (Lippi & Reichlin 1994). Then,
one can show that v̂t is also orthonormal white noise such that the above model is indeed a
VARMA model with polynomials (A(L), N̂(L)). In order to satisfy the restriction A0 = M0,
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we multiply by C = N̂−1
0 M0. Therefore, the invertible representation is

A(L)yt = N̂(L)CC−1v̂t (17)
A(L)yt = M̂(L)ût, (18)

where Σû = C−1(C−1)′. If λ1 is of multiplicity m1 > 1 or if there are other roots with
modulus smaller than one, then the described process has to be repeated until there are no
more such roots. Finally, the residuals are calculated anew.

Also, if (A(L),M(L)) is in Echelon form, then (A(L), M̂(L)) is in Echelon form with the
same Kronecker indices. This can be seen as follow. M(L) satisfies

mki(L) =
pk∑

j=0

mki,jL
j with M0 = A0 ,

for k, i = 1, . . . ,K. For M̂(L), we have M̂0 = A0 by construction as outlined above. Further-
more,

M̂(L) = M(L)PKR−1
λ1

(L)C

Therefore, the elements in M̂(L), m̂ki(L), are linear combinations of elements of M(L) with
the same row index. That is, the above restrictions on the maximum lag order of polynomials
in each row is satisfied.
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B Figures and Tables

Table 1: Parameter values
DGP Parameters λar λma

DGP I MEV α12,1 = 0.66, m21,1 = −0.13 0.255 ± i 0.25 (0.36) -0.05
0.66

LPAREV α12,1 = 0.90, m21,1 = −0.13 0.255 ± i 0.25 (0.36) -0.05
0.9

LNAREV α12,1 = −0.90, m21,1 = −0.13 0.255 ± i 0.25 (0.36) -0.05
-0.90

LPMAEV α12,1 = 0.66, m21,1 = −2.25 0.255 ± i 0.25 (0.36) 0.90
0.66

LNMAEV α12,1 = 0.66, m21,1 = 2.25 0.255 ± i 0.25 (0.36) -0.90
0.66

DGP II MEV α22,1 = 0.23, α22,2 = 0.06 0.39, -0.16 -0.38 ± i 0.14 (0.40)
m22,1 = −0.75, m22,2 = 0.16

LPAREV α22,1 = 0.744, α22,2 = 0.14 0.9, -0.16 -0.38 ± i 0.14 (0.40)
m22,1 = −0.75, m22,2 = 0.16

LNAREV α22,1 = −1.06, α22,2 = −0.14 -0.9, -0.16 -0.38 ± i 0.14 (0.40)
m22,1 = −0.75, m22,2 = 0.16

LPMAEV α22,1 = 0.23, α22,2 = 0.06 0.39, -0.16 -0.48 ± i 0.16 (0.50)
m22,1 = −0.95, m22,2 = 0.25

LNMAEV α22,1 = 0.23, α22,2 = 0.06 0.39, -0.16 0.48 ± i 0.16 (0.50)
m22,1 = 0.95, m22,2 = 0.25

DGP III MEV α11,1 = 0.7, m33,1 = 0.5 0.7,0 0.5, -0.6
LPAREV α11,1 = 0.9, m33,1 = 0.5 0.9,0 0.5, -0.6
LNAREV α11,1 = −0.9, m33,1 = 0.5 -0.9,0 0.5, -0.6
LPMAEV α11,1 = 0.7, m33,1 = 0.9 0.7,0 0.9, -0.6
LNMAEV α11,1 = 0.7, m33,1 = −0.9 0.7,0 -0.9, -0.6

DGP IV MEV α11,1 = 0.5, m55,1 = −0.6 0.5, 0 ± i 0.57 (0.57) -0.6, -0.4 ± i 0.67 (0.78)
LPAREV α11,1 = 0.9, m55,1 = −0.6 0.9, 0 ± i 0.57 (0.57) -0.6, -0.4 ± i 0.67 (0.78)
LNAREV α11,1 = −0.9, m55,1 = −0.6 -0.9, 0 ± i 0.57 (0.57) -0.6, -0.4 ± i 0.67 (0.78)
LPMAEV α11,1 = 0.5, m55,1 = 0.9 0.5, 0 ± i 0.57 (0.57) 0.9, -0.4 ± i 0.67 (0.78)
LNMAEV α11,1 = 0.5, m55,1 = −0.9 0.5, 0 ± i 0.57 (0.57) -0.9, -0.4 ± i 0.67 (0.78)

Note: Parameters and corresponding eigenvalues of the autoregressive and moving-average parts for the
different data generating processes. The numbers in parenthesis denote moduli of complex eigenvalues.
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Table 2: Estimation Failures, T = 100
DGP HR HK K P IHR
DGP I MEV 2.5 / 0.0 17.9 / 0.5 0.0 / 0.0 1.1 / 0.1 /8.3

LPAREV 2.5 / 0.0 16.7 / 0.9 0.1 / 0.0 1.2 / 0.0 /7.6
LNAREV 2.5 / 0.0 19.5 / 0.7 0.1 / 0.0 1.4 / 0.0 /6.3
LPMAEV 0.0 / 0.0 20.3 / 1.6 0.3 / 0.0 0.1 / 0.0 /76.2
LNMAEV 0.0 / 0.0 14.2 / 0.8 0.2 / 0.0 0.0 / 0.0 / 81.5

DGP II MEV 0.0 / 0.0 2.9 / 0.0 0.0 / 0.0 0.0 / 0.0 /14.8
LPAREV 0.1 / 0.0 1.3 / 0.0 0.0 / 0.0 0.1 / 0.0 /16.5
LNAREV 0.1 / 0.0 1.1 / 0.0 0.0 / 0.0 0.1 / 0.0 /13.1
LPMAEV 0.0 / 0.0 3.8 / 0.0 0.0 / 0.0 0.0 / 0.0 /30.9
LNMAEV 0.2 / 0.0 8.5 / 0.2 0.0 / 0.0 0.5 / 0.0 / 3.8

DGP III MEV 0.0 / 0.0 0.9 / 0.0 0.1 / 0.1 0.0 / 0.0 /0.8
LPAREV 0.0 / 0.0 1.2 / 0.0 0.1 / 0.0 0.0 / 0.0 /1.2
LNAREV 0.0 / 0.0 0.7 / 0.0 0.1 / 0.0 0.0 / 0.0 /1.1
LPMAEV 0.0 / 0.0 0.2 / 0.0 0.0 / 0.0 0.0 / 0.0 /3.8
LNMAEV 0.0 / 0.0 0.2 / 0.0 0.1 / 0.0 0.0 / 0.0 / 4.1

DGP IV MEV 0.0 / 0.0 1.6 / 0.0 0.1 / 0.0 0.0 / 0.0 /1.1
LPAREV 0.1 / 0.0 0.4 / 0.0 0.6 / 0.0 0.1 / 0.0 /0.6
LNAREV 0.0 / 0.0 0.4 / 0.0 0.2 / 0.0 0.1 / 0.0 /0.4
LPMAEV 0.0 / 0.0 2.1 / 0.0 0.0 / 0.0 0.0 / 0.0 /2.4
LNMAEV 0.0 / 0.0 1.3 / 0.0 0.2 / 0.0 0.1 / 0.0 / 2.6

Note: Relative frequency of cases in which the algorithms returned non-stationary models / yielded extreme
parameter values or, for IHR, did not converge (percentage points).
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Figure 1: MSE ratios for DGP I with T = 100.

Note: On the vertical line, the graphs show relative mean squared error measures (section 4.1) related to the

accuracy of the estimated vector of parameters, of predicted future values and of the estimated vector of

impulse responses for different estimation algorithms (see legend). The benchmark algorithm is the maximum

likelihood estimator. The horizontal line represents different parameterizations of the same model DGP.

33



Figure 2: MSE ratios for DGP II with T = 100.

Note: See note to Figure 1.
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Figure 3: MSE ratios for DGP III with T = 100.

Note: See note to Figure 1.
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Figure 4: MSE ratios for DGP IV with T = 100.

Note: See note to Figure 1.
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