

Expert Advisor
Programming

Creating Automated Trading Systems
 in MQL for MetaTrader 4

Andrew R. Young

Edgehill Publishing

SECOND PRINTING

Copyright © 2010, Andrew R. Young. All rights reserved.

Published by Edgehill Publishing, Nashville, TN.

Disclaimer of Warranty: While we have strived to ensure that the material in this book is accurate, the
publisher bears no responsibility for the accuracy or completeness of this book, and specifically
disclaims all implied warranties of of merchantability or fitness for a particular purpose. Neither the
author nor publisher shall be liable for any loss of profit or any other non-commercial or commercial
damages, including but not limited to consequential, incidental, special, or other damages.

"MetaTrader 4," "MQL" and "expert advisor" are trademarks of MetaQuotes Software Corp.

This book and it's publisher is not in any way endorsed by or affiliated with MetaQuotes Software
Corp.

For more information on this book, including updates, news and new editions, please visit our web
site at http://www.expertadvisorbook.com/.

ISBN: 978-0-9826459-0-1

Table of Contents

Introduction 1
About This Book 2
A Note About MQL 5 2
Conventions Used In This Book 3

An Introduction to MQL 4
Introduction to MetaEditor 4
Basic Concepts 7
Layout of an MQ4 File 14

Order Placement 20
Bid, Ask & Spread 20
Order Types 20
The Order Placement Process 21
OrderSend() 22
Calculating Stop Loss & Take Profit 25
Retrieving Order Information 32
Closing Orders 34
A Simple Expert Advisor 36

Advanced Order Placement 42
Order Modification 42
Verifying Stops and Pending Order Prices 45
Calculating Lot Size 49
Other Considerations 52
Putting It All Together 57

Working with Functions 64
Add Stop Loss and Take Profit 73
Using Include Files 74
Using Libraries 74
A Simple Expert Advisor (with Functions) 75

Order Management 80
The Order Loop 80
Order Counting 82
Trailing Stops 87
Updating the Expert Advisor 92

Order Conditions and Indicators 94
Price Data 94
Indicators 95
Indicator Constants 102
Evaluating Trade Conditions 103
Comparing Indicator Values Across Bars 108

Working with Time and Date 112
Datetime Variables 112
Date and Time Functions 114
Creating A Simple Timer 115
Execute On Bar Open 117

Tips and Tricks 122
Escape Characters 122
Using Chart Comments 122
Check Settings 123
Demo or Account Limitations 124
MessageBox() 125
Email Alerts 127
Retry on Error 128
Using Order Comments As an Identifier 131
Margin Check 132
Spread Check 132
Multiple Orders 133
Global Variables 136
Check Order Profit 137
Martingale 138
Debugging Your Expert Advisor 141

Custom Indicators and Scripts 146
Buffers 146
Creating A Custom Indicator 146
Scripts 152

Appendix A 154
Simple Expert Advisor 154
Simple Expert Advisor with Pending Orders 156

Appendix B 160
Advanced Expert Advisor 160
Advanced Expert Advisor with Pending Orders 166

Appendix C 172
Expert Advisor with Functions 172
Expert Advisor with Functions – Pending Orders 175

Appendix D 180
Include File 180

Appendix E 198
Custom Indicator 198

Introduction

Introduction

The foreign exchange market has rapidly become one of the most popular markets to trade in recent
years. Because of its round-the-clock hours, high leverage and low margin requirements, thousands
of ordinary people have become active traders.

MetaTrader 4 (commonly abbreviated as MT4) has become one of the most popular trading platforms
for forex. Developed by MetaQuotes Software Corporation, MetaTrader is offered by hundreds of
forex brokers worldwide, including big names such as GAIN Capital, FXCM, Alpari and Interbank FX.

MetaTrader's popularity stems from the fact that it's free, broker supported, and includes many useful
technical analysis tools. But probably the biggest reason for MetaTrader's success is the powerful
MQL programming language.

MQL has made it possible for traders to program their own custom indicators and automated trading
strategies without paying a dime for software. Similar trading packages for equities and futures can
cost over $1000. A worldwide community of traders and programmers has developed, offering
hundreds of free and commercial expert advisors and indicators, as well as programming services and
advice.

The similarity of MQL to languages such as C makes it relatively easy for experienced programmers to
pick up, and the language itself is well documented. But learning how to effectively program trading
strategies in MQL is a process of trial and error.

MQL is a relatively low level language, and as such, it is necessary for the programmer to create
custom procedures to handle many common trading functions. Coding something as simple as a
trailing stop, for example, can be daunting for the new MQL programmer.

There are many factors that must be taken into consideration when programming a robust automated
trading strategy, and MetaTrader itself has many idiosyncrasies that the programmer needs to be
aware of. It can take dozens of hours of troubleshooting and practice to learn the techniques
necessary to program expert advisors.

This book hopes to shorten the learning curve for new expert advisor programmers. Here I will
present many of the tips and tricks I've learned in the hundreds of hours I've spent coding expert
advisors over the last few years.

1

EXPERT ADVISOR PROGRAMMING

About This Book

By the time you finish this book, you should possess the knowledge necessary to create your own
robust automated trading strategies in MQL, including common trading features such as trailing
stops, money management and much more. You will also learn how to construct a simple indicator,
using built-in indicator functions.

This book assumes that the reader is knowledgeable about forex trading and technical analysis in
general. The reader should already be proficient in using expert advisors and indicators in
MetaTrader. While no prior programming knowledge is assumed, the reader will benefit from having
some basic programming skills, and familiarity with concepts such as variables, control structures,
functions and modern programming language syntax.

We will be diving right into coding solutions to specific problems. Every attempt is made to explain
new concepts as they are introduced, however this book is not intended as a language reference.
The MQL reference at http://docs.mql4.com does an excellent job at that. The MQL reference is
also built into the MetaEditor IDE that comes with MetaTrader.

While we will attempt to touch on everything that is necessary and relevant to expert advisor
development, we will not be able to cover every element of the MQL language. There are many
specialized functions in MQL that are not generally used in expert advisor programing. In particular,
we will not be discussing array functions, file manipulation, objects, windows, and most string or
conversion functions.

The official MQL4 website at http://www.mql4.com has a free book on MQL programming that may
serve as a useful and complementary resource. There are many informative articles that cover basic
and advanced programming concepts in MQL, a code library with additional indicators and examples,
and a forum where you can ask for help with your programming questions.

The code examples and techniques I teach in this book are what has worked for me. I try to keep
things as simple as possible, without sacrificing functionality. That said, there is always more than
one way to accomplish something, and this is especially true in programming. There are equally valid
methods of achieving the same result, and it is possible you may discover a better way of doing
something.

Many of the source code examples in this book, as well as the full appendixes, are available for
download at the book's official website, http://www.expertadvisorbook.com/. This way, you can
save yourself the time of typing in all of the examples yourself. Feel free to modify the source code
for your own needs.

2

Introduction

A Note About MQL 5

As of this writing, the next version of the MetaTrader platform is in open beta testing. There will be
some significant changes to the newest version of MQL. MetaQuotes has reported that MetaTrader 5
will not be backward compatible with MetaTrader 4 programs. Thus, any programs written in MQL 4
will need to be rewritten or updated for MQL 5.

This book deals with MetaTrader 4, as it is the version I have been programming in for the last few
years and is currently the version that is being used by Forex brokers. Since the release of
MetaTrader 4 in 2005, Forex trading has exploded in popularity. MetaTrader has become the most
popular forex trading platform, and there have been thousands of trading strategies and indicators
written in MQL 4.

I predict the migration to MetaTrader 5 will be a gradual one. Brokers will continue to support
MetaTrader 4 for some time, so the programs you write in MQL 4 will not become obsolete
immediately. The concepts in this book will remain the same, although some of the functions and
syntax will change. The challenge will be to learn the new MQL 5 features and incorporate it into your
existing code.

A second edition of this book will be released sometime after the final release of MetaTrader 5. For
those who have purchased this book, the updated source code and an MQL4 to MQL5 guide will be
available at our website, http://www.expertadvisorbook.com/.

Conventions Used In This Book

MQL language elements, source code examples, and file and URL locations will be displayed in a
fixed-width font. A larger bold font will be used for inline text. Blocks of source code will be
indented. Any bold text appearing in an indented source code block indicates code that has been
updated or changed from a previous example.

Source code block
Updated source code

Words in italics indicate a new concept that is being introduced or defined. References to sections
and topics in the MQL Reference will be displayed in italics. References to elements of the MetaTrader
4 interface, including windows, dialogs, buttons or menu items, will also be displayed in italics.

3

EXPERT ADVISOR PROGRAMMING

Chapter 1
An Introduction to MQL

Introduction to MetaEditor

What is an Expert Advisor?

An expert advisor is an automated trading program written in MQL. Expert advisors (commonly
abbreviated as EA) can place, modify and close orders according to a trading system algorithm. EA's
generally use indicators to generate trading signals. These indicators can be the ones that come with
MetaTrader, or they can be custom indicators.

An indicator is a technical analysis tool that calculates price data to give an interpretation of market
activity. An indicator draws lines or objects on the chart. Indicators cannot place, modify or close
orders. Examples of indicators include the moving average and stochastics.

A script is a simplified expert advisor that performs a single task, such as placing a pending order or
closing all orders on a chart. A few useful scripts are included with MetaTrader.

File Formats

Files with the .mq4 extension are source code files. These are the files we edit in MetaEditor. When
an .mq4 file is compiled, an .ex4 file is produced.

Files with the .ex4 extension are executable files. These are the files we run in MetaTrader. These
files cannot be opened in MetaEditor. If you only have the .ex4 file for an EA or indicator, the icon
next to the file name in MetaTrader's Navigator window will be grayed out.

Files with the .mqh extension are include files. These files contain user-created functions that are
referenced in an .mq4 file. During compilation, the compiler "includes" the contents of the .mqh file in
the .ex4 file. We'll learn more about include files later.

The .mqt extension is used for template files. While these files can be opened in MetaTrader, the file
type is not associated with the program in Windows. Templates are used to create new files using the
Expert Advisor Wizard in MetaEditor.

4

An Introduction to MQL

You can create your own templates if you wish, but we will not be covering template creation in this
book. The MetaTrader documentation will tell you all you need to know about creating templates.

Indicators, expert advisors, libraries and scripts all share the .mq4 extension. The only way to tell
them apart is either by their save location, or by opening the file and examining them. By the time
you finish this book, you should be able to identify the difference between program types just by
looking at the source code.

File Locations

All MetaEditor files are stored inside the experts folder. The \experts folder is contained in the
MetaTrader installation directory, which is in C:\Program Files\. If your broker is Interbank FX, for
example, the MT4 installation folder would be C:\Program Files\Interbank FX Trader 4\.

The \experts folder contains the source code and executable files for the expert advisors. Using the
above example, the \experts folder would be located at C:\Program Files\Interbank FX Trader
4\experts\.

There are numerous folders inside the \experts folder that contain other types of source code and
executable files. Here's a list of the save locations for all file types:

• \experts\indicators – Source code and executable files for your indicators are stored
here.

• \experts\include – Source code include files with the .mqh extension are stored here.

• \experts\libraries – Function libraries and DLLs are stored here.

• \experts\scripts – Source code and executable files for scripts are stored here.

• \experts\templates – Templates for source code files are stored here.

There are a few other folders inside the experts folder that you'll want to be aware of too:

• \experts\logs – Activity logs for your expert advisors are stored here. These will be useful
for debugging your expert advisors.

• \experts\presets – Expert advisor settings that are saved or loaded from MetaTrader's
Properties dialog are stored here.

• \experts\files – Any files used for input or output must be stored here.

5

EXPERT ADVISOR PROGRAMMING

MetaEditor

MetaEditor is an Integrated Development Environment (IDE) for MQL that comes packaged with
MetaTrader. It includes useful reference, search and auto-complete tools that makes coding in MQL a
lot easier.

The Editor window allows you to have multiple files open at once. You can minimize, maximize and
tab between several open windows. The Navigator window offers useful file-browsing and reference
features. The Toolbox window displays help contents, compilation errors, file search results, and
online access to articles and files at MQL4.com.

One of the most useful editing features is the Assistant. Simply type the first few characters of an
MQL function, operator or other language element, and a drop-down list will appear. Press Enter to
accept the highlighted suggestion and auto-complete the phrase.

Fig. 1.1 – The MetaEditor interface. Clockwise from top left: Editor window, Navigator window, and Toolbox window.

6

An Introduction to MQL

The Files tab in the Navigator window is a simple file browser that allows you to open and edit any of
the MQL files in your \experts folder. The Dictionary tab features a built-in MQL reference, while the
Search tab is a search feature for the MQL reference.

The built-in MQL reference and the context-sensitive
help will save you a lot of time when coding. If you
need help remembering the syntax of a particular
language element, select or place the text cursor on
the element in the editor window. Press F1 on your
keyboard and the help topic will appear in the
Toolbox window.

The toolbar in MetaEditor features the standard
complement of file and editing functions. The
Navigator and Toolbox windows can be shown or
hidden using their respective buttons on the toolbar.

The Compile button compiles the current file in the editor. If there are
any compilation errors, they will be shown in the Toolbox window. The
Terminal button opens the trading terminal for testing.

Basic Concepts

We're going to review some basic programming concepts that will make the rest of this book easier
to understand for new programmers. If you're an experienced programmer, feel free to skip ahead to
the next section, Layout of an MQL File.

Syntax

If you're familiar with programming in languages such as C++, PHP or one of the many languages
whose syntax is derived from C, you'll be very comfortable programming in MQL. If your previous
programming experience is in a language such as Visual Basic, then you may need to make a few
adjustments.

In MQL, every statement is terminated with a semicolon. This is called an expression. An expression
can span multiple lines, but there must be a semicolon at the end.

double LastHigh = High[1];

string MultiLine = StringConcatenate("This is a multi-line statement. ",
"For clarity, we will indent multiple lines in this book");

7

Fig. 1.2 – MetaEditor's Assistant
auto complete feature.

EXPERT ADVISOR PROGRAMMING

If you're new to programing, or accustomed to programming in a language that does not terminate
expressions with a semicolon, you'll need to make sure you're placing the semicolon at the end of
every statement. Not terminating lines with a semicolon is a common newbie mistake.

There are a few exceptions to this: Compound operators do not need a semi-colon. A compound
operator is a block of code that contains multiple expressions within braces {}. Examples of
compound operators include control operators (if, switch), cycle operators (for, while) and
function declarations.

if(Compound == true)
{

Print("This is a compound expression");
}

Note that there is no semicolon after the initial if operator, nor is there a semicolon after the closing
brace. There is a semicolon after the Print() function, however. There can be one, or multiple
expressions inside the braces. Each must end with a semicolon.

Comments

Comments are useful for documenting your code, as well as for temporarily removing code while
testing and debugging. You can comment out a single line with two forward slashes:

// This is a comment

A multi-line comment begins with /* and ends with */. A multi-line comment can span any number
of lines, and everything between /* and */ is commented out.

/* This is a comment block
Everything here is commented out */

Identifiers

Identifiers are names given to variables and custom functions. An identifier can be any combination
of numbers, letters, and the underscore character (_). Identifiers can be up to 31 characters in
length.

You'll want your identifiers to be descriptive of their function, but be sure your identifier doesn't
match an MQL language element (also called a reserved word). Here's an example of a variable
identifier and a custom function identifier. The identifier is in italics:

8

An Introduction to MQL

double StopLoss;
int Order_Count()

Identifiers in MQL are case-sensitive. This means that StopLoss and stoploss are different
variables! This is another common newbie mistake, so check those identifier names!

Variables

A variable is the basic storage unit of any programming language. Variables hold data necessary for
our program to function, such as prices, settings and indicator values.

Variables must be declared before they are used. To declare a variable, you specify it's data type, an
identifier, and optionally a default value. If you declare a variable more than once, or not at all, you'll
get a compilation error.

The data type specifies the type of information the variable holds, whether it be a number, a text
string, a date or a color. Here are the data types in MQL:

• int – A integer (whole number) such as 0, 3, or -5. Any number assigned to an integer
variable is rounded up to the next whole number.

• double – A fractional number such as 1.5765, 0.03 or -2.376. Use these for price data, or in
mathematical expressions involving division.

• string – A text string such as "The quick brown fox jumped over the lazy dog".
Strings must be surrounded by double quotes.

• boolean – A true/false value. Can also be represented as 1 (true) or 0 (false). Use these
anytime you need to evaluate an binary, or on/off condition.

• datetime – A time and date value such as 2009.01.01 00:00. Internally, a datetime
variable is represented as the number of seconds passed since January 1, 1970.

• color – A constant representing a color, such as Red or DarkSlateBlue. These are generally
used for changing indicator or object colors.

Here's an example of a variable declaration. This is an integer variable, with the identifier
MyVariable and a default value of 1.

int MyVariable = 1;

9

EXPERT ADVISOR PROGRAMMING

Once a variable has been declared, you can change its value by assigning a new value to it. Here's an
example where we assign the number 5 to MyVariable:

MyVariable = 5;

You can also assign the value of one variable to another variable:

int YourVariable = 2;
MyVariable = YourVariable;
// MyVariable is 2

The assigned variable should be of the same data type. If a double is assigned to an integer variable,
for example, the double will be rounded to the nearest whole number. This may lead to an
undesirable result.

Constants

Just like its name suggests, a constant is a data value that never changes. For example, the number
5 is an integer constant, the letter 'A' is a character constant, and 2009.01.01 is a datetime constant
for January 1, 2009.

MQL has a wide variety of standard constants for things like price data, chart periods, colors and
trade operations. For example PERIOD_H1 is a constant for the H1 chart time frame, OP_BUY refers to
a buy market order, and Red is a color constant for the color red.

You can even create your own constants using the #define preprocessor directive. We'll get to that
shortly. You can learn more about MQL's standard constants in the Standard Constants section of the
MQL Reference.

Functions

Functions are the building blocks of modern programming languages. A function is a block of code
that is designed to carry out a certain task, such as placing an order or calculating a stop loss. MQL
has dozens of built-in functions for everything from technical indicators to order placement.

Functions are designed to be reused over and over again. Learning how to create functions for
common trading tasks is essential to productive programming. We will work on creating reusable
functions for many of the tasks that we will learn in this book.

10

An Introduction to MQL

Let's start with a simple function called PipPoint(), that calculates the number of decimal points in
the current pair, and automatically adjusts for 3 and 5 digit brokers so that the result is always equal
to one pip. For Yen pairs (2 or 3 digits), the function returns 0.01. For all other pairs (4 and 5 digits),
the function returns 0.0001. Here's how we would call the function from code:

double UsePoint;
UsePoint = PipPoint();

We declare a variable of type double named UsePoint. Then we call the PipPoint() function and
assign the result to UsePoint. Now we can use the value stored in UsePoint to calculate a stop loss,
for example.

Here is the code for the PipPoint() function:

double PipPoint()
{

if(Digits == 2 || Digits == 3) double UsePoint = 0.01;
else if(Digits == 4 || Digits == 5) UsePoint = 0.0001;
return(UsePoint);

}

The first line is our function declaration. Like variables, function declarations have a data type and an
identifier. Functions use the same data types as variables do. The data type is dependent on the type
of data the function returns. Since this function returns a fractional number, we use the double data
type.

The body of the function is contained within the brackets {}. We have an if-else statement that
evaluates the number of digits after the decimal place, and assigns the appropriate value to the
UsePoint variable. Following that, we have the return operator, which returns the value of
UsePoint to the calling function.

There is a special data type for functions that do not return a value. The void data type is used for
functions that carry out a specific task, but do not need to return a value to the calling function. Void
functions do not require a return operator in the body of the function.

Let's consider a simple function for placing a buy order. This function has arguments that need to be
passed to the function. This function will place a buy market order on the current symbol with the
specified lot size, stop loss and take profit.

11

EXPERT ADVISOR PROGRAMMING

int OpenBuyOrder(double LotSize, double StopLoss, double TakeProfit)
{
 int Ticket = OrderSend(Symbol(),OP_BUY,LotSize,Ask,StopLoss,TakeProfit);

return(Ticket);
}

This function has three arguments, LotSize, StopLoss and TakeProfit. Arguments are variables
that are used only within the function. Their value is assigned by the calling function. Here's how we
would call this function in code using constants:

OpenBuyOrder(2, 1.5550, 1.6050);

This will place a buy order of 2 lots, with a stop loss of 1.5550 and a take profit of 1.6050. Here's
another example using variables. We'll assume that the variables UseLotSize, BuyStopLoss and
BuyTakeProfit have the appropriate values assigned:

int GetTicket = OpenBuyOrder(UseLotSize,BuyStopLoss,BuyTakeProfit);

In this example, we are assigning the return value of OpenBuyOrder() to the variable GetTicket,
which the ticket number of the order we just placed. Assigning the output of a function to a variable
is optional. In this case, it is only necessary if you plan to do further processing using the ticket
number of the placed order.

Arguments can have default values, which means that if a parameter is not explicitly passed to the
function, the argument will take the default value. Default value arguments will always be at the end
of the argument list. Here is an example of a function with several default values:

int DefaultValFunc(int Ticket, double Price, int Number = 0, string Comment = NULL)

This function has two arguments with default values, Number and Comment, with default values of 0
and NULL respectively. If we want to use the default values for both Number and Comment, we simply
omit those arguments when calling the function:

DefaultValFunc(TicketNum,UsePrice);

Note that we only specified the first two arguments. Number and Comment use the default values of 0
and NULL. If we want to specify a value for Number, but not for Comment, we simply omit the last
argument:

12

An Introduction to MQL

DefaultValFunc(TicketNum,UsePrice,UseNumber);

Again, Comment uses the default value of NULL. But, if we want to specify a value for Comment,
regardless of whether or not we want to use the default value for Number, we have to specify a value
for Number as well:

DefaultValFunc(TicketNum,UsePrice,0,"Comment String");

In this example, we used 0 as the value for Number, which is the same as the default value, and a
string constant as the value for Comment. Remember that when you're dealing with multiple
arguments that have default values, you can only omit arguments if you want to use the default
values for all of the remaining arguments!

Variable Scope

The scope of a variable determines which functions it is available to, and how long it stays in
memory. In MQL, scope can be local or global. A local variable can also be static.

A local variable is one that is declared inside a function. Local variables are only available inside the
function it is declared in. The variable is initialized every time the function runs. Once the function
exits, the variable and its data are cleared from memory.

An exception to this would be a static local variable. Static variables remain in memory even after the
function exits. When the function is run again, the variable is not reinitialized, but instead retains it's
previous value.

A static variable is declared by typing static in front of the variable declaration. Here's an example
of a static variable declaration:

static int MyStaticVar;

If a static variable needs to be made available to more than one function, use a global variable
instead. In this case you do not need to declare the variable as static.

A global variable is one that is available to all functions inside a program. As long as the program is
running, the value of the global variable is maintained. Global variables are declared outside of a
function, generally at the top of the source code file.

13

EXPERT ADVISOR PROGRAMMING

There is no special method for initializing a global variable. The syntax is identical to that of a local
variable.

Layout of an MQ4 File

Creating a New Expert Advisor

The Expert Advisor Wizard in MetaEditor is the quickest way to get started in creating an expert
advisor. You can start the wizard by selecting New from the File menu, by pressing the New button
on the toolbar, or by pressing Ctrl+N on your keyboard.

The dialog presents you with several options. You can create indicators, scripts, libraries and include
files using the wizard. You can also choose a template for generating a file. The resulting file will be
saved to the appropriate directory, depending on its type. Make sure Expert Advisor is chosen and
press Next.

Fig. 1.3 – Expert Advisor Wizard general properties.

14

An Introduction to MQL

You will be prompted for a Name, Author and Link, as well as some optional parameters. The Name
field will be the file name of your program. The EA will be saved to the \experts folder under that
file name.

The contents of the Author field will appear next to the EA name in the Strategy Tester, and as a
tooltip when you mouse over the EA name in the Navigator window. The Link field is a URL to your
website, but it will not appear anywhere outside the source code file.

You can also enter your trade parameters here. For now, add a parameter or two, but don't bother
adjusting them. It's best to simply add these manually to the source code later. Press the Finish
button and an expert advisor template will open with your information already added.

The default expert advisor template is rather minimal, but it contains the basic structure of an expert
advisor. Let's identify the layout of an MQL file using the expert advisor template as our guide.

Preprocessor Directives

The first thing to appear in any MQL file are the preprocessor directives. These are prefaced by a #.
The default expert advisor template has two: #property copyright, which is the Author name you
entered in the Expert Advisor Wizard, and #property link, which is the Link you entered in the
wizard.

There are other #property directives, but almost all of them are related to indicators and scripts.
The only #property directive you should include in your expert advisor is #property copyright,
which identifies the EA as your creation.

A second type of preprocessor directive you will likely use is the #include directive. As mentioned
earlier, an include file consists of functions and source code that will be included in your project when
it is compiled. The syntax for the include directive is:

#include <filename.mqh>

The file stdlib.mqh in our example on page 19 is a standard include file that comes with
MetaTrader. It includes several miscellaneous functions that programmers may find useful. Like all
include files, it is located in the \experts\include folder.

The #define directive is used for declaring constants for use in our program. For example, instead of
typing out a long text string every time you need to use it, you can define a constant and type that
instead:

15

EXPERT ADVISOR PROGRAMMING

#define MYCONSTANT “This is a constant”

In this example, we can use the constant identifier MYCONSTANT in place of the text string in our
code. The convention for constant identifiers is to use all capital letters. Although it is not absolutely
necessary, for consistency's sake you should define all identifiers for constants using caps.

Sometimes, a function you'll need to use is already compiled in another file, such as another expert
advisor, a library file (.ex4) or a Windows DLL file (.dll). You can import functions directly into a
project using #import directives.

Libraries are similar to include files, but instead of including the source code in our project, we will
execute the other file and call the function from it. We'll talk about using libraries later in the book.

Import directives are usually placed in include files, especially if there are many functions to import.
But if you just need to import one or two functions, and an include file for them doesn't already
exists, then go ahead and import them directly into your project.

For detailed examples of the #import directive, see the MQL Reference page Importing of Functions,
and look at the include files in the \experts\include folder. Here is the syntax for the #import
directive:

#import "library.ex4"
double MyImportedFunction();

#import

In this example, the library file we are importing the function(s) from is library.ex4. We are
importing a single function of type double, called MyImportedFunction(). The function identifier
must match the function name in the source library file. Note the semicolon at the end of the function
declaration.

Parameters and External Variables

The next section in our expert advisor source code file are the external variables. These are the
adjustable parameters for our trading system. This includes your trade settings (stop loss, take profit,
lot size) and indicator settings. When you open the Expert Properties dialog for an expert advisor,
you are viewing the external variables for that program.

We specify an external variable by adding extern in front of the variable. This specifies that the
variable will appear in the Expert Properties dialog, and will be viewable and adjustable by the user.

16

An Introduction to MQL

extern double StopLoss = 50;

Be sure that the identifier for your external variable is descriptive of what it actually does. ("StopLoss"
is better than "stop" or "SL", for example). You have 31 characters to describe your variable, so make
the most of it. The default value for your variable will also be the default for that parameter, so
choose a logical default value.

Global Variables

We declare any global variables at the top of our source code file, generally after the external
variables. The location does not matter, as long as both the global and external variables are placed
outside of and before any functions.

A global variable is one that is available to any function in the program. As long as the program is
running, the global variable and it's value stays in memory, and can be referenced and changed by
any function in the program.

Technically, external variables are global as well, but the global variables we're discussing in this
section are internal, which means they are not viewable or changeable by the user.

Special Functions

MQL has 3 built-in functions to control program execution: init(), deinit() and start(). The
init() function is comprised of code that is run once, when the EA is first started. The init()
function is optional, and can be left out if you're not using it.

The deinit() function consists of code that is run once, when the EA is stopped. This function is
also optional, and it's unlikely you will need to use it in an expert advisor.

The start() function contains the main program code, and is required in your EA. Every time the
start function is run, your trading conditions are checked, and orders are placed or closed depending
on how those conditions are evaluated.

The start() function is run on every tick. A tick is a price movement, or change in the Bid or Ask
price for a currency pair. During active markets, there may be several ticks per second. During slow
markets, minutes can pass by without a tick.

17

EXPERT ADVISOR PROGRAMMING

Other Functions

Any other functions that your EA may use should be declared after the start() function. These
functions will be called from the start(), init() or deinit() functions, or from other functions
that are called from the main program. We'll cover custom functions later in the book.

18

An Introduction to MQL

// Preprocessor Directives
#property copyright "Andrew Young"
#property link "http://www.expertadvisorbook.com"

#include <stdlib.mqh>

#define MYCONSTANT "This is a constant"

// External Parameters
extern int Parameter1 = 1;
extern double Parameter2 = 0.01;

// Global Variables
int GlobalVariable1;

// Init function
int init()
 {
 // Startup code
 return(0);
 }

// Deinit function
int deinit()
 {
 // Shutdown code
 return(0);
 }

// Start function
int start()
 {
 // Main code
 return(0);
 }

// Custom functions
int MyCustomFunction()
 {
 // Custom code
 return(0);
 }

Fig 1.4 – Sample expert advisor layout

19

EXPERT ADVISOR PROGRAMMING

Chapter 2
Order Placement

Bid, Ask & Spread

As a Forex trader, you're probably already familiar with the Bid and Ask prices. But you might not be
aware of their role in order placement. It is very important to use the correct price when opening or
closing orders.

The Bid price is what you see on the MetaTrader charts. It is usually what we think of when we think
of the "current price." The Ask price is generally just a few pips above the Bid price. The difference
between the Bid and the Ask is the the spread, which is the broker's commission for placing the
order.

The Ask price is where we open buy orders, and close sell orders. The Bid price is where we open sell
orders, and close buy orders. You'll need to indicate the correct price when opening a market order,
or when closing an order at market, so remember the difference between the two.

Order Types

There are three types of orders that can be placed in MetaTrader: market, stop and limit orders.
Market orders are the most common. A market order opens a position immediately at the prevailing
Bid or Ask price.

When placing a market order in MQL, we must specify an opening price (generally the latest Bid or
Ask quote). If the specified opening price is outdated, due to a fast moving market or a delay in
program execution, the terminal will attempt to place the order at the current market price, provided
it is within the maximum slippage.

If you place a market order using the New Order dialog in MetaTrader, you'll see a setting at the
bottom labeled "Enable maximum deviation from quoted price." When this is checked, you can then
specify the maximum deviation in pips. This is the maximum slippage.

If the current price falls outside of our specified opening price, plus or minus the slippage, a requote
error will occur and the order will not be placed. You may have noticed this when attempting to place
a market order during a fast moving market. Note that ECN/STP brokers do not use a slippage
setting, and will always open market orders at the current price.

20

Order Placement

A stop order is a type of pending order. Pending orders are a request to open a market order at a
certain price. A buy stop order is placed above the current price, while a sell stop order is placed
below the current price. The expectation is that the price will eventually rise or fall to that level and
continue in that direction, resulting in a profit.

A limit order is the opposite of a stop order. A buy limit order is placed below the current price, while
a sell limit order is placed above the current price. The expectation is that the price will rise or fall to
that level, triggering the order, and then reversing. Limit orders are not used very often in automated
trading.

An expiration time can be set for pending orders. If the order is not filled by the expiration time, the
order is automatically deleted. Not all brokers support trade expiration.

The Order Placement Process

The process of placing an order in MQL involves several steps. We must determine the following
before placing the order:

• The type of order to be placed – buy or sell; stop, market or limit.

• The currency pair to trade – generally the chart that the EA is attached to.

• The lot size. This can either be a fixed lot size, or one that is calculated using a money
management routine.

• The order opening price. For market orders, this will be the current Bid or Ask price. For
pending orders, the opening price must be a minimum distance from the current price, and
should be above or below the current price as required by the order type.

• The stop loss price. The stop loss can be a predetermined price, an indicator value, a fixed
number of pips from the order opening price, or it can be dynamically calculated using a risk
management routine. The stop loss can be placed with the order, or it can be added to the
order afterward.

• The take profit price. This is generally a fixed number of pips from the order opening price,
although it can be calculated using other methods as well. The take profit can be placed with
the order, or it can be added to the order afterward.

• Order identifiers such as an order comment, or a "magic number" that identifies an order as
being placed by a specific expert advisor.

• An optional expiration price for pending orders, if the broker supports it.

21

EXPERT ADVISOR PROGRAMMING

OrderSend()

The OrderSend() function is used to place orders in MQL. The syntax is as follows:

int OrderSend(string Symbol, int Type, double Lots, double Price,
int Slippage, double StopLoss, double TakeProfit, string Comment = NULL,
int MagicNumber = 0, datetime Expiration = 0, color Arrow = CLR_NONE);

• Symbol – A string representing the currency pair to trade, for example GBPUSD. The
Symbol() function is used for the current chart's currency pair.

• Type – The type of order to place: buy or sell; market, stop or limit. This is an integer value,
represented by the following constants:

◦ OP_BUY – Buy market order (integer value 0).

◦ OP_SELL – Sell market order (integer value 1).

◦ OP_BUYSTOP – Buy stop order (integer value 2).

◦ OP_SELLSTOP – Sell stop order (integer value 3).

◦ OP_BUYLIMIT – Buy limit order (integer value 4).

◦ OP_SELLLIMIT – Sell limit order (integer value 5).

• Lots – The number of lots to trade. You can specify mini lots (0.1) or micro lots (0.01) if your
broker supports it.

• Price – The price at which to open the order. For a buy market order, this will be the Ask.
For a sell market order, this will be the Bid. For pending orders, this will be any valid price
that is above or below the current price.

• Slippage – The maximum slippage in points. Use a sufficiently large setting when auto
trading. Brokers that do not use slippage will ignore this parameter.

• StopLoss – The stop loss price. For a buy order, the stop loss price is below the order
opening price, and for a sell order, above. If set to 0, no stop loss will be used.

• TakeProfit – The take profit price. For a buy order, the take profit is above the order
opening price, and for a sell order, below. If set to 0, no take profit will be used.

• Comment – An optional string that will serve as an order comment. Comments are shown
under the Trade tab in the Terminal window. Order comments can also be used as an order
identifier.

22

Order Placement

• MagicNumber – An optional integer value that will identify the order as being placed by a
specific expert advisor. It is highly recommended that you use this.

• Expiration – An optional expiration time for pending orders. Not all brokers accept trade
expiration times – for these brokers, an error will result if an expiration time is specified.

• Arrow – An optional color for the arrow that will be drawn on the chart, indicating the
opening price and time. If no color is specified, the arrow will not be drawn.

The OrderSend() function returns the ticket number of the order that was just placed. If no order
was placed, due to an error condition, the return value will be -1.

We can save the order ticket to a global or static variable for later use. If the order was not placed
due to an error condition, we can analyze the error and take appropriate action based on the
returned error code.

Placing A Market Order

Here's an example of a buy market order. We'll assume that the variables LotSize, Slippage,
BuyStopLoss, BuyTakeProfit and MagicNumber have already been calculated or assigned and are
valid.

OrderSend(Symbol(),OP_BUY,LotSize,Ask,Slippage,BuyStopLoss,BuyTakeProfit,
"Buy Order",MagicNumber,0,Green);

The Symbol() function returns the current chart symbol. We will be placing orders on the current
chart pair 99% of the time. OP_BUY indicates that this is a buy market order. Ask is a predefined
variable in MQL that stores the most recent Ask quote. (Remember that buy orders open at the Ask
price!)

The Slippage is set using an external variable. The slippage parameter is an integer, indicating the
number of points to allow for price slippage. If your broker uses 4 digit quotes (2 for Yen pairs), 1
point would be equal to 1 pip. If your broker offers 3 and 5 digit quotes however, then 1 point would
be 0.1 pips. In this case, you'd need to add an additional zero to the end of your Slippage setting.

We've added the generic comment "Buy Order" to this order. Since there is no expiration for market
orders, the Expiration parameter is 0. Finally, we specify the color constant Green to draw a green
arrow on the chart.

Here is an example of a sell market order, using the same parameters as above:

23

EXPERT ADVISOR PROGRAMMING

OrderSend(Symbol(),OP_SELL,LotSize,Bid,Slippage,SellStopLoss,SellTakeProfit,
"Sell Order",MagicNumber,0,Red);

We use OP_SELL as the order type, to specify a sell market order. We use Bid as the order opening
price, to reflect the fact that sell orders open at the Bid price. "Sell Order" is our order comment,
and we use Red as the arrow color to differentiate from buy orders.

Placing a Pending Stop Order

The difference between pending orders and market orders is that the order opening price will be
something other than the current market price. The stop loss and take profit values must be
calculated relative to the pending order opening price.

In these examples, we will use the variable PendingPrice for our pending order price. It can be
calculated based on our trading algorithm, or it can be set as an external parameter.

For a buy stop order, PendingPrice must be greater than the current Ask price. We'll assume that
BuyStopLoss and BuyTakeProfit have been correctly calculated relative to PendingPrice. Here's
an example of a buy stop order placement:

OrderSend(Symbol(),OP_BUYSTOP,LotSize,PendingPrice,Slippage,BuyStopLoss,

BuyTakeProfit,"Buy Stop Order",MagicNumber,0,Green);

Note that we use OP_BUYSTOP to indicate a buy stop order, and PendingPrice for our order opening
price. No expiration time has been indicated for this order.

For a sell stop order, PendingPrice must be less than the current Bid price. In this example, we'll
add an order expiration time, using the variable Expiration. The expiration time must be greater
than the current server time. Here's an example of a sell stop order placement:

OrderSend(Symbol(),OP_SELLSTOP,LotSize,PendingPrice,Slippage,SellStopLoss,
SellTakeProfit,"Sell Stop Order",MagicNumber,Expiration,Red);

Placing a Pending Limit Order

Limit orders are similar to stop orders, except that the pending order price is reversed, relative to the
current price and the order type. For buy limit orders, the pending order price must be less than the
current Bid price. Here's an example of a buy limit order:

24

Order Placement

OrderSend(Symbol(),OP_BUYLIMIT,LotSize,PendingPrice,Slippage,BuyStopLoss,
BuyTakeProfit,"Buy Limit Order",MagicNumber,0,Green);

Note that we used OP_BUYLIMIT to indicate a buy limit order. Otherwise, our parameters are identical
to those for stop orders.

For a sell limit order, the pending order price must be greater than the current Ask price. Here's an
example of a sell limit order:

OrderSend(Symbol(),OP_SELLLIMIT,LotSize,PendingPrice,Slippage,SellStopLoss,
SellTakeProfit,"Sell Limit Order",MagicNumber,Expiration,Red);

Calculating Stop Loss & Take Profit

There are several ways of calculating stop loss and take profit prices. The most common method is to
specify the number of pips away from the order opening price to place your stop. For example, if we
have a stop loss setting of 50 pips, that means that the stop loss price will be 50 pips away from our
order opening price.

We can also use an indicator value, an external parameter or some other type of price calculation. All
we will need to do then is verify that the stop loss or take profit price is valid.

Calculating in Pips

For this, the most common method of calculating stops, we will use an external variable in which the
user specifies the number of pips for the stop loss and take profit. We then calculate the stops
relative to the order opening price.

For buy market orders, the opening price will be the Ask, and for sell market orders, the opening
price will be the Bid. For pending stop and limit orders, we assign a a valid opening price that is
something other than the current market price. We will assign the appropriate price to the variable
OpenPrice.

Here are the external variables we'll use for our stop loss and take profit settings:

extern int StopLoss = 50;
extern int TakeProfit = 100;

25

EXPERT ADVISOR PROGRAMMING

In this example, we've entered a stop loss of 50 pips, and a take profit of 100 pips. You've likely seen
settings similar to these in the EAs you've used.

To calculate our stop loss, we need to add or subtract 50 pips from our order opening price. First, we
need to convert the integer value of 50 to the fractional value we'll use to add or subtract from the
opening price. For Yen pairs, 50 pips is equal to 0.50. For all other pairs, it's 0.0050.

To convert an integer to the appropriate fractional value, we need to multiply our external StopLoss
variable by the Point.

Point

Point is a predefined variable in MQL that returns the smallest price unit of a currency, depending on
the number of decimal places. For a 4 decimal place currency pair, the point is 0.0001. For a Yen pair,
it's 0.01.

Let's calculate the stop loss for a buy market order. We'll assign the current Ask price to OpenPrice,
and use that as our order opening price. We'll check to see if our StopLoss setting is greater than
zero. If so, we'll multiply the StopLoss by the Point. Then we'll subtract that from OpenPrice. The
result will be stored in the variable BuyStopLoss.

double OpenPrice = Ask;

if(StopLoss > 0) double BuyStopLoss = OpenPrice – (StopLoss * Point);
// 1.4600 - (50 * 0.0001) = 1.4550

If StopLoss is not greater than zero, then BuyStopLoss is initialized with a value of 0, and no stop
loss will be placed with the order. Assuming that Point is equal to 0.0001, if the order opening price
is 1.4600, and our stop loss is 50 pips, then the stop loss price for the buy order will be 1.4600 -
(0.0050) = 1.4550.

Recently, many brokers have been moving towards fractional pip price quotes, with 3 decimal places
for Yen pairs and 5 decimal places for all other pairs. If our broker uses fractional pip quotes, then in
our example above, Point would be equal to 0.00001.

If we use a point value of 0.00001 in our stop loss calculation example above, the stop loss would be
calculated as 5 pips from the opening price, instead of 50 pips. This poses a problem. To get the
correct value, we would have to add an extra zero to our stop loss setting – i.e. StopLoss = 500.

Instead of requiring the user to add an additional zero to their stop loss and take profit settings every
time they trade on a fraction pip broker, we'll create a function that will always return 0.01 or 0.0001,

26

Order Placement

regardless of whether or not the broker uses fractional pips. We'll call this function PipPoint,
because it will always return the point value that is equal to one pip.

double PipPoint(string Currency)
{

int CalcDigits = MarketInfo(Currency,MODE_DIGITS);
if(CalcDigits == 2 || CalcDigits == 3) double CalcPoint = 0.01;
else if(CalcDigits == 4 || CalcDigits == 5) CalcPoint = 0.0001;
return(CalcPoint);

}

The string argument Currency is the symbol of the currency pair that we want to retrieve the point
for. The MarketInfo() function with the MODE_DIGITS parameter returns the number of decimal
places (digits) for that pair. The if-else statement assigns the appropriate point value to the
CalcPoint variable, depending on the number of digits.

Here's an example of the usage of this function. You will be using the current chart pair the vast
majority of the time, so we will pass the Symbol() function as the argument. This will return the
point for the current chart.

double UsePoint = PipPoint(Symbol());

Here's a set of examples using specific pairs:

double UsePoint = PipPoint(EURUSD);
// Result is 0.0001

double UsePoint = PipPoint(USDJPY);
// Result is 0.01

We will be using this function to find the single pip point value for the remainder of this book. As
we've demonstrated, the Point variable won't work correctly on fractional pip brokers when
calculating the value of a single pip. You can never assume that the EA will only be used on a 2 and 4
digit broker, so it is necessary to automatically determine the point value of a single pip using
PipPoint().

Slippage and Point

Let's digress for a minute and create a function to resize the slippage parameter properly. As
mentioned earlier in this chapter, on a broker with fractional pip quotes, the slippage parameter for
the OrderSend() function will need to be increased by a factor of 10 to get the correct slippage
value.

27

EXPERT ADVISOR PROGRAMMING

This function will automatically set the slippage parameter to the number of pips specified by the
external Slippage parameter:

int GetSlippage(string Currency, int SlippagePips)
{

int CalcDigits = MarketInfo(Currency,MODE_DIGITS);
if(CalcDigits == 2 || CalcDigits == 4) double CalcSlippage = SlippagePips;
else if(CalcDigits == 3 || CalcDigits == 5) CalcSlippage = SlippagePips * 10;
return(CalcSlippage);

}

We pass the currency symbol and the external slippage parameter as arguments. If the currency uses
2 or 4 digit quotes, we use the unchanged SlippagePips argument as our slippage setting. If the
currency uses 3 or 5 digit quotes, we multiply SlippagePips by 10. Here is how we use this function
in OrderSend():

// External parameters
extern int Slippage = 5;

// Order placement
OrderSend(Symbol(),OP_BUY,LotSize,Ask,GetSlippage(Symbol(),Slippage),BuyStopLoss,

BuyTakeProfit,"Buy Order",MagicNumber,0,Green);

The slippage in this example will be 5 pips, and the slippage parameter will be automatically adjusted
based on the number of digits in the currency quote.

Slippage and Point as Global Variables

The disadvantage of using a function to return the point or slippage value is the extra typing required
for the function arguments. We'll create global variables that will hold the appropriate point and
slippage values for our currency pair, and we'll use those anytime we need to reference those values.

Since these values will never change during program execution, we'll calculate these values in the
init() function. We'll assume that the external integer variable Slippage is already present:

// Global variables
double UsePoint;
int UseSlippage;

int init()
{

UsePoint = PipPoint(Symbol());
UseSlippage = GetSlippage(Symbol(),Slippage);

}

28

Order Placement

From now on, we'll use UsePoint and UseSlippage to refer to these values. The above code
assumes that your EA is placing orders on one currency only. This will be the case 98% of the time,
but if you're creating an expert advisor that places orders on multiple currencies (or on a currency
other than the current chart), you'll need to use the PipPoint() and GetSlippage() functions every
time you need to calculate these values.

MarketInfo()

We used the MarketInfo() function above to retrieve the Point value and the number of digits in the
currency quote. The MarketInfo() function has many uses, and you will be using it to retrieve
necessary price information in your programs. Here is the syntax for the MarketInfo() function:

double MarketInfo(string Symbol, int RequestType);

The Symbol argument is simply the currency symbol that you want to retrieving the information for.
For the current chart symbol, the Symbol() function can be used. For other symbols, you'll need to
specify the currency symbol, such as EURJPY.

RequestType is an integer constant, representing the information that you are requesting from the
function. Here's a list of the most useful MarketInfo() constants. A complete list can be found in the
MQL Reference, under Standard Constants – MarketInfo.

• MODE_POINT – The point value. For example, 0.01 or 0.00001.

• MODE_DIGITS – The number of decimal places in the price. Will be 2 or 3 for Yen pairs, and 4
or 5 for all other pairs.

• MODE_SPREAD – The current spread. For example, 3 pips (or 30 for a fractional pip broker).

• MODE_STOPLEVEL – The stop level. For example, 3 pips (or 30 for a fractional pip broker).

These request identifiers are generally used when checking price information on another currency, or
anywhere where the symbol may be anything other than the current chart symbol:

• MODE_BID – The current bid price of the selected symbol.

• MODE_ASK – The current ask price of the selected symbol.

• MODE_LOW – The low of the current bar of the selected symbol.

• MODE_HIGH – The high of the current bar of the selected symbol.

29

EXPERT ADVISOR PROGRAMMING

Calculating the Stop Loss

Now that we've determined the proper point value, it's time to calculate our stop loss. For buy orders,
the stop loss will be below the order opening price, and for sell orders, the stop loss will be above the
order opening price.

Here's our buy order stop loss calculation from earlier, with the UsePoint variable added. Note that
we've assigned the Ask price to the OpenPrice variable:

double OpenPrice = Ask;
if(StopLoss > 0) double BuyStopLoss = OpenPrice – (StopLoss * UsePoint);

And here's the calculation for a sell order. Note that we've assigned the Bid price to OpenPrice, and
that we are simply adding instead of subtracting:

double OpenPrice = Bid;
if(StopLoss > 0) double SellStopLoss = OpenPrice + (StopLoss * UsePoint);

For pending orders, the stop loss will be calculated relative to the pending order price. In this case,
use the variable OpenPrice to store the pending order price instead of the current market price. The
logic will be identical to the examples above.

Calculating the Take Profit

Calculating the take profit price is similar to calculating the stop loss, except we'll be reversing
addition and subtraction. For a buy order, the take profit price will be above the order opening price,
and for a sell order, the take profit price will be below the order opening price. We'll assume that the
appropriate price has been assigned to OpenPrice:

if(TakeProfit > 0) double BuyTakeProfit = OpenPrice + (TakeProfit * UsePoint);

if(TakeProfit > 0) double SellTakeProfit = OpenPrice - (TakeProfit * UsePoint);

Alternate Stop Loss Methods

There are other ways of determining stop loss and take profit prices. For example, a recent high or
low, or an indicator value could be used to determine a stop loss. Let's demonstrate how we could
calculate these.

30

Order Placement

Let's say we're using a trading system that places the stop loss 2 pips below the low of the current
bar. We use the predefined price array Low[] to retrieve the low of a bar. Low[0] is the low of the
current bar, Low[1] is the low of the previous bar, and so on.

Once we've determined the low of the current bar, we multiply 2 by UsePoint to get a decimal value,
and subtract that from our low:

double BuyStopLoss = Low[0] – (2 * UsePoint);

So if the low of the bar is 1.4760, the stop loss will be placed at 1.4758.

But maybe you want to place your stop loss at the lowest low of the last x number of bars. There's a
function built into MetaTrader just for that. iLowest() returns the shift value indicating the bar with
the lowest value in a specified time range. We can use high, low, open or close values.

Here's an example of how we would use iLowest() to find the lowest low of the last 10 bars:

int CountBars = 10;
int LowestShift = iLowest(NULL,0,MODE_LOW,CountBars,0);
double BuyStopLoss = Low[LowestShift];

The first parameter of iLowest() is the currency symbol – NULL means that we're using the current
symbol. Many functions in MQL use the string constant NULL to refer to the current chart symbol. The
second parameter is the chart period – 0 refers to the current chart frame.

MODE_LOW is an integer constant that specifies the low price series array. In other words, we're
looking for the lowest low of the last CountBars. If we wanted to find the lowest close, for example,
we would use MODE_CLOSE. You can find all of the series array constants in the MQL Reference under
Standard Constants – Series Arrays.

CountBars is the number of bars we want to search, in this case 10. Finally, the last parameter is our
starting location. 0 is the current bar. To start at a previous bar, count backward from the current bar
– the previous bar is 1, the bar before that is 2, etc.

The output of the iLowest() function is an integer indicating the backward shift of the bar with the
lowest value in the price series. In the example above, if iLowest() returns a 6, that means that the
lowest low is 6 bars back. We store that value in the variable LowestShift. To find the actual price,
we simply retrieve the price value of Low[LowestShift], or in other words, Low[6].

31

EXPERT ADVISOR PROGRAMMING

If you wanted to calculate a stop loss for a sell order using this method, the iHighest() function
works the same way. Referencing the example above, you would use MODE_HIGH for your series array
parameter.

Here's an example using an indicator. Let's say we have a moving average, and we want to use the
moving average line as our stop loss. We'll use the variable MA to represent the moving average value
for the current bar. All you need to do is assign the current moving average value to the stop loss:

double BuyStopLoss = MA;

If the moving average line is currently at 1.6894, then that will be our stop loss.

These are simply the most common methods of determining a stop loss or take profit price. Other
methods can be developed using your knowledge of technical analysis or your imagination.

Retrieving Order Information

Once we've successfully placed an order, we'll need to retrieve some information about the order if
we want to modify or close it. We do this using the OrderSelect() function. To use OrderSelect(),
we can either use the ticket number of the order, or we can loop through the pool of open orders and
select each of them in order.

Once we've selected an order using OrderSelect(), we can use a variety of order information
functions to return information about the order, including the current stop loss, take profit, order
opening price, closing price and more.

OrderSelect()

Here is the syntax for the OrderSelect() function:

bool OrderSelect(int Index, int Select, int Pool = MODE_TRADES)

• Index – This is either the ticket number of the order that we want to select, or the position
in the order pool. The Select parameter will indicate which of these we are using.

• Select – A constant indicating whether the Index parameter is a ticket number or an order
pool position:

◦ SELECT_BY_TICKET – The value of the Index parameter is an order ticket number.

◦ SELECT_BY_POS – The value of the Index parameter is an order pool position.

32

Order Placement

• Pool – An optional constant indicating the order pool: pending/open orders, or closed orders.

◦ MODE_TRADES – By default, we are examining the pool of currently opened orders.

◦ MODE_HISTORY – Examines the closed order pool (the order history).

If the OrderSelect() function locates the order successfully, the return value will be true,
otherwise, the return value will be false.

Here's an example of the OrderSelect() function using an order ticket number. The Ticket variable
should contain a valid order ticket:

OrderSelect(Ticket,SELECT_BY_TICKET);

After the OrderSelect() function has been called, we can use any of the order information functions
to retrieve information about that order. A complete listing of functions that can be used with
OrderSelect() can be found in the MQL Reference under Trading Functions. Here's a list of the most
commonly used order information functions:

• OrderSymbol() – The symbol of the instrument that the selected order was placed on.

• OrderType() - The order type of the selected order: buy or sell; market, stop or limit. The
return value is an integer corresponding to the order type constants on page 22.

• OrderOpenPrice() – The opening price of the selected order.

• OrderLots() – The lot size of the selected order.

• OrderStopLoss() – The stop loss price of the selected order.

• OrderTakeProfit() – The take profit price of the selected order.

• OrderTicket() – The ticket number of the selected order. Generally used when cycling
through the order pool with the SELECT_BY_POS parameter.

• OrderMagicNumber() – The magic number of the selected order. When cycling through
orders, you'll need to use this to identify orders placed by your EA.

• OrderComment() – The comment that was placed with the order. This can be used as a
secondary order identifier.

• OrderClosePrice() – The closing price of the selected order. The order must already be
closed (i.e. present in the order history pool).

• OrderOpenTime() – The opening time of the selected order.

• OrderCloseTime() – The closing time of the selected order.

33

EXPERT ADVISOR PROGRAMMING

• OrderProfit() – Returns the profit (in the deposit currency) for the selected order.

We'll need to use OrderSelect() before closing or modifying an order. Let's illustrate how we use
OrderSelect() to close an order.

Closing Orders

When we close a market order, we are exiting the trade at the current market price. For buy orders,
we close at the Bid price, and for sell orders, we close at the Ask. For pending orders, we simply
delete the order from the trade pool.

OrderClose()

We close market orders using the OrderClose() function. Here is the syntax:

bool OrderClose(int Ticket, double Lots, double Price, int Slippage, color Arrow);

• Ticket – The ticket number of the market order to close.

• Lots – The number of lots to close. Most brokers allow partial closes.

• Price – The preferred price at which to close the trade. For buy orders, this will be the
current Bid price, and for sell orders, the current Ask price.

• Slippage – The allowed slippage from the closing price, in pips.

• Color – A color constant for the closing arrow. If no color is indicated, no arrow will be
drawn.

You can close part of a trade by specifying a partial lot size. For example, if you have a trade open
with a lot size of 2.00, and you want to close half of the trade, then specify 1 lot for the Lots
argument. Note that not all brokers support partial closes.

It is recommended that if you need to close a position in several parts, you should place multiple
orders instead of doing partial closes. Using the example above, you would place two orders of 1.00
lot each, then simply close one of the orders when you want to close out half of the position. In this
book, we will always be closing out the full order.

The following example closes a buy market order:

OrderSelect(CloseTicket,SELECT_BY_TICKET);

34

Order Placement

if(OrderCloseTime() == 0 && OrderType() == OP_BUY)
{

double CloseLots = OrderLots();
double ClosePrice = Bid;

bool Closed = OrderClose(CloseTicket,CloseLots,ClosePrice,UseSlippage,Red);
}

The CloseTicket variable is the ticket number of the order we wish to close. The OrderSelect()
function selects the order, and allows us to retrieve the order information. We use
OrderCloseTime() to check the order closing time to see if the order has already been closed. If
OrderCloseTime() returns 0, then we know the order has not been closed yet.

We also need to check the order type, since the order type determines the closing price for the order.
The OrderType() function returns an integer indicating the order type. If it's a buy market order,
indicated by OP_BUY, we'll continue closing the order.

Next, we retrieve the order lot size using OrderLots(), and store that value in CloseLots. We
assign the current Bid price to ClosePrice. Then we call the OrderClose() function to close out
our order.

We specify our Slippage setting with UseSlippage, and indicate a Red arrow to be printed on the
chart. A boolean return value is stored in the variable Closed. If the order has been closed
successfully, the value of Closed will be true, otherwise false.

To close a sell market order, all you need to do is change the order type to OP_SELL and assign the
current Ask price to ClosePrice:

if(OrderCloseTime() == 0 && OrderType() == OP_SELL)
{

double CloseLots = OrderLots();
double ClosePrice = Ask;

bool Closed = OrderClose(CloseTicket,CloseLots,ClosePrice,UseSlippage,Red);
}

OrderDelete()

There is a separate function for closing pending orders. OrderDelete() has two arguments, the
ticket number and the arrow color. No closing price, lot size or slippage is required. Here is the code
to close a pending buy stop order:

35

EXPERT ADVISOR PROGRAMMING

OrderSelect(CloseTicket,SELECT_BY_TICKET);

if(OrderCloseTime() == 0 && OrderType() == OP_BUYSTOP)
{

bool Deleted = OrderDelete(CloseTicket,Red);
}

As we did with the OrderClose() function above, we need to check the order type to be sure it is a
pending order. The pending order type constants are OP_BUYSTOP, OP_SELLSTOP, OP_BUYLIMIT and
OP_SELLLIMIT. To close other types of pending orders, simply change the order type.

If the order has been filled, then it is now a market order, and must be closed using OrderClose()
instead.

A Simple Expert Advisor

Let's see how the code we've discussed so far would work in an expert advisor. This is a simple
moving average cross system. A buy order is opened when the 10 period moving average is greater
than the 20 period moving average. When the 10 period moving average is less than the 20 period
moving average, a sell order is opened.

This EA will alternate between opening buy and sell orders. Orders will be closed when an order is
opened in the opposite direction, or by stop loss or take profit. We will use the global variables
BuyTicket and SellTicket to store the last order ticket. When a new order is opened, the last
order ticket is cleared. This prevents multiple consecutive orders from opening.

#property copyright "Andrew Young"

// External variables
extern double LotSize = 0.1;
extern double StopLoss = 50;
extern double TakeProfit = 100;

extern int Slippage = 5;
extern int MagicNumber = 123;

extern int FastMAPeriod = 10;
extern int SlowMAPeriod = 20;

// Global variables
int BuyTicket;
int SellTicket;

36

Order Placement

double UsePoint;
int UseSlippage;

// Init function
int init()

{
UsePoint = PipPoint(Symbol());

 UseSlippage = GetSlippage(Symbol(),Slippage);
}

// Start function
int start()

{
// Moving averages
double FastMA = iMA(NULL,0,FastMAPeriod,0,0,0,0);
double SlowMA = iMA(NULL,0,SlowMAPeriod,0,0,0,0);

// Buy order
if(FastMA > SlowMA && BuyTicket == 0)

{
OrderSelect(SellTicket,SELECT_BY_TICKET);

// Close order
if(OrderCloseTime() == 0 && SellTicket > 0)

{
double CloseLots = OrderLots();
double ClosePrice = Ask;

bool Closed = OrderClose(SellTicket,CloseLots,ClosePrice,UseSlippage,Red);
}

double OpenPrice = Ask;

// Calculate stop loss and take profit
if(StopLoss > 0) double BuyStopLoss = OpenPrice - (StopLoss * UsePoint);
if(TakeProfit > 0) double BuyTakeProfit = OpenPrice + (TakeProfit * UsePoint);

// Open buy order
BuyTicket = OrderSend(Symbol(),OP_BUY,LotSize,OpenPrice,UseSlippage,

BuyStopLoss,BuyTakeProfit,"Buy Order",MagicNumber,0,Green);

SellTicket = 0;
}

// Sell Order
if(FastMA < SlowMA && SellTicket == 0)

{
OrderSelect(BuyTicket,SELECT_BY_TICKET);

37

EXPERT ADVISOR PROGRAMMING

if(OrderCloseTime() == 0 && BuyTicket > 0)
{

CloseLots = OrderLots();
ClosePrice = Bid;

Closed = OrderClose(BuyTicket,CloseLots,ClosePrice,UseSlippage,Red);
}

OpenPrice = Bid;

if(StopLoss > 0) double SellStopLoss = OpenPrice + (StopLoss * UsePoint);
if(TakeProfit > 0) double SellTakeProfit = OpenPrice - (TakeProfit * UsePoint);

SellTicket = OrderSend(Symbol(),OP_SELL,LotSize,OpenPrice,UseSlippage,
SellStopLoss,SellTakeProfit,"Sell Order",MagicNumber,0,Red);

BuyTicket = 0;
}

return(0);
}

// Pip Point Function
double PipPoint(string Currency)

{
int CalcDigits = MarketInfo(Currency,MODE_DIGITS);
if(CalcDigits == 2 || CalcDigits == 3) double CalcPoint = 0.01;
else if(CalcDigits == 4 || CalcDigits == 5) CalcPoint = 0.0001;
return(CalcPoint);

}

// Get Slippage Function
int GetSlippage(string Currency, int SlippagePips)

{
int CalcDigits = MarketInfo(Currency,MODE_DIGITS);
if(CalcDigits == 2 || CalcDigits == 4) double CalcSlippage = SlippagePips;
else if(CalcDigits == 3 || CalcDigits == 5) CalcSlippage = SlippagePips * 10;
return(CalcSlippage);

}

We start with our #property copyright preprocessor directive that identifies the code as belonging
to us. The external variables are next, and should be self-explanatory. We declare BuyTicket and
SellTicket as global variables – this way the order ticket is stored between program executions. We
could also have declared them as static variables within the start() function.

We add UsePoint and UseSlippage as global variables – we'll calculate the value of these next. Our
init() function is run first. We call the PipPoint() and GetSlippage() functions (declared at the

38

Order Placement

bottom of the file) and assign the return values to our global variables. We'll use these when
referencing point or slippage values in the rest of our expert advisor.

Next is the start() function, our main program execution. We've left out deinit(), since we have
no use for it here. The iMA() function calculates the moving average The FastMA variable holds our
10 period moving average, which is set using the FastMAPeriod variable. The SlowMA variable is our
20 period moving average, set using SlowMAPeriod. Everything else is set to default (a no shift,
simple moving average calculated on the close price).

We use the if operator to define our order opening conditions. If the current 10 period moving
average (the FastMA) is greater than the 20 period moving average (the SlowMA), and if BuyTicket
is equal to 0, we will open a buy order.

Before we open the buy order, we will close the current sell order, if it exists. We use OrderSelect()
to retrieve the current SellTicket. If the order close time is 0 (indicating that the order has not yet
been closed), and the SellTicket is greater than 0 (indicating that the SellTicket is likely valid),
we will go ahead and close the sell order. We retrieve the lot size of the sell order and the current
Ask price, which will be the closing price for the sell order. Then, we close the sell order using
OrderClose().

Next, we assign the current Ask price to the OpenPrice variable – this will be the opening price of
our buy order. We calculate our stop loss and take profit relative to the opening price, checking first
to make sure that we have specified a StopLoss or TakeProfit value in the settings. Then, we place
the order using the OrderSend() function, and store the order ticket in BuyTicket. Lastly, we clear
the value of SellTicket, allowing the placement of another sell order when the order condition
becomes valid.

The sell order block follows the same logic as the buy order block. We close the buy order first, and
use the Bid as the OpenPrice and the buy order ClosePrice. The stop loss and take profit
calculations are reversed.

The start() function ends with a return operator. Our custom PipPoint() and GetSlippage()
functions are defined at the end after the start() function. We will include these functions in every
example in this book.

Using Pending Orders

Let's modify our EA to use pending orders. We'll use stop orders in this example. When the fast
moving average is greater than the slow moving average, we will place a buy stop order 10 pips

39

EXPERT ADVISOR PROGRAMMING

above the current high. When the opposite is true, we'll place a sell stop order 10 pips below the
current low. Let's declare an external variable to adjust this setting, called PendingPips.

extern int PendingPips = 10;

We're adding the OrderDelete() function to our buy and sell order block to close any unfilled
pending orders. We need to check the order type of the order indicated by SellTicket to ensure
that we are using the correct function to close the order.

OrderSelect(SellTicket,SELECT_BY_TICKET);

// Close Order
if(OrderCloseTime() == 0 && SellTicket > 0 && OrderType() == OP_SELL)

{
double CloseLots = OrderLots();
double ClosePrice = Ask;

bool Closed = OrderClose(SellTicket,CloseLots,ClosePrice,UseSlippage,Red);
if(Closed == true) SellTicket = 0;

}

// Delete Order
else if(OrderCloseTime() == 0 && SellTicket > 0 && OrderType() == OP_SELLSTOP)

{
bool Deleted = OrderDelete(SellTicket,Red);
if(Deleted == true) SellTicket = 0;

}

We use OrderType() to check whether the selected sell order is a market order or a stop order. If
it's a market order, we close it using OrderClose(). If it's a pending order, we close it using
OrderDelete().

Here's our pending order price calculation. We simply convert PendingPips to a fractional value with
UsePoint, and add it to the current Close price. We'll store this value in the PendingPrice variable.
Next, we calculate the stop loss and take profit relative to our pending order price. Finally, we place
our pending order using OrderSend(), storing the trade result in the variable BuyTicket:

double PendingPrice = Close[0] + (PendingPips * UsePoint);

if(StopLoss > 0) double BuyStopLoss = PendingPrice - (StopLoss * UsePoint);

if(TakeProfit > 0) double BuyTakeProfit = PendingPrice + (TakeProfit * UsePoint);

BuyTicket = OrderSend(Symbol(),OP_BUYSTOP,LotSize,PendingPrice,UseSlippage,
BuyStopLoss,BuyTakeProfit,"Buy Stop Order",MagicNumber,0,Green);

40

Order Placement

SellTicket = 0;

The code below shows the changes for the sell stop order block:

OrderSelect(BuyTicket,SELECT_BY_TICKET);

// Close Order
if(OrderCloseTime() == 0 && BuyTicket > 0 && OrderType() == OP_BUY)

{
CloseLots = OrderLots();
ClosePrice = Bid;

Closed = OrderClose(BuyTicket,CloseLots,ClosePrice,UseSlippage,Red);
if(Closed == true) BuyTicket = 0;

}

// Delete Order
else if(OrderCloseTime() == 0 && BuyTicket > 0 && OrderType() == OP_BUYSTOP)

{
Closed = OrderDelete(BuyTicket,Red);
if(Closed == true) BuyTicket = 0;

}

PendingPrice = Close[0] - (PendingPips * UsePoint);

double SellStopLoss = PendingPrice + (StopLoss * UsePoint);
double SellTakeProfit = PendingPrice - (TakeProfit * UsePoint);

SellTicket = OrderSend(Symbol(),OP_SELLSTOP,LotSize,PendingPrice,UseSlippage,
SellStopLoss,SellTakeProfit,"Sell Stop Order",MagicNumber,0,Red);

BuyTicket = 0;

The complete code for both of these expert advisors is in Appendix A.

41

EXPERT ADVISOR PROGRAMMING

Chapter 3
Advanced Order Placement

ECN Compatibility

As the order placement examples in the last chapter show, the default method of placing a stop loss
and take profit with a market order is to place them using the OrderSend() function. While this
works well for most brokers, the newer ECN/STP brokers that use MetaTrader don't support this
behavior.

In this case, we'll need to place the stop loss and take profit after the order has been placed, using
the OrderModify() function. This only applies to market orders – for pending orders, you can still
place the stop loss and take profit with the OrderSend() function.

Order Modification

After placing an order, you can modify the take profit, stop loss, pending order price or expiration
time using the OrderModify() function. To use OrderModify(), we'll need the ticket number of the
order that we wish to modify. Here is the syntax for the OrderModify() function:

bool OrderModify(int Ticket, double Price, double StopLoss, double TakeProfit,
datetime Expiration, color Arrow = CLR_NONE)

• Ticket – The ticket number of the order to modify.

• Price – The new pending order price.

• StopLoss – The new stop loss price.

• TakeProfit – The new take profit price.

• Expiration – The new expiration time for pending orders.

• Arrow – A optional color for the arrow to indicate a modified order. If not indicated, no
arrow will be displayed.

If the order modification is successful, OrderModify() will return a boolean value of true. If the
order modification failed, the return value will be false.

42

Advanced Order Placement

When modifying orders, we must be sure that the values we are passing to the function are valid. For
example, the order must still be open – we cannot modify a closed order. When modifying pending
orders with the Price parameter, the order must not have already been filled – i.e. hit its order price.

The modified order price also must not be too close to the current Bid or Ask price. We should also
check to make sure that the stop loss and take profit are valid. We can do this using the price
verification routines that we will cover later in this chapter.

If we are not modifying a particular parameter, we must pass the original value to the
OrderModify() function. For example, if we are modifying only the stop loss for a pending order,
then we must retrieve the current order price and take profit using OrderSelect() , and pass those
values to the OrderModify() function.

If you attempt to modify an order without specifying any changed values, you'll get an error 1: "no
result". You should verify why your code is passing unchanged values to the function, but otherwise
this error is harmless and can be safely ignored.

Adding Stop Loss and Take Profit to an Existing Order

First, we need to verify that the order has been placed correctly. We do this by examining the return
value of the OrderSend() function, which is the ticket number of the order that was just placed. If
the order was not placed due to an error condition, the ticket number will be equal to -1.

Next, we use the OrderSelect() function to retrieve the information for the order that was just
placed. We will use the OrderOpenPrice(), OrderTakeProfit(), OrderStopLoss() and optionally
the OrderExpiration() functions when passing unchanged values to the OrderModify() function.
Finally, we'll use OrderModify() to add the stop loss and take profit to the order.

Here's an example where we set the stop loss and take profit for a buy order using the
OrderModify() function. We've moved the stop loss and take profit calculation after the
OrderSend() function, so that it is calculated before we modify the order:

int BuyTicket = OrderSend(Symbol(),OP_BUY,LotSize,Ask,UseSlippage,0,0,
"Buy Order",MagicNumber,0,Green);

if(BuyTicket > 0)
{

OrderSelect(BuyTicket,SELECT_BY_TICKET);
double OpenPrice = OrderOpenPrice();

if(StopLoss > 0) double BuyStopLoss = OpenPrice – (StopLoss * UsePoint);
if(TakeProfit > 0) double BuyTakeProfit = OpenPrice + (TakeProfit * UsePoint);

43

EXPERT ADVISOR PROGRAMMING

if(BuyStopLoss > 0 || BuyTakeProfit > 0)
{

bool TicketMod = OrderModify(BuyTicket,OrderOpenPrice(),BuyStopLoss,
BuyTakeProfit,0);

}
}

The OrderSend() function is identical to our earlier example, except that we use a value of 0 for the
stop loss and take profit parameters. A value of zero means that there is no stop loss or take profit
being placed with the order. The BuyTicket variable stores the ticket number of the order.

We use an if statement to check that the BuyTicket number is valid – i.e. greater than zero. If so,
we call the OrderSelect() function using our BuyTicket number. We retrieve the opening price for
the order using OrderOpenPrice(), and assign that to the OpenPrice variable.

Next, we calculate the stop loss and take profit, relative to the opening price of the order we just
placed. We check first to see if the StopLoss and TakeProfit external variables are greater than
zero. If so, we calculate the new stop loss and/or take profit price.

Finally, we call the OrderModify() function to add our stop loss and take profit to the order. We
check first to make sure that the BuyStopLoss or BuyTakeProfit variables are something other than
zero. If we attempt to modify the order with unchanged values, we'll get an error code 1 from the
OrderModify() function.

The first parameter for OrderModify() is our BuyTicket number. We could also use OrderTicket()
as well. The second parameter is the new order price. Since we are not modifying the order price, we
use the OrderOpenPrice() function, to indicate that the order price is unchanged.

Remember that we can only modify order prices for pending orders. If we are modifying a market
order, we can pass any value for the Price parameter, since you cannot change the order price of a
market order. But we cannot assume that we will always be modifying market orders, so we will
always use OrderOpenPrice().

The BuyStopLoss and BuyTakeProfit variables pass the changed stop loss and take profit values to
the OrderModify() function. If you plan on using order expiration times for your pending orders,
you can use OrderExpiration() as the unchanged Expiration parameter. Otherwise, just use 0.

Although this method adds a few extra steps, we recommended that you use this method of placing
stop losses and take profits for market orders in your expert advisors to ensure that they are
compatible with all brokers. This method also has the advantage of allowing us to place accurate stop
loss and take profit prices without the effects of slippage.

44

Advanced Order Placement

Modifying a Pending Order Price

OrderModify() can also be used to modify the order price of a pending order. If the pending order
price has already been hit and the order has been filled, it is no longer a pending order, and the price
cannot be changed.

We'll use the variable NewPendingPrice to represent our changed order price. We'll assume the price
has already been calculated and is valid. Here's how we modify a pending order price:

OrderSelect(Ticket,SELECT_BY_TICKET);

if(NewPendingPrice != OrderOpenPrice())
{

bool TicketMod = OrderModify(Ticket,NewPendingPrice,OrderStopLoss(),
OrderTakeProfit(),0);

}

As always, we retrieve the order information using OrderSelect(). This way we can pass the
unchanged stop loss and take profit prices to the OrderModify() function. Before modifying the
order, we'll check to make sure that our new pending order price is not the same as the current
pending order price.

For OrderModify(), we specify our order ticket, the new order price stored in NewPendingPrice,
and the unchanged stop loss and take profit values represented by OrderStopLoss() and
OrderTakeProfit(). We're not using an expiration time for this order, so we use 0 for the expiration
parameter.

Verifying Stops and Pending Order Prices

Stop loss, take profit and pending order prices must be a minimum distance away from the Bid and
Ask prices. If a stop or pending order price is too close to the current price, an error will result, and
the order will not be placed. This is one of the most common trading errors, and it can easily be
prevented if the trader is careful to set their stops and pending orders a sufficient distance from the
price.

But during periods of rapid price movement, valid stop loss prices can be made invalid by widening
spreads. Different brokers have varying stop levels, so a stop loss that is valid on one broker may be
too close for another. Some trading systems will set stops and pending order prices based on
indicator values, highs or lows, or some other method of calculation where a minimum distance is not
guaranteed.

45

EXPERT ADVISOR PROGRAMMING

For these reasons, it is always necessary to verify that a stop loss, take profit or pending order price
is valid, and not too close to the current market price. We verify this by checking the currency's stop
level.

Stop Levels

The stop level is the number of pips away from the current Bid or Ask price that all stops and pending
orders must be placed. For most brokers, the stop level is approximately 3-4 pips. ECN brokers
generally have very tight stop levels, while other brokers such as Alpari have wider stop levels (at
least 8 pips).

Figure 3.1 illustrates the stop levels in relation to the prices. Think of
the price as not being just a single value (such as the Bid), but
rather a thick line the width of the spread.

On either side of that price line are boundaries, indicated by the stop
levels. All stop loss, take profit and pending orders must be placed
outside of these boundaries.

The MarketInfo() function with the MODE_STOPLEVEL parameter is
used to retrieve the stop level for a currency symbol. The stop level
is expressed as a whole number, and will need to be converted to a
fractional value using Point.

For a 4 digit currency with a stop level of 3 pips, the MarketInfo() function with MODE_STOPLEVEL
will return a 3. For a 5 digit currency with a stop level of 3 pips, MarketInfo() will return 30, due to
the extra decimal place. Here's the code for retrieving the stop level and converting it to a decimal
value:

double StopLevel = MarketInfo(Symbol(),MODE_STOPLEVEL) * Point;

Note that we use the predefined Point variable, instead of the PipPoint() function we created
earlier. This is because we need to multiply the stop level by the actual point value. For a 4 digit
currency, the Point will be 0.0001, and for a 5 digit currency, the Point will be 0.00001. If the stop
level is 3 pips as demonstrated above, then the fractional value will be 0.0003.

Now that we've figured out how to find the stop level, we need to calculate the minimum and
maximum values for our stop loss, take profit and pending order prices. We do this by adding or
subtracting the stop level from our current Bid and Ask prices.

46

Spread

Ask

Bid

Stop Level

Stop Level

Fig. 3.1 – Stop levels

Advanced Order Placement

This code will calculate the minimum allowed price for a buy take profit, sell stop loss, buy stop order,
or sell limit order. We'll use the StopLevel value we calculated above.

double UpperStopLevel = Ask + StopLevel;

If our Ask price is 1.4650, and the StopLevel is 0.0003 pips as calculated above, then the minimum
stop level price will be 1.4653. If we are placing a buy take profit with this order, then it must be
above this price. We'll call this the UpperStopLevel, since it is above the price.

This code will calculate the maximum allowed price for a sell take profit, buy stop loss, sell stop order
or sell limit order. Note that we are simply using the Bid instead of the Ask, and subtracting instead
of adding.

double LowerStopLevel = Bid - StopLevel;

We'll call this the LowerStopLevel, since it is below the price. Before placing an order, use the
UpperStopLevel and LowerStopLevel values above to verify your stop loss, take profit and pending
order prices. Keep in mind that prices can change rapidly, and you'll want your actual stops, profits
and pending orders to be well outside these levels.

Verifying Stop Loss and Take Profit Prices

The minimum take profit in pips will be equal to the order opening price, plus or minus the stop level.
If the stop level is 3 pips, and the order opening price is 1.4500, the take profit price for a buy order
will need to be above 1.4503.

The minimum stop loss in pips for a market order, however, will include the current spread, so the
minimum stop loss will be larger than the minimum take profit. For example, if the stop level is 3
pips, the spread is 2 pips, and the order opening price is 1.4500, the stop loss for a buy market order
will need to be below 1.4495.

This doesn't apply for pending orders, so when verifying a stop loss for a pending order, it's not
necessary to figure in the spread. So if you're placing a pending order at 1.4500, and the stop level is
3 pips, then the stop loss can be placed anywhere below 1.4497.

Here's an example where we check the stop loss and take profit for a buy order to make sure the
prices are valid. If the stop loss or take profit price is not valid, we will automatically adjust it so that
it is several pips outside of the stop level.

47

EXPERT ADVISOR PROGRAMMING

double MinStop = 5 * UsePoint;

if(BuyStopLoss > LowerStopLevel) BuyStopLoss = LowerStopLevel - MinStop;
if(BuyTakeProfit < UpperStopLevel) BuyTakeProfit = UpperStopLevel + MinStop;

The variable MinStop adds or subtracts 5 pips from the stop level, to ensure that our validated prices
do not become invalid due to slippage. You can adjust this value to enforce a sufficient minimum
stop/profit level, or even use an external variable to adjust this amount.

The second line compares our stop loss to our LowerStopLevel. If the stop loss is greater than our
lower stop level, we know that the stop loss is invalid. In that case, we adjust the stop loss to be just
a few pips below our stop level. The third line does the same for our take profit.

To check the stop loss and take profit for a sell order, we simply reverse the calculations:

if(SellTakeProfit > LowerStopLevel) SellTakeProfit = LowerStopLevel - MinStop;
if(SellStopLoss < UpperStopLevel) SellStopLoss = UpperStopLevel + MinStop;

Instead of automatically adjusting an invalid price, you could also display an error message and halt
program execution. This way the user would be required to readjust their stop loss or take profit
setting before continuing. Here's an example of how to do this:

if(BuyStopLoss > LowerStopLevel)
{

Alert("The stop loss setting is too small!");
return(0);

}

If the calculated stop loss is above the stop level, and thus too close to the price, the Alert()
function will display a pop-up message to the user. The return operator exits the current function
and assures that the order will not be placed.

In this book, we will be automatically adjusting invalid prices, with the assumption that is is better to
place a corrected order than to not place one at all. It may be useful to document when this happens
by printing a message to the log:

if(BuyStopLoss > LowerStopLevel)
{

BuyStopLoss = LowerStopLevel - MinStop;
Print("Stop loss is invalid and has been automatically adjusted");

}

48

Advanced Order Placement

Verifying Pending Order Prices

Here's how we verify the pending order price for a buy stop or sell limit order. The PendingPrice
variable stores our pending order price:

if(PendingPrice < UpperStopLevel) PendingPrice = UpperStopLevel + MinStop;

Notice that the logic here is identical to the code above that checks our buy take profit and sell stop
loss prices. And here's the code to check the pending order price for a sell stop or buy limit order:

if(PendingPrice > UpperStopLevel) PendingPrice = UpperStopLevel – MinStop;

Calculating Lot Size

Aside from choosing suitable stop loss and take profit levels, using an appropriate lot size is one of
the best risk management tools you have. Specifying a lot size can be as simple as declaring an
external variable and using a fixed lot size for every order. In this section, we'll explore a more
sophisticated method that calculates the lot size based on the maximum amount you're willing to lose
per trade.

Over-leveraging is one of the big killers of forex traders. Using lot sizes that are too large in relation
to your equity can wipe out your account just as easily as it can produce big gains. It is
recommended that you use no more than 2-3% of your equity per trade. By this, we mean that the
maximum amount you can lose per trade will be no more that 2-3% of your account.

Money Management

To calculate the lot size using this method, we need to specify a percentage of equity to use and the
stop loss in pips. We'll use the external variable EquityPercent to set the percentage of equity to
use. We'll assume a stop loss of 50 pips is used.

extern double EquityPercent = 2;
extern double StopLoss = 50;

First, we need to calculate the amount of equity specified by EquityPercent. If we have a balance
of $10,000, and we are using 2% of our equity, then the calculation is as follows:

double RiskAmount = AccountEquity() * (EquityPercent / 100);

49

EXPERT ADVISOR PROGRAMMING

AccountEquity() is an MQL function that returns the current account equity. We divide
EquityPercent by 100 to give us a fractional value (0.02). Then, we multiply that by
AccountEquity() to calculate the amount of equity to use. 2% of $10,000 is $200, and this will be
stored in the variable RiskAmount.

Next, we have to find the tick value. This is the profit per pip if we were trading one lot of the desired
currency. For example, if we are trading 1 lot of EURUSD on a standard account (100k lots), the profit
per pip would be $10. On a mini account (10k lots), the profit per pip would be $1.

We can use the MarketInfo() function with the MODE_TICKVALUE parameter to return the profit per
pip for the specified currency. The tick value must be in pips, so if we are trading on a fractional pip
broker (3 or 5 decimal places), we must multiply the tick value by 10.

double TickValue = MarketInfo(Symbol(),MODE_TICKVALUE);
if(Point == 0.001 || Point == 0.00001) TickValue *= 10;

Assuming we are trading a standard account, the tick value for EURUSD will be 10. This will be stored
in the TickValue variable. If this is a fractional pip broker, then TickValue will be 1. We will need to
multiply this by 10 to make it equivalent to one pip. If the Point variable indicates that the currency
is 3 or 5 decimal places, then TickValue will be multiplied by 10 to make it equal to a 2 or 4 decimal
place value.

The next step is to calculate our lot size. First, we divide the RiskAmount by the StopLoss setting.
This will give us our profit per tick for this order. $200 divided by our stop loss of 50 will give us $4.
Now all we have to do is divide that by TickValue to get the lot size:

double CalcLots = (RiskAmount / StopLoss) / TickValue;

Our calculated lot size on a standard account will be 0.4 lots. On a mini account, the calculated lot
size will be 4 lots. This value is stored in the CalcLots variable.

If you are using proper money management, the percentage of equity you are using will be fairly
consistent. (1-2% for conservative risk, up to 5% for higher risk). Your stop loss, on the other hand,
will vary based on your time frame and your trading system. The lot size will vary widely depending
on your stop loss.

A tight stop loss will generate a larger lot size, which provides a lot of upside benefit if your order hits
its take profit. On the other hand, if you're using a large stop loss, your lot size will be fairly small.
This method will benefit best from using fairly tight stops and/or large take profit values.

50

Advanced Order Placement

If you must use a large stop loss, or none at all, a fixed lot size would probably be more beneficial.
We need to be able to choose between calculating the lot size or using a fixed lot size. Let's use an
external boolean variable called DynamicLotSize to turn our lot size calculation on and off:

// External variables
extern bool DynamicLotSize = true;
extern double EquityPercent = 2;
extern double FixedLotSize = 0.1;

// Start function
if(DynamicLotSize == true)

{
double RiskAmount = AccountEquity() * (EquityPercent / 100);
double TickValue = MarketInfo(Symbol(),MODE_TICKVALUE);
if(Digits == 3 || Digits == 5) TickValue *= 10;
double CalcLots = (RiskAmount / StopLoss) / TickValue;
double LotSize = CalcLots;

}
else LotSize = FixedLotSize;

If DynamicLotSize is set to true, we will calculate the lot size based on the stop loss, and assign that
value to the LotSize variable. If DynamicLotSize is false, we simply assign the value of
FixedLotSize to LotSize. The LotSize variable will be passed to the OrderSend() function as the
lot size for the order.

Verifying Lot Size

Just like the stop loss, take profit and pending order prices, the lot size should also be verified to
make sure it is acceptable to your broker. This means that your lot size should not be too large or too
small, and it should not be specified in micro lots (0.01) if your broker doesn't support those. You
should also normalize your lot size to the appropriate decimal place.

Let's check the minimum and maximum lot size first. The MarketInfo() function, using the
MODE_MINLOT and MODE_MAXLOT parameters, will be used to compare the current lot size to the
minimum and maximum lot size. If the lot size is not valid, it will automatically be resized to the
minimum or maximum.

if(LotSize < MarketInfo(Symbol(),MODE_MINLOT))
{

LotSize = MarketInfo(Symbol(),MODE_MINLOT);
}

51

EXPERT ADVISOR PROGRAMMING

else if(LotSize > MarketInfo(Symbol(),MODE_MAXLOT))
{

LotSize = MarketInfo(Symbol(),MODE_MAXLOT);
}

We simply compare the value of LotSize, our calculated or fixed lot size from above, to the minimum
and maximum lot size. If LotSize is less than the minimum lot size, or greater than the maximum lot
size, it will be assigned the appropriate minimum or maximum value.

Next, we need to compare our lot size to the step value. The step value indicates whether the broker
allows micro lots (0.01) or mini lots (0.1). If you attempt to use a micro lot size on a broker that only
allows mini lots, you will get an error and the trade will not be placed. Here's the code to check the
step value:

if(MarketInfo(Symbol(),MODE_LOTSTEP) == 0.1)
{

LotSize = NormalizeDouble(LotSize,1);
}

else LotSize = NormalizeDouble(LotSize,2);

The NormalizeDouble() function rounds the value of LotSize to the number of digits specified in
the second argument. In the first line, if the step size is 0.1, indicating the the broker only uses mini
lots, LotSize will be rounded to one decimal place. Otherwise, LotSize will be rounded to 2 decimal
places.

If in the future you happen to come across a broker that allows lot sizes up to three decimal places,
then you could easily modify the above code to check that as well. But at moment, virtually every
MetaTrader broker uses either one or two decimal places for lot sizing.

Other Considerations

Trade Context

MetaTrader has a single trade execution thread for expert advisors. This means that only one expert
advisor can trade at any one time, regardless of how many expert advisors are running in the
terminal. Before commencing with any trade operations, we must check to see whether the trade
execution thread is currently being used.

The function IsTradeContextBusy() will return true if the trade execution thread is occupied,
otherwise false. We will call this function just before calling any trading functions, including
OrderSend(), OrderClose(), OrderDelete() or OrderModify().

52

Advanced Order Placement

Here's how we check the trading execution thread using IsTradeContextBusy():

while(IsTradeContextBusy()) Sleep(10);

int Ticket = OrderSend(Symbol(),OP_BUY,LotSize,Ask,UseSlippage,0,0,
"Buy Order",MagicNumber,0,Green);

We use a while loop to evaluate IsTradeContextBusy(). If the function returns true, indicating that
the trade execution thread is occupied, the expert advisor will Sleep for 10 milliseconds. The while
loop will continue to execute as long as IsTradeContextBusy() returns true. Once the trade thread
is freed up, trading will commence.

If the expert advisor attempts to trade while the trade execution thread is occupied, an error 147 :
"trade context busy" will result. Although this method is fairly reliable at avoiding the "trade context
busy" error, it is not foolproof, especially when multiple expert advisors are attempting to trade at the
same time. Later in the book, we will explore ways to retry trade operations after certain error
conditions.

Refreshing Predefined Variables

The values of predefined variables such as Bid and Ask are set when the expert advisor begins its
execution. The amount of time required to execute our expert advisor code is very short, and can be
measured in milliseconds. But when you figure in delays for trade server response, and the fact that
prices can change very rapidly, it's very important that you always use the most current prices.

The RefreshRates() function updates the contents of predefined variables with the latest prices
from the server. It is recommended that you call this function every time you use the Bid or Ask
variables, especially after a prior trade execution.

Note that if you retrieve the price using the MarketInfo() function, it is not necessary to use
RefreshRates(). We covered MarketInfo() on page 29. When we get to the chapter on creating
functions, we will use MarketInfo() to retrieve prices instead of using predefined variables.
However, you may still want to use Bid and Ask in your start() function to reference the current
chart prices.

Error Handling

When placing, modifying or closing orders, errors can occur due to invalid trade parameters,
requotes, or server issues. We've done our best to make sure that the trade parameters we use are
valid and have been checked to prevent common, preventable errors. But when errors do occur, we
need to alert the user of the error and log any relevant information for troubleshooting.

53

EXPERT ADVISOR PROGRAMMING

We check for possible errors by examining the output of functions such as OrderSend(),
OrderModify() and OrderClose(). If the function did not complete successfully, the function will
return -1 for OrderSend(), or false for OrderModify() and OrderClose().

In this section, we will create an error handling routine for the OrderSend() function. If the return
value of OrderSend() is -1, we will run an error handling routine to display an alert to the user, and
print relevant trade parameter and price information to the log.

First, we must first retrieve the error code. This is done using the GetLastError() function. We
need to store the return value of GetLastError() in a variable, because once GetLastError() has
been called, the error code will be cleared and the next call of GetLastError() will return 0. We'll
declare a global variable called ErrorCode and use it to store the value of GetLastError().

Next, we'll need to get some descriptive information on the error. The include file stdlib.mqh
contains a function called ErrorDescription(). This function returns a string with a description of
the error. It's actually not very descriptive, but it's better than nothing. We'll need to add an
#include statement for stdlib.mqh at the top of our file.

Then we'll print an alert to the user's screen using the built-in Alert() function. This information will
also be printed to the log. The alert will include the error code, the error description, and a short
description of the operation we just attempted to carry out. This way you'll know exactly which
section in your program generated the error.

Finally, we will print relevant price information to the log using the Print() function. Along with the
current Bid & Ask prices, we will include trade parameters such as the lot size and the order price.

// Preprocessor section
#include <stdlib.mqh>

// Global variable
int ErrorCode;

// Order placement
int Ticket = OrderSend(Symbol(),OP_BUYSTOP,LotSize,PendingPrice,UseSlippage,0,0,

"Buy Stop Order",MagicNumber,0,Green);

if(Ticket == -1)
{

ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Open Buy Stop Order - Error ",
ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

54

Advanced Order Placement

string ErrLog = StringConcatenate("Bid: ",Bid," Ask: ",Ask," Price: ",
PendingPrice," Lots: ",LotSize);

Print(ErrLog);
}

At the top, we include the stdlib.mqh file. We add the ErrorCode global variable to store our error
code. The OrderSend() places a buy stop order. If the function is not successful, our error handling
code is run.

First, we store the value of GetLastError() in ErrorCode. Then we call the ErrorDescription()
function, using ErrorCode as the argument. Next, we use the StringConcatenate() function to
create our alert message, which is stored in the string variable ErrAlert.

StringConcatenate() is an MQL function that allows you to create complex strings using variables
and constants. Each string element to be joined (or "concatenated") together is separated by a
comma. Try typing the examples above into MetaEditor to view it with syntax highlighting.

You can also concatenate strings by combining them with a plus sign (+). Using
StringConcatenate() is clearer and more efficient, but if you want to simply concatenate a short
string, use the plus sign to combine string constants and variables:

string PlusCat = "The current Ask price is "+Ask;
// Sample output: The current Ask price is 1.4320

The Alert() function displays a pop-up on the user's desktop, containing the contents of the
ErrAlert variable. Figure 3.2 displays the output of the Alert() function.

We construct another string with our price and trade parameters, and store it in the ErrLog variable,
which we pass to the Print() function. Print() prints the contents of the function argument to the
experts log. The experts log can be viewed from the Experts tab inside the Terminal window, or from
the Journal tab in the Tester window if you're using the Strategy Tester.

55

EXPERT ADVISOR PROGRAMMING

Fig. 3.2 – Alert message

Here are the log contents. The first line is the output from the Alert() function. The second line is
the output of the Print() function. Notice the error, "invalid trade volume", and the fact that the lot
size reported in the log is 0. In this case, the problem is that the lot size is invalid.

16:47:54 Profit Buster EURUSD,H1: Alert: Open Buy Stop Order - Error 131:
invalid trade volume

16:47:54 Profit Buster EURUSD,H1: Bid: 1.5046, Ask: 1.5048, Lots: 0

You can create similar error handling routines for other functions as well, especially for the
OrderModify() and OrderClose() functions. You can also create more sophisticated error handling
routines that provide custom error messages based on the error code, or perform other actions.

For example, if you receive error 130: "invalid stops", you could display a message such as "The stop
loss or take profit price is invalid." Here's an example of how you can do this:

ErrorCode = GetLastError();

string ErrDesc;
if(ErrorCode == 129) ErrDesc = "Order opening price is invalid!";
if(ErrorCode == 130) ErrDesc = "Stop loss or take profit is invalid!";
if(ErrorCode == 131) ErrDesc = "Lot size is invalid!";

string ErrAlert = StringConcatenate("Open Buy Order - Error ",ErrorCode,": ",ErrDesc);
Alert(ErrAlert);

56

Advanced Order Placement

Putting It All Together

We're going to add all of the features we've covered in this section to the simple expert advisor we
created on page 36. We'll be adding order modification, stop level verification, trade context
checking, predefined variable refreshing and lot size verification to our EA. Here is our file, starting at
the beginning:

#property copyright "Andrew Young"
#include <stdlib.mqh>

// External variables
extern bool DynamicLotSize = true;
extern double EquityPercent = 2;
extern double FixedLotSize = 0.1;

extern double StopLoss = 50;
extern double TakeProfit = 100;

extern int Slippage = 5;
extern int MagicNumber = 123;

extern int FastMAPeriod = 10;
extern int SlowMAPeriod = 20;

// Global variables
int BuyTicket;
int SellTicket;

double UsePoint;
int UseSlippage;

int ErrorCode;

We've added the #include statement for the stdlib.mqh file that contains the
ErrorDescription() function for our error handling routines. We've added three external variables
for the lot sizing, and a global variable for the error code.

The following code goes at the beginning of the start() function:

// Moving averages
double FastMA = iMA(NULL,0,FastMAPeriod,0,0,0,0);
double SlowMA = iMA(NULL,0,SlowMAPeriod,0,0,0,0);

57

EXPERT ADVISOR PROGRAMMING

// Lot size calculation
if(DynamicLotSize == true)

{
double RiskAmount = AccountEquity() * (EquityPercent / 100);
double TickValue = MarketInfo(Symbol(),MODE_TICKVALUE);
if(Point == 0.001 || Point == 0.00001) TickValue *= 10;
double CalcLots = (RiskAmount / StopLoss) / TickValue;
double LotSize = CalcLots;

}
else LotSize = FixedLotSize;

// Lot size verification
if(LotSize < MarketInfo(Symbol(),MODE_MINLOT))

{
LotSize = MarketInfo(Symbol(),MODE_MINLOT);

}

else if(LotSize > MarketInfo(Symbol(),MODE_MAXLOT))
{

LotSize = MarketInfo(Symbol(),MODE_MAXLOT);
}

if(MarketInfo(Symbol(),MODE_LOTSTEP) == 0.1)
{

LotSize = NormalizeDouble(LotSize,1);
}

else LotSize = NormalizeDouble(LotSize,2);

The lot size calculation and verification code from page 51 is added to the beginning of our start
function. Since our stop loss level is known beforehand, this is a good a place as any to put it. The
remaining code is our modified buy market order routine:

// Buy Order
if(FastMA > SlowMA && BuyTicket == 0)

{
// Close Order
OrderSelect(SellTicket,SELECT_BY_TICKET);

if(OrderCloseTime() == 0 && SellTicket > 0)

{
double CloseLots = OrderLots();

while(IsTradeContextBusy()) Sleep(10);

RefreshRates();
double ClosePrice = Ask;

bool Closed = OrderClose(SellTicket,CloseLots,ClosePrice,UseSlippage,Red);

58

Advanced Order Placement

 // Error handling
if(Closed == false)

{
ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Close Sell Order - Error ",
ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Ask: ",Ask," Lots: ",LotSize,
" Ticket: ",SellTicket);

Print(ErrLog);
}

}

// Open buy order
while(IsTradeContextBusy()) Sleep(10);
RefreshRates();

BuyTicket = OrderSend(Symbol(),OP_BUY,LotSize,Ask,UseSlippage,0,0,
"Buy Order",MagicNumber,0,Green);

// Error handling
if(BuyTicket == -1)

{
ErrorCode = GetLastError();

 ErrDesc = ErrorDescription(ErrorCode);
ErrAlert = StringConcatenate("Open Buy Order - Error ",

ErrorCode,": ",ErrDesc);
 Alert(ErrAlert);

 ErrLog = StringConcatenate("Ask: ",Ask," Lots: ",LotSize);
 Print(ErrLog);
}

// Order modification
else

{
 OrderSelect(BuyTicket,SELECT_BY_TICKET);
 double OpenPrice = OrderOpenPrice();

 // Calculate stop level
 double StopLevel = MarketInfo(Symbol(),MODE_STOPLEVEL) * Point;

 RefreshRates();
 double UpperStopLevel = Ask + StopLevel;
 double LowerStopLevel = Bid - StopLevel;

 double MinStop = 5 * UsePoint;

59

EXPERT ADVISOR PROGRAMMING

 // Calculate stop loss and take profit
 if(StopLoss > 0) double BuyStopLoss = OpenPrice - (StopLoss * UsePoint);
 if(TakeProfit > 0) double BuyTakeProfit = OpenPrice + (TakeProfit * UsePoint);

 // Verify stop loss and take profit
 if(BuyStopLoss > 0 && BuyStopLoss > LowerStopLevel)

 {
 BuyStopLoss = LowerStopLevel - MinStop;

 }

 if(BuyTakeProfit > 0 && BuyTakeProfit < UpperStopLevel)

 {
 BuyTakeProfit = UpperStopLevel + MinStop;

 }

// Modify order
 if(IsTradeContextBusy()) Sleep(10);

 if(BuyStopLoss > 0 || BuyTakeProfit > 0)
{

bool TicketMod = OrderModify(BuyTicket,OpenPrice,BuyStopLoss,
BuyTakeProfit,0);

// Error handling
if(TicketMod == false)

 {
 ErrorCode = GetLastError();
 ErrDesc = ErrorDescription(ErrorCode);

 ErrAlert = StringConcatenate("Modify Buy Order - Error ",
ErrorCode,": ",ErrDesc);

 Alert(ErrAlert);

 ErrLog = StringConcatenate("Ask: ",Ask," Bid: ",Bid," Ticket: ",
BuyTicket," Stop: ",BuyStopLoss," Profit: ",BuyTakeProfit);

 Print(ErrLog);
 }

 }
}

SellTicket = 0;
}

The remainder of our code contains the sell market order placement block, as well as the
PipPoint() and GetSlippage() functions. You can view the full code for this expert advisor in
Appendix B.

Note that we've added the IsTradeContextBusy() function prior to every trade operation. We want
to make sure that the trade thread is free before attempting to trade. We use the RefreshRates()

60

Advanced Order Placement

function before each reference of the Bid or Ask variables, to ensure that we are always using the
latest prices.

We begin by selecting the previous sell order ticket and closing it using OrderClose(). If the
function fails, the error handling block is run. Next, we open the buy market order using
OrderSend(). If the function fails, it's error handling block is run. Otherwise, we continue to the
order modification block.

We select the order that was just placed using OrderSelect(), and assign the order's opening price
to the OpenPrice variable. We then calculate the stop level and the upper and lower stop level
prices. Next, we calculate our stop loss and take profit prices, verify those, and finally we modify the
order using OrderModify(). A final error handling block deals with errors from the order
modification.

Here's how we modify the code for a pending buy stop order:

// Close order
OrderSelect(SellTicket,SELECT_BY_TICKET);

if(OrderCloseTime() == 0 && SellTicket > 0 && OrderType() == OP_SELL)
{

double CloseLots = OrderLots();

while(IsTradeContextBusy()) Sleep(10);

RefreshRates();
double ClosePrice = Ask;

bool Closed = OrderClose(SellTicket,CloseLots,ClosePrice,UseSlippage,Red);

// Error handling
 if(Closed == false)

{
ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Close Sell Order - Error ",ErrorCode,
": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Ask: ",Ask," Lots: ",LotSize,
" Ticket: ",SellTicket);

Print(ErrLog);
 }

}

61

EXPERT ADVISOR PROGRAMMING

// Delete order
else if(OrderCloseTime() == 0 && SellTicket > 0 && OrderType() == OP_SELLSTOP)

{
bool Deleted = OrderDelete(SellTicket,Red);
if(Deleted == true) SellTicket = 0;

// Error handling
 if(Deleted == false)

{
ErrorCode = GetLastError();
ErrDesc = ErrorDescription(ErrorCode);

ErrAlert = StringConcatenate("Delete Sell Stop Order - Error ",ErrorCode,
": ",ErrDesc);

Alert(ErrAlert);

ErrLog = StringConcatenate("Ask: ",Ask," Ticket: ",SellTicket);
Print(ErrLog);

 }
}

We've added the code to delete pending orders using OrderDelete() after the OrderClose()
function. The order type of the previous sell order determines which function is used to close the
order.

The main difference between the following code and the market order code is that we do not have an
order modification block. It is not necessary to place the stop loss and take profit separately for
pending orders. Therefore we will calculate the stop loss and take profit before placing the order with
OrderSend().

// Calculate stop level
double StopLevel = MarketInfo(Symbol(),MODE_STOPLEVEL) * Point;
RefreshRates();
double UpperStopLevel = Ask + StopLevel;
double MinStop = 5 * UsePoint;

// Calculate pending price
double PendingPrice = High[0] + (PendingPips * UsePoint);
if(PendingPrice < UpperStopLevel) PendingPrice = UpperStopLevel + MinStop;

// Calculate stop loss and take profit
if(StopLoss > 0) double BuyStopLoss = PendingPrice - (StopLoss * UsePoint);
if(TakeProfit > 0) double BuyTakeProfit = PendingPrice + (TakeProfit * UsePoint);

// Verify stop loss and take profit
UpperStopLevel = PendingPrice + StopLevel;
double LowerStopLevel = PendingPrice – StopLevel;

62

Advanced Order Placement

if(BuyStopLoss > 0 && BuyStopLoss > LowerStopLevel)
 {
 BuyStopLoss = LowerStopLevel - MinStop;
 }

if(BuyTakeProfit > 0 && BuyTakeProfit < UpperStopLevel)
 {
 BuyTakeProfit = UpperStopLevel + MinStop;
 }

// Place pending order
if(IsTradeContextBusy()) Sleep(10);

BuyTicket = OrderSend(Symbol(),OP_BUYSTOP,LotSize,PendingPrice,UseSlippage,

BuyStopLoss,BuyTakeProfit,"Buy Stop Order",MagicNumber,0,Green);

// Error handling
if(BuyTicket == -1)

{
 ErrorCode = GetLastError();
 ErrDesc = ErrorDescription(ErrorCode);

ErrAlert = StringConcatenate("Open Buy Stop Order - Error ",ErrorCode,
": ",ErrDesc);

 Alert(ErrAlert);

 ErrLog = StringConcatenate("Ask: ",Ask," Lots: ",LotSize," Price: ",PendingPrice,
" Stop: ",BuyStopLoss," Profit: ",BuyTakeProfit);

 Print(ErrLog);
 }

SellTicket = 0;

First, we calculate the upper stop level. We then calculate and verify our pending order price, which
is stored in PendingPrice. We then recalculate UpperStopLevel and calculate the LowerStopLevel
so that they are relative to the pending order price. Note that we do not need to use the Ask or Bid
prices, or figure in the spread when verifying the stop loss and take profit prices.

Finally, we place our pending order using OrderSend(), placing the stop loss and take profit along
with it. We have the standard error handling function to deal with order placement errors.

Despite all the extra code, these expert advisors are using the same strategy as the one at the end of
chapter 2. This code simply has extra features for calculating and verifying lot size, stop levels, stop
loss, take profit and pending order prices. We've also added trade context checks and error handling
code. In the next chapter, we'll learn how to create functions so we can reuse and simplify this code.

63

EXPERT ADVISOR PROGRAMMING

Chapter 4
Working with Functions

We're going to convert the code that we've discussed in the previous chapters into reusable
functions. This will save us a lot of work, as we can focus on the details of our trading system instead
of the mechanics of trading.

The idea behind creating functions is to create a block of code that carries out a very specific task.
The code should be flexible enough to be reused in a variety of trading situations. Any external
variables or calculations will need to be passed to the function. We can't assume that any necessary
values will be available to our function otherwise, since the function may reside in an external include
file or library.

For consistency, we will keep the same names for any external variables that we have used so far.
We'll preface these variables with "arg", to indicate that they are function arguments.

Lot Sizing Function

Let's start with our lot size calculation, as defined on page 51:

double CalcLotSize(bool argDynamicLotSize, double argEquityPercent, double argStopLoss,
double argFixedLotSize)
{

if(argDynamicLotSize == true)
 {

 double RiskAmount = AccountEquity() * (argEquityPercent / 100);
 double TickValue = MarketInfo(Symbol(),MODE_TICKVALUE);
 if(Point == 0.001 || Point == 0.00001) TickValue *= 10;
 double LotSize = (RiskAmount / argStopLoss) / TickValue;

 }
 else LotSize = argFixedLotSize;

 return(LotSize);

}

The first line is our function declaration. We call this function CalcLotSize(). Compare this to the
code on page 51. Notice that DynamicLotSize, EquityPercent, StopLoss and FixedLotSize are
all function arguments now. The external variables with these names still exist in our program, we
will just pass them to the function as arguments now.

64

Working with Functions

The arguments to our function are highlighted in bold. Other than the fact that we're using
arguments now, the code is identical to the lot size calculation code from earlier. We've added a
return statement at the end of the function – this will return the value of LotSize to our calling
function.

The function itself will be placed somewhere in our program file, outside of the start() and init()
functions, or it will be located in an external include file. In the latter case, an #include statement at
the top of the program would include the file for use in our program.

Here's how we would use this function in code. First, let's list the external variables we'll use for our
lot size settings:

extern bool DynamicLotSize = true;
extern double EquityPercent = 2;
extern double FixedLotSize = 0.1;
extern double StopLoss = 50;

And here's how we call the function. This line of code would be located inside the start() function:

double LotSize = CalcLotSize(DynamicStopLoss,EquityPercent,StopLoss,FixedLotSize);

Our external variables are passed to the function as arguments. The function will calculate our lot
size, and the value will be saved in the variable LotSize. Note that this variable is different from the
LotSize variable that is inside the CalcLotSize() function. Both variables are local to their
functions, so even though they have the same name, they are not the same variable.

Lot Verification Function

Let's continue with the lot verification code from page 51. This will be a separate function, in case
you decide to use an alternate method of calculating lot size. Regardless of the method of
determining lot size, you'll want to verify it before using passing it to an order placement function:

double VerifyLotSize(double argLotSize)
{

 if(argLotSize < MarketInfo(Symbol(),MODE_MINLOT))
 {

 argLotSize = MarketInfo(Symbol(),MODE_MINLOT);
 }

 else if(argLotSize > MarketInfo(Symbol(),MODE_MAXLOT))
 {

 argLotSize = MarketInfo(Symbol(),MODE_MAXLOT);
 }

65

EXPERT ADVISOR PROGRAMMING

if(MarketInfo(Symbol(),MODE_LOTSTEP) == 0.1)

 {
 argLotSize = NormalizeDouble(argLotSize,1);

 }
 else argLotSize = NormalizeDouble(argLotSize,2);

 return(argLotSize);
 }

For this function, we'll pass the variable with the lot size we calculated using CalcLotSize() as the
argument. The argument variable argLotSize is then processed and returned back to the calling
function.

Order Placement Function

Now it's time to assemble our buy market order placement function. There will be a few differences
between our order placement function and the code we reviewed earlier. For one, we will not be
closing orders in our order placement functions. We will handle the closing of orders separately. We'll
create a function to close orders in the next chapter.

We will also be calculating and modifying our stop loss and take profit prices outside of the order
placement function. Because there are multiple ways of calculating stops, we need to keep our order
placement function as flexible as possible, and not tie it to a predetermined method of calculating
stops. The order modification code has been moved to a separate function.

We'll place our buy order at the current market price using OrderSend(), and if the order was not
placed, we'll run the error handling code from page 54. In any case, we'll return the ticket number to
the calling function, or -1 if the order was not placed.

We are specifying the order symbol using the argSymbol argument, instead of simply using the
current chart symbol. This way, if you decide to place an order on another symbol, you can do so
easily. Instead of using the predefined Bid and Ask variables, we'll need to use the MarketInfo()
function with the MODE_ASK and MODE_BID parameters to retrieve the Bid and Ask price for that
particular symbol.

We have also specified a default value for the order comment. The argument argComment has a
default value, "Buy Order". If no value is specified for this argument, then the default is used. We'll
assume that the lot size and slippage have been calculated and verified prior to calling this function:

66

Working with Functions

int OpenBuyOrder(string argSymbol, double argLotSize, double argSlippage,
double argMagicNumber, string argComment = "Buy Order")
{

while(IsTradeContextBusy()) Sleep(10);

// Place Buy Order
 int Ticket = OrderSend(argSymbol,OP_BUY,argLotSize,MarketInfo(argSymbol,MODE_ASK),

argSlippage,0,0,argComment,argMagicNumber,0,Green);

// Error Handling
 if(Ticket == -1)

{
 int ErrorCode = GetLastError();
 string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Open Buy Order – Error ",
ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Bid: ",MarketInfo(argSymbol,MODE_BID),
" Ask: ",MarketInfo(argSymbol,MODE_ASK)," Lots: ",argLotSize);

Print(ErrLog);
}

return(Ticket);

}

In the OrderSend() function, note that we've used the MarketInfo() function with the MODE_ASK
parameter, in place of the predefined Ask variable. This will retrieve the current Ask price for the
currency symbol indicated by argSymbol.

If the trade was not placed successfully, the error handling routine will be run. Otherwise the order
ticket will be returned to the calling function, or -1 if the order was not placed. The complete order
placement function for sell market orders is in Appendix D.

Pending Order Placement

To place pending orders, we'll need to pass parameters for the pending order price as well as the
order expiration time. The argPendingPrice and argExpiration arguments will be added to the
function.

We'll assume that the pending order price, as well as the stop loss and take profit, have been
calculated and verified prior to calling this function. The pending order placement functions will place
the stop loss and take profit with the pending order, so no separate order modification function is
required.

67

EXPERT ADVISOR PROGRAMMING

Here's the code to place a pending buy stop order:

int OpenBuyStopOrder(string argSymbol, double argLotSize, double argPendingPrice,
double argStopLoss, double argTakeProfit, double argSlippage, double argMagicNumber,
datetime argExpiration = 0, string argComment = "Buy Stop Order")
{

while(IsTradeContextBusy()) Sleep(10);

// Place Buy Stop Order
int Ticket = OrderSend(argSymbol,OP_BUYSTOP,argLotSize,argPendingPrice,

argSlippage,argStopLoss,argTakeProfit,argComment,argMagicNumber,
argExpiration,Green);

// Error Handling
 if(Ticket == -1)
 {
 int ErrorCode = GetLastError();

 string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Open Buy Stop Order - Error ",ErrorCode,
": ",ErrDesc);

Alert(ErrAlert);

 string ErrLog = StringConcatenate("Ask: ",MarketInfo(argSymbol,MODE_ASK),
" Lots: ",argLotSize," Price: ",argPendingPrice," Stop: ",argStopLoss,
" Profit: ",argTakeProfit," Expiration: ",TimeToStr(argExpiration));

Print(ErrLog);
}

 return(Ticket);
}

Note that we've specified a default value of 0 for argExpiration. If you are not using a pending
order expiration time, and you wish to use the default order comment, you can simply omit the
arguments for argExpiration and argComment when calling the function. The following example will
place a buy stop order with no expiration time and the default order comment, "Buy Stop Order":

int Ticket = OpenBuyStopOrder(Symbol(),LotSize,PendingPrice,StopLoss,TakeProfit,
UseSlippage,MagicNumber);

We've added the pending price to the log in our error handling function, as well as the expiration
time, if one is specified. The TimeToStr() function converts a datetime variable to a readable string
format.

The functions to open sell stop, buy limit and sell limit orders are identical to this one. The only
difference is that the order type parameter for the OrderSend() function is changed accordingly. You
can view all of the pending order placement functions in Appendix D.

68

Working with Functions

Order Closing Function

Lastly, let's create a function for closing a single order. We'll use the order closing block from the code
on page 58. In the next chapter, we'll examine ways of closing multiple orders of the same type,
which is a simpler method of closing orders. But in case you need to close just one order, this
function will do the trick:

bool CloseBuyOrder(string argSymbol, int argCloseTicket, double argSlippage)
{

OrderSelect(argCloseTicket,SELECT_BY_TICKET);

if(OrderCloseTime() == 0)
{

double CloseLots = OrderLots();

while(IsTradeContextBusy()) Sleep(10);

double ClosePrice = MarketInfo(argSymbol,MODE_ASK);

bool Closed = OrderClose(argCloseTicket,CloseLots,ClosePrice,argSlippage,Red);

if(Closed == false)
{

int ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Close Buy Order - Error: ",ErrorCode,
": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Ticket: ",argCloseTicket," Ask: ",
MarketInfo(argSymbol,MODE_ASK));

Print(ErrLog);
}

}

return(Closed);
}

For the ClosePrice variable, we use MarketInfo() to retrieve the current Ask price for the currency
indicated by argSymbol. We use the function arguments argCloseTicket and argSlippage for the
closing order ticket and the slippage, respectively. If the order was not closed successfully, we run
the error handling block, which prints the ticket number and current Ask price to the log.

The code to close a sell order will be identical, except that you'd use the Bid price for the
ClosePrice variable. You can view the sell market close function in Appendix D.

69

EXPERT ADVISOR PROGRAMMING

Pending Order Close Function

Here's a function to close a single pending order. This will work on all pending order types, buy and
sell.

bool ClosePendingOrder(string argSymbol, int argCloseTicket, double argSlippage)
{

OrderSelect(argCloseTicket,SELECT_BY_TICKET);

if(OrderCloseTime() == 0)
{

while(IsTradeContextBusy()) Sleep(10);
bool Deleted = OrderDelete(argCloseTicket,Red);

if(Deleted == false)
{

int ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Close Pending Order - Error: ",
ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Ticket: ",argCloseTicket,
" Bid: ",MarketInfo(argSymbol,MODE_BID),
" Ask: ",MarketInfo(argSymbol,MODE_ASK));

Print(ErrLog);
}

}
return(Deleted);

}

Stop Loss & Take Profit Calculation Functions

We're going to create a few short functions for calculating stop loss and take profit as discussed on
pages 25-30. We will pass our external variables indicating the stop loss or take profit in pips to our
function, as well as the order opening price. The return value of our function will be the actual stop
loss or take profit price.

Here's the function to calculate a buy stop loss in pips:

double CalcBuyStopLoss(string argSymbol, int argStopLoss, double argOpenPrice)
{

if(argStopLoss == 0) return(0);
double BuyStopLoss = argOpenPrice - (argStopLoss * PipPoint(argSymbol));
return(BuyStopLoss);

}

70

Working with Functions

First, we'll check to see if a valid stop loss level has been passed along with the function. If the
argStopLoss argument is 0, then we return a value of 0 to the calling function, indicating that no
stop loss was specified.

Next, we calculate the stop loss by subtracting the stop loss in pips from the order opening price. We
multiply argStopLoss by PipPoint() to calculate the fractional value, and subtract that from
argOpenPrice. We will use either the Bid or Ask price (for market orders) or the intended pending
order price.

Note that we do not check the stop level or otherwise verify that the stop loss is valid. We will use
another set of functions to verify or adjust the stop loss price as necessary. You could, of course,
easily modify this function to verify the stop loss price, display an error message, or automatically
adjust the price.

Here is the function to calculate a buy take profit in pips:

double CalcBuyTakeProfit(string argSymbol, int argTakeProfit, double argOpenPrice)
{

if(argTakeProfit == 0) return(0);
double BuyTakeProfit = OpenPrice + (argTakeProfit * PipPoint(argSymbol));
return(BuyTakeProfit);

}

The functions for calculating stop loss and take profit for sell orders are listed in Appendix D. Note
that the function for calculating sell stop loss is nearly identical to the one above for calculating the
buy take profit, and likewise for buy stop loss and sell take profit.

Stop Level Verification

We're going to create two sets of functions to calculate and verify stop levels. The first will simply
calculate the stop level above or below a specified price, and return a boolean value indicating
whether the indicated price is inside or outside the stop level. A second set of functions will
automatically adjust a price so that it is outside the stop level, plus or minus a specified number of
pips.

The following function verifies whether a price is above the upper stop level (the order opening price
plus the stop level). If so, the function returns true, otherwise false:

71

EXPERT ADVISOR PROGRAMMING

bool VerifyUpperStopLevel(string argSymbol, double argVerifyPrice,
double argOpenPrice = 0)
{

 double StopLevel = MarketInfo(argSymbol,MODE_STOPLEVEL) * Point;

 if(argOpenPrice == 0) double OpenPrice = MarketInfo(argSymbol,MODE_ASK);

else OpenPrice = argOpenPrice;

double UpperStopLevel = OpenPrice + StopLevel;

 if(argVerifyPrice > UpperStopLevel) bool StopVerify = true;
 else StopVerify = false;

 return(StopVerify);
 }

We pass the currency symbol, the price to verify, and the order opening price (optional) as
arguments. By default, the stop level is calculated relative to the Ask price. If argOpenPrice is
specified, the stop level will be calculated relative to that price instead. (Use this when verifying stop
loss and take profit prices for pending orders).

The function will check to see whether argVerifyPrice is greater than the UpperStopLevel. If it is,
the return value will be true. Otherwise, false. You can use this function to check for a valid stop loss,
take profit or pending order price, without modifying the original price. Here's an example where we
check a stop loss price and show an error message if the price is not valid:

bool Verified = VerifyUpperStopLevel(Symbol(),SellStopLoss);

if(Verified == false) Alert("Sell stop loss is invalid!");

The code to check the stop level below the current or pending price is in Appendix D. Our second set
of functions is similar, except that they will automatically adjust the invalid stop loss, take profit or
pending order price to a valid one:

double AdjustAboveStopLevel(string argSymbol, double argAdjustPrice, int argAddPips = 0,
double argOpenPrice = 0)

 {
 double StopLevel = MarketInfo(argSymbol,MODE_STOPLEVEL) * Point;

 if(argOpenPrice == 0) double OpenPrice = MarketInfo(argSymbol,MODE_ASK);

else OpenPrice = argOpenPrice;

double UpperStopLevel = OpenPrice + StopLevel;

72

Working with Functions

if(argAdjustPrice <= UpperStopLevel)
{

double AdjustedPrice = UpperStopLevel + (argAddPips * PipPoint(argSymbol));
}

else AdjustedPrice = argAdjustPrice;

return(AdjustedPrice);
}

The argument argAdjustPrice is the price we will verify and adjust if it's invalid. We've added a
new optional parameter, argAddPips. This will add the specified number of pips to the stop level
price when adjusting an invalid price.

As before, we calculate the stop level, relative to either the Ask price or the argOpenPrice
parameter. If the argAdjustPrice parameter is inside the stop level (i.e. not valid), the price will be
adjusted so that it is outside the stop level by the number of pips specified by argAddPips.

If the price specified by argAdjustPrice is valid, that price will be passed back to the calling
function. In any case, the return value is the one you will want to use for your take profit, stop loss
or pending order price. We will be using these functions in this book to verify stop levels and adjust
our prices accordingly. The functions to calculate and verify the lower stop level can be found in
Appendix D.

Add Stop Loss and Take Profit

In keeping with our idea to keep functions focused on simple and discrete tasks, we've moved our
order modification to a separate function. This function will add or modify the stop loss and take
profit on the specified order. We'll assume the stop loss and take profit prices have already been
calculated and verified:

bool AddStopProfit(int argTicket, double argStopLoss, double argTakeProfit)
{

if(argStopLoss == 0 && argTakeProfit == 0) return(false);

OrderSelect(argTicket,SELECT_BY_TICKET);
double OpenPrice = OrderOpenPrice();

while(IsTradeContextBusy()) Sleep(10);

// Modify Order
bool TicketMod = OrderModify(argTicket,OrderOpenPrice(),argStopLoss,argTakeProfit,0);

73

EXPERT ADVISOR PROGRAMMING

// Error Handling
if(TicketMod == false)

{
int ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Add Stop/Profit - Error ",ErrorCode,": ",
ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Bid: ",MarketInfo(OrderSymbol(),MODE_BID),
" Ask: ",MarketInfo(OrderSymbol(),MODE_ASK)," Ticket: ",argTicket,
" Stop: ",argStopLoss," Profit: ",argTakeProfit);

Print(ErrLog);
 }

 return(TicketMod);

}

We check first to see if either a stop loss or a take profit price has been supplied. If not, we will exit
the function. Otherwise, we will modify the order using the stop loss and take profit that was passed
to the function. The error handling function will run if the order modification was not successful. This
function will work on all order types.

Using Include Files

To keep our functions organized for easy inclusion in our source code files, we'll place the functions
into an include file. An include file can consist of function declarations, imported functions, and any
global or external variables that you wish to include in an expert advisor.

Include files require no special syntax. You declare the functions and variables in the include file just
as you would in any source code file. Include files should not have an init(), start() or deinit()
function. The file must have an .mqh extension and be located in the \experts\include folder.

All of the functions we create in this book will be placed in an include file named
IncludeExample.mqh. The contents of this file are listed in Appendix D.

Using Libraries

A library is a compiled collection of functions. Whereas an include file is a source code file whose
contents are "included" in the executable file, a library is a separate executable that contains the
imported functions. Therefore you must have both your expert advisor executable and the library
executable to run your EA.

74

Working with Functions

Libraries are stored in the \experts\libraries folder. The source code files have an .mq4
extension, and the executables have an .ex4 extension. Libraries do not have a start(), init() or
deinit() function. To declare a file as a library, you must place the #property library
preprocessor directive at the beginning of the file.

The advantage of libraries is that they are compiled, so if you need to distribute a function library,
you can do so without exposing your intellectual property as you would if you distributed an include
file. You can also make bug fixes to a library without having to recompile your expert advisors – as
long as you do not make any changes to the function declarations, such as adding and removing
arguments or functions.

There are a few disadvantages to libraries as well. Since they are already compiled, it is not possible
for the compiler to check if the parameters are correct. You cannot specify a default value for a
parameter in a library function, which means you will need to specify a value for every argument in a
function call. You cannot use external variables in a library, or create globally scoped variables that
your expert advisor can access.

You'll need to use the #import directive to import library functions into your expert advisor. If the
library contains numerous functions, it may be best to create an include file with the #import
statements. This increases the number of files you'll need to work with. Unless you have a very good
reason to use libraries, it is suggested that you stick with include files for storing your functions.

You can also import functions from Windows DLLs using #import directives. The WinUser32.mqh
include file in \experts\includes has numerous examples that are used for the MessageBox()
function. (We'll discuss the MessageBox() function in chapter 8). Using DLL functions is an advanced
usage that we will not cover here. There are articles on the MQL4 website on using DLLs for those
who are interested.

A Simple Expert Advisor (with Functions)

Here is our expert advisor source code, as it appears in the source code file. We'll assume that the
functions we've created in this chapter are declared in the include file IncludeExample.mqh, the
contents of which are listed in Appendix D.

// Preprocessor
#include <IncludeExample.mqh>

// External Variables
extern bool DynamicLotSize = true;
extern double EquityPercent = 2;
extern double FixedLotSize = 0.1;

75

EXPERT ADVISOR PROGRAMMING

extern double StopLoss = 50;
extern double TakeProfit = 100;

extern int Slippage = 5;
extern int MagicNumber = 123;

extern int FastMAPeriod = 10;
extern int SlowMAPeriod = 20;

// Global Variables
int BuyTicket;
int SellTicket;
double UsePoint;
int UseSlippage;

// Init function
int init()

{
UsePoint = PipPoint(Symbol());
UseSlippage = GetSlippage(Symbol(),Slippage);

}

// Start Function
int start()

{
// Moving Average
double FastMA = iMA(NULL,0,FastMAPeriod,0,0,0,0);
double SlowMA = iMA(NULL,0,SlowMAPeriod,0,0,0,0);

// Calculate Lot Size
double LotSize = CalcLotSize(DynamicLotSize,EquityPercent,StopLoss,FixedLotSize);
LotSize = VerifyLotSize(LotSize);

// Buy Order
if(FastMA > SlowMA && BuyTicket == 0)

{
if(SellTicket > 0) int Closed = CloseSellOrder(Symbol(),SellTicket,UseSlippage);
SellTicket = 0;

BuyTicket = OpenBuyOrder(Symbol(),LotSize,UseSlippage,MagicNumber);

if(BuyTicket > 0 && (StopLoss > 0 || TakeProfit > 0))
{

OrderSelect(BuyTicket,SELECT_BY_TICKET);
 double OpenPrice = OrderOpenPrice();

76

Working with Functions

 double BuyStopLoss = CalcBuyStopLoss(Symbol(),StopLoss,OpenPrice);
if(BuyStopLoss > 0)

{
BuyStopLoss = AdjustBelowStopLevel(Symbol(),BuyStopLoss,5);

}

 double BuyTakeProfit = CalcBuyTakeProfit(Symbol(),TakeProfit,OpenPrice);
 if(BuyTakeProfit > 0)

{
BuyTakeProfit = AdjustAboveStopLevel(Symbol(),BuyTakeProfit,5);

}

 AddStopProfit(BuyTicket,BuyStopLoss,BuyTakeProfit);
}

}

// Sell Order
if(FastMA < SlowMA && SellTicket == 0)

{
if(BuyTicket > 0) Closed = CloseBuyOrder(Symbol(),BuyTicket,Slippage);
BuyTicket = 0;

SellTicket = OpenSellOrder(Symbol(),LotSize,UseSlippage,MagicNumber);

if(SellTicket > 0 && (StopLoss > 0 || TakeProfit > 0))
{

OrderSelect(SellTicket,SELECT_BY_TICKET);
 OpenPrice = OrderOpenPrice();

 double SellStopLoss = CalcSellStopLoss(Symbol(),StopLoss,OpenPrice);
 if(SellStopLoss > 0)

{
SellStopLoss = AdjustAboveStopLevel(Symbol(),SellStopLoss,5);

}

 double SellTakeProfit = CalcSellTakeProfit(Symbol(),TakeProfit,OpenPrice);
 if(SellTakeProfit > 0)

{
SellTakeProfit = AdjustBelowStopLevel(Symbol(),SellTakeProfit,5);

}

 AddStopProfit(SellTicket,SellStopLoss,SellTakeProfit);
 }

}
return(0);

}

77

EXPERT ADVISOR PROGRAMMING

We begin by including the file that has our functions in it, in this case IncludeExample.mqh. The
variable declarations and the contents of the init() function are the same as before. At the
beginning of the start() function, we use CalcLotSize() and VerifyLotSize() to to calculate
and verify our lot size.

In our buy and sell order blocks, we use CloseBuyOrder() and CloseSellOrder() to close the
opposite order. Our new orders are opened using OpenBuyOrder() or OpenSellOrder(). Before
calculating the stop loss and take profit, we check that the order was opened and that a StopLoss or
TakeProfit has been specified.

We retrieving the opening price of the order using OrderSelect() and OrderOpenPrice(). We then
calculate our stop loss using CalcBuyStopLoss() or CalcSellStopLoss(), and our take profit using
CalcBuyTakeProfit() or CalcSellTakeProfit().

We check to see if the stop loss or take profit is greater than 0, and use the functions
AdjustAboveStopLevel() and AdjustBelowStopLevel() to verify our stop loss and take profit
prices. Finally, we pass those prices to the AddOrderProfit() function, which adds the stop loss and
take profit to the order.

The EA above does exactly the same thing as the code starting on page 51, but is much easier to
read. By breaking the code into functions, we have de-cluttered our source code and made our EA
easier to manage. We will add a few more features to this expert advisor before the end of the book.
You can view the complete code in Appendix C.

The initial work in creating these functions will take some time, but it will save you time in the long
run, as you will more easily be able to prototype trading ideas and turn out working expert advisors
in a short amount of time.

78

Working with Functions

79

EXPERT ADVISOR PROGRAMMING

Chapter 5
Order Management

You've already been introduced to the OrderSelect() function in chapter 2. In this section, we will
use the OrderSelect() function, along with the cycle operators for and while, to loop through the
order pool and retrieve order information. This method will be used to close multiple orders, add
trailing stops, count the number of open orders, and more.

The Order Loop

The for Operator

The for operator is used to loop through a block of code a predetermined number of times. We
declare an integer variable to use as a counter, and assign it a starting value. We indicate the
condition which, if true, will cause the loop to run. We also indicate an expression by which to
increment the counter variable.

Here is an example of a for loop:

for(int Counter = 1; Counter <= 3; Counter++)
{

// Code to loop
}

The first expression, int Counter = 1, initializes our Counter variable with a value of 1. The second
expression, Counter <= 3, is the condition which, if true, will execute the code inside the braces. If
false, the loop is ended, and execution continues after the end brace (}).

The third expression, Counter++, means "increment the value of Counter by one." The expression
Counter-- would decrement the value by one, and Counter+2 would increment by two. Every time
the loop completes, the counter variable is incremented or decremented. On the next iteration of the
loop, the second argument, in this case Counter<= 3, is re-evaluated. Note that there is no
semicolon after the third expression.

The above example will execute the loop three times. After each iteration, the counter is incremented
by one, and after the third iteration the loop will terminate.

80

Order Management

The while Operator

The while operator is a simpler method of looping in MQL. The for loop is best if you know exactly
how many times you plan on executing the loop. If you're unsure of the number of iterations
however, then the while loop would be more appropriate.

Here's an example of a while loop:

while(Something == true)
{

// Loop code
}

This literal example uses a boolean variable called Something. If Something is equal to true, the
loop will execute. Of course, if the value of Something never changes, the loop will run endlessly.
Thus, it is necessary that there be a condition to change the value of Something at some point
during the loop. Once this condition is true, Something is changed to false, and the loop will stop
executing.

You could also increment a variable, just like you would using the for operator:

int Counter = 1;
while(Counter <= 3)

{
Counter++;

}

This code will execute exactly like the for loop above!

The Order Loop

Here is the code we will use to loop through the pool of open orders:

for(Counter = 0; Counter <= OrdersTotal()-1; Counter++)
{

OrderSelect(Counter,SELECT_BY_POS);
// Evaluate condition

}

We will set the value of Counter to 0, and iterate the loop as long as Counter is less than or equal to
the value of OrdersTotal(), minus one. Counter will be incremented by 1 after each iteration of the
loop.

81

EXPERT ADVISOR PROGRAMMING

OrdersTotal() is a function that returns the number of currently opened orders. Why are we
subtracting 1 from the value of OrdersTotal()? Let's explain how the order pool works:

The order pool contains all orders that are currently open in our terminal, including manually placed
orders as well as orders placed by expert advisors. The order indexes are numbered starting from
zero. If there is one order open, its index is 0. When a second order is opened, its index is 1. If a
third order is opened, its index will be 2, and so on. Index 0 is the oldest order, and index 2 is the
newest.

OrdersTotal() will return the number of currently opened orders. In the above example, we have
three orders open. But because our order index starts at 0, we want our counter variable to only
count to 2. The value of Counter must correspond with our order index numbers, so that is why we
must subtract 1 from OrdersTotal().

When an order in the open order pool is closed, any newer orders in the pool will have their order
indexes decremented. For example if the order with index 0 is closed, then the order with index 1
becomes index 0, and order index 2 becomes index 1. This is important when we close orders, and
we'll cover this in more detail soon.

Back to our order loop: The OrderSelect() statement uses our Counter variable as the order
position index. As explained above, we will increment our way through the order pool from the oldest
order to the newest. The SELECT_BY_POS parameter indicates that we are selecting the order by its
position in the order pool, as opposed to its ticket number.

For the first iteration of this loop, Counter will be equal to 0 and we will select the oldest order from
the order pool using OrderSelect(). We can then examine the order information using functions
such as OrderTicket() or OrderStopLoss(), and modify or close the order as necessary.

Order Counting

It is often very useful to find out how many orders our EA has open, and of what type. We will create
several order counting functions to count the current number of open orders, based on the order
type. The following function will count the total number of open orders:

int TotalOrderCount(string argSymbol, int argMagicNumber)
{

int OrderCount;
for(Counter = 0; Counter <= OrdersTotal()-1; Counter++)

{
OrderSelect(Counter,SELECT_BY_POS);

82

Order Management

if(OrderMagicNumber() == argMagicNumber && OrderSymbol() == argSymbol)
{

OrderCount++;
}

}
return(OrderCount);

}

We've named our order counting function TotalOrderCount(). It will return an integer value
indicating how many orders are currently opened on the specified chart symbol matching the magic
number that we've passed as a function argument.

We start by declaring the OrderCount variable. Since we have not indicated an initial value,
OrderCount will be initialized as 0. You'll recognize the for operator and the OrderSelect()
function from the previous section.

Since the order pool contains all open orders, including those placed by other EAs, it is necessary for
us to identify which orders were placed by our EA. We check the OrderSymbol() of the selected
order first, and make sure that it matches the argSymbol argument. The we check the magic number
on the order.

If OrderMagicNumber() matches the argMagicNumber argument, we can be fairly sure that this
order was placed by this EA. As long as the user is not running two EA's on the same currency
symbol with the same magic number, we can be certain that this order was placed by this EA. When
running multiple expert advisors on the same instrument, take care to ensure that you're using a
unique magic number on each EA.

If the order matches both our magic number and our chart symbol, the value of OrderCount will be
incremented by one. After we have looped through all of the orders in the order pool, we return the
value of OrderCount to the calling function.

Here's an example of how we would use this in code:

if(TotalOrderCount(Symbol(),MagicNumber) > 0 && CloseOrders == true)
{

// Close all orders
}

If there are orders opened by this EA, and the value of CloseOrders is true (we'll assume this was
set somewhere else in the program), then the code inside the braces will run, which will close all
open orders.

83

EXPERT ADVISOR PROGRAMMING

Let's modify our order counting routine to count only buy market orders:

int BuyMarketCount(string argSymbol, int argMagicNumber)
{

int OrderCount;
for(Counter = 0; Counter <= OrdersTotal()-1; Counter++)

{
OrderSelect(Counter,SELECT_BY_POS);
if(OrderMagicNumber() == argMagicNumber && OrderSymbol() == argSymbol

&& OrderType() == OP_BUY)
{
 OrderCount++;
}

}
return(OrderCount);

}

The code is identical to before, except that we've added the OrderType() function to check the order
type of the currently selected order. OP_BUY is the constant that indicates a buy market order. To
count other types of orders, simply replace OP_BUY with the appropriate order type constant, and
rename the function to reflect the order type.

It is suggested that you create an order counting function for every order type. You can view the
code for all of the order counting functions in Appendix D.

Closing Multiple Orders

More often that not, we'll need to close multiple orders of the same type. We'll combine our order
loop with our order closing routines to close multiple orders at once. This function will close all buy
market orders placed by our expert advisor:

void CloseAllBuyOrders(string argSymbol, int argMagicNumber, int argSlippage)
{

for(int Counter = 0; Counter <= OrdersTotal()-1; Counter++)
{

OrderSelect(Counter,SELECT_BY_POS);

if(OrderMagicNumber() == argMagicNumber && OrderSymbol() == argSymbol
&& OrderType() == OP_BUY)
{

// Close Order
int CloseTicket = OrderTicket();
double CloseLots = OrderLots();

while(IsTradeContextBusy()) Sleep(10);
double ClosePrice = MarketInfo(argSymbol,MODE_BID);

84

Order Management

bool Closed = OrderClose(CloseTicket,CloseLots,ClosePrice,argSlippage,Red);

// Error Handling
if(Closed == false)

{
ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Close All Buy Orders - Error ",
ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Bid: ",
MarketInfo(argSymbol,MODE_BID), " Ticket: ",CloseTicket,
" Price: ",ClosePrice);

 Print(ErrLog);
}

else Counter--;
}

}
}

Note that we are using void as the function data type. We've determined that there is no useful data
to return from this function, so we are not requiring a return operator in the function.

You'll recognize the for loop and the OrderSelect() function from our order loop code. We will loop
through the order pool and examine each order to see if we need to close it. If the current order is a
buy market order, as indicated by OP_BUY, and if it matches our chart symbol and magic number
arguments, we'll proceed to close the order.

We call the OrderTicket() function to retrieve the ticket number for the current order. From here,
our code is identical to the buy market close code in previous chapters. Note the very last statement:
Counter--. If the order was closed properly, the Counter variable will be decremented by one.

We explained earlier that when an order is closed, all of the orders behind it have their indexes
decremented by one. If we did not decrement the counter variable after closing an order, subsequent
orders would be skipped.

There's a very good reason why we loop through the orders from oldest to newest: The NFA
regulations that went into effect in summer 2009 for US brokers requires that multiple orders placed
on the same currency symbol be closed in the order that they were placed. This is called the FIFO
(first in, first out) rule. Looping through the orders from oldest to newest ensures that we comply
with the FIFO rule when closing orders.

85

EXPERT ADVISOR PROGRAMMING

To close sell market orders using the above code, simply change the order type to OP_SELL and the
ClosePrice to the symbol's Ask price. The sell order close function can be viewed in Appendix D.

Let's examine the code to close multiple pending orders. This example will close all buy stop orders.
The difference between this code and the code to close buy market orders above is that we specify
OP_BUYSTOP as our order type, and we use OrderDelete() to close the orders.

void CloseAllBuyStopOrders(string argSymbol, int argMagicNumber, int argSlippage)
{

for(int Counter = 0; Counter <= OrdersTotal()-1; Counter++)
{

OrderSelect(Counter,SELECT_BY_POS);

if(OrderMagicNumber() == argMagicNumber && OrderSymbol() == argSymbol
&& OrderType() == OP_BUYSTOP)
{

// Delete Order
int CloseTicket = OrderTicket();

while(IsTradeContextBusy()) Sleep(10);

bool Closed = OrderDelete(CloseTicket,Red);

// Error Handling
if(Closed == false)

{
ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Close All Buy Stop Orders",
" - Error ",ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Bid: ",
MarketInfo(argSymbol,MODE_BID), " Ask: ",
MarketInfo(argSymbol,MODE_ASK)," Ticket: ",CloseTicket);

 Print(ErrLog);
}

else Counter--;
}

}
}

This code will work for all types of pending orders – simply change the order type comparison to the
type of order you wish to close. The order closing functions for all pending orders can be viewed in
Appendix D.

86

Order Management

Trailing Stops

We can also use our order loop to modify multiple orders. A common example of this is the trailing
stop. A trailing stop moves the stop loss up or down with the order price as the order gains in profit.
This "locks in" profit and provides excellent loss protection.

The trailing stop is expressed as a maximum number of pips. For example, if your trailing stop is 50
pips, the stop loss will never be more than 50 pips away from your price. If the price reverses and
the profit declines, the stop loss will stay where it is. The stop only moves in the direction of profit –
never in reverse.

When modifying a trailing stop, we must check to see if the distance in pips between the current
price and the current stop loss is greater that the trailing stop. If so, the stop loss will be modified so
that the distance from the current price in pips is equal to the number of pips in the trailing stop
setting.

The trailing stop is calculated relative to the closing price, which is the Bid for buy orders, and the
Ask for sell orders. Note that this is the opposite of the opening price. Let's examine the code for
modifying a trailing stop. First, we declare the external variable for our trailing stop setting:

extern double TrailingStop = 50;

This code checks all buy market orders and modifies the stop loss as necessary:

for(int Counter = 0; Counter <= OrdersTotal()-1; Counter++)
{

OrderSelect(Counter,SELECT_BY_POS);

double MaxStopLoss = MarketInfo(Symbol(),MODE_BID) -
(TrailingStop * PipPoint(Symbol()));

MaxStopLoss = NormalizeDouble(MaxStopLoss,MarketInfo(OrderSymbol(),MODE_DIGITS));

double CurrentStop = NormalizeDouble(OrderStopLoss(),
MarketInfo(OrderSymbol(),MODE_DIGITS));

// Modify Stop
if(OrderMagicNumber() == MagicNumber && OrderSymbol() == Symbol()

&& OrderType() == OP_BUY && CurrentStop < MaxStopLoss)
{

bool Trailed = OrderModify(OrderTicket(),OrderOpenPrice(),MaxStopLoss,
OrderTakeProfit(),0);

87

EXPERT ADVISOR PROGRAMMING

// Error Handling
if(Trailed == false)

{
ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Buy Trailing Stop - Error ",
ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Bid: "MarketInfo(Symbol(),MODE_BID),
" Ticket: ",CloseTicket," Stop: ",OrderStopLoss()," Trail: ",
MaxStopLoss);

 Print(ErrLog);
}

}
}

After selecting the order from the pool with OrderSelect(), we determine the maximum stop loss
distance by subtracting our trailing stop setting, multiplied by PipPoint(), from the current Bid
price. This is stored in the variable MaxStopLoss.

We use the MQL function NormalizeDouble() to round the MaxStopLoss variable to the correct
number of digits after the decimal point. Prices in MetaTrader can be quoted up to eight decimal
places. By using NormalizeDouble(), we round that down to 4 or 5 digits (2-3 digits for JPY pairs).

Next, we retrieve the stop loss of the currently selected order, and round it using
NormalizeDouble() just to be sure. We assign this value to the variable CurrentStop.

Then we check to see if the current order needs to be modified. If magic number, symbol and order
type match, and the current stop loss (CurrentStop) is less than MaxStopLoss, then we modify the
order's stop loss. We pass the MaxStopLoss variable as our new stop loss to the OrderModify()
function.

If the OrderModify() function was not successful, the error handling routine will run, and the
current price information, ticket number, current stop loss and modified stop loss will be printed to
the log.

The trailing stop conditions for sell orders are different, and need to be addressed separately. Here
are the conditions to modify a sell order:

// Modify Stop
if(OrderMagicNumber() == MagicNumber && OrderSymbol() == Symbol()

&& OrderType() == OP_SELL && (CurrentStop > MaxStopLoss || CurrentStop == 0))

88

Order Management

Note the condition (CurrentStop > MaxStopLoss || CurrentStop == 0). If there is no stop loss
placed with the order, then the condition CurrentStop > MaxStopLoss will never be true, because
MaxStopLoss will never be less than zero. Thus, we add an OR condition, CurrentStop == 0.

If the current order's stop loss is 0 (no stop loss), then as long as the remaining conditions are true,
the trailing stop will be placed.

Minimum Profit

Let's enhance our trailing stop by adding a minimum profit level. In the above example, the trailing
stop will kick in right away. If you set an initial stop loss of 100 pips, and your trailing stop is 50 pips,
the stop loss would be set to 50 pips immediately, invalidating your initial 100 pip stop loss.

Adding a minimum profit level will allow you to set an initial stop loss, while delaying the trailing stop
until a specified amount of profit is reached. In this example, let's assume an initial stop loss of 100
pips is set when the order is placed. We're using a trailing stop of 50 pips, with a minimum profit
level of 50 pips. When the profit for the order reaches 50 pips, the stop loss will be adjusted to break
even.

Let's add an external variable for our minimum profit setting:

extern int TrailingStop = 50;
extern int MinimumProfit = 50;

The following function modifies the stop loss for all buy market orders, checking the minimum profit
before doing so:

void BuyTrailingStop(string argSymbol, int argTrailingStop, int argMinProfit,
int argMagicNumber)
{

for(int Counter = 0; Counter <= OrdersTotal()-1; Counter++)
{

OrderSelect(Counter,SELECT_BY_POS);

// Calculate Max Stop and Min Profit
double MaxStopLoss = MarketInfo(argSymbol,MODE_BID) -

(TrailingStop * PipPoint(argSymbol));

MaxStopLoss = NormalizeDouble(MaxStopLoss,
MarketInfo(OrderSymbol(),MODE_DIGITS));

double CurrentStop = NormalizeDouble(OrderStopLoss(),
MarketInfo(OrderSymbol(),MODE_DIGITS));

89

EXPERT ADVISOR PROGRAMMING

double PipsProfit = MarketInfo(argSymbol,MODE_BID) - OrderOpenPrice();
double MinProfit = MinimumProfit * PipPoint(argSymbol));

// Modify Stop
if(OrderMagicNumber() == argMagicNumber && OrderSymbol() == argSymbol

&& OrderType() == OP_BUY && CurrentStop < MaxStopLoss
&& PipsProfit >= MinProfit)
{

bool Trailed = OrderModify(OrderTicket(),OrderOpenPrice(),MaxStopLoss,
OrderTakeProfit(),0);

// Error Handling
if(Trailed == false)

{
ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Buy Trailing Stop - Error ",
ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Bid: ",
MarketInfo(argSymbol,MODE_BID), " Ticket: ",CloseTicket,
" Stop: ",OrderStopLoss()," Trail: ",MaxStopLoss);

 Print(ErrLog);
}

}
}

}

We calculate the current order profit in pips by subtracting OrderOpenPrice() from the current Bid
price, and storing that in the variable PipsProfit. We compare that to our minimum profit setting,
which is multiplied by PipPoint() and stored in the variable MinProfit.

If the current profit in pips (PipsProfit) is greater than or equal to our minimum profit
(MinProfit), and all of the other conditions are true, the stop will be modified.

The trailing stop with the minimum profit setting is much more flexible, so you'll probably want to use
this function in your expert advisor. See Appendix D for the complete sell trailing stop code.

Break Even Stop

You can also use this method to apply a break even stop adjustment to your orders. A break even
stop adjusts the stop loss to be equal to the order opening price, after a certain level of profit has
been reached. The break even stop is independent from your initial stop loss and trailing stop
functions.

90

Order Management

Here is the external variable for our break even profit setting. The minimum profit is specified in pips.

extern double BreakEvenProfit = 25;

This code will modify the stop loss on all buy market orders to break even, once the order profit in
pips is equal to or greater than BreakEvenProfit. We will not be creating a function for this, but you
can do so if you feel it would be useful.

for(int Counter = 0; Counter <= OrdersTotal()-1; Counter++)
{

OrderSelect(Counter,SELECT_BY_POS);
RefreshRates();

double PipsProfit = Bid – OrderOpenPrice();
double MinProfit = BreakEvenProfit * PipPoint(OrderSymbol()));

if(OrderMagicNumber() == MagicNumber && OrderSymbol() == Symbol()
&& OrderType() == OP_BUY && PipsProfit >= MinProfit
&& OrderOpenPrice() != OrderStopLoss())
{

bool BreakEven = OrderModify(OrderTicket(),OrderOpenPrice(),
OrderOpenPrice(),OrderTakeProfit(),0);

if(BreakEven == false)
{

ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Buy Break Even - Error ",
ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Bid: ",Bid,", Ask: ",Ask,
", Ticket: ",CloseTicket,", Stop: ",OrderStopLoss(),", Break: ",
MinProfit);

 Print(ErrLog);
}

}
}

We subtract the order opening price from the current Bid price to calculate the current profit in pips,
and store this in PipsProfit. We calculate the minimum profit in pips and store that in MinProfit.
If PipsProfit is greater than or equal to MinProfit, then we will modify the stop loss to be equal
to the order opening price.

We also check to make sure that the stop loss is not already set at the break even price. If
OrderOpenPrice() is not equal to OrderStopLoss(), then we can proceed.

91

EXPERT ADVISOR PROGRAMMING

Updating the Expert Advisor

Let's modify the start() function of our moving average cross expert advisor to reflect the new
functions we have created. First, we will check to see if there are any buy orders open before we
open more. Instead of closing a single sell order, we will simply use the function to close all sell
orders. This method does not require us to use an order ticket.

// Buy Order
if(FastMA > SlowMA && BuyTicket == 0 && BuyMarketCount(Symbol(),MagicNumber) == 0)

{
if(SellMarketCount(Symbol(),MagicNumber) > 0)

{
CloseAllSellOrders(Symbol(),MagicNumber,Slippage);

}

SellTicket = 0;

BuyTicket = OpenBuyOrder(Symbol(),LotSize,UseSlippage,MagicNumber);
}

We used the function BuyMarketCount() that we defined on page 84 to return the number of buy
orders currently open. We will keep the BuyTicket check in, so that only alternating buy/sell orders
are opened.

The function CloseAllSellOrders() closes any sell orders that are open. We check
SellMarketCount() first to see if there are any sell orders to close. This function does not require
an order ticket, unlike the CloseSellOrder() function in chapter 4. It is recommended you use this
method for closing out opposite orders in your EA, as it is more robust.

The rest of the buy order placement code is the same as before. The corresponding sell order
placement code is below:

// Sell Order
if(FastMA < SlowMA && SellTicket == 0 && SellMarketCount(Symbol(),MagicNumber) == 0)

{
if(BuyMarketCount(Symbol(),MagicNumber) > 0)

{
CloseAllBuyOrders(Symbol(),MagicNumber,Slippage);

}

BuyTicket = 0;

SellTicket = OpenSellOrder(Symbol(),LotSize,UseSlippage,MagicNumber);
}

92

Order Management

Next, let's add the trailing stop functions to our order. We'll perform the trailing stop routine after our
order placement. As above, we will check for open buy or sell orders before calling the trailing stop
function. Let's add the following external variables to our EA:

extern int TrailingStop = 50;
extern int MinimumProfit = 50;

This is the code to check and modify the trailing stops. Note that we check to see if there is an entry
for the TrailingStop setting. If it's set to 0, it is effectively disabled:

if(BuyMarketCount(Symbol(),MagicNumber) > 0 && TrailingStop > 0)
{

BuyTrailingStop(Symbol(),TrailingStop,MinimumProfit,MagicNumber);
}

if(SellMarketCount(Symbol(),MagicNumber) > 0 && TrailingStop > 0)
{

SellTrailingStop(Symbol(),TrailingStop,MinimumProfit,MagicNumber);
}

You can view these changes in context in Appendix C.

93

EXPERT ADVISOR PROGRAMMING

Chapter 6
Order Conditions and Indicators

We've spent the last few chapters creating functions that carry out the order mechanics that are
common to every expert advisor. These functions are meant to be used in a variety of trading
situations, and should be as reusable and flexible as possible. This allows us to concentrate on coding
the unique trading conditions for our trading system.

This is where most of your work is going to be focused – getting the expert advisor to trade your
system as accurately as possible. We'll need to identify the exact conditions for opening and closing
orders, as well as determining stop loss and take profit prices. Almost every trading system uses price
and/or indicator data. Let's examine the ways we can access and use this information in our expert
advisors.

Price Data

Along with the current Bid or Ask price (which we've already covered in previous chapters), you may
need to use bar price data, namely the high, low, open or close of a particular bar. For the current
chart, you can use the predefined series arrays High[], Low[], Open[] and Close[].

An array is a variable that holds multiple values. You cycle through the values by changing the index,
which is contained in the square brackets. For example Open[0] is the open price of the current bar.
0 is the index, and by changing it, we can get the open price of other bars. The bar previous to the
current bar would have an index of 1, and so on. We will frequently be using either the current bar or
the previous bar's price values.

If you need a high, low, open or close value for a symbol other than the current chart, or if you need
price data for a period other than the current chart period, you can use the functions iHigh(),
iLow(), iOpen() and iClose(). Here's the syntax of these functions, using iClose() as our
example:

double iClose(string Symbol, int Period, int Shift)

• Symbol – The symbol of the currency pair to use.

• Period – The period of the chart to use, in minutes.

• Shift – The backward shift relative to the current bar.

94

Order Conditions and Indicators

Let's use iClose() to get a close price for a different chart period. For example, we're using a 1 hour
chart, but we want to check the close price of the previous bar on the 4 hour chart:

double H4Close = iClose(NULL,PERIOD_H4,1);

NULL refers to the current chart symbol. PERIOD_H4 is an integer constant that refers to the H4 chart
period. 1 is our shift, which is the bar previous to the current bar. Let's use another example that
returns the close of the current bar on another chart:

double GBPClose = iClose(GBPUSD,0,0);

GBPUSD is the symbol that we're using. We've specified 0 as our period, so the chart period we're
checking on GBPUSD will be the same as our current chart. The shift is 0, which is the current bar.

You can use a loop operator such as for or while to increment the Shift parameter and cycle
through the chart history. This for loop retrieves the close price for each of the last ten bars, and
prints it to the log:

for(int Count = 0; Count <= 9; Count++)
{

double CloseShift = iClose(NULL,0,Count);
Print(Count+" "+CloseShift);

}

Indicators

The majority of trading systems use indicators to determine trading signals. MetaTrader includes over
20 common indicators, including moving average, MACD, RSI and stochastics. MQL has built-in
functions for the stock indicators. You can also use custom indicators in your expert advisor.

Trend Indicators

Let's take a look at the indicator we've been using throughout this book: the moving average. The
moving average is a trend indicator. It shows whether the price has moved up or down over the
indicator period. The moving average consists of a single line drawn on the chart that shows the
average price over the last x number of bars.

Here is the syntax for the moving average function:

95

EXPERT ADVISOR PROGRAMMING

double iMA(string Symbol, int Timeframe, int MAPeriod, int MAShift, int MAMethod,
int MAPrice, int Shift)

• Symbol – The symbol of the chart to apply the moving average to.

• Timeframe – The time period of the chart to apply the moving average to.

Every indicator function in MQL starts off with these two parameters. After this are the indicator-
specific parameters. These correspond to the contents of the Parameters tab in the Indicator
properties.

• MAPeriod – The look-back period of the moving average.

Almost every indicator has at least one period parameter. Most indicators are calculated using a price
series taken from the previous bars. For example, a period setting of 10 would mean that the
indicator uses price data from the last ten bars to calculate the indicator value.

• MAShift – The forward shift of the moving average line, in bars. This is different than the
Shift parameter below.

• MAMethod – The calculation method of the moving average. Choices include simple,
exponential, smoothed or linear weighted.

Any indicator that uses a moving average may give you the option to choose the MA calculation
method. We'll talk about moving average methods later in the chapter.

• MAPrice – The price array to use when calculating the moving average.

This can be the close, open, high, low or some type of average; such as median, typical or weighted
prices. We'll discuss applied price constants later in the chapter.

• Shift – The backward shift of the bar to return the calculation for.

The Shift parameter is the final parameter in any indicator function. This is the index of the bar to
return the indicator value for. A value of 0 returns the indicator value for the current bar. A value of 3
will return the indicator value from 3 bars ago.

The moving average and similar indicators are drawn directly on the chart. You can create trade
conditions based on the relationship between indicators and price. Our moving average cross is an
example of a price relationship between two indicators. When one indicator's price is greater than the
other, a buy or sell signal is generated.

96

Order Conditions and Indicators

You could also generate trade signals when the current price passes above or below an indicator line.
For example, the Bollinger Bands indicator can be used to generate trading signals based on the
location of the price in comparison to the upper and lower bands.

Oscillators

The other major type of indicator is an oscillator. Oscillators are drawn in a separate window, and as
their name suggests, they oscillate between high and low price extremes. Oscillators are either
centered around a neutral axis (generally 0), or they are bound by an upper or lower extreme (such
as 0 and 100). Examples of oscillators include momentum, stochastics and RSI.

Oscillators indicate overbought and oversold levels. While they can be used as an indicator of trend,
they are generally used to locate areas of pending reversal. These are used to produce counter-trend
trading signals.

Let's look at a popular oscillator, the stochastic. Stochastics consists of two lines, the stochastic line
(also called the %K line), and the signal line (the %D line). The stochastic oscillates between 0 and
100. When the stochastic is above 70, it is said to be overbought, and pending a possible reversal. If
it is below 30, it is said to be oversold.

Here is the syntax for the stochastic indicator:

double iStochastic(string Symbol, int Timeframe, int KPeriod, int Dperiod, int Slowing,
int MAMethod, int PriceField, int Mode, int Shift)

We're already familiar with the first two parameters, Symbol and Timeframe. Let's examine the
indicator-specific parameters:

• KPeriod – The period for the %K line.

• DPeriod – The period for the %D line.

• Slowing – The slowing value for the stochastic. A lower value indicates a fast stochastic,
while a higher value indicates a slower one.

• MAMethod – The %D line has a moving average method applied to it. This is the same
setting as for the moving average. We'll review the moving average methods shortly.

• PriceField – Determines the price data used for the %K line. This is either 0: Low/High or 1:
Close/Close. A value of 1 makes it more likely that the stochastic will trade at it's extremes.

• Mode – Determines the stochastic line to calculate – 1: %K line, or 2: %D line.

97

EXPERT ADVISOR PROGRAMMING

Let's take a moment to talk about the Mode parameter. Some indicators draw multiple lines on the
chart. The stochastic has two. We will need to call the iStochastic() function for both the %K and
%D lines, as shown below:

double KLine = iStochastic(NULL,0,KPeriod,DPeriod,Slowing,MAMethod,Price,0,0);
double DLine = iStochastic(NULL,0,KPeriod,DPeriod,Slowing,MAMethod,Price,1,0);

Note that the Mode parameter is 0 for the %K line, and 1 for the %D line. The MQL Reference topic,
Standard Constants – Indicator lines lists the valid integer constants for the various indicators that
use the Mode parameter.

You can generate trade signals based on the relationship between the indicator lines and certain
indicator levels, such as the overbought and oversold levels of 70 and 30, respectively. You can also
evaluate trade signals based on the indicator lines' relationship to each other. For example, you may
want to open a buy order only when the %K line is above the %D line. Here are some example
conditions:

if(KLine < 70) // Buy if stochastic is not overbought
if(KLine > DLine) // Buy if %K is greater than %D

The built-in indicator functions are in the MQL Reference under Technical indicators. If you'd like
more information on an indicator's usage or method of calculation, consult the technical analysis
section of the MQL website at http://ta.mql4.com/.

Custom Indicators

Hundreds of custom indicators for MetaTrader are available online. If you decide to use a custom
indicator in your expert advisor, a little legwork will have to be done. It is best if you have the .mq4
source code file when using a custom indicator. While it is possible to use a custom indicator without
it, having the source code will make it easier to figure out the buffer indexes for the Mode parameter.

MQL has a built-in function for handling custom indicators – iCustom(). Here is the syntax:

double iCustom(string Symbol, int Timeframe, string IndicatorName, Indicator Parameters,
int Mode, int Shift);

You're already familiar with Symbol, Timeframe, Mode and Shift from earlier in the chapter. Let's
start with IndicatorName. This is the name of the indicator file, exactly as it appears in the Custom
Indicators list in the Navigator window. For example, "Slope Direction Line", or "super_signal".

98

Order Conditions and Indicators

Indicator Parameters is where we insert the parameters for the custom indicator. The Inputs tab
in the Custom Indicator Properties window will show the parameters for the custom indicator. The
icons to the left of each parameter will indicate the data type. If you don't have the .mq4 file for an
indicator, you'll have to determine the indicator parameters from this dialog.

Fig 6.1 – The custom indicator input dialog

A easier way of finding the parameters is to check the extern variables at the beginning of the
indicator source code file. All indicator parameters, their data types, and default values will be listed
here, You can simply copy and paste this code to the external variables section of your expert
advisor.

Each and every external variable in a custom indicator must have a counterpart parameter in the
iCustom() function, and they must be in the order that they appear in the indicator. You can use a
constant for parameters that do not need to be changed (such as informational strings, or non-
essential settings).

Here's an example: The popular custom indicator Slope Direction Line has these external variables
listed in the source code. We'll create external variables for these settings in our expert advisor:

//---- input parameters
extern int period=80;
extern int method=3; // MODE_SMA
extern int price=0; // PRICE_CLOSE

99

EXPERT ADVISOR PROGRAMMING

We'll use the identifiers SlopePeriod, SlopeMethod and SlopePrice for the external variables in our
expert advisor.

// External variables
extern int SlopePeriod = 80;
extern int SlopeMethod = 3;
extern int SlopePrice = 0;

Here is how the iCustom() function will look for this particular indicator, along with the external
variables:

iCustom(NULL,0,"Slope Direction Line",SlopePeriod,SlopeMethod,SlopePrice,0,0);

NULL indicates that we are using the current chart symbol, and 0 is the current chart period. "Slope
Direction Line" is the name of the indicator file. SlopePeriod, SlopeMethod and SlopePrice
are the three indicator parameters. We are using the default Mode index of 0, and the Shift is the
current bar.

Although the Slope Direction Line indicator is drawn as a single line, it is actually composed of two
different buffers. Depending on whether the indicator price is moving up or down, the color (and the
buffer) change.

If you attach the indicator to a chart and view the Data
Window in MetaTrader, you'll see two values for the Slope
Direction Line. The first value displays a price when the
indicator value is increasing. The line is blue by default. The
second value displays a price when the indicator value is
decreasing. This line is red by default.

We need to determine the Mode index for both of these
lines. The easiest way to do this is to look at the source
code. In the init() function, you will see several lines of
code that are used to declare and set the properties for the
indicator buffers:

SetIndexBuffer(0, Uptrend);
SetIndexBuffer(1, Dntrend);
SetIndexBuffer(2, ExtMapBuffer);
...
SetIndexStyle(0,DRAW_LINE,STYLE_SOLID,2);
SetIndexStyle(1,DRAW_LINE,STYLE_SOLID,2);

100

Fig 6.2 – Data Window

Order Conditions and Indicators

The first SetIndexBuffer() function sets an indicator buffer with an index of 0, and uses the array
Uptrend. We can guess from the array name that this applies to to the blue indicator line. The
second function does likewise for for the array DnTrend. Note the SetIndexStyle() functions at the
bottom that sets buffers 0 and 1 to draw a solid line.

The third buffer, with the index of 2 and the array ExtMapBuffer, is used for calculation only. We can
therefore conclude that 0 and 1 are the buffer indexes that contain our indicator price information.
Based on the array identifiers, 0 is the uptrend line, and 1 is the downtrend. Here is how we declare
our indicators:

double SlopeUp = iCustom(NULL,0,"Slope Direction Line",SlopePeriod,SlopeMethod,
SlopePrice,0,1);

double SlopeDown = iCustom(NULL,0,"Slope Direction Line",SlopePeriod,SlopeMethod,
SlopePrice,1,1);

Note that the Mode parameter – the next to last one – has been set to the appropriate indicator
buffer index – 0 for SlopeUp, and 1 for SlopeDown. The Shift parameter – the very last one – has
been set to 1, which checks the closing value of the last bar.

It's a good idea to double check that you're using the correct Mode parameters. Add a Print()
function to your expert advisor, and run a back test in the Strategy Tester using "Open prices only" as
the testing model. Make sure the Shift parameter is set to 1 in the iCustom() function.

Print("Slope Up: "+SlopeUp+", Slope Down: "+SlopeDown+" Time: "+TimeToStr(Time[1]));

The Print() function prints the value of our indicator buffers to the log, along with the time and
date of the previous bar. You can view the log under the Journal tab in the Strategy Tester window.
Here is the output of the Print() function in the log:

Slope Up: 2147483647.00000000, Slope Down: 1.50483900 Time: 2009.11.26 16:00

The value for SlopeUp, 2147483647, is a very large integer that represents the EMPTY_VALUE state of
a custom indicator. You can actually use this as a trading condition. SlopeDown returns the indicator
value of the previous bar. Time indicates the bar that we want to find on the chart.

Click the Open Chart button in the Strategy Tester window to open a chart with your indicator
already applied. Find the bar indicated in the log by Time, and make sure the indicator values in the
Data Window match those printed in the log. If not, adjust the Mode parameter in the iCustom()
function until you find the correct buffer.

101

EXPERT ADVISOR PROGRAMMING

Here's how we would use the Slope Direction Line indicator in our expert advisor. If the slope is
trending upward, SlopeUp will return a price value, while SlopeDown will return EMPTY_VALUE, or
2147483647. The opposite applies when the slope is trending downward.

if(SlopeUp != EMPTY_VALUE && SlopeDown == EMPTY_VALUE) // Buy
if(SlopeUp == EMPTY_VALUE && SlopeDown != EMPTY_VALUE) // Sell

These conditions simply check to see which line is equal to EMPTY_VALUE, and which line is not.

Indicator Constants

Time Frames

Many functions in MQL, including indicator and price functions, accept a time frame parameter. As
indicated before, if we use a Timeframe parameter of 0, the current chart time frame will be used. If
we wish to use a different time frame, we will need to specify the time frame in minutes. For
example, M5 is 5, H1 is 60 and H4 is 240. We can also use constants to indicate the time frame:

• PERIOD_M1 – 1 minute.

• PERIOD_M5 – 5 minute.

• PERIOD_M15 – 15 minute.

• PERIOD_M30 – 30 minute.

• PERIOD_H1 – 1 hour (60 minutes).

• PERIOD_H4 – 4 hour (240 minutes).

• PERIOD_D1 – Daily (1440 minutes).

Applied Price

The applied price indicator parameter indicates the price series to use when calculating the indicator
value. You will generally use the close to calculate indicator values, although you may wish to use
other values as well. Here is the list of price series and their associated constants, along with the
integer value:

• PRICE_CLOSE – 0: Close price.

• PRICE_OPEN – 1: Open price.

• PRICE_HIGH – 2: High price.

102

Order Conditions and Indicators

• PRICE_LOW – 3: Low price.

• PRICE_MEDIAN – 4: Median price, (High+Low)/2.

• PRICE_TYPICAL – 5: Typical price, (High+Low+Close)/3.

• PRICE_WEIGHTED – 6: Weighted price, (High+Low+Close+Close)/4.

Moving Average Methods

Indicators that use a moving average as part of their calculation may have a parameter to adjust the
moving average calculation method. The moving average line will be drawn differently depending on
the calculation method. Here are the moving average method constants with their corresponding
integer values:

• MODE_SMA – 0: Simple moving average. Calculates the mean of the price data.

• MODE_EMA – 1: Exponential moving average. Gives more weight to recent price data, and
exponentially less weight to older price data. A very popular moving average.

• MODE_SMMA – 2: Smoothed moving average. A simple moving average calculated with a
smoothing equation. Creates a smooth, but less responsive line.

• MODE_LWMA – 3: Linear weighted moving average. Similar to the exponential moving
average, but gives increased weight to the most current price.

Evaluating Trade Conditions

We use the conditional operators if and else to evaluate our trading conditions. You've already seen
these used in this book, but for you new programmers, a quick review is in order.

The if operator evaluates a true or false condition. If the condition is true, the code immediately
after the if statement is executed. If the condition is false, it will skip ahead to the code following
the if block:

if(BuyCondition == true)
{

OpenBuyOrder(...);
}

If there is only one statement following the if operator, it can be written like this:

if(BuyCondition == true) OpenBuyOrder(...);

103

EXPERT ADVISOR PROGRAMMING

Multiple statements must be enclosed in braces.

The else operator evaluates an alternate condition, provided that the previous if statement(s) are
false. You can combine else and if to create an alternate condition that will only be executed if it's
true.

For example, this code evaluates three conditions in order. If one of them is true, only that block of
code will be executed. If none of them are true, none of them will be executed:

if(Condition1 == true) // Execute condition 1
else if(Condition2 == true) // Execute condition 2
else if(Condition3 == true) // Execute condition 3

The else operator can be used by itself at the end of an if-else sequence to indicate a condition
that will be executed by default if all of the other if operators are false. As above, only one of the
conditions will be executed:

if(Condition1 == true) // Execute condition 1
else if(Condition2 == true) // Execute condition 2
else

{
// Execute condition 3 if 1 and 2 are false

}

If you have multiple if operators without any else operators, each one will be executed if it is true –
it doesn't matter whether the subsequent if statement is true or false:

if(Condition1 == true) // Execute condition 1
if(Condition2 == true) // Execute condition 2

Relation Operations

We begin evaluating true and false conditions by comparing values using greater than, less than,
equal to, not equal to and so on. Here's a list of relation operations:

• == Equal To – If x == y, the condition is true.

• > Greater Than – If x > y, the condition is true.

• < Less Than – If x < y, the condition is true.

• >= Greater Than or Equal To – If x >= y, the condition is true.

104

Order Conditions and Indicators

• <= Less Than or Equal To – if x <= y, the condition is true.

• != Not Equal To – If x != y, the condition is true.

Note that the equal to operator (==) is not the same as the assignment operator (=)! The assignment
operator is used when assigning a value to a variable. The equal to operator is used to evaluate a
true/false condition. This is a common syntax error, and one you should watch out for.

You can compare any two values as long as they are of the same data type. You can compare a
boolean value to the constants true or false. You can compare a string, integer or double variable
to an appropriate constant value, or to another variable of the same type.

Boolean Operations

We use the boolean operators AND (&&) and OR (||) to combine relation operations. The AND
operator evaluates whether all conditions are true. If so, the entire statement is true. If any of the
conditions are false, the entire statement is false.

if(BooleanVar1 == true && Indicator1 > Indicator2)
{

// Open order
}

If BooleanVar1 is equal to true, and Indicator1 is greater than Indicator2, the statement
evaluates to true, and the code between the braces is run. If either of these conditions are false, the
entire statement evaluates to false, and the code in the braces is not run. There can be any number
of conditions combined together with the && operator, and they must all evaluate to true.

The OR operator evaluates whether any one of the conditions are true. If at least one condition is
true, the entire statement evaluates to true. If all of the conditions are false, the statement
evaluates to false.

if(BooleanVar1 == true || Indicator1 > Indicator2)

If either BooleanVar1 is equal to true, or Indicator1 is greater than Indicator2, the statement is
evaluated to true. If both of these conditions are false, the statement evaluates to false.

You can combine AND and OR operations to create more complex trading conditions. When doing so,
use parentheses to establish the order of operations.

105

EXPERT ADVISOR PROGRAMMING

if((BooleanVar1 == true && Indicator1 > Indicator2) || BooleanVar1 == false)

The statement (BooleanVar1 == true && Indicator1 > Indicator2) is evaluated first. If both
of these conditions are true, the statement evaluates to true, and we are left with an OR operation:

if(true || BooleanVar1 == false)

This statement automatically evaluates to true, since one of the conditions is already true. But what if
(BooleanVar1 == true && Indicator1 > Indicator2) evaluates to false?

if(false || BooleanVar1 == false)

If the condition BooleanVar1 == false evaluates to true, then the entire statement is true. (In
other words, if BooleanVar1 is set to false, that condition evaluates to true.) Otherwise, the
statement is false.

It's possible to create complex boolean operations using AND, OR and parentheses to control the
order of operations. Be sure to watch the locations of your parentheses, as one wrong parenthesis
can cause the statement to evaluate differently, and a missing parenthesis could lead to some tedious
debugging.

Turning An Indicator On and Off

You can use the AND/OR example in the previous section to turn an indicator on and off. Let's say
your EA uses multiple indicators, and you'd like to be able to switch indicators on and off. Here's how
we do it. First, let's declare an external boolean variable to use as the on/off switch. We'll use the
stochastic indicator in this example:

extern bool UseStochastic = true;

We define two sets of conditions for our indicator – an "on" state and an "off" state. The on state
consists of the on/off variable being set to true, along with the order opening condition. The off state
simply consists of the on/off variable being set to false.

if((UseStochastic == true && Kline > Dline) || UseStochastic == false)
{

// Buy order
}

106

Order Conditions and Indicators

The statement (UseStochastic == true && Kline > Dline) is our "on" state. If the
UseStochastic external variable is set to true, and the trading condition Kline > Dline evaluates
to true, then the stochastic order condition will be true.

UseStochastic == false is our "off" state. If the UseStochastic external variable is set to false,
then (UseStochastic == true && Kline > Dline) evaluates to false, while UseStochastic ==
false evaluates to true.

Since the on and off states are linked by an OR operator, only one of them has to be true to make
the whole statement true. So as long as either a.) the indicator is on, and the order placement
condition is valid; or b.) the indicator is off; the entire statement will be true, and any remaining
order conditions can be evaluated.

Let's add a second trade condition to our stochastic condition – the moving average cross:

if(((UseStochastic == true && Kline > Dline) || UseStochastic == false)
&& FastMA > SlowMA)

In this example, we've added the moving average cross condition, FastMA > SlowMA. Note that we
added another set of parentheses around the stochastic condition, since the entire statement in the
parentheses needs to be evaluated first.

First, we evaluate the statement inside the innermost set of parentheses: (UseStochastic == true
&& Kline > Dline). If the UseStochastic parameter is set to true, and Kline > Dline evaluates
to true, the first part of the statement is true.

if((true || UseStochastic == false) && FastMA > SlowMA)

The condition UseStochastic == false evaluates to false. We are left with an OR operation, and
since one of the conditions is already true, the entire stochastic condition evaluates to true:

if((true || false) && FastMA > SlowMA)

if(true && FastMA > SlowMA)

If FastMA > SlowMA evaluates to true, the entire trading condition is true, and the order is placed.
If it is false, the statement evaluates to false, and the order is not placed.

Now, what happens if the stochastic trading condition is false? If UseStochastic is set to true, and
Kline > Dline evaluates to false, the entire condition becomes false:

107

EXPERT ADVISOR PROGRAMMING

if((false || UseStochastic == false) && FastMA > SlowMA)

if((false || false) && FastMA > SlowMA)

if(false && FastMA > SlowMA)

Regardless of how FastMA > SlowMA evaluates, the entire trade condition is false.

Now lets say that UseStochastic is set to false. In this case, the statement (UseStochastic ==
true && Kline > Dline) evaluates to false:

if((false || UseStochastic == false) && FastMA > SlowMA)

Since the statement UseStochastic == false is true, the stochastic condition evaluates to true.

if((false || true) && FastMA > SlowMA)

if(true && FastMA > SlowMA)

Which means that if FastMA > SlowMA also evaluates to true, the order will be placed. In this case,
the stochastic condition wasn't even considered, aside from evaluating the on/off state of the
indicator.

Comparing Indicator Values Across Bars

Sometimes you will need to compare the indicator value of the current or most recently closed bar to
the indicator value of a previous bar. For example, let's say you want to know whether a moving
average is going up or down. To do this, we compare the indicator reading of the current bar to that
of the previous bar.

We use the Shift parameter of an indicator function to determine which bar to return the indicator
value for. The Shift parameter is always the last parameter in an indicator function. The current bar
has a shift of 0, the previous bar has a shift of 1, and so on. The moving average functions below
will return a moving average value for the current and the previous bar:

double MA = iMA(NULL,0,MAPeriod,0,MAMethod,MAPrice,0);
double LastMA = iMA(NULL,0,MAPeriod,0,MAMethod,MAPrice,1);

108

Order Conditions and Indicators

In this example, MA is the variable that holds the current bar's indicator value, while LastMA holds the
previous bar's indicator value. Note that the Shift parameter is 0 for the current bar, and 1 for the
previous bar.

Here is the code to determine whether a moving average line is moving up or down:

if(MA > LastMA)
{

// MA is going up
}

else if(MA < LastMA)
{

// MA is going down
}

If the indicator value of the current bar (MA) is greater than the value of the previous bar (LastMA),
we can conclude that the indicator is moving up. The reverse is true when the current bar's indicator
value is less than the previous bar's indicator value.

By comparing the indicator value of a previous bar to the current one, we can determine whether the
indicator has recently crossed above or below a certain value, such the overbought/oversold levels of
an oscillator, or another indicator line.

For example, let's say your trading system gives a trade signal when the stochastic passes above 30
or below 70. Here is the code to check for that:

double Stoch = iStochastic(NULL,0,KPeriod,DPeriod,Slowing,MAMethod,Price,0,0);
double LastStoch = iStochastic(NULL,0,KPeriod,DPeriod,Slowing,MAMethod,Price,0,1);

if(Stoch > 30 && LastStoch < 30)
{

// Open buy order
}

if(Stoch < 70 && LastStoch > 70)
{

// Open sell order
}

Stoch is the indicator value of the current bar, while LastStoch is the indicator value of the previous
bar. If Stoch is greater than 30 and LastStoch is less than 30, we can conclude that the indicator
crossed above the oversold level within the last bar. By reversing the comparison operators, we can
check for a recent cross below a constant value, such as the overbought level of 70.

109

EXPERT ADVISOR PROGRAMMING

Here's another example using moving averages. We'll create a condition to open an order only when
the FastMA and the SlowMA have crossed within the last bar:

double FastMA = iMA(NULL,0,FastMAPeriod,0,0,0,0);
double SlowMA = iMA(NULL,0,SlowMAPeriod,0,0,0,0);

double LastFastMA = iMA(NULL,0,FastMAPeriod,0,0,0,1);
double LastSlowMA = iMA(NULL,0,SlowMAPeriod,0,0,0,1);

if(FastMA > SlowMA && LastFastMA <= LastSlowMA
&& BuyMarketCount(Symbol(),MagicNumber) == 0)
{

// Open buy order
}

if(FastMA < SlowMA && LastFastMA >= LastSlowMA
&& SellMarketCount(Symbol(),MagicNumber) == 0)
{

// Open sell order
}

In this example, we're comparing the relationship of two indicators to each other. LastFastMA and
LastSlowMA return the moving average values for the previous bar. If LastFastMA is less than (or
equal to) LastSlowMA, and FastMA is currently greater than SlowMA, then we know that the fast
moving average line has crossed above the slow moving average line within the last bar.

This provides a reliable trading signal, since we can limit our order placement to right after the cross
occurs. You can change the Shift value for the LastFastMA and LastSlowMA functions if you want
to increase the number of bars to look back when finding an indicator cross.

We've added the LastFastMA and LastSlowMA comparison to our buy and sell order conditions in
our expert advisor. We can now remove the BuyTicket and SellTicket check, since this method is
more reliable that checking a stored order ticket number. We also don't have to worry about orders
being placed well after the cross has occurred. See the expert advisor code in Appendix C to view all
of the changes.

110

Order Conditions and Indicators

111

EXPERT ADVISOR PROGRAMMING

Chapter 7
Working with Time and Date

Datetime Variables

Internally, the datetime variable is represented as the number of seconds elapsed since January 1,
1970. For example, June 15, 2009 at 0:00 (midnight) would be 1245024000. The advantage of
datetime format is that it makes past and future time comparisons and mathematical manipulations
very easy.

For example, if you wanted to check whether one date comes before or after another date, you
would do a simple relational operation. Let's say that StartDate is June 15, 2009 at 14:00, and
EndDate is June 16, 2009 at 5:00.

if(StartDate < EndDate) // Result is true
if(StartDate > EndDate) // Result is false

Another advantage is that you can add or subtract time from a particular date, simply by adding or
subtracting the appropriate number of seconds. If you want to add 24 hours to StartDate, simply
add the number of seconds in a day:

datetime AddDay = StartDate + 86400;

If you're planning to do a lot of mathematical manipulation with datetime variables, it might be a
good idea to declare some integer constants to represent certain units of time:

#define SEC_H1 3600 // Seconds in an hour
#define SEC_D1 86400 // Seconds in a day

The disadvantage of datetime format is that it is not very readable. You can't look at a value such as
1245024000 and automatically tell that it represents June 15, 2009 at 0:00. For this, we use
conversion functions to convert datetime to and from a more readable form.

Datetime Constants

A datetime constant is a date and time presented in the following string format: yyyy.mm.dd hh:mm.
For example, June 15, 2009 at 0:00 would be 2009.06.15 00:00. There are other acceptable

112

Working with Time and Date

formats for datetime constants: the MQL Reference topic Basics – Data Types – Datetime constants
has more information. We'll use the format presented above, since it is the only one that can be
easily converted.

To convert a datetime variable to a string constant, use the function TimeToStr(). Here is the
syntax:

string TimeToStr(datetime Time, int Output = TIME_DATE|TIME_MINUTES);

• Time – A datetime variable expressed as the number of seconds elapsed since January 1,
1970.

• Output – An optional parameter that outputs the constant as date only, hour and minute
only; hour, minute and seconds; or any combination of date and time. Valid input values are :

◦ TIME_DATE – Outputs the date, for example, 2009.06.15

◦ TIME_MINUTES – Outputs hour and minute, for example, 05:30

◦ TIME_SECONDS – Outputs hour, minute and seconds, for example, 05:30:45

To output the string constant in the default yyyy.mm.dd hh:mm format, leave Output blank. If you
only want the date, or the hour and minute (or seconds), use the appropriate argument. In this
example, we'll assume that StartTime is equal to 2009.06.15 05:30:45.

TimeToStr(StartTime,TIME_DATE) // Returns "2009.06.15"
TimeToStr(StartTime,TIME_SECONDS) // Returns "05:30:45"
TimeToStr(StartTime,TIME_MINUTES) // Returns "05:30"
TimeToStr(StartTime,TIME_DATE|TIME_SECONDS) // Returns "2009.06.15 05:30:45"
TimeToStr(StartTime) // Returns "2009.06.15 05:30"

We can construct a datetime constant using string concatenation, and convert it to a datetime
variable using the function StrToTime(). The syntax is identical to TimeToStr() above, but without
the Output parameter. The string constant must be in the format yyyy.mm.dd hh:mm to be converted
correctly.

Here's an example of how we can assemble a datetime constant using integers, convert those
integers to string format, and convert the string to a datetime variable. First, we'll declare some
external variables to set a time and date:

extern int UseMonth = 6;
extern int UseDay = 15;
extern int UseHour = 5;
extern int UseMinute = 30;

113

EXPERT ADVISOR PROGRAMMING

Next, we create the string constant using the StringConcatenate() function, and finally convert the
string to datetime format using StrToTime().

string DateConstant = StringConcatenate(Year(),".",UseMonth,".",UseDay," ",
UseHour,":",UseMinute); // DateConstant is "2009.6.15 05:30"

datetime StartTime = StrToTime(DateConstant); // StartTime is "1245043800"

Note that in the StringConcatenate() function, we use Year() to return the current year instead of
using an external variable. You can use functions like Month(), Day() and so on to insert current
time values. We'll cover these in the next section.

Date and Time Functions

There are two functions that return the current time: TimeCurrent() returns the current server time,
while TimeLocal() returns your local computer time. You can use whichever you prefer. You may
want to create a boolean external variable to choose between the two:

extern bool UseLocalTime = true;

Here is the code to assign either the current local time or the current server time to a variable named
CurrentTime.

if(UseLocalTime == true) datetime CurrentTime = TimeLocal(); // Local time
else CurrentTime = TimeCurrent(); // Server time

Sometimes you may just need to retrieve a part of the current time, such as the hour or day. Here is
the list of the most useful functions you can use to return current time values. All of these functions
use the server time – not your local computer time. The return value is of type integer:

• Year() – The current four-digit year, for example, 2009.

• Month() – The current month of the year from 1 to 12.

• Day() – The current day of the month from 1 to 31.

• DayOfWeek() – An integer representing the current day of the week. Sunday is 0, Monday is
1, Friday is 5 and so on.

• Hour() – The current hour in 24 hour time, from 0 to 23. For example, 3am is 3, and 3pm is
15.

• Minute() – The current minute from 0 to 59.

114

Working with Time and Date

You can also retrieve these values from any datetime variable using a different set of functions.
These functions require a datetime variable as the only parameter, but otherwise work just like the
functions above. If you want to retrieve a time value from TimeLocal(), use the output of the
TimeLocal() function as the argument for the functions below:

• TimeYear() – The four-digit year of the specified datetime value.

• TimeMonth() – The month of the specified datetime value from 1 to 12.

• TimeDay() – The day of the month of the specified datetime value from 1 to 31.

• TimeDayOfWeek() – An integer representing the day of the week of the specified datetime
value. Sunday is 0, Monday is 1, Friday is 5 and so on.

• TimeHour() – The hour of the specified datetime value in 24 hour time, from 0 to 23.

• TimeMinute() – The minute of the specified datetime value from 0 to 59.

Here are a few examples of the usage of these functions. Let's assume that TimeLocal() is equal to
2009.06.15 05:30.

datetime CurrentTime = TimeLocal();

int GetMonth = TimeMonth(CurrentTime); // Returns 6
int GetHour = TimeHour(CurrentTime); // Returns 5
int GetWeekday = TimeDayOfWeek(CurrentTime); // Returns 1 for Monday

Creating A Simple Timer

One very handy thing we can do with time and date in MQL is to add a timer to our expert advisor.
Some traders like to limit their trading to the most active hours of the day, such as the London & New
York sessions. Others may wish to avoid trading during volatile market events, such as news reports
and NFP.

To construct a timer, we need to specify a start time and an end time. We will use external integer
variables to input the time parameters. We will create a datetime constant string, and convert that to
a datetime variable. We will then compare our start and end times to the current time. If the current
time is greater than the start time, but less than the end time, trading will be allowed.

Here are the external variables we're going to use. We'll set a variable to turn the timer on and off, as
well as to select the current time (server or local). We have month, day, hour and minute settings for
both the start and end times:

115

EXPERT ADVISOR PROGRAMMING

extern bool UseTimer = true;
extern bool UseLocalTime = false;

extern int StartMonth = 6;
extern int StartDay = 15;
extern int StartHour = 7;
extern int StartMinute = 0;

extern int EndMonth = 6;
extern int EndDay = 15;
extern int EndHour = 2;
extern int EndMinute = 30;

And here is the code for checking whether to allow trading or not. The variable TradeAllowed
determines whether to open new trades. If UseTimer is set to false, TradeAllowed is automatically
set to true. Otherwise, we evaluate our start and end times in relation to the current time to see if we
will allow trading or not.

if(UseTimer == true)
{

// Convert start time
string StartConstant = StringConcatenate(Year(),".",StartMonth,".",StartDay," ",

StartHour,":",StartMinute);

datetime StartTime = StrToTime(StartConstant);

if(StartMonth == 12 && StartDay == 31 && EndMonth == 1) int EndYear = Year() + 1;
else EndYear = Year();

// Convert end time
string EndConstant = StringConcatenate(EndYear,".",EndMonth,".",EndDay," ",

EndHour,":",EndMinute);

datetime EndTime = StrToTime(EndConstant);

// Choose local or server time
if(UseLocalTime == true) datetime CurrentTime = TimeLocal();
else CurrentTime = TimeCurrent();

// Check for trade condition
if(StartTime <= CurrentTime && EndTime > CurrentTime)

{
bool TradeAllowed = true;

}
else TradeAllowed = false;

}
else TradeAllowed = true;

116

Working with Time and Date

We start by converting our start time to a datetime variable, StartTime. The statement
if(StartMonth == 12 && StartDay == 31 && EndMonth == 1) checks to see if the start date is
the last day of the year, and if the end day is after the first of the next year. If so, it automatically
increments the end year by 1. Otherwise we use the current year for EndYear.

Next, we convert the end time to the datetime variable EndTime and choose which CurrentTime we
want to use, server or local. The final if block checks to see if the current time is between the start
and end times. If so, TradeAllowed is set to true.

Now we need to add the code to control trade execution. The easiest way to do this is to add an if
block around our order opening routines:

// Begin trade block
if(TradeAllowed == true)

{
// Buy Order
if(FastMA > SlowMA && BuyTicket == 0 && BuyOrderCount(Symbol(),MagicNumber) == 0)

{
// Buy order code omitted for brevity

}

// Sell Order
if(FastMA < SlowMA && SellTicket == 0 && SellOrderCount(Symbol(),MagicNumber) == 0)

{
// Sell order code omitted for brevity

}
} // End trade block

There are many more ways to create timers – for example, you could use the day of the week
instead of the month and day, or set trade times relative to the current day. We'll leave it to you, the
reader, to create a timer that is appropriate for your needs.

Execute On Bar Open

By default, expert advisors run in real-time, on every tick. But in some cases, it may be better to
check trading conditions only once per bar. By waiting for the current bar to close, we can be sure
that the condition has occurred and that the signal is valid. In comparison, by executing trades in
real-time, we may be more susceptible to false signals.

Trading once per bar also means that the results in the Strategy Tester will be more accurate and
relevant. Due to the inherent limitations of MetaTrader's Strategy Tester, using "Every tick" as the
testing model will produce unreliable back testing results, due to the fact that ticks are often modeled

117

EXPERT ADVISOR PROGRAMMING

from M1 data. The trades that occur in live trading will not necessarily correspond to trade made in
the Strategy Tester.

But by placing our trades on the close on the bar and using "Open prices only" as the testing model,
we can get testing results that more accurately reflect real-time trades. The disadvantage of trading
once per bar is that trades may be executed late, especially if there is a lot of price movement over
the course of the bar. It's basically a trade-off between responsiveness and reliability.

To check the trade conditions once per bar, we must examine the time stamp of the current bar. We
will save this time stamp to a global variable. Upon each execution of the expert advisor, we will
compare the saved time stamp to the current time stamp. Once the time stamp of the current bar
changes, indicating that a new bar has opened, we will then check the trading conditions.

We must also adjust the shift parameter of our indicator functions, price functions and arrays to
return the value of the previous bar. If an indicator function or price array is set to check the current
bar, we will shift the bar index by 1 to check the previous bar instead. All indicators and price arrays
must have their shift parameters incremented by 1.

Technically, we are checking trading conditions on the first tick of a new bar, while examining the
closing value of the previous bar. We do not check the currently opened bar when executing once per
bar.

Here is the code to check for the opening of a new bar. First, we declare an external variable named
CheckOncePerBar to turn this feature on and off. Then we declare a datetime global variable to
store the time stamp of the current bar – this will be CurrentTimeStamp.

In the init() function, we will assign the time stamp of the current bar to CurrentTimeStamp. This
will delay the trade condition check until the opening of the next bar:

// External variables
extern bool CheckOncePerBar = true;

// Global variables
datetime CurrentTimeStamp;

// Init function
int init()

{
 CurrentTimeStamp = Time[0];

}

118

Working with Time and Date

Here is the code that goes at the beginning of our start() function, just after the timer. The integer
variable BarShift will determine whether to set the Shift value of our indicator and price functions
to the current bar or the previous bar. The boolean variable NewBar will determine whether we will
check our trade conditions:

if(CheckOncePerBar == true)
{

int BarShift = 1;
if(CurrentTimeStamp != Time[0])

{
CurrentTimeStamp = Time[0];
bool NewBar = true;

}
else NewBar = false;

}
else

{
NewBar = true;
BarShift = 0;

}

If CheckOncePerBar is set to true, we will first set BarShift to 1. This will set the Shift parameter
of all indicator and price functions/arrays to the previous bar.

Next, we compare the value of CurrentTimeStamp variable to Time[0], which is the time stamp of
the current bar. If the two values do not match, we will assign the value of Time[0] to
CurrentTimeStamp and set NewBar to true. The trading conditions will be checked shortly thereafter.

On subsequent runs, CurrentTimeStamp and Time[0] will match, which means that NewBar will be
set to false. The trade conditions will not be checked until a new bar opens. Once a new bar opens,
Time[0] will be a different value than CurrentTimeStamp, and NewBar will be set to true once again.

If CheckOncePerBar is set to false, NewBar will automatically be set to true, and BarShift will be
set to 0. This will check the trading conditions on every tick, as before.

The BarShift variable will need to be assigned to the Shift parameter of any indicator functions,
price functions or arrays that reference the most recent bar. Here are some examples of how this
would be applied:

double FastMA = iMA(NULL,0,FastMAPeriod,0,0,0,BarShift);

if(Close[BarShift] > Open[BarShift])

double UseLow = iLow(NULL,0,BarShift);

119

EXPERT ADVISOR PROGRAMMING

You should recognize these examples from before. Instead of checking the current bar, we will check
the bar that just closed, i.e. the previous bar. If you need to reference a bar previous to the last
closed bar, simply add the current shift parameter to BarShift:

double LastFastMA = iMA(NULL,0,FastMAPeriod,0,0,0,BarShift+1);

If you don't anticipate ever needing to run your expert advisor once per bar, you won't need to add
this code. But for many indicator-based trading systems, this can make your trading and back testing
results more reliable.

To control the execution of trades, we need to check the value of NewBar before the order placement
routines. We can do this using the if block we placed earlier for the timer:

// Begin trade block
if(TradeAllowed == true && NewBar == true)

{
// Buy Order
if(FastMA > SlowMA && BuyTicket == 0 && BuyOrderCount(Symbol(),MagicNumber) == 0)

{
// Buy order code omitted for brevity

}

// Sell Order
if(FastMA < SlowMA && SellTicket == 0 && SellOrderCount(Symbol(),MagicNumber) == 0)

{
// Sell order code omitted for brevity

}

} // End trade block

120

Working with Time and Date

121

EXPERT ADVISOR PROGRAMMING

Chapter 8
Tips and Tricks

In this chapter, we will cover additional features that may be useful in your expert advisors.

Escape Characters

If you want to add quotes or a backslash character to a string constant, you'll need to escape the
character using a backslash (\). For example, if you need to insert a double quote, the escape
character will be \". For a single quote, the escape character is \'. For a backslash, use two
backslashes as the escape character: \\

string EscQuotes = "This string has \"escaped double quotes\"";
// Output: This string has "escaped double quotes"

string EscQuote = "This string has \'escaped single quotes\'";
// Output: This string has 'escaped single quotes'

string EscSlash = "This string has an escaped backslash \\";
// Output: This string has an escaped backslash \

If you need a string to span multiple lines, use the escape character \n to add a newline:

string NewLine = "This string has \n a newline";
// Output: This string has

a newline

Using Chart Comments

You can print text in the top left hand corner of the chart using the Comment() function. This can be
used to print status information, indicator settings or any other information you may find useful.

One method for displaying chart comments is to declare several string variables and concatenate
them together with newline characters. One string can be used to display settings, another to display
information messages or order status, etc. The concatenated string will be passed to the Comment()
function. Place the Comment() function at the end of the start() function to update the chart
comment:

122

Tips and Tricks

string SettingsComment = "FastMAPeriod: "+FastMAPeriod+" SlowMAPeriod: "+SlowMAPeriod;
string StatusComment = "Buy order placed";

Comment(SettingsComment+"\n"+StatusComment);

We declare and set the values of the SettingsComment
and StatusComment strings inside the start()
function. At the end of the start function, we call the
Comment() function and use it to print our comments to
the chart. We use a newline character (\n) to separate
the comments into two lines.

Check Settings

There are several expert advisor properties that must be enabled before the expert advisor may be
allowed to trade. These settings are located under the Common tab in the Expert Properties dialog.

The setting Allow live trading must be enabled before trading can commence. If it is not enabled, a
frowning face will appear in the top right hand corner of the chart, next to the expert advisor name.
You can check for this condition in your EA by using the IsTradeAllowed() function. If it returns
false, the setting Allow live trading is disabled.

If you'd like to display a message to the user indicating that this setting should be activated, you can
do as follows:

if(IsTradeAllowed() == false) Alert("Enable the setting \'Allow live trading\' in the
Expert Properties!");

If your expert advisor uses an external .ex4 library, the setting Allow import of external experts must
be enabled in the Expert Properties. You can check for this using the IsLibrariesAllowed()
function:

if(IsLibrariesAllowed() == false) Alert("Enable the setting \'Allow import of external
experts\' in the Expert Properties!");

The same thing can be done for DLLs using the IsDllsAllowed() function:

if(IsDllsAllowed() == false) Alert("Enable the setting \'Allow DLL imports\' in the
Expert Properties!");

123

Fig 8.1: Chart comment using a newline character

EXPERT ADVISOR PROGRAMMING

Fig. 8.2 – Common tab of Expert Advisor Properties dialog.

You can view all of the terminal checkup functions in the MQL Reference under Checkup.

Demo or Account Limitations

You may decide at some point to sell your profitable expert advisor to other traders. You may also
want to provide a demo version for potential buyers to test. To prevent your EA from being freely
distributed or traded by unauthorized persons, you'll want to incorporate some kind of account
limitations that limit the usage of the EA to authorized buyers. You may even want to limit usage to a
particular broker.

To limit usage to a demo account, use the IsDemo() function to check whether the currently active
account is a demo account. If the current account is not a demo account, we will display an alert and
halt the execution of the EA.

if(IsDemo() == false)
{

Alert("This EA only for use on a demo account!");
return(0);

}

124

Tips and Tricks

You can use the account functions AccountName(), AccountNumber() and AccountBroker() to
check the account name, number and broker respectively. Limiting usage by account number is a
common and easy to implement method of protection:

int CustomerAccount = 123456;

if(AccountNumber() != CustomerAccount)
{

Alert("Account number does not match!");
return(0);

}

You can use AccountName() or AccountBroker() in a similar manner. For AccountBroker(), you'll
first need to use a Print() statement to retrieve the correct return value from the broker. This value
will be printed in the experts log.

If you do decide to sell an EA commercially, be aware that MQL files are notoriously easy to
decompile. There are various methods you can use to make it more difficult for hackers to crack your
EA, such as placing functions in external libraries or DLLs. But ultimately, there is little protection
against a determined cracker.

MessageBox()

So far in this book, we've been using the built-in Alert() function to display error messages. But
what if you want to customize your alert dialogs, or request input from the user? The MessageBox()
function will allow you to create a custom pop-up dialog using Windows API functions.

To use the MessageBox() function, we must first #include the WinUser32.mqh file that is installed
with MetaTrader. This file imports functions from the Windows user32.dll file and defines constants
necessary for the MessageBox() function to work. Here is the syntax for the MessageBox() function:

int MessageBox(string Text, string Title, int Flags);

To use the MessageBox() function, we must define the Text to appear in the pop-up dialog, along
with a Title that appears in the title bar. We will also need to specify Flags that indicate which
buttons and icons should appear in our pop-up. If no flags are specified, an OK button will be the
default. Flags must be separated by the pipe (|) character.

Here's an example of a message box with Yes/No buttons and a question mark icon:

125

EXPERT ADVISOR PROGRAMMING

// Preprocessor directives
#include <WinUser32.mqh>

// start() function
int YesNoBox = MessageBox("Place a Trade?","Trade Confirmation",

MB_YESNO|MB_ICONQUESTION);

if(YesNoBox == IDYES)
{

// Place Order
}

The flag MB_YESNO specifies that we will be using Yes/No
buttons in our message box, while the MB_ICONQUESTION
flag places the question mark icon in the dialog box. The
integer variable YesNoBox holds the return value of the
MessageBox() functions, which will indicate which
button was pressed.

If the Yes button was pressed, the value of YesNoBox
will be IDYES, and an order will be placed. If the No
button was pressed, the return flag will be IDNO. You can
use the return value of MessageBox() as input to
determine a course of action, such as placing an order.

What follows is a partial list of flags to use in your message boxes. For a complete list, please see the
MQL Reference topic Standard Constants – MessageBox.

Button Flags

These flags specify which buttons appear in your message box.

• MB_OKCANCEL – OK and Cancel buttons.

• MB_YESNO – Yes and No buttons.

• MB_YESNOCANCEL – Yes, No and Cancel buttons.

126

Fig. 8.3 – Popup dialog created using the
MessageBox() function

Tips and Tricks

Icon Flags

These flags specify icons that appear next to the text in the message box.

• MB_ICONSTOP – A stop sign icon.

• MB_ICONQUESTION – A question mark icon.

• MB_ICONEXCLAMATION – An exclamation point icon.

• MB_ICONINFORMATION – An information icon.

Return Flags

These flags are the return value of the MessageBox() function, and indicate which button was
pressed.

• IDOK – The OK button was pressed.

• IDCANCEL – The Cancel button was pressed.

• IDYES – The Yes button was pressed

• IDNO – The No button was pressed.

Email Alerts

Your expert advisor can alert you by email about placed trades, potential trade setups and more. The
function SendMail() will send an email with the subject and body of your choice to the email
address that is listed in the Tools – Options dialog under the Email tab.

In the Email tab, you must first specify the SMTP mail server with port number – for example:
mail.yourdomain.com:25 -- along with a username and password, if required. Check with your ISP or
hosting provider for this information.

You can use any email address in the From field. The To field is the email address to send messages
to. Be sure to check the Enable setting at the top to enable the sending of messages.

The SendMail() function has two arguments: the first is the subject line of the email, and the
second is the contents of the email itself. You can use newlines, escaped characters, variables and
constants within the body of your email.

127

EXPERT ADVISOR PROGRAMMING

Fig. 8.4 – The Email settings under Tools – Options.

Here's an example of SendMail() usage:

string EmailSubject = "Buy order placed";
string EmailBody = "Buy order "+Ticket+" placed on "+Symbol()+" at "+Ask;
// Sample output: "Buy order 12584 placed on EURDUSD at 1.4544"

SendMail(EmailSubject,EmailBody);

Retry on Error

Throughout this book, we've tried to verify order parameters before attempting to place an order, so
as to avoid common error messages due to incorrect settings or prices. However, errors may still
occur due to requotes, trade context busy or server issues. These errors can't always be avoided, but
we can attempt to place the order again when this happens.

To retry an order on an error, we will place the OrderSend() function inside a while loop. If
OrderSend() does not return a ticket number, we will retry the order again:

128

Tips and Tricks

int Ticket = 0;
while(Ticket <= 0)

{
Ticket = OrderSend(Symbol(),OP_BUY,LotSize,OpenPrice,UseSlippage,

BuyStopLoss,BuyTakeProfit);
}

We declare the variable for the ticket number first, in this case Ticket. As long as Ticket is not
greater than 0, the while loop with the OrderSend() function will execute over and over. There's
one problem with this loop though. In case of a coding error or some other uncorrected trading error,
the loop will iterate indefinitely, and your expert advisor will hang. We can alleviate this by adding a
maximum number of retries:

int Retries = 0;
int MaxRetries = 5;

int Ticket = 0;
while(Ticket <= 0)

{
Ticket = OrderSend(Symbol(),OP_BUY,LotSize,OpenPrice,UseSlippage,BuyStopLoss,

BuyTakeProfit);
if(Retries <= MaxRetries) Retries++;
else break;

}

We declare a variable to use as a retry counter (Retries), and a maximum retry setting
(MaxRetries). As long as we have not exceeded MaxRetries, the Retries variable is incremented
and the loop iterates again. As soon as MaxRetries is reached, the break operator ends the loop.
After this, you can alert the user of the error condition as necessary.

If you want to make the retry loop dependent on a particular error condition, we can check the error
code against a list and return a value of true if there is a match. This function contains some common
error codes that indicate a condition where a trade could be successfully retried:

bool ErrorCheck(int ErrorCode)
{

switch(ErrorCode)
{

case 128: // Trade timeout
return(true);

case 136: // Off quotes
return(true);

129

EXPERT ADVISOR PROGRAMMING

case 138: // Requotes
return(true);

case 146: // Trade context busy
return(true);

default:
return(false);

}
}

This function uses the switch operator. We are looking for a case label whose value matches the
expression assigned to the switch operator (in this example, ErrorCode). If a matching case is
found, the code after case is executed. If no case label matches, then the code after the default
label is executed.

When a case match is found, the switch block must be exited with a break or return operator. In
this example, we are using the return operator to return a true/false value back to the calling
function. The switch operator can be useful for evaluating a match for an integer constant, but its
utility is rather limited.

Here is how we use ErrorCheck() to conditionally retry an order placement:

int Retries;
int MaxRetries = 5;

int Ticket;
while(Ticket <= 0)

{
Ticket = OrderSend(Symbol(),OP_BUY,LotSize,OpenPrice,UseSlippage,BuyStopLoss,

BuyTakeProfit);

if(Ticket == -1) int ErrCode = GetLastError();
if(Retries <= MaxRetries && ErrorCheck(ErrCode) == true) Retries++;
else break;

}

If the Ticket returns -1, indicating that an error has occurred, we retrieve the error code using
GetLastError(). We pass the error code to our ErrorCheck() function above. If the error code
matches any of the errors in the error check function, ErrorCheck() will return true, and the
OrderSend() function will be retried up to 5 times.

130

Tips and Tricks

Using Order Comments As an Identifier

We've been using the "magic number" as an order identifier that uniquely identifies orders as being
placed by a particular expert advisor. If your expert advisor places multiple orders at one time, and
you want to be able to handle each of those orders differently, you can use the order comment as an
optional identifier.

For example, lets say your expert advisor will place two types of orders. You want to be able to
modify or close these orders separately. You'll want to use two OrderSend() functions and place a
different order comment with each one. Then, when selecting orders using the order loop in chapter
5, you'll use OrderComment() as one of the conditions for locating orders to modify or close.

string OrderComment1 = "First order";
string OrderComment2 = "Second order";

// Order placement
int Ticket1 = OrderSend(Symbol(),OP_BUY,LotSize,OpenPrice,UseSlippage,BuyStopLoss,

BuyTakeProfit,OrderComment1,MagicNumber,0,Green);

int Ticket2 = OrderSend(Symbol(),OP_BUY,LotSize,OpenPrice,UseSlippage,BuyStopLoss,
BuyTakeProfit,OrderComment2,MagicNumber,0,Green);

// Order modification
for(int Counter = 0; Counter <= OrdersTotal()-1; Counter++)

{
OrderSelect(Counter,SELECT_BY_POS);

if(OrderMagicNumber() == MagicNumber && OrderSymbol() == Symbol()
&& OrderComment() == OrderComment1)
{

// Modify first order
}

else if(OrderMagicNumber() == MagicNumber && OrderSymbol() == Symbol()
&& OrderComment() == OrderComment2)
{

// Modify second order
}

}

We declare two string variables to use as order comments. The OrderSend() functions place two
orders, each with a different order comment. The example order modification loop that follows uses
the OrderComment() function as a condition when selecting orders to modify.

You can use the OrderComment() check to close orders independently of other orders, use different
trailing stop settings, or whatever your trading system demands.

131

EXPERT ADVISOR PROGRAMMING

Margin Check

MetaTrader comes with functions that allow you to check the current free margin or stop out level
before placing an order. The stop out level is the percentage or amount of free margin below which
you will not be able to place orders. Manually checking the free margin or stop out level before
placing an order is not really necessary however, as an error will occur if you try to place an order
with too little margin.

A more useful idea would be to determine your own stop out level, and halt trading if the current
equity goes below that level. Let's start by declaring an external variable called MinimumEquity,
which is the minimum amount of equity required in our account before we can place an order.

We'll compare MinimumEquity to our current account equity. If the current equity is less than our
minimum equity, the order will not be placed, and an alert message will inform the user of the
condition. Let's assume we have an account balance of $10,000. If we lose more than 20% of that
equity, we do not want to place the order. Here is the code to check the minimum equity:

// External variables
extern int MinimumEquity = 8000;

// Order placement
if(AccountEquity() > MinimumEquity)

{
// Place order

}
else if(AccountEquity() <= MinimumEquity)

{
 Alert("Current equity is less than minimum equity! Order not placed.");

}

The external variable MinimumEquity is placed at the beginning of the file. The rest of the code
comes before and after the order placement function. If the current equity, as indicated by
AccountEquity(), is greater than MinimumEquity, the order will be placed. Otherwise, the order will
not be placed and an alert message will be displayed.

Spread Check

You may wish to avoid placing trades during periods where the spread has widened far beyond
normal. We can set a maximum spread and check the current spread before trading. We'll declare an
external variable called MaximumSpread, and use MarketInfo() to check the current spread.

132

Tips and Tricks

The code will be very similar to the previous section where we added the minimum margin check. We
will include the code from the previous section to show how these various checks work together:

// External variables
extern int MaximumSpread = 5;
extern int MinimumEquity = 8000;

if(AccountEquity() > MinimumEquity && MarketInfo(Symbol(),MODE_SPREAD) < MaximumSpread)
{

// Place order
}

else
{

if(AccountEquity() <= MinimumEquity) Alert("Current equity is less than minimum
equity! Order not placed.");

if(MarketInfo(Symbol(),MODE_SPREAD) > MaximumSpread) Alert("Current spread is
greater than maximum spread! Order not placed.");

}

Note that we perform both the minimum equity check and the spread check before placing the order.
If an one of the conditions are false, we go to the else block and check to see which of the
conditions caused the order to not be placed. We will display one or more alerts depending on which
condition is true.

Multiple Orders

You may wish to place multiple orders per position with different stop loss and take profit levels, as
well as lot sizes. There are several ways to accomplish this. One way is to simply use a different
OrderSend() statement for each order you want to place. This is assuming that you plan on placing
the same number of orders every time.

Another way is to use a for loop to place the orders. This way, you can adjust the number of orders
to place at one time. You can pre-load your stop loss and take profit prices into arrays, and increment
through the arrays in the for loop.

Let's start by defining external variables for three stop loss and take profit levels. Any additional
orders above three will not have a stop loss or take profit placed. We'll also add an external variable
to adjust the number of orders to place.

extern int StopLoss1 = 20;
extern int StopLoss2 = 40;
extern int StopLoss3 = 60;

133

EXPERT ADVISOR PROGRAMMING

extern int TakeProfit1 = 40;
extern int TakeProfit2 = 80;
extern int TakeProfit3 = 120;

extern int MaxOrders = 3;

Next, we will declare our arrays, calculate our stop loss and take profit, and load our calculated prices
into the array:

double BuyTakeProfit[3];
double BuyStopLoss[3];

BuyTakeProfit[0] = CalcBuyTakeProfit(Symbol(),TakeProfit1,Ask);
BuyTakeProfit[1] = CalcBuyTakeProfit(Symbol(),TakeProfit2,Ask);
BuyTakeProfit[2] = CalcBuyTakeProfit(Symbol(),TakeProfit3,Ask);

BuyStopLoss[0] = CalcBuyStopLoss(Symbol(),StopLoss1,Ask);
BuyStopLoss[1] = CalcBuyStopLoss(Symbol(),StopLoss2,Ask);
BuyStopLoss[2] = CalcBuyStopLoss(Symbol(),StopLoss3,Ask);

We start by declaring the arrays to hold the stop loss and take profit prices, BuyTakeProfit and
BuyStopLoss. The number of array elements must be indicated when declaring the array. Array
indexes start at zero, so by declaring an array dimension size of 3, our starting index is 0, and our
largest index is 2.

Next, we calculate the stop loss and take profit prices using the functions we defined in chapter 4 –
CalcBuyStopLoss() and CalcBuyTakeProfit(). We assign the calculated stop loss or take profit
value to the appropriate array element. Note that the first array index is 0 and the third array index is
2.

Here is the for loop for placing the orders:

for(int Count = 0; Count <= MaxOrders - 1; Count++)
{

int OrdInt = Count + 1;

OrderSend(Symbol(),OP_BUY,LotSize,Ask,UseSlippage,BuyStopLoss[Count],
BuyTakeProfit[Count],"Buy Order "+OrdInt,MagicNumber,0,Green);

}

The Count variable starts at 0, to correspond with our first array element. The number of times to
loop (i.e. the number of orders to place) is determined by MaxOrders - 1. For each iteration of the
loop, we increment the stop loss and take profit arrays by one.

134

Tips and Tricks

We use the OrdInt variable to increment the order count in the order comment. The first order
comment will be "Buy Order 1", the next will be "Buy Order 2" and so on. The OrderSend() function
places the order with the appropriate stop loss and take profit value, using the Count variable to
select the relevant array element.

This is just one way of handling multiple orders, although it is probably the most efficient. The main
drawback to this approach is that we can only calculate stop loss and take profit prices for a limited
number of orders. Alternately, we could scale the take profit and stop loss values by a specified
amount, and place a potentially unlimited number of orders:

extern int StopLossStart = 20;
extern int StopLossIncr = 20;

extern int TakeProfitStart = 40;
extern int TakeProfitIncr = 40;

extern int MaxOrders = 5;

In the above example, the stop loss for our first order will be 20 pips. We will increment the stop loss
by 20 pips for each additional order. Same for the take profit, except we will start at 40 and
increment by 40. Instead of using arrays, we will calculate the stop loss and take profit in the for
loop:

for(int Count = 0; Count <= MaxOrders - 1; Count++)
{

int OrdInt = Count + 1;

int UseStopLoss = StopLossStart + (StopLossIncr * Count);
int UseTakeProfit = TakeProfitStart + (TakeProfitIncr * Count);

double BuyStopLoss = CalcBuyStopLoss(Symbol(),UseStopLoss,Ask);
double BuyTakeProfit = CalcBuyTakeProfit(Symbol(),UseTakeProfit,Ask);

OrderSend(Symbol(),OP_BUY,LotSize,Ask,UseSlippage,BuyStopLoss,
BuyTakeProfit,"Buy Order "+OrdInt,MagicNumber,0,Green);

}

We determine the take profit and stop loss level in pips by multiplying the StopLossIncr or
TakeProfitIncr variable by the Count, and adding that to the StopLossStart or TakeProfitStart
value. For the first order, the stop loss or take profit level will be equal to StopLossStart or
TakeProfitStart.

Next, we calculate the stop loss and take profit price for the order using our functions from chapter 4.
Finally we place the order using OrderSend(). The loop will continue until the number of orders

135

EXPERT ADVISOR PROGRAMMING

specified by MaxOrders are placed. This method allows us to specify as many orders as we want
using the MaxOrders variable, guaranteeing that every order we place will have a stop loss and a
take profit.

Global Variables

In this book, we've been referring to variables with a global scope as "global variables." MetaTrader
has a set of functions for setting variables at the terminal level, which means that these variables are
available to every expert advisor that is currently running, assuming that we know the name of the
variable to start with.

The MQL documentation refers to these as "global variables", although a more appropriate name
might be "terminal variables." We use the global variable functions in the MQL Reference under
Global variables to work with these types of variables. The current list of global variables in the
terminal can be viewed by selecting Global Variables from the Tools menu, or by pressing F3 on the
keyboard.

One way to use these variables is to store certain globally scoped or static variables to the terminal,
so that if an expert advisor is shut down, we can pick up where we left off. Not all expert advisors
require this, but more complex expert advisors will maintain a certain state that, if interrupted, will
throw off the expert advisor's operation.

The best way to prevent this is to avoid creating expert advisors that require such a level of
complexity. But if it can't be avoided, then using global variable functions to store the current state to
the terminal may be helpful in case of accidental shutdown. Note that this method is not foolproof,
but it is likely the best method to achieve this.

To declare a global (terminal) variable, use the GlobalVariableSet() function. The first argument is
a string indicating the name of the global variable, and the second argument is a value of type double
to assign to it.

GlobalVariableSet(GlobalVariableName,DoubleValue);

To keep your variable names unique, you may wish to create a global variable prefix. Declare a
globally scoped variable in your expert advisor, and set the value in the init() function, using the
current symbol, period, expert advisor name and magic number to create a unique variable prefix.

136

Tips and Tricks

// Global variables
string GlobalVariablePrefix;

int init()
{

 GlobalVariablePrefix = Symbol()+Period()+"_"+"ProfitBuster"+"_"+MagicNumber+"_";
}

We use the current symbol and period, along with an identifier for the EA and the MagicNumber
external variable. Now, when we set a global variable using GlobalVariableSet(), we use the
prefix that we defined above, along with the actual variable name:

GlobalVariableSet(GlobalVariablePrefix+Counter,Counter);

So if we're trading on EURUSD on the M15 timeframe with an EA named "ProfitBuster", using 11 as
our magic number and Counter as our variable name, the name of our global variable will be
EURUSD15_ProfitBuster_11_Counter. You can use any convention you wish for naming your global
variables, but including the above information is strongly recommended.

To retrieve the value of a global variable, use the function GlobalVariableGet() with the variable
name as the argument:

Counter = GlobalVariableGet(GlobalVariablePrefix+Counter);

To delete a global variable, use the function GlobalVariableDel() with the variable name as the
argument. To delete all global variables placed by your EA, use the function
GlobalVariableDeleteAll() with your prefix as the argument.

GlobalVariableDel(GlobalVariablePrefix+Counter);
GlobalVariableDeleteAll(GlobalVariablePrefix);

For more information on global variable functions, see the Global variables topic in the MQL
Reference.

Check Order Profit

Sometimes it may be useful to check the current profit on an order, or to check the total profit on an
order that has already closed. There are two ways to check profit. To get the profit in the deposit
currency, use the OrderProfit() function. You must first select the order using OrderSelect().

137

EXPERT ADVISOR PROGRAMMING

OrderSelect(Ticket,SELECT_BY_TICKET);
double GetProfit = OrderProfit(Ticket);

The result of the OrderProfit() function should be identical to the total profit or loss that is listed in
the order history for the selected order.

To retrieve the profit or loss in pips, you will need to calculate the difference between the order
opening price and the order closing price. You will also need to use the OrderSelect() function to
retrieve the open and close prices.

OrderSelect(Ticket,SELECT_BY_TICKET);

if(OrderType() == OP_BUY) double GetProfit = OrderClosePrice() - OrderOpenPrice();
else if(OrderType() == OP_SELL) GetProfit = OrderOpenPrice() - OrderClosePrice();

GetProfit /= PipPoint(Symbol());

For buy orders, we calculate the profit by subtracting the opening price from the closing price. For
sell orders, we do the opposite. After we've calculated the difference, we can convert the profit or
loss to a whole number by dividing it by the point, using our PipPoint() function.

For example, if our buy order opening price is 1.4650 and our closing price is 1.4700, the difference
between OrderClosePrice() and OrderOpenPrice() is 0.0050. When we divide that by our
PipPoint() function, the result is 50. So for this order, we make 50 pips in profit. If the order closing
price was 1.4600 instead, then we'd have a loss of -50 pips.

Martingale

Martingale is a betting system, commonly used in roulette and blackjack, where the bet size is
doubled after each consecutive loss. The theory is that one winning bet will bring the balance back to
break even. The downside to Martingale is that you need a lot of capital to withstand the drawdowns.

For example, if your starting lot size is 0.1 lots, after 4 consecutive losses your lot size will be 1.6 lots
– 16 times your original lot size. After 7 consecutive losses, your lot size will be 12.8 lots – 128 times
your original lot size! A long losing streak will wipe out your account before you'll be able to bring
your account back to break even.

Nevertheless, you may wish to incorporate a system of increasing lot sizes on consecutive wins or
losses, and it's possible to do so without wiping out your account. The easiest method is to put a cap
on the number of times to increase the lot size. A sound trading system should not have more than 3

138

Tips and Tricks

or 4 maximum consecutive losses. You can determine this by examining the maximum consecutive
loss count under the Report tab in the Strategy Tester window.

Another method is to increase your lot size by a smaller multiplier. The classic Martingale strategy
doubles the lot size after each consecutive loss. You may wish to use a multiplier smaller than 2.
There is also the anti-Martingale strategy, where you increase the lot size after each consecutive win.

Let's examine a routine where we calculate the number of consecutive wins or losses, and increase
the lot size accordingly. A Martingale strategy works best when you're placing one order at a time, so
we will assume that every position consists of a single trade.

The user will be able to choose between a Martingale (losses) or anti-Martingale (wins) strategy. A
setting to limit the maximum number of consecutive lot increases will be included, and the lot
multiplier will be adjustable.

First, let's calculate the number of consecutive wins or losses. We will need to loop through the order
history pool backward, starting from the most recently closed order. We will increment a counter for
each win or loss. As long as a pattern of consecutive wins or losses is maintained, we will continue to
loop. As soon as the pattern is broken (a win is located after one or more losses, or vice versa), the
loop will exit.

int WinCount;
int LossCount;

for(int Count = OrdersHistoryTotal()-1; ; Count--)
{

OrderSelect(Count,SELECT_BY_POS,MODE_HISTORY);
 if(OrderSymbol() == Symbol() && OrderMagicNumber() == MagicNumber)
 {
 if(OrderProfit() > 0 && LossCount == 0) WinCount++;
 else if(OrderProfit() < 0 && WinCount == 0) LossCount++;
 else break;
 }

}

We start by declaring the variables for our win and loss counters. In the for operator, notice that we
use OrdersHistoryTotal() to establish our initial starting position. OrdersHistoryTotal() returns
the number of orders in the history pool. We subtract 1 to determine the index position for the most
recent order, which is stored in the Count variable.

Notice that we have omitted the second expression in the for loop – the one that determines the
condition to stop looping. The semicolon must remain for any omitted expressions. We will decrement
the Count variable on each iteration of the loop.

139

EXPERT ADVISOR PROGRAMMING

We use MODE_HISTORY as the third argument in the OrderSelect() function to indicate that we are
looping through the closed order history pool. By default, OrderSelect() uses the open order pool,
so we must specify MODE_HISTORY when checking the closed order pool.

We check to make sure that the currently selected order matches our chart symbol and our magic
number. Then, we examine the order profit using the OrderProfit() function. If the return value
indicates a profit (i.e. is greater than zero), then we increment the WinCount variable. If it's a loss,
we increment LossCount.

Since we are looking for consecutive wins or losses, we need to terminate the loop once an
alternating condition is found. To do this, we check the WinCount or LossCount variable when
checking the order profit. For example, if we have 2 consecutive losses – meaning that LossCount =
2 – and our next order is a win, then both of our if statements will be false, and control will pass to
the break operator, which ends the loop.

The advantage of this method is that it's robust, and will not fail if the expert advisor is accidentally
shut down. The EA will pick up right where it left off. Of course, this means that when you first start
the EA, it will use any previous win/loss streak when determining the lot size. But as you can see, the
advantages outweigh the disadvantages.

Either the WinCount or the LossCount variable will contain the number of consecutive wins or losses.
If we want to do a Martingale strategy, we use LossCount to determine the factor by which to
increase the lot size. If we're doing an anti-Martingale, we use WinCount instead.

We'll use an external integer variable called MartingaleType to determine this. If MartingaleType
is set to 0, we'll use the Martingale strategy. If it's set to 1, we'll use the anti-Martingale strategy. We
will also declare external variables for our multiplier (LotMultiplier), the maximum number of
times to increase the lot size (MaxMartingale), and our starting lot size (BaseLotSize).

// External variables
extern int MartingaleType = 0; // 0: Martingale, 1: Anti-Martingale
extern int LotMultiplier = 2;
extern int MaxMartingale = 4;
extern double BaseLotSize = 0.1;

// Lot size calculation
if(MartingaleType == 0) int ConsecutiveCount = LossCount;
else if(MartingaleType = 1) ConsecutiveCount = WinCount;

if(ConsecutiveCount > MaxMartingale) ConsecutiveCount = MaxMartingale;

double LotSize = BaseLotSize * MathPow(LotMultiplier,ConsecutiveCount);

140

Tips and Tricks

We set the value of ConsecutiveCount to either WinCount or LossCount, depending on the
MartingaleType setting. We'll compare that to our MaxMartingale setting. If our consecutive order
count is greater than MaxMartingale, we will resize it to be equal to MaxMartingale. (You could
also resize it to the default lot size if you prefer.) The lot size will remain at this size until a win or loss
breaks our consecutive order streak.

The lot size is determined by multiplying our BaseLotSize by the LotMultiplier, which is
exponentially increased by ConsecutiveCount. The MathPow() function raises a number to the
specified power. The first argument is the base, and the second argument is the exponent. For
example, if our starting lot size is 0.1, the lot multiplier is 2, and we have four consecutive orders, the
equation is 0.1 * 24 = 1.6.

By adjusting the LotMultiplier and using both Martingale and anti-Martingale strategies, this will
give you enough options to experiment with using exponential lot sizing. You can easily modify the
code above to use other variations. For example, you could scale lot sizes in reverse, from largest to
smallest. Or you could use an external counter in place of ConsecutiveCount.

Debugging Your Expert Advisor

Unlike most programming IDEs, MetaEditor doesn't support breakpoints or any other kind of modern
debugging techniques. You'll need to use Print() statements and logs to debug your expert
advisors.

You've already been introduced to the Print() function. In summary, any string argument passed to
the function will be printed to the log. By printing the contents of variables and functions to the log,
you can examine the output of your code and fix any errors.

You'll want to use the Strategy Tester to run a trading simulation and examine the log output. The
Strategy Tester log is displayed under the Journal tab in the Strategy Tester window. There is a limit
to the amount of information that is listed in the Journal tab, so you may want to view the actual log.

The Strategy Tester logs are stored in the \tester\logs folder. Right click anywhere in the Journal
window and select Open from the pop-up menu. A Windows Explorer window will open, displaying
the contents of the log folder. The file names are in the format yyyymmdd.log, where yyyy is the
four digit year, mm is the two digit month, and dd is the two digit date. You can view the logs in
Notepad or any text editor.

Let's illustrate an example of how you can use the log to locate a programming problem. The code
below has an error in it, and it is not performing as we expected. To be able to diagnose the problem,

141

EXPERT ADVISOR PROGRAMMING

we need to check the input or output of the function. Let's create a Print() statement and print the
contents of all relevant variables to the log.

We'll run the EA in the Strategy Tester, using Open prices only as our testing model. Make sure you're
testing the EA over a long enough time period so that it will place enough trades for us to analyze. If
you need to check prices on the chart, hit the Open Chart button to open a chart showing the
simulated trades.

Next, we'll go to the Journal tab and check for the information we need. If we need to view the log in
it's entirety, or if there are trades that are not showing in the Journal tab, we can right-click and
choose Open from the pop-up menu, and open the log file directly.

This code is giving us error 130: "invalid stops" every time we place a buy order. We know that error
130 means that either the stop loss or the take profit is incorrect. Can you identify the error?

if(Close[0] > MA && BuyTicket == 0)
{

double OpenPrice = Ask;

double BuyStopLoss = OpenPrice + (StopLoss * UsePoint);
double BuyTakeProfit = OpenPrice + (TakeProfit * UsePoint);

BuyTicket = OrderSend(Symbol(),OP_BUY,LotSize,OpenPrice,UseSlippage,
BuyStopLoss,BuyTakeProfit,"Buy Order",MagicNumber,0,Green);

SellTicket = 0;
}

We will use the Print() function to verify the parameters that are being passed to the OrderSend()
function. We'll focus on the order opening price, the stop loss and the take profit.

Print("Price:"+OpenPrice+" Stop:"+BuyStopLoss+" Profit:"+BuyTakeProfit);

Here is the output when we run the EA in the strategy tester. A stop loss and take profit of 50 pips is
assumed:

11:52:12 2009.11.02 02:00 Example EURUSD,H1: OrderSend error 130
11:52:12 2009.11.02 02:00 Example EURUSD,H1: Price:1.47340000 Stop:1.47840000

Profit:1.47840000

We know that the stop loss must be below the opening price for a buy order. Here, it is above the
price. In fact, it's the same price as the take profit. A quick look at our code and we realize that we
accidentally inserted a plus sign in the buy stop loss equation. Here is the correct code:

142

Tips and Tricks

double BuyStopLoss = OpenPrice - (StopLoss * UsePoint);

If you are receiving an error message when attempting to place, close or modify an order, focus your
efforts on the issue indicated by the error message. Here are a couple of the most common error
messages cause by programming errors:

• Error 129: Invalid Price – The opening price is invalid. For market orders, make sure the
current Bid or Ask price is being passed, according to the order type. For pending orders,
make sure the price is above or below the current price, as required by the order type. Also
check to see that the pending order price is not too close to the current price (i.e. inside the
stop level).

• Error 130: Invalid Stops – Either the stop loss or take profit price is incorrect. Check to
see that the stop loss and take profit prices are placed above or below the current price,
depending on whether the order type is buy or sell. Also check to see that the stop loss or
take profit price is not too close to the current price (i.e. inside the stop level).

• Error 131: Invalid Trade Volume – The lot size is incorrect. Make sure that the lot size
does not exceed the broker minimum or maximum, and that the lot size is normalized to the
correct step value (0.1 or 0.01 on most brokers).

Descriptions of all error messages can be found in the MQL Reference under Standard Constants –
Error Codes. If you need additional assistance with an error that you are receiving, check the forums
at MQL4.com.

Troubleshooting Intermittent Trading Errors

While most serious bugs can be found simply by back testing, others will occur only during real-time
trading. Errors of logic can result in trades not being placed correctly, and these bugs can take some
effort to locate. If there are trades being placed incorrectly during demo or live trading, we need as
much information as necessary to troubleshoot the problem.

We're going to add an optional feature to log trade and status information in real-time, so that we
have a record of it when troubleshooting trades. We'll be using Print() statements as previously,
but we'll be logging indicator values, prices – any information that will be helpful in debugging. We'll
also add an external variable to turn logging on and off.

// External variables
extern bool Debug = true;

143

EXPERT ADVISOR PROGRAMMING

// Place near the end of the start() function
if(Debug == true) Print(StringConcatenate("Bid:",Bid," Ask:",Ask," MA:",MA,

" BuyTicket:",BuyTicket," SellTicket:",SellTicket));

The above code will log price and indicator information, as well as the contents of the BuyTicket and
SellTicket variables. If there are any questions about how a trade was opened, or why a trade was
not opened, the log at that particular moment will show the status of all relevant trade conditions.
You can turn logging on and off with the Debug external variable.

The debug Print() statement should be placed near the end of the start() function, after all
trading functions. If you are using a timer and/or an execute at bar open feature, place the debug
Print() statement inside the timer block so that it will only run when necessary. Otherwise, the
debug line will print to the log on every tick, which can result in a large log file.

Fixing Compilation Errors

When you compile your expert advisor, the compiler will check for correct syntax, and ensure that all
custom functions and variables have been properly declared. If you've left something out, the
compiler will stop, and any compilation errors will appear in the Errors tab in the Toolbox window.

When confronted with a long list of compilation errors, always start with the first one. Double-click
the error in the list, and the editor will jump directly to the line with the error. Correct the error and
recompile. Sometimes a simple syntax error will result in several unrelated errors, although only the
first one was valid.

Here is a list of common compilation errors and their solutions:

• Variable not defined – You forgot to declare a variable with a data type. If it is a global or
external variable, declare it at the top of the file. If it is a local variable, find the first
occurrence and place the data type declaration in front of it. Otherwise, check the spelling or
the case (upper/lower) of the variable name.

• Variable already defined – You declared the same variable twice. Remove the data type
declaration from all duplicate variable declarations.

• Function is not defined – If the function in question is in an include or library file, be sure
that the #include or #import directive is placed at the top of the file and is correct.
Otherwise, check the spelling or the case of the function name, and be sure that it exists
either in the current file or in the relevant include or library files.

144

Tips and Tricks

• Illegal assignment used – This is usually in reference to an equal sign (=). Remember
that a single equal sign is for variable assignment, and two equal signs (==) is a comparison
operator. Correct the assignment operator to the appropriate comparison operator.

• Assignment expected – This is usually in reference to the "equal to" comparison operator
(==). You used two equal signs instead of one in a variable assignment. Correct the operator
to a single equal sign.

• Unbalanced right parenthesis – These usually occur in an if statement when using
nested parentheses. Go to the line indicated by the first error and insert a left parenthesis in
the appropriate place.

• Unbalanced left parenthesis – This is a tricky one. The error usually points to the end of
program line. Basically you forgot a right parenthesis somewhere. Double check the code you
recently edited and look for a missing right parenthesis. You may have to comment out lines
of code to locate the problem.

• Wrong parameters count – You have too few or too many arguments in a function.
Double check the function syntax in the MQL Reference and correct the arguments.

• Semicolon expected – You probably forgot to put a semicolon at the end of a line. Place a
semicolon at the end of the previous line. Note that a missing semi-colon may cause any of
the above errors as well, so be sure to place those semicolons!

145

EXPERT ADVISOR PROGRAMMING

Chapter 9
Custom Indicators and Scripts

No book on MQL would be complete without covering custom indicators and scripts. The built-in
indicators in MetaTrader are rather limited, but fortunately MQL allows programmers to create their
own indicators. If you're looking for a popular indicator that is not included in MT4, chances are
someone has already created one.

This chapter will be a basic overview of custom indicator creation. Most indicators use complex
mathematical formulas, and as such are the domain of more experienced programmers. However, an
indicator need not be complex. We'll create a custom indicator in this chapter that uses only a few
lines of code.

Buffers

Buffers are arrays that store indicator values and calculations. A custom indicator can have up to 8
buffers. Buffers use indexes, just like arrays do, and range from 0 to 7. When you call a custom
indicator in an expert advisor using the iCustom() function, the next-to-last parameter in the
function is the indicator buffer.

To find the appropriate buffer for an indicator line, you usually check the source code, if available. If
the source code is clearly formatted with descriptive variable names, you should be able to identify
the appropriate buffer quite easily. We will address the proper naming of indicator buffers in this
chapter.

Creating A Custom Indicator

Let's build a custom indicator using two built-in MetaTrader indicators to calculate our lines. We're
going to build a modified Bollinger Bands indicator. The Bollinger Bands consist of 3 lines – a center
line which is a simple moving average, along with an upper and lower line whose value is determined
by the standard deviation.

We can create our own Bollinger Bands indicator using the Moving Average and the Standard
Deviation indicators. We'd like to create an indicator that uses an exponential moving average to
calculate the lines, as opposed to a simple moving average.

146

Custom Indicators and Scripts

We start by using the wizard to create our indicator file. Select New from the File menu or the toolbar
to open the wizard, and create a custom indicator. Fill out the indicator name, and add parameters if
you wish. On the final page, we added three indicator lines of the same color. Here is the result of
the wizard. We've left out the start() function for now:

//+--+
//| EMA Bollinger.mq4 |
//| Andrew Young |
//| http://www.easyexpertforex.com |
//+--+
#property copyright "Andrew Young"
#property link "http://www.easyexpertforex.com"

#property indicator_chart_window
#property indicator_buffers 3
#property indicator_color1 DeepSkyBlue
#property indicator_color2 DeepSkyBlue
#property indicator_color3 DeepSkyBlue
//---- buffers
double ExtMapBuffer1[];
double ExtMapBuffer2[];
double ExtMapBuffer3[];
//+--+
//| Custom indicator initialization function |
//+--+
int init()
 {
//---- indicators
 SetIndexStyle(0,DRAW_LINE);
 SetIndexBuffer(0,ExtMapBuffer1);
 SetIndexStyle(1,DRAW_LINE);
 SetIndexBuffer(1,ExtMapBuffer2);
 SetIndexStyle(2,DRAW_LINE);
 SetIndexBuffer(2,ExtMapBuffer3);
//----
 return(0);
 }

Let's turn our attention to the elements listed in bold. The #property declarations set the parameters
for our indicator buffers. The indicator_chart_window property draws our indicator in the main
chart window. If we were creating an oscillator, and wanted to draw the indicator in a separate
window, we'd use the indicator_separate_window property instead.

The indicator_buffers property set the number of buffers for our indicator. In this case we are
using three buffers. The indicator_color properties set the color of all three lines to DeepSkyBlue.

147

EXPERT ADVISOR PROGRAMMING

Next are the declarations for our buffer arrays. We have three buffers named ExtMapBuffer(1-3).
We will change these array identifiers to something more descriptive shortly.

The init() function is where we set the properties for our indicator buffers. SetIndexBuffer()
binds a buffer array to a buffer index. The buffer index is what we refer to when we set the
properties for an indicator line, and also when we call an indicator line from an EA using the
iCustom() function. The first parameter is an integer from 0 to 7, and the second parameter is the
name of the buffer array.

Drawing Properties

The SetIndexStyle() function sets the type of line to draw, along with the properties of that line.
Every indicator line will have a corresponding SetIndexStyle() function. Here is the syntax:

void SetIndexStyle(int BufferIndex, int LineType, int LineStyle = EMPTY,
int LineWidth = EMPTY, color LineColor = CLR_NONE)

• BufferIndex – The index of the buffer, from 0 to 7.

• LineType – Sets the type of line to draw. DRAW_LINE draws a single line, DRAW_HISTOGRAM
draws a vertical histogram (see the OsMA or Awesome Oscillator indicators for examples),
DRAW_ARROW draws a symbol, and DRAW_NONE draws no line.

• LineStyle – An optional parameter indicating the drawing style. Used mainly for lines of type
DRAW_LINE. By default, a solid line is drawn (STYLE_SOLID). You can also draw dashed
(STYLE_DASH) and dotted (STYLE_DOT) lines.

• LineWidth – An optional parameter indicating the width of the line in pixels. The default
value is 1.

• LineColor – An optional parameter indicating the color of the line. If you use the wizard, the
color is set using #property declarations, but you can set the color here as well.

If you are using DRAW_ARROW as the LineType, the SetArrow() function allows you to set the
Wingdings font symbol to draw on the chart. The first parameter is the buffer index, and the second
is an integer constant representing the symbol to draw. The symbols can be found in the MQL
Reference under Standard Constants – Arrow Codes.

You may want to add a description for the indicator lines that will be displayed in the tooltip or in the
data window. To do this, use the SetIndexLabel() function. The first parameter is the buffer index,
and the second parameter is a text description. We'll add these to our indicator shortly.

148

Custom Indicators and Scripts

If your indicator is drawn in a separate window (such as an oscillator), and you'd like to add levels to
indicate overbought or oversold levels (such as in the Stochastic or RSI indicators), or the zero level
(such as in the CCI indicator), you can use the SetLevelStyle() and SetLevelValue() functions.
See the MQL Reference under Custom Indicators for more information.

You may also want to specify a short indicator name to be displayed in the top left corner of the
indicator window. Use the IndicatorShortName() function to set this value. The only parameter is a
text string that will appear in the top left corner of the indicator window, as well as in the data
window.

Using Descriptive Buffer Names

Here is our updated indicator code. Note that we've renamed the buffer arrays to be more descriptive
as to their actual function. We've changed the second parameter of the SetIndexBuffer() functions
to reflect the new buffer names. We've also added SetIndexLabel() for each line to display
descriptive names in the Data Window.

//---- buffers
double EMA[];
double UpperBand[];
double LowerBand[];
//+--+
//| Custom indicator initialization function |
//+--+
int init()
 {
//---- indicators
 SetIndexStyle(0,DRAW_LINE);
 SetIndexBuffer(0,EMA);

 SetIndexLabel(0,"EMA");

 SetIndexStyle(1,DRAW_LINE);
 SetIndexBuffer(1,UpperBand);
 SetIndexLabel(1,"UpperBand");

 SetIndexStyle(2,DRAW_LINE);
 SetIndexBuffer(2,LowerBand);
 SetIndexLabel(2,"LowerBand");
//----
 return(0);
 }

We've renamed our buffer arrays from the default names (ExtMapBuffer) to more descriptive ones.
EMA[] will be our buffer for the center line, and UpperBand[] and LowerBand[] will be the upper
and lower bands respectively.

149

EXPERT ADVISOR PROGRAMMING

The SetIndexBuffer() functions bind the buffer indexes to our buffer arrays. EMA is 0, UpperBand is
1, and LowerBand is 2. Note that the braces are left out of the array identifier name for the second
SetIndexBuffer() parameter.

The SetIndexLabel() functions set a descriptive name for each of the indicator buffers. In this case,
the line names are the same as our identifier names. These will appear on the mouse tooltip as well
as in the Data Window. If another programmer decides to use this indicator in an expert advisor, the
formatting above will make it clear exactly which indicator buffer index they should use for each line.

The Indicator start() Function

The wizard inserts just one expression in the start() function:

int counted_bars = IndicatorCounted();

IndicatorCounted() returns the number of bars on the chart that the indicator has already
calculated. When the EA is first started, this value will be 0. The indicator will be calculated for every
bar on the chart. On subsequent bars, we will check the IndicatorCounted() function to see how
many bars have already been calculated, so we'll know exactly how many new bars we'll need to
calculate.

Our indicator calculations will occur inside a for loop. The starting point will be the first uncalculated
bar, and the end point will be the current bar. We'll compare the value of IndicatorCounted() to
the predefined Bars variable, which returns the number of bars on the current chart. This will
determine our starting point. Here is the code for the for loop:

int counted_bars = IndicatorCounted();

if(counted_bars > 0) counted_bars--;

int CalculateBars = Bars - counted_bars;

for(int Count = CalculateBars; Count >= 0; Count--)

{
 // Indicator calculations

}

The first if statement will decrement the value of counted_bars by 1 when calculating new bars.
We will always be calculating at least the two previous bars. This is due to a condition where the final
tick of a bar may not be calculated in some cases. Next, we determine the number of bars to
calculate, by subtracting counted_bars from the predefined Bars variable. This is stored in the
variable CalculateBars.

150

Custom Indicators and Scripts

In our for loop, the incrementing variable Count is set to the value of CalculateBars, the condition
for termination is when Count is less than 0, and the Count variable is decremented on each
iteration. This will calculate each bar on the chart from left to right.

Here is the code to calculate our Bollinger Bands. We'll declare the external variable BandsPeriod at
the beginning of the file. The for loop is the one we created above:

// External parameters
extern int BandsPeriod = 20;

// start() function
for(int Count = CalculateBars; Count >= 0; Count--)

{
 EMA[Count] = iMA(NULL,0,BandsPeriod,0,MODE_EMA,0,Count);

 double StdDev = iStdDev(NULL,0,BandsPeriod,0,MODE_EMA,0,Count);

 UpperBand[Count] = EMA[Count] + StdDev;
 LowerBand[Count] = EMA[Count] - StdDev;
 }

First, we call the built-in Moving Average indicator using the iMA() function, and assign the return
value to EMA[Count]. Note that the array index and the Shift parameter for the moving average
indicator both use the current Count value.

Next, we call the Standard Deviation indicator using iStdDev(). To calculate the upper band, all we
need to do is add the standard deviation to the moving average line. This is stored in the buffer array
UpperBand[]. To calculate LowerBand[], we subtract the standard deviation from the moving
average.

Let's extend our indicator a bit more by giving it a full range of settings. We'll add settings to adjust
the forward shift, moving average method, and applied price parameters, as well as a standard
deviation adjustment:

// External parameters
extern int BandsPeriod = 20;
extern int BandsShift = 0;
extern int BandsMethod = 1;
extern int BandsPrice = 0;
extern int Deviations = 1;

151

EXPERT ADVISOR PROGRAMMING

// start() function
for(int Count = CalculateBars; Count >= 0; Count--)

{
 EMA[Count] = iMA(NULL,0,BandsPeriod,BandsShift,BandsMethod,BandsPrice,Count);

double StdDev = iStdDev(NULL,0,BandsPeriod,BandsShift,BandsMethod,BandsPrice,Count);

 UpperBand[Count] = EMA[Count] + (StdDev * Deviations);
 LowerBand[Count] = EMA[Count] - (StdDev * Deviations);

}

We've added external variables to adjust the remaining parameters for the iMA() and iStdDev()
functions. We also added a parameter to adjust the number of standard deviations. To calculate this,
we simply multiply StdDev by Deviations. Now we have a fully adjustable Bollinger Bands indicator
that is more flexible than the standard MetaTrader indicator. The full code is listed in Appendix E.

You can do more with custom indicators than just recalculate built-in indicators. Depending on your
level of mathematical knowledge, you can code indicators that aren't included with MetaTrader, or
even create your own. You can also draw and manipulate objects as well. If you'd like to learn more
about custom indicator creation, see the MQL Reference topics Custom indicators, Object functions
and Math & Trig.

Scripts

A script is an MQL program that runs only once, when it is first attached to a chart. Scripts can be
used to automate a series of trading actions, such as closing all orders on the chart or sending a
pending order. Some scripts, such as the period_converter script that ships with MetaTrader, can
redraw the chart based on a custom time period.

A script source code file should have either the show_confirm or show_inputs property directive.
The show_confirm property prompts the user to confirm the operation of the script, while
show_inputs displays the script properties dialog.

#property show_confirm // shows confirm dialog
#property show_inputs // shows properties dialog

If your script has parameters that need to be adjusted, use the show_inputs property. Otherwise,
use show_confirm.

152

Custom Indicators and Scripts

Just like expert advisors and indicators, scripts use the init(), deinit() and start() functions.
Remember that each function will only be run once – init() and start() when the script is started,
and deinit() when it is removed. You can have one script attached to a chart at a time.

MetaTrader comes with several sample scripts. All scripts are saved in the \experts\scripts
directory.

153

EXPERT ADVISOR PROGRAMMING

Appendix A

Simple Expert Advisor

This is the simple expert advisor from chapter 2.

#property copyright "Andrew Young"

// External variables
extern double LotSize = 0.1;
extern double StopLoss = 50;
extern double TakeProfit = 100;

extern int Slippage = 5;
extern int MagicNumber = 123;

extern int FastMAPeriod = 10;
extern int SlowMAPeriod = 20;

// Global variables
int BuyTicket;
int SellTicket;
double UsePoint;
int UseSlippage;

// Init function
int init()

{
 UsePoint = PipPoint(Symbol());
 UseSlippage = GetSlippage(Symbol(),Slippage);

}

// Start function
int start()

{

// Moving averages
double FastMA = iMA(NULL,0,FastMAPeriod,0,0,0,0);
double SlowMA = iMA(NULL,0,SlowMAPeriod,0,0,0,0);

154

Appendix A

// Buy order
if(FastMA > SlowMA && BuyTicket == 0)

{
OrderSelect(SellTicket,SELECT_BY_TICKET);

// Close order
if(OrderCloseTime() == 0 && SellTicket > 0)

{
double CloseLots = OrderLots();
double ClosePrice = Ask;

bool Closed = OrderClose(SellTicket,CloseLots,ClosePrice,UseSlippage,Red);
}

double OpenPrice = Ask;

// Calculate stop loss and take profit
if(StopLoss > 0) double BuyStopLoss = OpenPrice - (StopLoss * UsePoint);
if(TakeProfit > 0) double BuyTakeProfit = OpenPrice + (TakeProfit * UsePoint);

// Open buy order
BuyTicket = OrderSend(Symbol(),OP_BUY,LotSize,OpenPrice,UseSlippage,

BuyStopLoss,BuyTakeProfit,"Buy Order",MagicNumber,0,Green);

SellTicket = 0;
}

// Sell Order
if(FastMA < SlowMA && SellTicket == 0)

{
OrderSelect(BuyTicket,SELECT_BY_TICKET);

if(OrderCloseTime() == 0 && BuyTicket > 0)
{

CloseLots = OrderLots();
ClosePrice = Bid;

Closed = OrderClose(BuyTicket,CloseLots,ClosePrice,UseSlippage,Red);
}

OpenPrice = Bid;

if(StopLoss > 0) double SellStopLoss = OpenPrice + (StopLoss * UsePoint);
if(TakeProfit > 0) double SellTakeProfit = OpenPrice - (TakeProfit * UsePoint);

SellTicket = OrderSend(Symbol(),OP_SELL,LotSize,OpenPrice,UseSlippage,
SellStopLoss,SellTakeProfit,"Sell Order",MagicNumber,0,Red);

BuyTicket = 0;
}

155

EXPERT ADVISOR PROGRAMMING

return(0);
}

// Pip Point Function
double PipPoint(string Currency)

{
int CalcDigits = MarketInfo(Currency,MODE_DIGITS);
if(CalcDigits == 2 || CalcDigits == 3) double CalcPoint = 0.01;
else if(CalcDigits == 4 || CalcDigits == 5) CalcPoint = 0.0001;
return(CalcPoint);

}

// Get Slippage Function
int GetSlippage(string Currency, int SlippagePips)

{
int CalcDigits = MarketInfo(Currency,MODE_DIGITS);
if(CalcDigits == 2 || CalcDigits == 4) double CalcSlippage = SlippagePips;
else if(CalcDigits == 3 || CalcDigits == 5) CalcSlippage = SlippagePips * 10;
return(CalcSlippage);

}

Simple Expert Advisor with Pending Orders

Here is the simple expert advisor using pending stop orders:

#property copyright "Andrew Young"

// External variables
extern double LotSize = 0.1;
extern double StopLoss = 50;
extern double TakeProfit = 100;
extern int PendingPips = 10;

extern int Slippage = 5;
extern int MagicNumber = 123;

extern int FastMAPeriod = 10;
extern int SlowMAPeriod = 20;

// Global variables
int BuyTicket;
int SellTicket;
double UsePoint;
int UseSlippage;

156

Appendix A

// Init function
int init()

{
 UsePoint = PipPoint(Symbol());
 UseSlippage = GetSlippage(Symbol(),Slippage);

}

// Start function
int start()

{

// Moving averages
double FastMA = iMA(NULL,0,FastMAPeriod,0,0,0,0);
double SlowMA = iMA(NULL,0,SlowMAPeriod,0,0,0,0);

// Buy order
if(FastMA > SlowMA && BuyTicket == 0)

{
OrderSelect(SellTicket,SELECT_BY_TICKET);

// Close order
if(OrderCloseTime() == 0 && SellTicket > 0 && OrderType() == OP_SELL)

{
double CloseLots = OrderLots();
double ClosePrice = Ask;

bool Closed = OrderClose(SellTicket,CloseLots,ClosePrice,UseSlippage,Red);
}

 // Delete Order
 else if(OrderCloseTime() == 0 && SellTicket > 0 && OrderType() == OP_SELLSTOP)

 {
 bool Deleted = OrderDelete(SellTicket,Red);

 }

double PendingPrice = High[0] + (PendingPips * UsePoint);

// Calculate stop loss and take profit
if(StopLoss > 0) double BuyStopLoss = PendingPrice - (StopLoss * UsePoint);
if(TakeProfit > 0) double BuyTakeProfit = PendingPrice +

(TakeProfit * UsePoint);

// Open buy order
BuyTicket = OrderSend(Symbol(),OP_BUYSTOP,LotSize,PendingPrice,UseSlippage,

BuyStopLoss,BuyTakeProfit,"Buy Stop Order",MagicNumber,0,Green);

SellTicket = 0;
}

157

EXPERT ADVISOR PROGRAMMING

// Sell Order
if(FastMA < SlowMA && SellTicket == 0)

{
OrderSelect(BuyTicket,SELECT_BY_TICKET);

if(OrderCloseTime() == 0 && BuyTicket > 0 && OrderType() == OP_BUY)
{

CloseLots = OrderLots();
ClosePrice = Bid;

Closed = OrderClose(BuyTicket,CloseLots,ClosePrice,UseSlippage,Red);
}

else if(OrderCloseTime() == 0 && SellTicket > 0 && OrderType() == OP_BUYSTOP)
 {

 Deleted = OrderDelete(SellTicket,Red);
 }

 PendingPrice = Low[0] - (PendingPips * UsePoint);

if(StopLoss > 0) double SellStopLoss = PendingPrice + (StopLoss * UsePoint);
if(TakeProfit > 0) double SellTakeProfit = PendingPrice -

(TakeProfit * UsePoint);

SellTicket = OrderSend(Symbol(),OP_SELLSTOP,LotSize,PendingPrice,UseSlippage,
SellStopLoss,SellTakeProfit,"Sell Stop Order",MagicNumber,0,Red);

BuyTicket = 0;
}

return(0);
}

// Pip Point Function
double PipPoint(string Currency)

{
int CalcDigits = MarketInfo(Currency,MODE_DIGITS);
if(CalcDigits == 2 || CalcDigits == 3) double CalcPoint = 0.01;
else if(CalcDigits == 4 || CalcDigits == 5) CalcPoint = 0.0001;
return(CalcPoint);

}

// Get Slippage Function
int GetSlippage(string Currency, int SlippagePips)

{
int CalcDigits = MarketInfo(Currency,MODE_DIGITS);
if(CalcDigits == 2 || CalcDigits == 4) double CalcSlippage = SlippagePips;
else if(CalcDigits == 3 || CalcDigits == 5) CalcSlippage = SlippagePips * 10;
return(CalcSlippage);

}

158

Appendix A

159

EXPERT ADVISOR PROGRAMMING

Appendix B

Advanced Expert Advisor

This is the expert advisor with advanced features from chapter 3.

#property copyright "Andrew Young"
#include <stdlib.mqh>

// External variables
extern bool DynamicLotSize = true;
extern double EquityPercent = 2;
extern double FixedLotSize = 0.1;
extern double StopLoss = 50;
extern double TakeProfit = 100;
extern int Slippage = 5;
extern int MagicNumber = 123;
extern int FastMAPeriod = 10;
extern int SlowMAPeriod = 20;

// Global variables
int BuyTicket;
int SellTicket;

double UsePoint;
int UseSlippage;

int ErrorCode;

// Init function
int init()

{
UsePoint = PipPoint(Symbol());
UseSlippage = GetSlippage(Symbol(),Slippage);

}

// Start function
int start()

{

// Moving averages
double FastMA = iMA(NULL,0,FastMAPeriod,0,0,0,1);
double SlowMA = iMA(NULL,0,SlowMAPeriod,0,0,0,1);

160

Appendix B

// Lot size calculation
if(DynamicLotSize == true)

{
double RiskAmount = AccountEquity() * (EquityPercent / 100);
double TickValue = MarketInfo(Symbol(),MODE_TICKVALUE);
if(Point == 0.001 || Point == 0.00001) TickValue *= 10;
double CalcLots = (RiskAmount / StopLoss) / TickValue;
double LotSize = CalcLots;

}
else LotSize = FixedLotSize;

// Lot size verification
if(LotSize < MarketInfo(Symbol(),MODE_MINLOT))

{
LotSize = MarketInfo(Symbol(),MODE_MINLOT);

}
else if(LotSize > MarketInfo(Symbol(),MODE_MAXLOT))

{
LotSize = MarketInfo(Symbol(),MODE_MAXLOT);

}

if(MarketInfo(Symbol(),MODE_LOTSTEP) == 0.1)
{

LotSize = NormalizeDouble(LotSize,1);
}

else LotSize = NormalizeDouble(LotSize,2);

// Buy Order
if(FastMA > SlowMA && BuyTicket == 0)

{
// Close Order
OrderSelect(SellTicket,SELECT_BY_TICKET);

if(OrderCloseTime() == 0 && SellTicket > 0)
{

double CloseLots = OrderLots();

while(IsTradeContextBusy()) Sleep(10);

RefreshRates();
double ClosePrice = Ask;

bool Closed = OrderClose(SellTicket,CloseLots,ClosePrice,UseSlippage,Red);

// Error handling
if(Closed == false)

{
ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

161

EXPERT ADVISOR PROGRAMMING

string ErrAlert = StringConcatenate("Close Sell Order - Error ",
ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Ask: ",Ask," Lots: ",LotSize,
" Ticket: ",SellTicket);

Print(ErrLog);
}

}

// Open buy order
while(IsTradeContextBusy()) Sleep(10);
RefreshRates();

BuyTicket = OrderSend(Symbol(),OP_BUY,LotSize,Ask,UseSlippage,0,0,
"Buy Order",MagicNumber,0,Green);

// Error handling
if(BuyTicket == -1)

{
ErrorCode = GetLastError();
ErrDesc = ErrorDescription(ErrorCode);

ErrAlert = StringConcatenate("Open Buy Order - Error ",ErrorCode,
": ",ErrDesc);

Alert(ErrAlert);

ErrLog = StringConcatenate("Ask: ",Ask," Lots: ",LotSize);
Print(ErrLog);

}

// Order modification
else

{
OrderSelect(BuyTicket,SELECT_BY_TICKET);
double OpenPrice = OrderOpenPrice();

// Calculate stop level
double StopLevel = MarketInfo(Symbol(),MODE_STOPLEVEL) * Point;

RefreshRates();
double UpperStopLevel = Ask + StopLevel;
double LowerStopLevel = Bid - StopLevel;

double MinStop = 5 * UsePoint;

// Calculate stop loss and take profit
if(StopLoss > 0) double BuyStopLoss = OpenPrice - (StopLoss * UsePoint);

if(TakeProfit > 0) double BuyTakeProfit = OpenPrice +
(TakeProfit * UsePoint);

162

Appendix B

// Verify stop loss and take profit
if(BuyStopLoss > 0 && BuyStopLoss > LowerStopLevel)

{
BuyStopLoss = LowerStopLevel - MinStop;

}

if(BuyTakeProfit > 0 && BuyTakeProfit < UpperStopLevel)
{

BuyTakeProfit = UpperStopLevel + MinStop;
}

// Modify order
if(IsTradeContextBusy()) Sleep(10);

if(BuyStopLoss > 0 || BuyTakeProfit > 0)
{

bool TicketMod = OrderModify(BuyTicket,OpenPrice,BuyStopLoss,
BuyTakeProfit,0);

// Error handling
if(TicketMod == false)

{
ErrorCode = GetLastError();
ErrDesc = ErrorDescription(ErrorCode);

ErrAlert = StringConcatenate("Modify Buy Order - Error ",ErrorCode,
": ",ErrDesc);

Alert(ErrAlert);

ErrLog = StringConcatenate("Ask: ",Ask," Bid: ",Bid," Ticket: ",
BuyTicket," Stop: ",BuyStopLoss," Profit: ",BuyTakeProfit);

Print(ErrLog);
}

}
}

SellTicket = 0;
}

// Sell Order
if(FastMA < SlowMA && SellTicket == 0)

{
OrderSelect(BuyTicket,SELECT_BY_TICKET);

if(OrderCloseTime() == 0 && BuyTicket > 0)
{

CloseLots = OrderLots();

while(IsTradeContextBusy()) Sleep(10);

RefreshRates();

163

EXPERT ADVISOR PROGRAMMING

ClosePrice = Bid;

Closed = OrderClose(BuyTicket,CloseLots,ClosePrice,UseSlippage,Red);

// Error handling
if(Closed == false)

{
ErrorCode = GetLastError();
ErrDesc = ErrorDescription(ErrorCode);

ErrAlert = StringConcatenate("Close Buy Order - Error ",ErrorCode,
": ",ErrDesc);

Alert(ErrAlert);

ErrLog = StringConcatenate("Bid: ",Bid," Lots: ",LotSize," Ticket: ",
BuyTicket);

Print(ErrLog);
}

}

while(IsTradeContextBusy()) Sleep(10);
RefreshRates();

SellTicket = OrderSend(Symbol(),OP_SELL,LotSize,Bid,UseSlippage,0,0,
"Sell Order", MagicNumber,0,Red);

// Error handling
if(SellTicket == -1)

{
ErrorCode = GetLastError();
ErrDesc = ErrorDescription(ErrorCode);

ErrAlert = StringConcatenate("Open Sell Order - Error ",ErrorCode,
": ",ErrDesc);

Alert(ErrAlert);

ErrLog = StringConcatenate("Bid: ",Bid," Lots: ",LotSize);
Print(ErrLog);

}

else
{

OrderSelect(SellTicket,SELECT_BY_TICKET);
OpenPrice = OrderOpenPrice();

StopLevel = MarketInfo(Symbol(),MODE_STOPLEVEL) * Point;

RefreshRates();
UpperStopLevel = Ask + StopLevel;
LowerStopLevel = Bid - StopLevel;

MinStop = 5 * UsePoint;
if(StopLoss > 0) double SellStopLoss = OpenPrice + (StopLoss * UsePoint);

164

Appendix B

if(TakeProfit > 0) double SellTakeProfit = OpenPrice -
(TakeProfit * UsePoint);

if(SellStopLoss > 0 && SellStopLoss < UpperStopLevel)
{

SellStopLoss = UpperStopLevel + MinStop;
}

if(SellTakeProfit > 0 && SellTakeProfit > LowerStopLevel)
{

SellTakeProfit = LowerStopLevel - MinStop;
}

if(IsTradeContextBusy()) Sleep(10);

if(SellStopLoss > 0 || SellTakeProfit > 0)
{

TicketMod = OrderModify(SellTicket,OpenPrice,SellStopLoss,
SellTakeProfit,0);

// Error handling
if(TicketMod == false)

{
ErrorCode = GetLastError();
ErrDesc = ErrorDescription(ErrorCode);

ErrAlert = StringConcatenate("Modify Sell Order - Error ",
ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

ErrLog = StringConcatenate("Ask: ",Ask," Bid: ",Bid," Ticket: ",
SellTicket," Stop: ",SellStopLoss," Profit: ",SellTakeProfit);

Print(ErrLog);
}

}
}

BuyTicket = 0;
}

return(0);
}

// Pip Point Function
double PipPoint(string Currency)

{
int CalcDigits = MarketInfo(Currency,MODE_DIGITS);
if(CalcDigits == 2 || CalcDigits == 3) double CalcPoint = 0.01;
else if(CalcDigits == 4 || CalcDigits == 5) CalcPoint = 0.0001;
return(CalcPoint);

}

165

EXPERT ADVISOR PROGRAMMING

// Get Slippage Function
int GetSlippage(string Currency, int SlippagePips)

{
int CalcDigits = MarketInfo(Currency,MODE_DIGITS);
if(CalcDigits == 2 || CalcDigits == 4) double CalcSlippage = SlippagePips;
else if(CalcDigits == 3 || CalcDigits == 5) CalcSlippage = SlippagePips * 10;
return(CalcSlippage);

}

Advanced Expert Advisor with Pending Orders

Here is the advanced expert advisor using pending stop orders:

#include <stdlib.mqh>

// External Variables
extern int PendingPips = 20;
extern double LotSize = 0.1;
extern double StopLoss = 50;
extern double TakeProfit = 100;
extern int Slippage = 5;
extern int MagicNumber = 123;
extern int FastMAPeriod = 10;
extern int SlowMAPeriod = 20;

// Global Variables
int BuyTicket;
int SellTicket;
double UsePoint;
int UseSlippage;
int ErrorCode;

// Init function
int init()

{
UsePoint = PipPoint(Symbol());
UseSlippage = GetSlippage(Symbol(),Slippage);

}

// Start Function
int start()

{

// Moving Average
double FastMA = iMA(NULL,0,FastMAPeriod,0,0,0,0);
double SlowMA = iMA(NULL,0,SlowMAPeriod,0,0,0,0);

166

Appendix B

// Buy Order
if(FastMA > SlowMA && BuyTicket == 0)

{
// Close order
OrderSelect(SellTicket,SELECT_BY_TICKET);

if(OrderCloseTime() == 0 && SellTicket > 0 && OrderType() == OP_SELL)
{

double CloseLots = OrderLots();

while(IsTradeContextBusy()) Sleep(10);
RefreshRates();
double ClosePrice = Ask;

bool Closed = OrderClose(SellTicket,CloseLots,ClosePrice,UseSlippage,Red);

// Error handling
if(Closed == false)

{
ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Close Sell Order - Error ",
ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Ask: ",Ask," Lots: ",LotSize,
" Ticket: ",SellTicket);

Print(ErrLog);
}

}

// Delete order
else if(OrderCloseTime() == 0 && SellTicket > 0 && OrderType() == OP_SELLSTOP)

{
bool Deleted = OrderDelete(SellTicket,Red);
if(Deleted == true) SellTicket = 0;

// Error handling
if(Deleted == false)

{
ErrorCode = GetLastError();
ErrDesc = ErrorDescription(ErrorCode);

ErrAlert = StringConcatenate("Delete Sell Stop Order - Error ",
ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

ErrLog = StringConcatenate("Ask: ",Ask," Ticket: ",SellTicket);
Print(ErrLog);

}
}

167

EXPERT ADVISOR PROGRAMMING

// Calculate stop level
double StopLevel = MarketInfo(Symbol(),MODE_STOPLEVEL) * Point;
RefreshRates();
double UpperStopLevel = Ask + StopLevel;
double MinStop = 5 * UsePoint;

// Calculate pending price
double PendingPrice = High[0] + (PendingPips * UsePoint);
if(PendingPrice < UpperStopLevel) PendingPrice = UpperStopLevel + MinStop;

// Calculate stop loss and take profit
if(StopLoss > 0) double BuyStopLoss = PendingPrice - (StopLoss * UsePoint);
if(TakeProfit > 0) double BuyTakeProfit = PendingPrice +

(TakeProfit * UsePoint);

// Verify stop loss and take profit
UpperStopLevel = PendingPrice + StopLevel;
double LowerStopLevel = PendingPrice - StopLevel;

if(BuyStopLoss > 0 && BuyStopLoss > LowerStopLevel)
{

BuyStopLoss = LowerStopLevel - MinStop;
}

if(BuyTakeProfit > 0 && BuyTakeProfit < UpperStopLevel)
{

BuyTakeProfit = UpperStopLevel + MinStop;
}

// Place pending order
if(IsTradeContextBusy()) Sleep(10);

BuyTicket = OrderSend(Symbol(),OP_BUYSTOP,LotSize,PendingPrice,UseSlippage,
BuyStopLoss,BuyTakeProfit,"Buy Stop Order",MagicNumber,0,Green);

// Error handling
if(BuyTicket == -1)

{
ErrorCode = GetLastError();
ErrDesc = ErrorDescription(ErrorCode);

ErrAlert = StringConcatenate("Open Buy Stop Order - Error ",ErrorCode,
": ",ErrDesc);

Alert(ErrAlert);

ErrLog = StringConcatenate("Ask: ",Ask," Lots: ",LotSize," Price: ",
PendingPrice," Stop: ",BuyStopLoss," Profit: ",BuyTakeProfit);

Print(ErrLog);
}

SellTicket = 0;
}

168

Appendix B

// Sell Order
if(FastMA < SlowMA && SellTicket == 0)

{
OrderSelect(BuyTicket,SELECT_BY_TICKET);

if(OrderCloseTime() == 0 && BuyTicket > 0 && OrderType() == OP_BUY)
{

CloseLots = OrderLots();

while(IsTradeContextBusy()) Sleep(10);

RefreshRates();
ClosePrice = Bid;

Closed = OrderClose(BuyTicket,CloseLots,ClosePrice,UseSlippage,Red);

if(Closed == false)
{

ErrorCode = GetLastError();
ErrDesc = ErrorDescription(ErrorCode);

ErrAlert = StringConcatenate("Close Buy Order - Error ",ErrorCode,
": ",ErrDesc);

Alert(ErrAlert);

ErrLog = StringConcatenate("Bid: ",Bid," Lots: ",LotSize," Ticket: ",
BuyTicket);

Print(ErrLog);
}

}

else if(OrderCloseTime() == 0 && BuyTicket > 0 && OrderType() == OP_BUYSTOP)
{

while(IsTradeContextBusy()) Sleep(10);
Closed = OrderDelete(BuyTicket,Red);

if(Deleted == false)
{

ErrorCode = GetLastError();
ErrDesc = ErrorDescription(ErrorCode);

ErrAlert = StringConcatenate("Delete Buy Stop Order - Error ",
ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

ErrLog = StringConcatenate("Bid: ",Bid," Ticket: ",BuyTicket);
Print(ErrLog);

}
}

StopLevel = MarketInfo(Symbol(),MODE_STOPLEVEL) * Point;
RefreshRates();
LowerStopLevel = Bid - StopLevel;

169

EXPERT ADVISOR PROGRAMMING

MinStop = 5 * UsePoint;

PendingPrice = Low[0] - (PendingPips * UsePoint);
if(PendingPrice > LowerStopLevel) PendingPrice = LowerStopLevel - MinStop;

if(StopLoss > 0) double SellStopLoss = PendingPrice + (StopLoss * UsePoint);
if(TakeProfit > 0) double SellTakeProfit = PendingPrice -

(TakeProfit * UsePoint);

UpperStopLevel = PendingPrice + StopLevel;
LowerStopLevel = PendingPrice - StopLevel;

if(SellStopLoss > 0 && SellStopLoss < UpperStopLevel)
{

SellStopLoss = UpperStopLevel + MinStop;
}

if(SellTakeProfit > 0 && SellTakeProfit > LowerStopLevel)
{

SellTakeProfit = LowerStopLevel - MinStop;
}

if(IsTradeContextBusy()) Sleep(10);

SellTicket = OrderSend(Symbol(),OP_SELLSTOP,LotSize,PendingPrice,UseSlippage,
SellStopLoss,SellTakeProfit,"Sell Stop Order",MagicNumber,0,Red);

if(SellTicket == -1)
{

ErrorCode = GetLastError();
ErrDesc = ErrorDescription(ErrorCode);

ErrAlert = StringConcatenate("Open Sell Stop Order - Error ",ErrorCode,
": ",ErrDesc);

Alert(ErrAlert);

ErrLog = StringConcatenate("Bid: ",Bid," Lots: ",LotSize," Price: ",
PendingPrice," Stop: ",SellStopLoss," Profit: ",SellTakeProfit);

Print(ErrLog);
}

BuyTicket = 0;
}

return(0);
}

170

Appendix B

// Pip Point Function
double PipPoint(string Currency)

{
int CalcDigits = MarketInfo(Currency,MODE_DIGITS);
if(CalcDigits == 2 || CalcDigits == 3) double CalcPoint = 0.01;
else if(CalcDigits == 4 || CalcDigits == 5) CalcPoint = 0.0001;
return(CalcPoint);

}

// Get Slippage Function
int GetSlippage(string Currency, int SlippagePips)

{
int CalcDigits = MarketInfo(Currency,MODE_DIGITS);
if(CalcDigits == 2 || CalcDigits == 4) double CalcSlippage = SlippagePips;
else if(CalcDigits == 3 || CalcDigits == 5) CalcSlippage = SlippagePips * 10;
return(CalcSlippage);

}

171

EXPERT ADVISOR PROGRAMMING

Appendix C

Expert Advisor with Functions

This is the expert advisor using the functions introduced in chapter 4. We've added the "close all
orders" functions and trailing stop function from chapter 5, and the "execute once per bar" features
from chapter 7.

The functions are defined in IncludeExample.mqh, the contents of which are listed in Appendix D.

// Preprocessor
#property copyright "Andrew Young"
#include <IncludeExample.mqh>

// External variables
extern bool DynamicLotSize = true;
extern double EquityPercent = 2;
extern double FixedLotSize = 0.1;

extern double StopLoss = 50;
extern double TakeProfit = 100;

extern int TrailingStop = 50;
extern int MinimumProfit = 50;

extern int Slippage = 5;
extern int MagicNumber = 123;

extern int FastMAPeriod = 10;
extern int SlowMAPeriod = 20;

extern bool CheckOncePerBar = true;

// Global variables
int BuyTicket;
int SellTicket;

double UsePoint;
int UseSlippage;

datetime CurrentTimeStamp;

172

Appendix C

// Init function
int init()

{
UsePoint = PipPoint(Symbol());
UseSlippage = GetSlippage(Symbol(),Slippage);

}

// Start function
int start()

{

// Execute on bar open
if(CheckOncePerBar == true)

{
int BarShift = 1;
if(CurrentTimeStamp != Time[0])

{
CurrentTimeStamp = Time[0];
bool NewBar = true;

}
else NewBar = false;

}
else

{
NewBar = true;
BarShift = 0;

}

// Moving averages
double FastMA = iMA(NULL,0,FastMAPeriod,0,0,0,BarShift);
double SlowMA = iMA(NULL,0,SlowMAPeriod,0,0,0,BarShift);

double LastFastMA = iMA(NULL,0,FastMAPeriod,0,0,0,BarShift+1);
double LastSlowMA = iMA(NULL,0,SlowMAPeriod,0,0,0,BarShift+1);

// Calculate lot size
double LotSize = CalcLotSize(DynamicLotSize,EquityPercent,StopLoss,FixedLotSize);
LotSize = VerifyLotSize(LotSize);

// Begin trade block
if(NewBar == true)

{

// Buy order
if(FastMA > SlowMA && LastFastMA <= LastSlowMA &&

BuyMarketCount(Symbol(),MagicNumber) == 0)
{

173

EXPERT ADVISOR PROGRAMMING

// Close sell orders
if(SellMarketCount(Symbol(),MagicNumber) > 0)

{
CloseAllSellOrders(Symbol(),MagicNumber,Slippage);

}

// Open buy order
BuyTicket = OpenBuyOrder(Symbol(),LotSize,UseSlippage,MagicNumber);

// Order modification
if(BuyTicket > 0 && (StopLoss > 0 || TakeProfit > 0))

{
OrderSelect(BuyTicket,SELECT_BY_TICKET);
double OpenPrice = OrderOpenPrice();

// Calculate and verify stop loss and take profit
double BuyStopLoss = CalcBuyStopLoss(Symbol(),StopLoss,OpenPrice);
if(BuyStopLoss > 0) BuyStopLoss = AdjustBelowStopLevel(Symbol(),

BuyStopLoss,5);

double BuyTakeProfit = CalcBuyTakeProfit(Symbol(),TakeProfit,
OpenPrice);

if(BuyTakeProfit > 0) BuyTakeProfit = AdjustAboveStopLevel(Symbol(),
BuyTakeProfit,5);

// Add stop loss and take profit
AddStopProfit(BuyTicket,BuyStopLoss,BuyTakeProfit);

}
}

// Sell Order
if(FastMA < SlowMA && LastFastMA >= LastSlowMA

&& SellMarketCount(Symbol(),MagicNumber) == 0)
{

if(BuyMarketCount(Symbol(),MagicNumber) > 0)
{

CloseAllBuyOrders(Symbol(),MagicNumber,Slippage);
}

SellTicket = OpenSellOrder(Symbol(),LotSize,UseSlippage,MagicNumber);

if(SellTicket > 0 && (StopLoss > 0 || TakeProfit > 0))
{

OrderSelect(SellTicket,SELECT_BY_TICKET);
OpenPrice = OrderOpenPrice();

double SellStopLoss = CalcSellStopLoss(Symbol(),StopLoss,OpenPrice);
if(SellStopLoss > 0) SellStopLoss = AdjustAboveStopLevel(Symbol(),

SellStopLoss,5);

double SellTakeProfit = CalcSellTakeProfit(Symbol(),TakeProfit,
OpenPrice);

174

Appendix C

if(SellTakeProfit > 0) SellTakeProfit = AdjustBelowStopLevel(Symbol(),
SellTakeProfit,5);

AddStopProfit(SellTicket,SellStopLoss,SellTakeProfit);
}

}

} // End trade block

// Adjust trailing stops
if(BuyMarketCount(Symbol(),MagicNumber) > 0 && TrailingStop > 0)

{
BuyTrailingStop(Symbol(),TrailingStop,MinimumProfit,MagicNumber);

}

if(SellMarketCount(Symbol(),MagicNumber) > 0 && TrailingStop > 0)
{

SellTrailingStop(Symbol(),TrailingStop,MinimumProfit,MagicNumber);
}

return(0);
}

Expert Advisor with Functions – Pending Orders

This is the expert advisor with functions, using pending stop orders:

// Preprocessor
#property copyright "Andrew Young"
#include <IncludeExample.mqh>

// External variables
extern bool DynamicLotSize = true;
extern double EquityPercent = 2;
extern double FixedLotSize = 0.1;

extern double StopLoss = 50;
extern double TakeProfit = 100;

extern int TrailingStop = 50;
extern int MinimumProfit = 50;

extern int PendingPips = 1;

extern int Slippage = 5;
extern int MagicNumber = 123;

175

EXPERT ADVISOR PROGRAMMING

extern int FastMAPeriod = 10;
extern int SlowMAPeriod = 20;

extern bool CheckOncePerBar = true;

// Global Variables
int BuyTicket;
int SellTicket;

double UsePoint;
int UseSlippage;

datetime CurrentTimeStamp;

// Init function
int init()

{
UsePoint = PipPoint(Symbol());
UseSlippage = GetSlippage(Symbol(),Slippage);

CurrentTimeStamp = Time[0];
}

// Start Function
int start()

{
// Execute on bar open
if(CheckOncePerBar == true)

{
int BarShift = 1;
if(CurrentTimeStamp != Time[0])

{
CurrentTimeStamp = Time[0];
bool NewBar = true;

}
else NewBar = false;

}
else

{
NewBar = true;
BarShift = 0;

}

// Moving averages
double FastMA = iMA(NULL,0,FastMAPeriod,0,0,0,BarShift);
double SlowMA = iMA(NULL,0,SlowMAPeriod,0,0,0,BarShift);

176

Appendix C

// Calculate lot size
double LotSize = CalcLotSize(DynamicLotSize,EquityPercent,StopLoss,FixedLotSize);
LotSize = VerifyLotSize(LotSize);

// Begin trade block
if(NewBar == true)

{

// Buy order
if(FastMA > SlowMA && BuyTicket == 0 && BuyMarketCount(Symbol(),MagicNumber)

== 0 && BuyStopCount(Symbol(),MagicNumber) == 0)
{

// Close sell order
if(SellMarketCount(Symbol(),MagicNumber) > 0)

{
CloseAllSellOrders(Symbol(),MagicNumber,Slippage);

}

// Delete sell stop order
if(SellStopCount(Symbol(),MagicNumber) > 0)

{
CloseAllSellStopOrders(Symbol(),MagicNumber);

}

SellTicket = 0;

double PendingPrice = High[BarShift] + (PendingPips * UsePoint);
PendingPrice = AdjustAboveStopLevel(Symbol(),PendingPrice,5);

double BuyStopLoss = CalcBuyStopLoss(Symbol(),StopLoss,PendingPrice);
if(BuyStopLoss > 0) BuyStopLoss = AdjustBelowStopLevel(Symbol(),BuyStopLoss,

5,PendingPrice);

double BuyTakeProfit = CalcBuyTakeProfit(Symbol(),TakeProfit,PendingPrice);
if(BuyTakeProfit > 0) BuyTakeProfit = AdjustAboveStopLevel(Symbol(),

BuyTakeProfit,5,PendingPrice);

BuyTicket = OpenBuyStopOrder(Symbol(),LotSize,PendingPrice,BuyStopLoss,
BuyTakeProfit,UseSlippage,MagicNumber);

}

// Sell Order
if(FastMA < SlowMA && SellTicket == 0

&& SellMarketCount(Symbol(),MagicNumber) == 0
&& SellStopCount(Symbol(),MagicNumber) == 0)
{

if(BuyMarketCount(Symbol(),MagicNumber) > 0)
{

CloseAllBuyOrders(Symbol(),MagicNumber,Slippage);
}

177

EXPERT ADVISOR PROGRAMMING

if(BuyStopCount(Symbol(),MagicNumber) > 0)
{

CloseAllBuyStopOrders(Symbol(),MagicNumber);
}

BuyTicket = 0;

PendingPrice = Low[BarShift] - (PendingPips * UsePoint);
PendingPrice = AdjustBelowStopLevel(Symbol(),PendingPrice,5);

double SellStopLoss = CalcSellStopLoss(Symbol(),StopLoss,PendingPrice);
if(SellStopLoss > 0) SellStopLoss = AdjustAboveStopLevel(Symbol(),

SellStopLoss,5,PendingPrice);

double SellTakeProfit = CalcSellTakeProfit(Symbol(),TakeProfit,
PendingPrice);

if(SellTakeProfit > 0) AdjustBelowStopLevel(Symbol(),
SellTakeProfit,5,PendingPrice);

SellTicket = OpenSellStopOrder(Symbol(),LotSize,PendingPrice,SellStopLoss,
SellTakeProfit,UseSlippage,MagicNumber);

}

} // End trade block

// Adjust trailing stops
if(BuyMarketCount(Symbol(),MagicNumber) > 0 && TrailingStop > 0)

{
BuyTrailingStop(Symbol(),TrailingStop,MinimumProfit,MagicNumber);

}

if(SellMarketCount(Symbol(),MagicNumber) > 0 && TrailingStop > 0)
{

SellTrailingStop(Symbol(),TrailingStop,MinimumProfit,MagicNumber);
}

return(0);
}

178

Appendix C

179

EXPERT ADVISOR PROGRAMMING

Appendix D

Include File

This is the include file with the functions used in the expert advisor in Appendix C.

#property copyright "Andrew Young"
#include <stdlib.mqh>

double CalcLotSize(bool argDynamicLotSize, double argEquityPercent,double argStopLoss,
double argFixedLotSize)
{

if(argDynamicLotSize == true && argStopLoss > 0)
{

double RiskAmount = AccountEquity() * (argEquityPercent / 100);
double TickValue = MarketInfo(Symbol(),MODE_TICKVALUE);
if(Point == 0.001 || Point == 0.00001) TickValue *= 10;
double LotSize = (RiskAmount / argStopLoss) / TickValue;

}
else LotSize = argFixedLotSize;

return(LotSize);
}

double VerifyLotSize(double argLotSize)
{

if(argLotSize < MarketInfo(Symbol(),MODE_MINLOT))
{

argLotSize = MarketInfo(Symbol(),MODE_MINLOT);
}

else if(argLotSize > MarketInfo(Symbol(),MODE_MAXLOT))
{

argLotSize = MarketInfo(Symbol(),MODE_MAXLOT);
}

if(MarketInfo(Symbol(),MODE_LOTSTEP) == 0.1)
{

argLotSize = NormalizeDouble(argLotSize,1);
}

else argLotSize = NormalizeDouble(argLotSize,2);

return(argLotSize);
}

180

Appendix D

int OpenBuyOrder(string argSymbol, double argLotSize, double argSlippage,
double argMagicNumber, string argComment = "Buy Order")
{

while(IsTradeContextBusy()) Sleep(10);

// Place Buy Order
int Ticket = OrderSend(argSymbol,OP_BUY,argLotSize,MarketInfo(argSymbol,MODE_ASK),

argSlippage,0,0,argComment,argMagicNumber,0,Green);

// Error Handling
if(Ticket == -1)

{
int ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Open Buy Order – Error ",ErrorCode,": ",
ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Bid: ",MarketInfo(argSymbol,MODE_BID),
" Ask: ",MarketInfo(argSymbol,MODE_ASK)," Lots: ",argLotSize);

Print(ErrLog);
}

return(Ticket);
}

int OpenSellOrder(string argSymbol, double argLotSize, double argSlippage,
double argMagicNumber, string argComment = "Sell Order")
{

while(IsTradeContextBusy()) Sleep(10);

// Place Sell Order
int Ticket = OrderSend(argSymbol,OP_SELL,argLotSize,MarketInfo(argSymbol,MODE_BID),

argSlippage,0,0,argComment,argMagicNumber,0,Red);

// Error Handling
if(Ticket == -1)

{
int ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Open Sell Order - Error ",ErrorCode,
": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Bid: ",MarketInfo(argSymbol,MODE_BID),
" Ask: ",MarketInfo(argSymbol,MODE_ASK)," Lots: ",argLotSize);

Print(ErrLog);
}

return(Ticket);
}

181

EXPERT ADVISOR PROGRAMMING

int OpenBuyStopOrder(string argSymbol, double argLotSize, double argPendingPrice,
double argStopLoss, double argTakeProfit, double argSlippage, double argMagicNumber,
datetime argExpiration = 0, string argComment = "Buy Stop Order")
{

while(IsTradeContextBusy()) Sleep(10);

// Place Buy Stop Order
int Ticket = OrderSend(argSymbol,OP_BUYSTOP,argLotSize,argPendingPrice,argSlippage,

argStopLoss,argTakeProfit,argComment,argMagicNumber,argExpiration,Green);

// Error Handling
if(Ticket == -1)

{
int ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Open Buy Stop Order - Error ",ErrorCode,
": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Ask: ",MarketInfo(argSymbol,MODE_ASK),
" Lots: ",argLotSize," Price: ",argPendingPrice," Stop: ",argStopLoss,
" Profit: ",argTakeProfit," Expiration: ",TimeToStr(argExpiration));

Print(ErrLog);
}

return(Ticket);
}

int OpenSellStopOrder(string argSymbol, double argLotSize, double argPendingPrice,
double argStopLoss, double argTakeProfit, double argSlippage, double argMagicNumber,
datetime argExpiration = 0, string argComment = "Sell Stop Order")
{

while(IsTradeContextBusy()) Sleep(10);

// Place Sell Stop Order
int Ticket = OrderSend(argSymbol,OP_SELLSTOP,argLotSize,argPendingPrice,argSlippage,

argStopLoss,argTakeProfit,argComment,argMagicNumber,argExpiration,Red);

// Error Handling
if(Ticket == -1)

{
int ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Open Sell Stop Order - Error ",ErrorCode,
": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Bid: ",MarketInfo(argSymbol,MODE_BID),
" Lots: ",argLotSize," Price: ",argPendingPrice," Stop: ",argStopLoss,
" Profit: ",argTakeProfit," Expiration: ",TimeToStr(argExpiration));

182

Appendix D

Print(ErrLog);
}

return(Ticket);
}

int OpenBuyLimitOrder(string argSymbol, double argLotSize, double argPendingPrice,
double argStopLoss, double argTakeProfit, double argSlippage, double argMagicNumber,
datetime argExpiration, string argComment = "Buy Limit Order")
{

while(IsTradeContextBusy()) Sleep(10);

// Place Buy Limit Order
int Ticket = OrderSend(argSymbol,OP_BUYLIMIT,argLotSize,argPendingPrice,argSlippage,

argStopLoss,argTakeProfit,argComment,argMagicNumber,argExpiration,Green);

// Error Handling
if(Ticket == -1)

{
int ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Open Buy Limit Order - Error ",ErrorCode,
": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Bid: ",MarketInfo(argSymbol,MODE_BID),
" Lots: ",argLotSize," Price: ",argPendingPrice," Stop: ",argStopLoss,
" Profit: ",argTakeProfit," Expiration: ",TimeToStr(argExpiration));

Print(ErrLog);
}

return(Ticket);
}

int OpenSellLimitOrder(string argSymbol, double argLotSize, double argPendingPrice,
double argStopLoss, double argTakeProfit, double argSlippage, double argMagicNumber,
datetime argExpiration, string argComment = "Sell Limit Order")
{

while(IsTradeContextBusy()) Sleep(10);

// Place Sell Limit Order
int Ticket = OrderSend(argSymbol,OP_SELLLIMIT,argLotSize,argPendingPrice,argSlippage,

argStopLoss,argTakeProfit,argComment,argMagicNumber,argExpiration,Red);

// Error Handling
if(Ticket == -1)

{
int ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

183

EXPERT ADVISOR PROGRAMMING

string ErrAlert = StringConcatenate("Open Sell Stop Order - Error ",ErrorCode,
": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Ask: ",MarketInfo(argSymbol,MODE_ASK),
" Lots: ",argLotSize," Price: ",argPendingPrice," Stop: ",argStopLoss,
" Profit: ",argTakeProfit," Expiration: ",TimeToStr(argExpiration));

Print(ErrLog);
}

return(Ticket);
}

double PipPoint(string Currency)
{

int CalcDigits = MarketInfo(Currency,MODE_DIGITS);
if(CalcDigits == 2 || CalcDigits == 3) double CalcPoint = 0.01;
else if(CalcDigits == 4 || CalcDigits == 5) CalcPoint = 0.0001;
return(CalcPoint);

}

int GetSlippage(string Currency, int SlippagePips)
{

int CalcDigits = MarketInfo(Currency,MODE_DIGITS);
if(CalcDigits == 2 || CalcDigits == 4) double CalcSlippage = SlippagePips;
else if(CalcDigits == 3 || CalcDigits == 5) CalcSlippage = SlippagePips * 10;
return(CalcSlippage);

}

bool CloseBuyOrder(string argSymbol, int argCloseTicket, double argSlippage)
{

OrderSelect(argCloseTicket,SELECT_BY_TICKET);

if(OrderCloseTime() == 0)
{

double CloseLots = OrderLots();

while(IsTradeContextBusy()) Sleep(10);

double ClosePrice = MarketInfo(argSymbol,MODE_BID);
bool Closed = OrderClose(argCloseTicket,CloseLots,ClosePrice,argSlippage,Green);

if(Closed == false)
{

int ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Close Buy Order - Error: ",ErrorCode,
": ",ErrDesc);

Alert(ErrAlert);

184

Appendix D

string ErrLog = StringConcatenate("Ticket: ",argCloseTicket," Bid: ",
MarketInfo(argSymbol,MODE_BID));

Print(ErrLog);
}

}

return(Closed);
}

bool CloseSellOrder(string argSymbol, int argCloseTicket, double argSlippage)
{

OrderSelect(argCloseTicket,SELECT_BY_TICKET);

if(OrderCloseTime() == 0)
{

double CloseLots = OrderLots();

while(IsTradeContextBusy()) Sleep(10);

double ClosePrice = MarketInfo(argSymbol,MODE_ASK);
bool Closed = OrderClose(argCloseTicket,CloseLots,ClosePrice,argSlippage,Red);

if(Closed == false)
{

int ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Close Sell Order - Error: ",ErrorCode,
": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Ticket: ",argCloseTicket,
" Ask: ",MarketInfo(argSymbol,MODE_ASK));

Print(ErrLog);
}

}
return(Closed);

}

bool ClosePendingOrder(string argSymbol, int argCloseTicket)
{

OrderSelect(argCloseTicket,SELECT_BY_TICKET);

if(OrderCloseTime() == 0)
{

while(IsTradeContextBusy()) Sleep(10);
bool Deleted = OrderDelete(argCloseTicket,Red);

if(Deleted == false)
{

int ErrorCode = GetLastError();

185

EXPERT ADVISOR PROGRAMMING

string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Close Pending Order - Error: ",
ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Ticket: ",argCloseTicket," Bid: ",
MarketInfo(argSymbol,MODE_BID)," Ask: ",MarketInfo(argSymbol,MODE_ASK));

Print(ErrLog);
}

}
return(Deleted);

}

double CalcBuyStopLoss(string argSymbol, int argStopLoss, double argOpenPrice)
{

if(argStopLoss == 0) return(0);

double BuyStopLoss = argOpenPrice - (argStopLoss * PipPoint(argSymbol));
return(BuyStopLoss);

}

double CalcSellStopLoss(string argSymbol, int argStopLoss, double argOpenPrice)
{

if(argStopLoss == 0) return(0);

double SellStopLoss = argOpenPrice + (argStopLoss * PipPoint(argSymbol));
return(SellStopLoss);

}

double CalcBuyTakeProfit(string argSymbol, int argTakeProfit, double argOpenPrice)
{

if(argTakeProfit == 0) return(0);

double BuyTakeProfit = argOpenPrice + (argTakeProfit * PipPoint(argSymbol));
return(BuyTakeProfit);

}

double CalcSellTakeProfit(string argSymbol, int argTakeProfit, double argOpenPrice)
{

if(argTakeProfit == 0) return(0);

double SellTakeProfit = argOpenPrice - (argTakeProfit * PipPoint(argSymbol));
return(SellTakeProfit);

}

186

Appendix D

bool VerifyUpperStopLevel(string argSymbol, double argVerifyPrice,
double argOpenPrice = 0)
{

double StopLevel = MarketInfo(argSymbol,MODE_STOPLEVEL) * Point;

if(argOpenPrice == 0) double OpenPrice = MarketInfo(argSymbol,MODE_ASK);
else OpenPrice = argOpenPrice;

double UpperStopLevel = OpenPrice + StopLevel;

if(argVerifyPrice > UpperStopLevel) bool StopVerify = true;
else StopVerify = false;

return(StopVerify);
}

bool VerifyLowerStopLevel(string argSymbol, double argVerifyPrice,
double argOpenPrice = 0)
{

double StopLevel = MarketInfo(argSymbol,MODE_STOPLEVEL) * Point;

if(argOpenPrice == 0) double OpenPrice = MarketInfo(argSymbol,MODE_BID);
else OpenPrice = argOpenPrice;

double LowerStopLevel = OpenPrice - StopLevel;

if(argVerifyPrice < LowerStopLevel) bool StopVerify = true;
else StopVerify = false;

return(StopVerify);
}

double AdjustAboveStopLevel(string argSymbol, double argAdjustPrice, int argAddPips = 0,
double argOpenPrice = 0)
{

double StopLevel = MarketInfo(argSymbol,MODE_STOPLEVEL) * Point;

if(argOpenPrice == 0) double OpenPrice = MarketInfo(argSymbol,MODE_ASK);
else OpenPrice = argOpenPrice;

double UpperStopLevel = OpenPrice + StopLevel;

if(argAdjustPrice <= UpperStopLevel) double AdjustedPrice = UpperStopLevel +
(argAddPips * PipPoint(argSymbol));

else AdjustedPrice = argAdjustPrice;

return(AdjustedPrice);
}

187

EXPERT ADVISOR PROGRAMMING

double AdjustBelowStopLevel(string argSymbol, double argAdjustPrice, int argAddPips = 0,
double argOpenPrice = 0)
{

double StopLevel = MarketInfo(argSymbol,MODE_STOPLEVEL) * Point;

if(argOpenPrice == 0) double OpenPrice = MarketInfo(argSymbol,MODE_BID);
else OpenPrice = argOpenPrice;

double LowerStopLevel = OpenPrice - StopLevel;

if(argAdjustPrice >= LowerStopLevel) double AdjustedPrice = LowerStopLevel -
(argAddPips * PipPoint(argSymbol));

else AdjustedPrice = argAdjustPrice;

return(AdjustedPrice);
}

bool AddStopProfit(int argTicket, double argStopLoss, double argTakeProfit)
{

OrderSelect(argTicket,SELECT_BY_TICKET);
double OpenPrice = OrderOpenPrice();

while(IsTradeContextBusy()) Sleep(10);

// Modify Order
bool TicketMod = OrderModify(argTicket,OrderOpenPrice(),argStopLoss,argTakeProfit,0);

// Error Handling
if(TicketMod == false)

{
int ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Add Stop/Profit - Error ",ErrorCode,
": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Bid: ",MarketInfo(OrderSymbol(),MODE_BID),
" Ask: ",MarketInfo(OrderSymbol(),MODE_ASK)," Ticket: ",argTicket," Stop: ",
argStopLoss," Profit: ",argTakeProfit);

Print(ErrLog);
}

return(TicketMod);
}

188

Appendix D

int TotalOrderCount(string argSymbol, int argMagicNumber)
{

int OrderCount;
for(int Counter = 0; Counter <= OrdersTotal()-1; Counter++)

{
OrderSelect(Counter,SELECT_BY_POS);
if(OrderMagicNumber() == argMagicNumber && OrderSymbol() == argSymbol)

{
OrderCount++;

}
}

return(OrderCount);
}

int BuyMarketCount(string argSymbol, int argMagicNumber)
{

int OrderCount;
for(int Counter = 0; Counter <= OrdersTotal()-1; Counter++)

{
OrderSelect(Counter,SELECT_BY_POS);
if(OrderMagicNumber() == argMagicNumber && OrderSymbol() == argSymbol

&& OrderType() == OP_BUY)
{

OrderCount++;
}

}
return(OrderCount);

}

int SellMarketCount(string argSymbol, int argMagicNumber)
{

int OrderCount;
for(int Counter = 0; Counter <= OrdersTotal()-1; Counter++)

{
OrderSelect(Counter,SELECT_BY_POS);
if(OrderMagicNumber() == argMagicNumber && OrderSymbol() == argSymbol

&& OrderType() == OP_SELL)
{

OrderCount++;
}

}
return(OrderCount);

}

189

EXPERT ADVISOR PROGRAMMING

int BuyStopCount(string argSymbol, int argMagicNumber)
{

int OrderCount;
for(int Counter = 0; Counter <= OrdersTotal()-1; Counter++)

{
OrderSelect(Counter,SELECT_BY_POS);
if(OrderMagicNumber() == argMagicNumber && OrderSymbol() == argSymbol

&& OrderType() == OP_BUYSTOP)
{

OrderCount++;
}

}
return(OrderCount);

}

int SellStopCount(string argSymbol, int argMagicNumber)
{

int OrderCount;
for(int Counter = 0; Counter <= OrdersTotal()-1; Counter++)

{
OrderSelect(Counter,SELECT_BY_POS);
if(OrderMagicNumber() == argMagicNumber && OrderSymbol() == argSymbol

&& OrderType() == OP_SELLSTOP)
{

OrderCount++;
}

}
return(OrderCount);

}

int BuyLimitCount(string argSymbol, int argMagicNumber)
{

int OrderCount;
for(int Counter = 0; Counter <= OrdersTotal()-1; Counter++)

{
OrderSelect(Counter,SELECT_BY_POS);
if(OrderMagicNumber() == argMagicNumber && OrderSymbol() == argSymbol

&& OrderType() == OP_BUYLIMIT)
{

OrderCount++;
}

}
return(OrderCount);

}

190

Appendix D

int SellLimitCount(string argSymbol, int argMagicNumber)
{

int OrderCount;
for(int Counter = 0; Counter <= OrdersTotal()-1; Counter++)

{
OrderSelect(Counter,SELECT_BY_POS);
if(OrderMagicNumber() == argMagicNumber && OrderSymbol() == argSymbol

&& OrderType() == OP_SELLLIMIT)
{

OrderCount++;
}

}
return(OrderCount);

}

void CloseAllBuyOrders(string argSymbol, int argMagicNumber, int argSlippage)
{

for(int Counter = 0; Counter <= OrdersTotal()-1; Counter++)
{

OrderSelect(Counter,SELECT_BY_POS);

if(OrderMagicNumber() == argMagicNumber && OrderSymbol() == argSymbol
&& OrderType() == OP_BUY)
{

// Close Order
int CloseTicket = OrderTicket();
double CloseLots = OrderLots();

while(IsTradeContextBusy()) Sleep(10);
double ClosePrice = MarketInfo(argSymbol,MODE_BID);

bool Closed = OrderClose(CloseTicket,CloseLots,ClosePrice,argSlippage,Red);

// Error Handling
if(Closed == false)

{
int ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Close All Buy Orders - Error ",
ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Bid: ",
MarketInfo(argSymbol,MODE_BID), " Ticket: ",CloseTicket," Price: ",
ClosePrice);

Print(ErrLog);
}

else Counter--;
}

}
}

191

EXPERT ADVISOR PROGRAMMING

void CloseAllSellOrders(string argSymbol, int argMagicNumber, int argSlippage)
{

for(int Counter = 0; Counter <= OrdersTotal()-1; Counter++)
{

OrderSelect(Counter,SELECT_BY_POS);

if(OrderMagicNumber() == argMagicNumber && OrderSymbol() == argSymbol
&& OrderType() == OP_SELL)
{

// Close Order
int CloseTicket = OrderTicket();
double CloseLots = OrderLots();

while(IsTradeContextBusy()) Sleep(10);

double ClosePrice = MarketInfo(argSymbol,MODE_ASK);

bool Closed = OrderClose(CloseTicket,CloseLots,ClosePrice,argSlippage,Red);

// Error Handling
if(Closed == false)

{
int ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Close All Sell Orders - Error ",
ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Ask: ",
MarketInfo(argSymbol,MODE_ASK), " Ticket: ",CloseTicket," Price: ",
ClosePrice);

Print(ErrLog);
}

else Counter--;
}

}
}

void CloseAllBuyStopOrders(string argSymbol, int argMagicNumber)
{

for(int Counter = 0; Counter <= OrdersTotal()-1; Counter++)
{

OrderSelect(Counter,SELECT_BY_POS);

if(OrderMagicNumber() == argMagicNumber && OrderSymbol() == argSymbol
&& OrderType() == OP_BUYSTOP)
{

// Delete Order
int CloseTicket = OrderTicket();

192

Appendix D

while(IsTradeContextBusy()) Sleep(10);
bool Closed = OrderDelete(CloseTicket,Red);

// Error Handling
if(Closed == false)

{
int ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Close All Buy Stop Orders - ",
"Error",ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Bid: ",
MarketInfo(argSymbol,MODE_BID), " Ask: ",
MarketInfo(argSymbol,MODE_ASK)," Ticket: ",CloseTicket);

Print(ErrLog);
}

else Counter--;
}

}
}

void CloseAllSellStopOrders(string argSymbol, int argMagicNumber)
{

for(int Counter = 0; Counter <= OrdersTotal()-1; Counter++)
{

OrderSelect(Counter,SELECT_BY_POS);

if(OrderMagicNumber() == argMagicNumber && OrderSymbol() == argSymbol
&& OrderType() == OP_SELLSTOP)
{

// Delete Order
int CloseTicket = OrderTicket();

while(IsTradeContextBusy()) Sleep(10);

bool Closed = OrderDelete(CloseTicket,Red);

// Error Handling
if(Closed == false)

{
int ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Close All Sell Stop Orders - ",
"Error ",ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

193

EXPERT ADVISOR PROGRAMMING

string ErrLog = StringConcatenate("Bid: ",
MarketInfo(argSymbol,MODE_BID), " Ask: ",
MarketInfo(argSymbol,MODE_ASK)," Ticket: ",CloseTicket);

Print(ErrLog);
}

else Counter--;
}

}
}

void CloseAllBuyLimitOrders(string argSymbol, int argMagicNumber)
{

for(int Counter = 0; Counter <= OrdersTotal()-1; Counter++)
{

OrderSelect(Counter,SELECT_BY_POS);

if(OrderMagicNumber() == argMagicNumber && OrderSymbol() == argSymbol
&& OrderType() == OP_BUYLIMIT)
{

// Delete Order
int CloseTicket = OrderTicket();

while(IsTradeContextBusy()) Sleep(10);

bool Closed = OrderDelete(CloseTicket,Red);

// Error Handling
if(Closed == false)

{
int ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Close All Buy Limit Orders - ",
"Error ",ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Bid: ",
MarketInfo(argSymbol,MODE_BID), " Ask: ",
MarketInfo(argSymbol,MODE_ASK)," Ticket: ",CloseTicket);

Print(ErrLog);
}

else Counter--;
}

}
}

194

Appendix D

void CloseAllSellLimitOrders(string argSymbol, int argMagicNumber)
{

for(int Counter = 0; Counter <= OrdersTotal()-1; Counter++)
{

OrderSelect(Counter,SELECT_BY_POS);

if(OrderMagicNumber() == argMagicNumber && OrderSymbol() == argSymbol
&& OrderType() == OP_SELLLIMIT)
{

// Delete Order
int CloseTicket = OrderTicket();

while(IsTradeContextBusy()) Sleep(10);

bool Closed = OrderDelete(CloseTicket,Red);

// Error Handling
if(Closed == false)

{
int ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Close All Sell Limit Orders - ",
"Error ",ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Bid: ",
MarketInfo(argSymbol,MODE_BID), " Ask: ",
MarketInfo(argSymbol,MODE_ASK)," Ticket: ",CloseTicket);

Print(ErrLog);
}

else Counter--;
}

}
}

void BuyTrailingStop(string argSymbol, int argTrailingStop, int argMinProfit,
int argMagicNumber)
{

for(int Counter = 0; Counter <= OrdersTotal()-1; Counter++)
{

OrderSelect(Counter,SELECT_BY_POS);

// Calculate Max Stop and Min Profit
double MaxStopLoss = MarketInfo(argSymbol,MODE_BID) -

(argTrailingStop * PipPoint(argSymbol));

MaxStopLoss = NormalizeDouble(MaxStopLoss,
MarketInfo(OrderSymbol(),MODE_DIGITS));

double CurrentStop = NormalizeDouble(OrderStopLoss(),
MarketInfo(OrderSymbol(),MODE_DIGITS));

195

EXPERT ADVISOR PROGRAMMING

double PipsProfit = MarketInfo(argSymbol,MODE_BID) - OrderOpenPrice();
double MinProfit = argMinProfit * PipPoint(argSymbol);

// Modify Stop
if(OrderMagicNumber() == argMagicNumber && OrderSymbol() == argSymbol

&& OrderType() == OP_BUY && CurrentStop < MaxStopLoss
&& PipsProfit >= MinProfit)
{

bool Trailed = OrderModify(OrderTicket(),OrderOpenPrice(),MaxStopLoss,
OrderTakeProfit(),0);

// Error Handling
if(Trailed == false)

{
int ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Buy Trailing Stop – Error ",
",ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Bid: ",
MarketInfo(argSymbol,MODE_BID), " Ticket: ",OrderTicket()," Stop: ",
OrderStopLoss()," Trail: ",MaxStopLoss);

Print(ErrLog);
}

}
}

}

void SellTrailingStop(string argSymbol, int argTrailingStop, int argMinProfit,
int argMagicNumber)
{

for(int Counter = 0; Counter <= OrdersTotal()-1; Counter++)
{

OrderSelect(Counter,SELECT_BY_POS);

// Calculate Max Stop and Min Profit
double MaxStopLoss = MarketInfo(argSymbol,MODE_ASK) +

(argTrailingStop * PipPoint(argSymbol));

MaxStopLoss = NormalizeDouble(MaxStopLoss,
MarketInfo(OrderSymbol(),MODE_DIGITS));

double CurrentStop = NormalizeDouble(OrderStopLoss(),
MarketInfo(OrderSymbol(),MODE_DIGITS));

double PipsProfit = OrderOpenPrice() - MarketInfo(argSymbol,MODE_ASK);
double MinProfit = argMinProfit * PipPoint(argSymbol);

196

Appendix D

// Modify Stop
if(OrderMagicNumber() == argMagicNumber && OrderSymbol() == argSymbol

&& OrderType() == OP_SELL && (CurrentStop > MaxStopLoss || CurrentStop == 0)
&& PipsProfit >= MinProfit)
{

bool Trailed = OrderModify(OrderTicket(),OrderOpenPrice(),MaxStopLoss,
OrderTakeProfit(),0);

// Error Handling
if(Trailed == false)

{
int ErrorCode = GetLastError();
string ErrDesc = ErrorDescription(ErrorCode);

string ErrAlert = StringConcatenate("Sell Trailing Stop - Error ",
ErrorCode,": ",ErrDesc);

Alert(ErrAlert);

string ErrLog = StringConcatenate("Ask: ",
MarketInfo(argSymbol,MODE_ASK), " Ticket: ",OrderTicket()," Stop: ",
OrderStopLoss()," Trail: ",MaxStopLoss);

Print(ErrLog);
}

}
}

}

197

EXPERT ADVISOR PROGRAMMING

Appendix E

Custom Indicator

Here is the code for the custom indicator from chapter 9:

#property copyright "Andrew Young"

#property indicator_chart_window
#property indicator_buffers 3
#property indicator_color1 DeepSkyBlue
#property indicator_color2 DeepSkyBlue
#property indicator_color3 DeepSkyBlue

// External variables
extern int BandsPeriod = 20;
extern int BandsShift = 0;
extern int BandsMethod = 1;
extern int BandsPrice = 0;
extern int Deviations = 1;

// Buffers
double EMA[];
double UpperBand[];
double LowerBand[];

// Init
int init()

{
SetIndexStyle(0,DRAW_LINE);
SetIndexBuffer(0,EMA);
SetIndexLabel(0,"EMA");

SetIndexStyle(1,DRAW_LINE);
SetIndexBuffer(1,UpperBand);
SetIndexLabel(1,"UpperBand");

SetIndexStyle(2,DRAW_LINE);
SetIndexBuffer(2,LowerBand);
SetIndexLabel(2,"LowerBand");

return(0);
}

198

Appendix E

// Start
int start()

{
int counted_bars = IndicatorCounted();

int CalculateBars = Bars - counted_bars;

for(int Count = CalculateBars; Count >= 0; Count--)
{

EMA[Count] = iMA(NULL,0,BandsPeriod,BandsShift,BandsMethod,BandsPrice,Count);

double StdDev = iStdDev(NULL,0,BandsPeriod,BandsShift,BandsMethod,BandsPrice,
Count);

UpperBand[Count] = EMA[Count] + (StdDev * Deviations);
LowerBand[Count] = EMA[Count] - (StdDev * Deviations);

}

return(0);
}

199

Index

A

AccountBroker() 125
AccountEquity() 50, 132
AccountName() 125
AccountNumber() 125
Alert() ... 54
Applied price constants 102
Arrays ... 134
Ask ... 20

B

Bars ... 150
Bid ... 20
boolean data type 9
Boolean operators 105
Break even stop .. 90
break operator .. 130
Buffers .. 146

C

case operator ... 130
Close[] ... 94
color data type .. 9
Comment() .. 122
Comments .. 8
Compilation errors 144
Compound operators 8
Constants ... 10
Custom indicators 98

D

Data types .. 9
Data window ... 100
Datetime constants 112
datetime data type 9
datetime variables 112
Day() ... 114

DayOfWeek() .. 114
Debugging .. 141
default operator 130
Default values ... 12
deinit() .. 17
DLLs ... 75
double data type .. 9

E

ECN/STP ... 20, 42
else operator ... 104
EMPTY_VALUE .. 102
Error codes ... 143
Error handling ... 53
ErrorDescription() 54
Escape characters 122
Expert Advisor Wizard 14
Expiration ... 21
extern variables 16

F

FIFO ... 85
File formats ... 4
File locations ... 5
for operator ... 80
Function arguments 12
Functions .. 10

G

GetLastError() 54
Global variables 136
Globally scoped variable 13, 17
GlobalVariableDel() 137
GlobalVariableDeleteAll() 137
GlobalVariableGet() 137
GlobalVariableSet() 136

H

High[] ... 94
Hour() ... 114

I

iClose() .. 94
iCustom() .. 98
Identifiers ... 8
if operator ... 103
iHigh() ... 94
iHighest() ... 32
iLow() ... 94
iLowest() .. 31
iMA() ... 96
Include files .. 74
indicator_buffers 147
indicator_chart_window 147
indicator_color 147
indicator_separate_window 147
IndicatorCounted() 150
Indicators ... 95
IndicatorShortName() 149
init() ... 17
int data type .. 9
iOpen() ... 94
IsDemo() .. 124
IsDllsAllowed() 123
IsLibrariesAllowed() 123
iStdDev() .. 151
iStochastic() ... 98
IsTradeAllowed() 123
IsTradeContextBusy() 52

L

Libraries .. 74
Limit order .. 21
Local variable .. 13
Logs ... 141
Lot size ... 49
Lot step value ... 52

Low[] ... 94

M

Magic number ... 23
Market order ... 20
MarketInfo() .. 29
Martingale ... 138
MathPow() .. 141
Maximum lot size 51
MessageBox() .. 125
MetaEditor .. 6
Minimum lot size 51
Minute() .. 114
Mode parameter ... 98
Month() ... 114
Moving average methods 103

N

Navigator window 6
Newline character 122
NormalizeDouble() 52
NULL ... 31

O

Open[] ... 94
Order type constants 22
OrderClose() .. 34
OrderClosePrice() 33, 138
OrderCloseTime() 33, 35
OrderComment() 33, 131
OrderDelete() ... 35
OrderLots() .. 33
OrderMagicNumber() 33
OrderModify() ... 42
OrderOpenPrice() 33, 138
OrderOpenTime() 33
OrderProfit() 34, 137
OrderSelect() ... 32
OrderSend() .. 22
OrdersHistoryTotal() 139
OrderStopLoss() 33

OrdersTotal() ... 82
OrderSymbol() ... 33
OrderTakeProfit() 33
OrderTicket() ... 33
OrderType() .. 33
Oscillators ... 97

P

Pending orders .. 21
Point ... 26
Preprocessor ... 15
Price series arrays 94
Print() ... 54

R

RefreshRates() 53
Relation operators 104
return operator .. 11

S

Scripts .. 152
Semicolon as expression terminator 7
SendMail() .. 127
SetArrow() .. 148
SetIndexBuffer() 101, 148
SetIndexLabel() 148
SetIndexStyle() 101, 148
SetLevelStyle() 149
SetLevelValue() 149
Shift parameter 96
show_confirm .. 152
show_inputs .. 152
Sleep() ... 53
Slippage .. 20, 28
Spread .. 20, 132
start() ... 17
static variable ... 13
stdlib.mqh include file 15, 54
Stop levels .. 46
Stop loss ... 30
Stop orders ... 21

Stop out level .. 132
string data type .. 9
StringConcatenate() 55
StrToTime() .. 113
switch operator 130
Symbol() .. 23

T

Take profit .. 30
Templates ... 4
Tick value ... 50
Time frame constants 102
Time[] ... 119
TimeCurrent() 114
TimeDay() .. 115
TimeDayOfWeek() 115
TimeHour() .. 115
TimeLocal() .. 114
TimeMinute() .. 115
TimeMonth() .. 115
TimeToStr() .. 113
TimeYear() .. 115
Toolbox window .. 6
Trailing stops ... 87

V

Variable assignment 10
Variable scope ... 13
Variables ... 9
void data type 11, 85

W

while operator ... 81

Y

Year() ... 114

#

#define directive 15
#import directive 16
#include directive 15

#property copyright 15
#property directives 15

#property library 75
#property link 15

	Introduction
	About This Book
	A Note About MQL 5
	Conventions Used In This Book

	An Introduction to MQL
	Introduction to MetaEditor
	What is an Expert Advisor?
	File Formats
	File Locations
	MetaEditor

	Basic Concepts
	Syntax
	Comments
	Identifiers
	Variables
	Constants
	Functions
	Variable Scope

	Layout of an MQ4 File
	Creating a New Expert Advisor
	Preprocessor Directives
	Parameters and External Variables
	Global Variables
	Special Functions
	Other Functions

	Order Placement
	Bid, Ask & Spread
	Order Types
	The Order Placement Process
	OrderSend()
	Placing A Market Order
	Placing a Pending Stop Order
	Placing a Pending Limit Order

	Calculating Stop Loss & Take Profit
	Calculating in Pips
	Point
	Slippage and Point
	Slippage and Point as Global Variables
	MarketInfo()
	Calculating the Stop Loss
	Calculating the Take Profit
	Alternate Stop Loss Methods

	Retrieving Order Information
	OrderSelect()

	Closing Orders
	OrderClose()
	OrderDelete()

	A Simple Expert Advisor
	Using Pending Orders

	Advanced Order Placement
	ECN Compatibility
	Order Modification
	Adding Stop Loss and Take Profit to an Existing Order
	Modifying a Pending Order Price

	Verifying Stops and Pending Order Prices
	Stop Levels
	Verifying Stop Loss and Take Profit Prices
	Verifying Pending Order Prices

	Calculating Lot Size
	Money Management
	Verifying Lot Size

	Other Considerations
	Trade Context
	Refreshing Predefined Variables
	Error Handling

	Putting It All Together

	Working with Functions
	Lot Sizing Function
	Lot Verification Function
	Order Placement Function
	Pending Order Placement
	Order Closing Function
	Pending Order Close Function
	Stop Loss & Take Profit Calculation Functions
	Stop Level Verification
	Add Stop Loss and Take Profit
	Using Include Files
	Using Libraries
	A Simple Expert Advisor (with Functions)

	Order Management
	The Order Loop
	The for Operator
	The while Operator
	The Order Loop

	Order Counting
	Closing Multiple Orders

	Trailing Stops
	Minimum Profit
	Break Even Stop

	Updating the Expert Advisor

	Order Conditions and Indicators
	Price Data
	Indicators
	Trend Indicators
	Oscillators
	Custom Indicators

	Indicator Constants
	Time Frames
	Applied Price
	Moving Average Methods

	Evaluating Trade Conditions
	Relation Operations
	Boolean Operations
	Turning An Indicator On and Off

	Comparing Indicator Values Across Bars

	Working with Time and Date
	Datetime Variables
	Datetime Constants

	Date and Time Functions
	Creating A Simple Timer
	Execute On Bar Open

	Tips and Tricks
	Escape Characters
	Using Chart Comments
	Check Settings
	Demo or Account Limitations
	MessageBox()
	Button Flags
	Icon Flags
	Return Flags

	Email Alerts
	Retry on Error
	Using Order Comments As an Identifier
	Margin Check
	Spread Check
	Multiple Orders
	Global Variables
	Check Order Profit
	Martingale
	Debugging Your Expert Advisor
	Troubleshooting Intermittent Trading Errors
	Fixing Compilation Errors

	Custom Indicators and Scripts
	Buffers
	Creating A Custom Indicator
	Drawing Properties
	Using Descriptive Buffer Names
	The Indicator start() Function

	Scripts

	Appendix A
	Simple Expert Advisor
	Simple Expert Advisor with Pending Orders

	Appendix B
	Advanced Expert Advisor
	Advanced Expert Advisor with Pending Orders

	Appendix C
	Expert Advisor with Functions
	Expert Advisor with Functions – Pending Orders

	Appendix D
	Include File

	Appendix E
	Custom Indicator
	Index

