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Abstract

The Fourier transform is an important tool in Financial Economics. It delivers real
time pricing while allowing for a realistic structure of asset returns, taking into
account excess kurtosis and stochastic volatility. Fourier transform is also rather
abstract and therefore o¤-putting to many practitioners. The purpose of this paper
is to explain the working of the fast Fourier transform in the familiar binomial option
pricing model. We argue that a good understanding of FFT requires no more than
some high school mathematics and familiarity with roulette, bicycle wheel, or a
similar circular object divided into equally sized segments. The returns to such a
small intellectual investment are overwhelming.
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The Fourier transform is becoming an increasingly popular and important tool
in Financial Economics because it delivers real time pricing while allowing
for important properties of asset returns, such as excess kurtosis, stochastic
volatility and leverage e¤ects, discussed in Heston [1993], Carr and Madan
[1999], Carr and Wu [2004]. These impressive results come at a price in the
form of a considerable abstraction which can be quite o¤-putting to practi-
tioners. The aim of this paper is to explain the working of the discrete Fourier
transform (DFT) and its fast implementation (FFT) in the familiar binomial
option pricing model. The binomial model serves two purposes. It highlights,
in an accessible way, the usefulness of FFT, which is an important computa-
tional tool in its own right, and has many other applications in Finance. It also
motivates the passage to continuous time thereby providing intuition behind
fast pricing formulae in a very rich class of models used in the industry.

The paper is divided into three parts: I � Discrete Fourier transform and
binomial option pricing; II �E¢ cient implementation of DFT by means of
fast Fourier transform, with examples in GAUSS and MATLAB; III �Fourier
transform and continuous-time option pricing.

1 Discrete Fourier transform and binomial option pricing

This section explains how and why option prices in the binomial model can
be computed via discrete Fourier transform. We assume that the reader is
familiar with the concept of risk-neutral pricing. To begin with, we introduce
complex numbers and discuss their geometric properties, especially as they
regard the unit circle; then we de�ne the Discrete Fourier Transform (DFT)
and highlight some of its properties. The following section introduces a simple
binomial option pricing example and shows how the pricing procedure can be
performed on a circle. To conclude, we demonstrate how to transform circular
convolutions using DFT and obtain the Fourier transform pricing formula. The
resulting formula is put to practice in part II, which shows how to accelerate
DFT by means of FFT algorithm and provides simple GAUSS and MATLAB
codes for illustration. Real-world applications of the Fourier transform pricing
formula are discussed in part III.

1.1 Introduction to complex numbers

The discrete Fourier transform is about evenly spaced points on a circle. From
the mathematical point of view, evenly distributed points on a circle are most
easily described by complex numbers. This section reviews the geometry of
those numbers, which in turn determine the properties of Fourier transform.

Complex numbers are a convenient way of capturing vectors in a two-dimensional
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Fig. 1. Complex number as a two-dimensional vector.

space. For example, Exhibit 1 depicts a vector

2 + i;

it is a point in the plane if we move two units on the real (horizontal) axis
and one unit on the imaginary (vertical) axis. This terminology is somewhat
unfortunate; the imaginary axis is no less real than the real axis. It would be
more appropriate to talk about �horizontal�and �vertical�numbers.

The rules for addition of complex numbers are the same as with vectors, for
example 264 2

1

375+
264 3

�4

375 =
264 5

�3

375
translated into complex notation would read

(2 + i) + (3� 4i) = 5� 3i:

Likewise, multiplication by a scalar (a real number) works like for vectors;

�3

264 2
1

375 =
264�6
�3

375
translates into complex numbers as

�3 (2 + i) = �6� 3i:

1.2 Complex multiplication

Complex numbers are very good at describing the movement around a unit
circle. As shown in Exhibit 2a, unit circle intersects the real axis at points
�1,1; and the imaginary axis at points �i and i.
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Fig. 2. Point on the unit circle expressed as a complex number.

A point A on the unit circle is uniquely characterized by its argument ' �
the angle between the real axis and the line OA. More speci�cally, Exhibit 2b
shows that the point A can be expressed as cos'+ i sin':

On most computers the functions sin and cos are implemented in such a way
that the angle ' must be given in radians. Radians measure the distance
travelled on the perimeter of the unit circle. The entire perimeter of the unit
circle has length 2� which corresponds to 360�. The angle corresponding to i
is 90� or �

2
; the angle corresponding to �1 is 180� or � and so on, as shown in

Exhibit 3.

Angle in degrees 0 30 60 90 180 270 360

Angle in radians 0 �
6

�
3

�
2 � 3

2� 2�

Table 3
Conversion table between degrees and radians.
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Facts:
� Multiplying complex numbers on a unit circle means adding angles: The angle of
i is 90�; the angle of i � i will be 90�+90� = 180� which corresponds to �1; see
Exhibit 4a. In complex number notation this gives the famous formula

i� i = i2 = �1: (1)

� With (1) in hand the general de�nition of complex multiplication follows natu-
rally

(a1 + ib1)� (a2 + ib2)= a1a2 + i (b1a2 + a1b2) + b1b2i
2 =

= a1a2 � b1b2 + i (b1a2 + a1b2) : (2)

� It also follows that the �multiplication is adding angles�rule works quite generally
on the unit circle

(cos'1 + i sin'1)� (cos'2 + i sin'2) =
= cos ('1 + '2) + i sin ('1 + '2) : (3)

� One can express points on the unit circle more elegantly using the Euler formula

cos'+ i sin' = ei'; (4)

whereby (3) becomes
ei'1 � ei'2 = ei('1+'2); (5)

see Exhibit 4b.

1

i

i*i = 1

π

0

π/2

exp(i(ϕ1+ϕ2 ))

exp(iϕ2)

exp(iϕ1)

1

i

ϕ2

ϕ1

ϕ1+ϕ2

a) b)

Fig. 4. Complex multiplication on a unit circle means adding angles.

1.3 Geometry of spoked wheels

It is very easy to construct a wheel with evenly placed spokes using complex
numbers. Suppose we want to place �ve evenly spaced points on the unit circle.
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One �fth of the full circle is characterized by the angle 2�
5
; hence the �rst spoke

will be placed at ei
2�
5 . Let us denote this number by z5 (�fth root of unity)

z5 � ei
2�
5 :

Since the multiplication by z5 causes anticlockwise rotation by one �fth of full
circle the second spoke will be (z5)

2 the third spoke at (z5)
3 and so on, see

Exhibit 5a.

4
(z5)4

(z5)3

(z5)2

z5
i

1 = (z5)0 = (z5)5

2π/5

1

4
1

2
3

5 0 5

2
3

a) b)

Fig. 5. a) Evenly distributed points on a circle. b) Number of elementary rotations
required to reach a particular spoke (+ anticlockwise, � clockwise).

This provides a natural numbering of the spokes, according to how many
elementary rotations are needed to reach the particular spoke. Note that since
we are moving in a circle we will come back to the starting point after �ve
rotations anticlockwise

(z5)
0=(z5)

5 = (z5)
10 = (z5)

15 = : : :

(z5)
1=(z5)

6 = (z5)
11 = (z5)

16 = : : : etc.,

and also after �ve rotations clockwise

(z5)
0=(z5)

�5 = (z5)
�10 = (z5)

�15 = : : :

(z5)
1=(z5)

�4 = (z5)
�9 = (z5)

�14 = : : : etc.

Thus the numbering of spokes is ambiguous; for example indices 0; 5;�5 refer
to the same spoke, see Exhibit 5b.

The following box summarizes the most important properties of evenly spaced
points on the unit circle. These properties are essential for the understanding
of the discrete Fourier transform.
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� Let zn be a rotation by one nth of a full circle

zn � ei
2�
n :

Then
(zn)

0 + (zn)
1 + : : :+ (zn)

n�1 = 0 (6)

for any n. This is because the points (zn)
0 ; (zn)

1 ; : : : ; (zn)
n�1 are evenly distrib-

uted on a unit circle and thus the result of summation must not change if we
rotate the set of points by one nth of a full circle. The only vector that remains
unchanged after such rotation is zero vector.

� One can generalize this result further. Let k be an integer between 1 and n� 1.
Then �

zkn
�0
+
�
zkn
�1
+ : : :+

�
zkn
�n�1

= 0 (7)

for any n. The reason for this result is again rotational symmetry of

points
�
zkn
�0
;
�
zkn
�1
; : : : ;

�
zkn
�n�1

. The di¤erence from (6) is that in the se-

quence (zn)
0 ; (zn)

1 ; : : : ; (zn)
n�1 each spoke occurs exactly once, whereas in�

zkn
�0
;
�
zkn
�1
; : : : ;

�
zkn
�n�1

the same spoke can occur several times (try n = 4;

k = 2).
� The case with k = 0 requires special attention. Since (z0n)

j
= 1 for all j we have�

zkn
�0
+
�
zkn
�1
+ : : :+

�
zkn
�n�1

= n:

To summarize,

�
zkn
�0
+
�
zkn
�1
+ : : :+

�
zkn
�n�1

=n for k = 0;�n;�2n; : : : (8)�
zkn
�0
+
�
zkn
�1
+ : : :+

�
zkn
�n�1

=0 for k 6= 0;�n;�2n; : : : (9)

1.4 Reverse order on a circle

Given a sequence of n numbers a = [a0; a1; : : : ; an�1] we can say that

rev(a) � [a0; an�1; : : : ; a1]

is a in reverse order. If a is written around a circle in anticlockwise direction
then rev(a) is found by reading from a0 in clockwise direction, see Exhibit 6.
Note that rev(a) is not equal to [an�1; : : : ; a1; a0]:
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Fig. 6. Reverse order on a circle.

For any k the sequence
�
zkn
�0
;
�
zkn
�1
; : : : ;

�
zkn
�n�1

is the same as the sequence�
z�kn

�0
;
�
z�kn

�1
; : : : ;

�
z�kn

�n�1
taken in the reverse order:

rev
��
z�kn

�0
;
�
z�kn

�1
; : : : ;

�
z�kn

�n�1�
=
�
zkn
�0
;
�
zkn
�1
; : : : ;

�
zkn
�n�1

: (10)

This is because
�
z�kn

�n�j
= z�kn+kjn = zkjn =

�
zkn
�j
for any j.

1.5 Discrete Fourier Transform (DFT)

As in the previous section take zn � ei
2�
n (this number is called the nth

root of unity ). Let a0; a1; : : : ; an�1 be a sequence of n (in general complex)
numbers. The discrete Fourier transform of a0; a1; : : : ; an�1 is the sequence
b0; b1; : : : ; bn�1 such that

bk=
a0
�
zkn
�0
+ a1

�
zkn
�1
+ : : :+ an�1

�
zkn
�n�1

p
n

= (11)

=
1p
n

n�1X
j=0

ajz
jk
n =

1p
n

n�1X
j=0

aje
i 2�
n
jk

We write
F (a) = b:

Equation (11) represents the forward transform. The inverse transform is

~al=
~b0
�
z�ln
�0
+~b1

�
z�ln
�1
+ : : :+~bn�1

�
z�ln
�n�1

p
n

= (12)

=
1p
n

n�1X
k=0

~bkz
�kl
n =

1p
n

n�1X
k=0

~bke
�i 2�

n
kl;
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and we write

~a = F�1
�
~b
�
:

Facts:
� The inverse discrete Fourier transform of sequence ~b0;~b1; : : : ;~bn�1 is the same as
the forward transform of the same sequence in reversed order

F�1
�
~b
�
= F

�
rev

�
~b
��
; (13)

and vice versa
F�1

�
rev

�
~b
��
= F

�
~b
�
: (14)

This is a direct consequence of (10).
� F�1 is indeed an inverse transformation to F , that is

F�1 (F (a)) = F
�
F�1 (a)

�
= a: (15)

This result relies on (8) and (9); for a proof see Appendix.

1.6 Binomial option pricing

Consider a monthly distribution of FTSE 100 return calibrated to re�ect mar-
ket volatility of 4:4% a month and expected rate of return 0.9% a month:

pRu + (1� p)Rd=1:009

pR2u + (1� p)R2d=0:044
2 + 1:0092:

Choosing the objective probability to be p = 1
2
we solve for Ru and Rd

Ru=1: 053 with pu =
1

2
(16)

Rd=0: 965 with pd =
1

2
. (17)

Assuming that the initial value of FTSE Index is 5100.00 points, the evolution
of the index in the three months ahead is given by the lattice in Exhibit 7.

Suppose we wish to price a call option struck at K = 5355 (5% out of the
money), maturing 3 months from now. The intrinsic value of the option at
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number of

low returns
S(0) S(1) S(2) S(3)

0 5100.00 5370.30 5654.93 5954.64

1 4921.50 5182.34 5457.00

2 4749.25 5000.96

3 4583.02
Table 7
Binomial stock price lattice.

maturity is

C(3) =

2666666664

599.64

102.00

0.00

0.00

3777777775
: (18)

Asset pricing theory tells us that the no-arbitrage price of the pay-o¤264Cu
Cd

375
is given as the risk-neutral expectation of the discounted pay-o¤

no-arbitrage value(C) =
quCu + qdCd

Rf
; (19)

where the risk-neutral probabilities qu and qd are chosen such that the risk-
neutrally expected return of all basis assets is equal to the risk-free return

qu + qd=1

quRu + qdRd=Rf :

The values qu=Rf and qd=Rf are known as state prices:

Assuming a risk-free rate equivalent to 4% per annum the monthly risk-free
return is

Rf = 1:04
1=12 = 1:0033:

This gives conditional risk-neutral probabilities of

qu=
Rf �Rd
Ru �Rd

=
1:0033� 0:965
1:053� 0:965 = 0:43523; (20)

qd=
Ru �Rf
Ru �Rd

=
1:053� 1:0033
1:053� 0:965 = 0:56477; (21)
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and the valuation formula:

no-arbitrage value(C) =
0:43523Cu + 0:56477Cd

1:0033
: (22)

Recursive application of (22) with terminal value (18) leads to option prices
in Exhibit 8.

number of

low returns
C(0) C(1) C(2) C(3)

0 81.36 162.66 317.54 599.64

1 19.19 44.25 102.00

2 0.00 0.00

3 0.00
Table 8
Option prices in a binomial lattice.

1.7 Option pricing on a circle

For any two n-dimensional vectors a = [a0; a1; : : : ; an�1]; b = [b0; b1; : : : ; bn�1]
we de�ne circular (cyclic) convolution of a and b to be a new vector c;

c = a~ b;

such that

cj =
n�1X
k=0

aj�kbk: (23)

One will immediately note that the index j�k can be negative. If this occurs,
we will simply add n to get the result between 0 and n � 1; this practice is
consistent with the spoke numbering introduced in Section 1.3, and it merely
re�ects movement in a circle.

Graphically one can evaluate the circular convolution as follows:

(1) Set up two concentric circles divided into n equal segments. Write a
around the inner circle clockwise and b around the outer circle anticlock-
wise. Exhibit 9 shows this for n = 4:

(2) Perform a scalar multiplication between the two circles. In Exhibit 9 this
would give

a0b0 + a3b1 + a2b2 + a1b3:

The result is c0:
(3) Turn the inner circle anticlockwise by 1

n
th of a full circle. Repeat the

scalar multiplication between the circles. The result is c1: In Exhibit 10

c1 = a1b0 + a0b1 + a3b2 + a2b3:
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a0

a1

a2

a3

b3

b2

b1

b0

Fig. 9. Computing the �rst element of circular convolution a~ b:

a1

a2

a3

a0

b3

b2

b1

b0

Fig. 10. Computing the second element of the circular convolution a~ b.

(4) Repeat this procedure to compute c2; : : : ; cn�1, each time giving the inner
circle 1

n
th turn anticlockwise.

How can one use the circular convolution for option pricing? If we write both
the option pay-o¤ and the pricing kernel in the clockwise direction and then
rotate the option pay-o¤ in the anticlockwise direction, we will obtain option
prices in the natural order from highest to lowest.

To be speci�c, let us go back to the binomial option pricing model. At maturity
the option can have four di¤erent values:

C(3) =
�
599:64 102:00 0:00 0:00

�
:

Let vector q contain the conditional one-period risk-neutral probabilities qu =
0:43523; qd = 0:56477. Since there are just two states over one period the
remaining entries will be padded by zeros:

q =
�
qu qd 0:00 0:00

�
:
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a)

599.64

0

102.0
0

0

0.5629

0000

0

0.4338

c)

0.5629

0000

0

0.4338599.64

102.0
0

0

0

d)

0.5629

0000

0

0.4338

599.64

102.0
0

0

0

b)

0.5629

0000

0

0.4338

599.64

102.0
0

0

0

Fig. 11. Option pricing on a circle. Option pay-o¤s and state prices written in
clockwise direction, the inner circle rotates anticlockwise, representing equation (24)
a) c0 = 599:64� 0:4338 + 102:00� 0:5629; b) c1 = 102:00� 0:4338 + 0� 0:5629;
c) c2 = 0� 0:4338 + 0� 0:5629; d) c3 =.0� 0:4338 + 599:64� 0:5629;

Finally, recall that the risk-free return is Rf = 1:0033. Thus to compute option
prices at time t = 2 we need to evaluate

c = C(3)~ rev(q=Rf):

This operation is depicted graphically in Exhibit 11, where the option pay-o¤s
C(3) are on the inner circle and the state prices q=Rf are on the outer circle,
both written in clockwise direction. Numerically we obtain

C(3)~ rev(q=Rf) =
�
317: 54 44:25 0 337:54

�
: (24)

Note that we only need the �rst three prices in (24). The last entry is mean-
ingless �it corresponds to the no-arbitrage price of the pay-o¤ [0 599.64].
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Option pricing on a circle.
Consider a binomial model where C(j) is the vector of option prices at date j =
0; 1; : : : ; N . Denote by q the vector containing the risk-neutral probabilities qu and
qd, padded by zeros to have the same dimension as C(N): By backward substitution,

C(N � 1)=C(N)~ rev(q)=Rf;
C(N � 2)=C(N)~ rev(q)~ rev(q)=R2f ;

C(j)=C(N)~
(N�j) timesz }| {

rev(q)~ rev(q)~ : : :~ rev(q) =Rjf ; (25)

The vectors C(j) computed in this manner have more entries than needed, the
useful j + 1 entries are at the top end of each vector.

Numerical results are reported in Exhibit 12, the relevant entries are high-
lighted and should be compared with those in Exhibit 8.

number of

low returns
C(0) C(1) C(2) C(3)

0 81.36 162.66 317.54 599.64

1 115.28 19.19 44.25 102.00

2 265.47 190.01 0.00 0.00

3 232.62 325.17 337.54 0.00
Table 12
Option prices obtained from circular pricing formula (25). The useful entries are in
bold.

1.8 Circular pricing via discrete Fourier transform

In this section we will reformulate the circular pricing formula (25) using the
discrete Fourier transform. Although we derive the Fourier pricing formula
mechanically, in part III we will spell out its more intuitive probabilistic in-
tepretation.

The discrete Fourier transform has one very useful property �it turns circular
convolutions into products:

F (a~ b)=
p
nF (a)F (b) ; (26)

F�1 (a~ b)=
p
nF�1 (a)F�1 (b) ; (27)

n=dimension of a; (28)

see Appendix for a proof. This can be used to a great advantage in pricing.
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Recall from the preceding section that

C0 = CN ~
N timesz }| {

rev(q)~ rev(q)~ : : :~ rev(q) =RNf ;

where N is the number of time periods to maturity. Now apply the inverse
transform F�1 to both sides, using property (27) on the right hand side

F�1 (C0) = F�1 (CN)�
�q
dimension of CNF�1 (rev(q)) =Rf

�N
: (29)

In a binomial model the dimension of CN is N + 1: Furthermore, recall from
(14) that F�1 (rev(q)) = F (q) and substitute this into (29)

F�1 (C0) = F�1 (CN)�
�p

N + 1F (q) =Rf
�N

:

Finally, apply the forward transform to both sides again and use (15) on the
left hand side:

C0 = F
�
F�1 (CN)�

�p
N + 1F (q) =Rf

�N�
:

Option pricing via discrete Fourier transform.
Consider a model with IID stock returns and constant interest rate, represented
by a recombining binomial tree with N periods and N + 1 trading dates. Let the
(N +1)-dimensional vector CN be the pay-o¤ of the option at expiry. Let q contain
the one-step risk-neutral probabilities as the �rst two entries, with the remaining
N �1 entries being zeros. Then the �rst element of (N +1)-dimensional vector C0;

C0 = F
�
F�1 (CN)�

�p
N + 1F (q) =Rf

�N�
; (30)

is the no-arbitrage price of the option at time 0: The role of the forward and inverse
transforms is symmetrical, that is we also have

C0 = F�1
�
F (CN)�

�p
N + 1F�1 (q) =Rf

�N�
: (31)

2 Fast Fourier Transform (FFT)

This section deals with the implementation of the pricing formula (30) on a
computer using fast DFT routines, known as FFTs. It is highly unlikely that
the reader will want to write his or her own DFT code, for this would be
counterproductive given the wealth and the level of specialization of ready-
made algorithms. The use of prepackaged algorithms saves time, but with little
documentation at hand implementing otherwise sound mathematical formula
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may not prove straightforward. This section provides guidelines that ensure
a trouble-free transition between the theoretical pricing formula (30) and a
computer code using a DFT routine of reader�s choice, with speci�c examples
given in GAUSS and MATLAB.

Two main issues arise in the use of (fast) DFT routines: 1) �nding out the
mathematical de�nition of a speci�c DFT routine, and 2) choosing the right
input length to make the computation fast. We now address these two issues
in turn.

(1) Every textbook, and indeed every computer language, de�nes the forward
and inverse transforms slightly di¤erently. Thus the �rst task of any user
is to �nd out how a given computer routine, call it dft, is related to the
theoretical transforms F and F�1 de�ned in (11) and (12). To do so, one
proceeds in two simple steps:
(a) In the �rst step one determines the normalization factor. De�ne a =

[1 0 0 0] and compute ~a = dft (a). If ~a0 = 0:25 then

either dft = F=
p
n or dft = F�1=

p
n;

else if ~a0 = 0:5 then

either dft = F or dft = F�1;

and if ~a0 = 1 then

either dft =
p
nF or dft =

p
nF�1:

(b) To ascertain whether one is dealing with a forward or an inverse
transform, one de�nes b = [0 1 0 0] and evaluates ~b = dft (b). If
the imaginary part of ~b1 is positive then dft is proportional to F ;
otherwise it is proportional to F�1. In the case of the lattice pricing
formulae (30) and (31) one will use two routines, say dft and dfti,
which are inverse to each other. In this instance it does not really
matter which of the two transforms is forward and which is inverse.
But there are other applications (see Section 3), where it is absolutely
crucial to know whether a given routine is proportional to F or F�1.
Example 1 In GAUSS the two DFT transforms are called dfft and
dffti, respectively, and they are related to F and F�1 as follows:

dfft(a)� F
�1 (a)p
n

;

dffti(a)�
p
nF (a) ;

where n is the dimension of vector a. Equation (30) therefore becomes

C0 = dffti
�
dfft (CN)� (dffti (b))N

�
: (32)

Suppose the vectors C_ N and b have already been de�ned in GAUSS.
To compute the option price at t = 0 we would use the following code:
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C_0 = dffti( dfft(C_N).*(dfft(b)^N) ); (33)
print ��no-arbitrage price at t=0 is �� C_0[1];

The �:��command stands for element-by-element multiplication.
The DFT algorithm is approximately three times faster than the

backward recursion in binomial model; the computational time for
both algorithms grows quadratically with the number of periods 1 ,
see Exhibit 13.

trading interval number of execution time in seconds

in minutes periods DFT backward recursion

60 504 0.15 0.4

30 1008 0.6 1.6

15 2016 2.3 6.4

5 6048 20.8 61.6

Pentium III 750MHz, 128Mb RAM, GAUSS
Table 13
Comparison of pricing speed in a binomial lattice between backward recursion and
discrete Fourier transform formula (30).

(2) A naive implementation of DFT algorithm with n-dimensional input re-
quires n2 complex multiplications (see example above). An e¢ cient im-
plementation of DFT, known as the fast Fourier transform (FFT), will
only require Kn lnn operations 2 , but one still has to choose n carefully
because the constant K can be very large for some choices of n. Some
FFT implementations automatically restrict the transform length to the
most suitable values of n (typically n = 2p or n = 2p3q5r); which is the
case in GAUSS. Others, such as MATLAB, will compute FFT of any
length; here it is particularly important for the user to choose n sensibly,
otherwise the FFT algorithm may turn out to be very slow indeed.
Example 2 The forward and inverse FFT in MATLAB are called fft
and ifft, respectively:

fft(a)�
p
nF�1 (a) (34)

ifft(a)� F (a)p
n
; (35)

1 GAUSS programes Binomial.gss and DFT.gss available from author�s website.
2 The fast Fourier transform does not appear in undergraduate textbooks on nu-
merical mathematics and the most useful references on the introductory level are
web based, see http://www.fftw.org/links.html, and in particular the online
manual Hey [1999]. An e¢ cient implementation of FFT for all transform lengths is
suggested in Frigo and Johnson [1998]; it is used in Matlab. E¢ cient implementation
of mixed 2; 3; 5-radix algorithm is due to Temperton [1992]; it is used in GAUSS.
Duhamel and Vetterli [1990] is an excellent survey of FFT algorithms.
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where n is the dimension of vector a. The option pricing equation (30)
therefore becomes

C0 = ifft
�
fft (CN)� ((N + 1)� ifft (b))N

�
;

which in terms of MATLAB code reads

C_0 = ifft( fft(C_N).*(((N+1)*ifft(b)).^N) ); (36)
sprintf �no-arbitrage price at t=0 is %0.2f� C_0(1);

The commands �.*�and �.^�stand for element-by-element multiplica-
tion and exponentiation, respectively.
There are many instances when FFT of length n1 is faster than FFT

of length n2 even though n1 > n2. This somewhat counterintuitive phe-
nomenon is illustrated in Exhibit 14.

n factorization execution time in seconds

499 979 499 979 27.2

1048 575 3� 52 � 11� 31� 41 5.2

1048 576 220 0.93

1080 000 263354 0.11

Pentium III 750MHz, 128Mb RAM, MATLAB
Table 14
Execution time of FFT algorithm for di¤erent input lengths n.

To understand why some transform lengths are more suitable than
others we need one piece of terminology and one fact: i) FFT algorithm
for length n = 2p is called radix-2 algorithm; ii) the higher the b the slower
the radix-b algorithm per output length. There is one notable exception:
radix-4 is faster than radix-2 by about 25%.
In practice, one uses transforms of size n = 2p3q5r. If the original vector

size is not of this form, then a su¢ cient number of zeros is added. Ideally,
q and r should be small compared to p because of the fact ii) above. The
advantage of using mixed-radix algorithms is twofold: a) more transform
lengths are available, which means one need not pad the input with too
many zeros; b) one can use the operation-saving prime factor algorithm 3 .
To illustrate the item a), with vector size 210 + 1 = 1025 the next

available size for radix-2 algorithm is n = 2048 = 211 but with mixed
2,3,5-radix algorithm one could use length n = 1080 = 23335 which is
nearly twice as small and consequently the Fourier transform evaluation
is twice as fast compared to radix-2 algorithm. To illustrate property
b), one should notice that highly composite lengths such as 1080000 =
263354 evaluate faster than simple powers of similar length such as 220 =
1048 576; see Exhibit 14. Transforms which are not of the length n =

3 The prime factor algorithm (PFA) works faster because the factors 2, 3 and 5
have no common divisors, see Temperton [1992].
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2p3q5r can take very long to compute, especially if n is a large prime,
again see Exhibit 14.
Example 3 MATLAB will allow the user to perform FFT of any length;
this is done using commands (34) and (35). However, as we have noted
above, it is eminently sensible to restrict transform lengths to n = 2p3q5r

with q and r small relative to p to obtain the best performance. MAT-
LAB provides function nextpow2 giving the next bigger power of 2. In
addition, MATLAB allows the user to specify the transform length by in-
cluding it as a second optional argument of fft and ifft. Hence a fast
implementation of (36) in MATLAB would read:

length = 2^nextpow2(N+1);

C_0 = ifft( fft(C_N,length).*((length*ifft(b,length)).^N) );

The padding of the original input C_N by zeros to the dimension length
is done automatically.
To �nd the nearest transform length of the form n = 2p3q5r one can

use the following code:

length = N+1;

while max(factor(length)) > 5;

length = length+1;

end;

Example 4 In GAUSS the fast Fourier forward and inverse transforms
are performed by functions fftn and ffti. These functions use Temper-
ton�s [1992] mixed 2,3,5-radix algorithm, and the padding of input vector
by zeros to the nearest available length n = 2p3q5r is done automatically.
If n is the input dimension the output dimension from fftn and ffti will
be nextn(n). In terms of GAUSS code one writes similarly as in (33):

C_0 = ffti( fftn(C_N).*(ffti(b)^N) );

One can increase the speed further by choosing a composite length n =
2p3q5r where q and r are non-zero but small relative to p: The optimal
length is given by GAUSS function optn (N + 1) ; and the padding by
zeros to this dimension must be performed by the user.

The FFT implementation of binomial pricing algorithm 4 has a blistering
speed compared to the DFT, see Exhibit 15.

Because it is so fast one can explore higher trading frequencies and see that
the Black�Scholes formula really does describe the limiting value, see Exhibit
16. Note that the Black�Scholes formula itself is still about 10 000 times faster
than the FFT algorithm.

4 GAUSS code FFT.gss available from author�s website.
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trading interval number of execution time in seconds

in minutes periods DFT FFT

30 1008 0.6 0.003

15 2016 2.3 0.006

5 6048 20.8 0.022

1 30240 510 0.27

Pentium III 750MHz, 128Mb RAM, GAUSS
Table 15
Speed of binomial pricing using DFT and FFT algorithms.

Black�Scholes

4t (seconds) 60 10 1 0

Option price 75.93398 75.93284 75.93286 75.93288

Option delta 0.31668534 0.31668346 0.31668334 0.31668331
Table 16
Option price and option delta in continuous-time limit and its binomial approxima-
tion.

3 Further applications of FFT in �nance

Practical applications of DFT (FFT) in modern �nance go beyond the bi-
nomial model, but the essential structure of the pricing formulae is that of
equation (30). To motivate the passage to continuous time, let us rewrite the
DFT pricing equation (30) to take explicit account of the maturity date T
and the rebalancing frequency 4t; with N4t = T=4t trading periods and
instantaneous risk-free rate r:

C0=F
�
F�1 (CT;4t)�

�q
N4t + 1F (q4t) e�r4t

�N4t�
=e�rTF

�
F�1 (CT;4t)�

�q
N4t + 1F (q4t)

�N4t�
: (37)

The quantity
�q

N4t + 1F (q4t)
�N4t

is known as the (risk-neutral) character-
istic function of log stock price, and in practice one is mainly interested in
models where the continuous-time limit of (37) is available in closed form.
This is the case in the class of exponential Lévy models with a¢ ne stochastic
volatility process, discussed in Carr and Wu [2004]. This class contains a large
number of popular models allowing for excess kurtosis, stochastic volatility
and leverage e¤ects. It includes, among others, the stochastic volatility mod-
els of Heston [1993], Du¢ e et al. [2000] and all exponential Lévy models (see,
for example, Madan and Seneta [1990] and Eberlein et al. [1998]). For an
exhaustive characterization of a¢ ne processes see Du¢ e et al. [2003].
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In the continuous-time limit the discrete Fourier transform is replaced by
the (continuous) Fourier transform: that is for a contingent claim with payo¤
CT = f(lnST ) we wish to �nd coe¢ cients  (v) such that

f(x) =
Z �+i1

��i1
 (v)evxdv (38)

for some real constant � 5 . The recipe for obtaining the coe¢ cients  (v) is
known �it is given by the inverse Fourier transform 6 :

 (v) =
1

2�

Z +1

�1
f(x)e�vxdx: (39)

For example, the payo¤ of a European call option with strike price ek corre-
sponds to f(x) = (ex � ek)+ whereby simple integration yields

 (v) =
e(1�v)k

2�v(v � 1) for Re v > 1:

Substituting for CT from (38) the risk-neutral pricing formula reads

C0(lnS0)= e
�rTEQ [CT (lnST )]

= e�rTEQ
"Z �+i1

��i1
 (v)ev lnST dv

#

=e�rT
Z �+i1

��i1
 (v)ev lnS0EQ

h
ev lnST =S0

i
dv; (40)

where �Q(�iv) :=EQ[ev lnST =S0 ] is the risk-neutral characteristic function of
log stock return. It is now clear that the continuous-time pricing formula (40)
is a direct analogy of its discrete-time counterpart (37), whereby instead of

the discrete characteristic function
�q

N4t + 1F (q4t)
�N4t

we use the continu-

ous characteristic function EQ
h
eiv lnST

i
; instead of discrete Fourier coe¢ cients

F�1 (CT;4t) we use the continuous coe¢ cients  ; and instead of summation
we use integration.

There is, nevertheless, one major di¤erence between (37) and (40): whereas
the former spends signi�cant amount of time computing the characteristic
function of log returns and Fourier coe¢ cients of the option, the latter has both
quantities available in closed form. This makes the continuous-time pricing
formula (40) even faster than the accelerated binomial formula (30).

5 For the Fourier transform to work CT (lnST )S
��
T must be integrable as a function

of lnST : There are derivative securities, such as call and put options, where one
needs to take � 6= 0 to insure integrability (� > 1 for the call, � > 0 for the put).
6 Some unrestrictive technical conditions must hold to make sure that for  given
in (39) equation (38) holds for all values of lnST , see Chandrasekharan [1989].

21



Example 5 In the celebrated Heston [1993] model,

d�2t =(a� b�2t )dt+ ~��tdB
Q
1

d lnSt=

 
r � �2t

2

!
dt+ �tdB

Q
2 ;

we have

�Q(�iv)=EQ
h
ev ln(ST =S0)

i
= e(v)+�(v)�

2
0 ;

(v)= rTv +
a

~�2

 
b� �~�v � 2 ln

 
1� c2(v)e

c1(v)T

1� c2(v)

!!
;

�(v)=
(b� �~�v + c1(v))

�
1� ec1(v)T

�
~�2 (1� c2(v)ec1(v)T )

;

c1(v)=
q
(b� �~�v)2 � ~�2 (v + v2);

c2(v)=
b� �~�v + c1(v)

b� �~�v � c1(v)
;

where � = Corr(dBQ
1 ; dB

Q
2 ).

Option pricing therefore boils down to evaluation of integrals of the type

C0(lnS0)=S0e
�rT

Z �+i1

��i1

e(v�1)(lnS0�k)

2�v(v � 1) �
Q(�iv)dv

=2S0e
�rT

Z �+i1

�+i0
Re

 
e(v�1)(lnS0�k)

2�v(v � 1) �
Q(�iv)

!
dv; (41)

where both  (v) and �Q(v) are known. To evaluate (41) one truncates the
integral at a high value of Im v and then uses a numerical quadrature to
approximate it by a sum, see Lee [2004] for a detailed exposition. This yields
an expression of the type

C0(lnS0) � 2Re
0@S0e�rT n�1X

j=0

wj
e(vj�1)(lnS0�k)

2�vj(vj � 1)
�Q(�ivj)

1A ; (42)

where the integration weights wj and abscissas vj depend on the quadrature
rule. It is particularly convenient to use Newton-Cotes rules, which employ
equidistantly spaced abscissas. For example, a trapezoidal rule yields

vj = � + ij4v; (43)
Im vmax=(n� 1)4v;

w0=wn =
1

2
4v;

w1=w2 = ::: = wn�1 = 4v:
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In conclusion, if the characteristic function of log returns is known, one needs
to evaluate a single sum (42) to �nd the option price. Consequently, there is
no need to use FFT if one wishes to evaluate the option price for one �xed
log strike k.

3.1 FFT option pricing with multiple strikes

The situation is very di¤erent if we want to evaluate the option price (42)
for many di¤erent strikes simultaneously. Let us consider m = 121 values
of moneyness �l = lnS0 � kl ranging from �30% to 30% with increment
4� = 0:5%

�l=�max � l4�; (44)
�max=0:30; l = 0; : : : ;m� 1: (45)

The idea of using FFT in this context is due to Carr and Madan [1999],
and it has recently been improved upon by using so-called z-transform, see
Chourdakis [2004]:

De�nition 6 The number

a0z
0 + a1z

�1 + : : :+ an�1z
�(n�1)

is called the z-transform of sequence a: The discrete Fourier transform of
sequence a is obtained as a special case of z-transform with n speci�c values
of z:

zl = e
�i 2�

n
l; l = 0; 1; : : : ; n� 1.

Carr and Madan have noted that with equidistantly spaced abscissas (43) one
can write the option pricing equation (42) for di¤erent strike values (44, 45)
as a z-transform with zl = e�i4v4�l:

C0l=2S0e
(��1)�l�rT Re

n�1X
k=0

ei4v4�klaj; (46)

aj =wj
eij4v�max�Q(�ivj)
2�vj(vj � 1)

:

Setting

4v4� = 2�

n
(47)

Carr and Madan obtain a discrete Fourier transform in (46). Chourdakis [2004]
points out that there is a fast algorithm for the z-transform which works even
when 4v4� 6= 2�

n
and m 6= n:
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Chirp-z transform
Chirp-z transform is an e¢ cient algorithm for evaluating the z-transform for m
di¤erent points z of the form

zk = Awk; k = 0; 1; : : : ;m� 1;

where A and w are arbitrary complex numbers. The chirp-z transform works by
rephrasing the original z-transform as a circular convolution and then computing
this convolution by means of three FFTs as shown in Part I, Section �Circular
pricing via DFT�. For more details see Bluestein [1968], Rabiner et al. [1969], and
Bailey and Swartztrauber [1991]. Compared to the standard n-long FFT the chirp-z
algorithm is approximately 6(lnm+ 1)= lnn times slower, for m � n:
The MATLAB command for chirp-z transform of n-long input sequence a reads

czt(a;m;w;A).

A GAUSS procedure czt.gss is available from author�s website.

The decision whether to use the simple summation (42) m times, or whether
to apply the chirp-z transform (46) depends on the desired number of strikes
m. The speed of the former relative to the latter is roughly m=6=(log2m+ 1)
times higher. As a rough guide, for m � 36 the simple summation (42) is as
fast as the chirp-z formula (46), for m = 8 it is three times faster, and for
m = 150 it is three times slower.

One also has to decide whether to force the FFT spacing of strike values (47);
this is done by boosting n while keeping4v �xed. Suppose that vmax is chosen
su¢ ciently high to achieve desired accuracy for a single strike. As a rule of
thumb, if the initial spacing 2�

Im vmax
is six times coarser that the desired spacing

of log strikes 4� one should use the chirp-z transform, otherwise it will be
faster to increase n to satisfy (47) and use the short FFT algorithm described
in Bailey and Schwarztrauber [2004, pp. 392-393].

The value of Im vmax tends to be higher for short maturities, and for para-
metric distributions with heavy tails, such as variance gamma or generalized
hyperbolic. In such circumstances FFT formula (46)-(47) is preferable. Non-
parametric empirical equity return distributions have characterisitic functions
that decay faster, leading to lower values of Im vmax, leaving the chirp-z trans-
form as the best option.

4 Conclusions

The present paper makes three contributions. It explains the working of the
discrete Fourier transform in a non-technical language in the familiar bino-
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mial option pricing model. Secondly, it highlights the common perils in the
computer implementation of fast DFT algorithms. Thirdly, it explains how
the binomial pricing formula relates to more complex continuous-time models
which allow for excess kurtosis, stochastic volatility and leverage e¤ects and
which are used routinely in the �nance industry.

The present paper does not give an exhaustive account of DFT in Finance.
One can quite easily extend the Fourier pricing formula from binomial lat-
tice of Part I to multinomial lattices, see µCerný [2004, Chapter 12]. Further
applications of FFT appear in Albanese et al [2004], Andreas et al. [2002], Ben-
hamou [2002], Chiarella and El-Hassan [1997], Dempster and Hong [2002], and
Rebonato and Cooper [1998]. For the most up-to-date developments in option
pricing using (continuous) Fourier transform see Carr and Wu [2004], and for
evalution of hedging errors refer to µCerný [2003] and Hubalek et al [2004].

Notes

I would like to thank David Miles and Jonathan Wainwright for suggesting im-
portant clari�cations in an early draft. I am grateful to Peter Carr, Sanjiv Das
and Stephen Figlewski, who provided helpful comments and pointers to references.
This is an abridged and adapted version of of µCerný [2004, Chapter 7]. GAUSS is
a trademark of Aptech Systems, Inc.; MATLAB is a registered trademark of The
MathWorks, Inc.

5 Appendix

5.1 Inverse Discrete Fourier Transform

To show F�1 (F (a)) = a we need to prove that for b = F (a) de�ned in (11)
we have F�1 (b) = a: Denote ~a = F�1 (b) and express ~a from de�nition (12)

~al =
1p
n

n�1X
k=0

bkz
�kl
n :

Now substitute for bk from (11)

~al =
1

n

n�1X
k=0

0@n�1X
j=0

ajz
jk
n

1A z�kln ;
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move z�kln inside the inner summation

~al =
1

n

n�1X
k=0

0@n�1X
j=0

ajz
k(j�l)
n

1A ;
change the order of summation

~al =
1

n

n�1X
j=0

 
n�1X
k=0

ajz
k(j�l)
n

!
;

and take aj in front of the inner sum (it does not depend on k)

~al =
1

n

n�1X
j=0

aj

 
n�1X
k=0

�
zj�ln

�k!
:

By virtue of (8)-(9) the inner sum
Pn�1
k=0

�
zj�ln

�k
equals 0 for j 6= l and for

j = l it equals n. Consequently

~al =
1

n

n�1X
j=0

aj

 
n�1X
k=0

�
zj�ln

�k!
= al

for all l which proves that F�1 (F (a)) = a:

5.2 Discrete Fourier Transform of Convolutions

We wish to show F(a~b) = pnF(a)F(b): Let us begin by computing c = a~b:
From the de�nition (23)

cj =
n�1X
k=0

aj�kbk: (48)

By d denote the Fourier transform of c; d = F(a ~ b) and use the de�nition
(11) to evaluate dl

dl =
1p
n

n�1X
j=0

cjz
jl
n :

Now substitute for cj from (48),

dl =
1p
n

n�1X
j=0

 
n�1X
k=0

aj�kbk

!
zjln ;

move zjl inside the inner bracket, writing it as a product zjl = z(j�k)lzkl;

dl =
1p
n

n�1X
j=0

n�1X
k=0

aj�kz
(j�k)lbkz

kl;
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change the order of summation,

dl =
1p
n

n�1X
k=0

n�1X
j=0

aj�kz
(j�k)lbkz

kl;

and take bkzkl in front of the inner summation (it does not depend on j),

dl =
1p
n

n�1X
k=0

bkz
kl

0@n�1X
j=0

aj�kz
(j�k)l

1A : (49)

It is easy to realize that the inner sum does not depend on k, because it always
adds the same n elements; only the order in which these elements are added
depends on k (we are completing one full turn around the circle, starting at
kth spoke). Hence we have:

n�1X
j=0

aj�kz
(j�k)l =

n�1X
j=0

ajz
jl for all k;

and substituting this into (49) we �nally obtain

dl =
p
n

 
1p
n

n�1X
k=0

bkz
kl

!
| {z }

~bl

0@ 1p
n

n�1X
j=0

ajz
jl

1A
| {z }

~al

:

From the de�nition of the forward transform (11) ~a = F(a) and ~b = F(b);
which completes the proof.
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