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Abstract 
The standard hypothesis concerning the behavior of asset returns states that they follow a random 
walk in discrete time or a Brownian motion in continuous time. The Brownian motion process is 
characterized by a quantity, called the Hurst exponent, which is related to some fractal aspects of 
the process itself.  For a standard Brownian motion (sBm) this exponent is equal to 0.5. Several 
empirical studies have shown the inadequacy of the sBm. To correct for this evidence some 
authors have conjectured that asset returns may be independently and identically Pareto-Lévy 
stable (PLs) distributed, whereas others have asserted that asset returns may be identically - but 
not independently - fractional Brownian motion (fBm) distributed with Hurst exponents, in both 
cases, that differ from 0.5. In this paper we empirically explore such non-standard assumptions 
for both spot and (nearby) futures returns for five foreign currencies: the British Pound, the 
Canadian Dollar, the German Mark, the Swiss Franc, and the Japanese Yen. We assume that the 
Hurst exponent belongs to a suitable neighborhood of 0.5 that allows us to verify if the so-called 
Fractal Market Hypothesis (FMH) can be a “reasonable” generalization of the Efficient Market 
hypothesis. Furthermore, we also allow the Hurst exponent to vary over time which permits the 
generalization of the FMH into the MultiFractal Market Hypothesis (MFMH).  
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1. Introduction 
 
The standard hypothesis concerning the behavior of asset returns in financial markets claims that  

they are independently and identically lognormally distributed ( ( )[ ] ( )[ ]ln lnP t dt P t+ − ~ 

( )N µ σdt dt,  2 ). The corresponding underlying stochastic process is characterized by a quantity, 

called the Hurst exponent H , which is related to some fractal aspects of the process itself1.  In 
particular, for a standard Brownian motion (sBm) the Hurst exponent is H = 05. . 

Several empirical studies have supported the independent and identical lognormal 
behavior of asset returns, but others have shown its inadequacy as a model of asset returns. This 
inadequacy is often caused by the existence of many outliers, nonstationarity in the variance level, 
presence of asymmetry, and short- and long-term dependence.  Authors such as Lo and 
MacKinlay (1988), Lo (1991), Peters (1991, 1994), Evertsz (1995a, 1995b), Evertsz and Berkner 
(1995), Corazza (1996), Campbell, Lo and MacKinlay (1997) and Corazza, Malliaris and Nardelli 
(1997) provide statistical evidence that asset prices do not follow random walks.  

To account for this discrepancy, some authors have conjectured that financial returns may 
be independently and identically Pareto-Lévy stable (PLs) distributed,2 whereas others have 
conjectured that asset returns may be identically, but not independently, fractional Brownian 
motion (fBm) distributed3. Both these conjectures are characterized by exponents of Hurst 
H ≠ 05. . 

In this paper we consider such non-standard hypotheses about returns for both spot and 
(nearby) futures for five foreign currency markets: the British Pound, the Canadian Dollar, the 
German Mark, the Swiss Franc and the Japanese Yen. We assume the Hurst exponent H  belongs 
to a suitable neighborhood of 05. , that is, we (indirectly) assume that the stochastic process 
generating exchange rate returns can be either a PLs or a fBm motion. This assumption provides a 
more flexible theoretical framework to examine if the so-called Fractal Market Hypothesis 
(FMH), as proposed in Peters (1991, 1994), is a reasonable generalization of the standard 
Efficient Market Hypothesis (EMH), initially elaborated in Fama (1970). Of course, when 
H = 05.  the FMH coincides with the EMH. Furthermore, we also assume that the Hurst exponent 

                                      
1 There is an extensive literature on fractality from a mathematical point of view, such as Mandelbrot and Van Ness 
(1968) and  Falconer (1990).  Applications of fractality in finance are presented in Evertsz (1995a, 1995b), Evertsz 
and Berkner (1995), and Corazza, Malliaris and Nardelli (1997) 
2  See Mittnik and Rachev (1993) and Campbell, Lo and MacKinlay (1997) 
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is a function of time, ( )H H t= , allowing the foreign currency markets structures to vary over 

time. The introduction of this dynamic dimension permits the generalization of the FMH into the 
MultiFractal Market Hypothesis (MFMH). 

Briefly, the MFMH provides a theoretical framework to account for changes from 
“regular” to “irregular” phases of the capital markets and vice versa. In general, these markets are 
characterized by investors having similar or different lengths of investment horizons. If the 
matching between the asset demand and supply4 is relatively equal, then both the liquidity and 
regularity of the markets are ensured, otherwise the opposite holds.5 Of course, when H = 05. , for 
all suitable t , then the MFMH coincides with the EMH. 

The remainder of the paper is organized as follows: in section 2 we give a brief review of 
the literature; in sections 3 and 4 we present some theoretical and empirical aspects that are 
essential to our analysis; section 5 describes the data and section 6 reports the results of the 
multifractal analysis. In section 7 we offer an economic interpretation of our results, and finally, 
in section 8, we summarize our concluding remarks. 
 
 
2. Review of the Literature 
 
Market efficiency has been the most celebrated theory of financial markets during the past three 
decades. In its simplest formulation this theory claims that changes in asset prices reflect fully and 
instantaneously the release of all new relevant information. Furthermore, because such a flow of 
information cannot be anticipated between the current trading period and the next one, asset price 
changes, in efficient markets, are serially independent. In other words, the release of 
unanticipated information moves asset prices randomly. The textbook by Campbell, Lo and 
MacKinlay (1997, section 8) explains various versions of the random walk hypothesis. 

The efficient market theory, from its earliest formulation by Samuelson (1965) and Fama 
(1970), has been refined in several directions. Analytically, the concept of information has been 
rigorously defined. Statistically, the notion of random walk has been generalized to Itô processes. 
Moreover, the efficient market hypothesis has been extensively tested. Fama (1991) traces the 

                                                                                                                        
3 Representative references include Lo (1991), Peters (1991, 1994), Corazza (1996), Evertsz (1995a, 1995b), Evertsz 
and Berkner (1995), Belkacem, Levy Vehel, and Walter (1996), Ostasiewicz (1996),  Campbell, Lo and MacKinlay 
(1997), and Corazza, Malliaris and Nardelli (1997).   
4 Notice that the peculiarities of such a matching depends on the stochastic process generating the asset returns. 
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evolution of the market efficiency theory during its first two decades and skillfully cites numerous 
studies that offer empirical support as well as empirical rejection of the EMH. 

In this paper we conduct an empirical investigation of the return behavior of five foreign 
currencies in order to detect possible discrepancies between the actual behavior of such currencies 
and the classical random walk. Note that we do not claim that foreign currency markets are 
inefficient nor do we assert that the EMH does not hold. We acknowledge that market efficiency 
is currently the central theory of financial economics, at least until a new theory is proposed as a 
better explanatory paradigm of asset prices behavior. We merely wish to emphasize the need for 
revising the EMH and provide data to this end. 

The existing literature proposes several approaches for verifying whether a foreign 
exchange market is more or less efficient. In the remainder of this section we briefly review some 
of most significant findings. 

From an econometric standpoint, Cornell (1977), Frankel (1980), Chiang and Jiang 
(1995), and Zhou (1996) examine whether the current spot, the forward rate or the futures price 
can be used as an unbiased predictor of the spot rate itself at some future date. From the same 
point of view, it is possible to use the recent time series tools of cointegration, ARCH and 
GARCH techniques to detect possible market inefficiencies. Kao and Ma (1992); Leachman, El 
and Mona (1992); Chan, Gup and Pan (1992); and Alexakis and Apergis (1996) utilize such 
methodologies. 

A more operative approach consists of devising certain trading rules concerning these 
markets and determining their profitability, as in Taylor (1992), Levich and Thomas (1992), and 
Kho (1992). 

A third class of techniques looks for deterministic nonlinear and chaotic dynamics in 
foreign currency market data. Hsieh (1988, 1992), and Bleaney and Mizen (1996) follow these 
type of methodologies. 

Finally, a recent “inter-disciplinary” approach is the fractal one which is linked to both 
stochastic and deterministic aspects of the underlying process generating the price changes. The  
tools of fractal analysis are employed by Liu and Hsueh (1993), Fang, Lai and Lai (1994), Evertsz 
(1995a, 1995b), Evertsz and Berkner (1995), Van de Gucht, Dekimpe and Kwok (1996), Corazza, 
Malliaris and Nardelli (1997) and us in this paper. A detailed presentation of these tools is given 
in Shubik (1997). 

                                                                                                                        
5 These concepts are discussed in detail in Pancham  (1994), Corazza (1996), and Belkacem, Vehel, and Walter 
(1996) and also in section 6 of this paper.   
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3.  Theoretical Aspects 
 
The current literature proposes different stochastic processes to describe the behavior of financial 
returns. The most common approaches are the fractional Brownian motion (fBm), and some of 
the Pareto-Levy stable (PLs) distribution sub-families. In general, these stochastic processes can 
be characterized by the same Hurst exponent, H ≠ 05. , as explained in Taqqu (1986), Evertsz 
(1995a, 1995b), and Evertsz and Berkner (1995).  In fact, if such stochastic processes are 
independently and identically distributed with exponentially decaying power-law tails, as for 

example the PLs, then ( )H ∈ 05 1. ,  ,6 whereas if they are identically, but not independently 

distributed, as for example the fBm, then ( )H ∈ 0 1,  . 

In order to conduct our analysis and consequently to test the MultiFractal Market 
Hypothesis (MFMH), we need a set of mathematical and statistical tools to formally define and 
estimate the long-term dependence of asset returns and to determine the value of the Hurst 
exponent. In particular, in this section we first give define the fBm and PLs motions and some of 
their properties. Second, we describe some tests for detecting long-term memory in time series 
and we introduce some algorithms for estimating the Hurst exponent, H . 
 

3.1. Fractional and MultiFractional Brownian Motion 
 
The fBm is a term coined by Mandelbrot and Van Ness (1968) to describe an almost everywhere 

continuous Gaussian stochastic process of index ( )H ∈ 0 1,  , ( ){ }B t tH ,  ≥ 0 , defined by a 

Riemann-Liouville stochastic integral, such that ( )BH 0 0=  with probability 1, and that 

( ) ( )B t B tH H2 1− ~ ( )( )N 0 2
2 1

2
,  σ H H

t t− , with 0 1 2≤ < < + ∞t t  and σ > 0. In particular, if H ≠ 05.  

then the increments are stationary but not independent, and they show a long-term memory 

depending on both H  and t t2 1− . If ( )H ∈ 0 05,  . , then there is a negative dependence between 

the increments. In this case the stochastic process has an anti-persistent behavior. If ( )H ∈ 05 1. ,  , 

there is a positive dependence between the increments and in this case the process has a persistent 
behavior. The case H = 05.  is the sBm that has independent increments. Moreover, this stochastic 

process is statistically self-similar, that is ( ){ }B t tH ,  ≥ 0  and ( ){ }a B at tH
H

− ≥,  0 , with a > 0 , 
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have the same distribution law. Further details for the fBm can be found in Falconer (1990), 
Evertsz (1995a, 1995b), Evertsz and Berkner (1995) and Corazza, Malliaris and Nardelli (1997). 

In 1995, Peltier and Levy  (1995) proposed an extension of the fBm by substituting the 

constant over time Hurst exponent, H , with a suitable time dependent function, ( )H t . Unlike the 

fBm, this new stochastic process, called multifBm (mfBm), allows us to formally model the 
irregularities of the process trajectory. As such, this stochastic process can be fruitfully utilized to 
describe non-stationarity in financial asset price variations.7  
 

3.2. Pareto-Lévy Stable Stochastic Process 
 
The PLs motion, originally introduced by Lévy (1925) as a generalization of the sBm, is a 

stochastic process, ( ){ }L t tα ,  ≥ 0 , characterized by a distribution, ( )Sα β µ σ, ,  , depending on four 

parameters: the so-called characteristic exponent ( ]α ∈ 0 2,  ,8 the skewness parameter 

[ ]β ∈ − 1 1,  , the location parameter ( )µ ∈ − ∞ + ∞,  , and the scale coefficient [ )σ ∈ + ∞0,  . This 

stochastic process is such that ( )Lα 0 0=  almost-surely, and its increments ( ) ( )L t L tα α2 1− , with 

0 1 2≤ < < + ∞t t , whose distribution is ( )( )S t tα β

α

, ,  0 2 1

1
− , are independent and stationary. In 

particular, if ( )α ∈ 0 2,  then the tails of such a process decay slower than the tails of an fBm 

process, and if α = 2  it is possible to prove that ( ){ } ( ){ }2 0 01 2
2 0

− ≥ ≡ ≥L t t B t t,  ,  .5 , which is the 

sBm. Moreover, if the distribution ( )Sα β µ σ, ,   is symmetric, that is if β = 0,9 then the 

corresponding PLs process is statistically self-similar. Taking ( ){ }L tα t ,  ≥ 0  and 

( ){ }a L at t− ≥1 0α
α ,  , with a > 0 , results in the same distribution law. In such a case it is possible 

to prove that the Hurst exponent equals H = 1 α .10  

                                                                                                                        
6 Notice that the interval (0.5, 1) is obtained as the intersection of the ones characterizing each of the different PLs 
distribution sub-families. Taqqu (1986) includes in these subfamilies, the symmetric one, the fractional one and the 
log-fractional one, among others. 
7 For details, see Cheung and Lai (1993), Corazza (1996) and Belkacem, Levy and Walter (1996). 
8 If α ∈ ( )0 1,   the distribution does not have a finite mean or a finite variance. If α ∈ [ )1 2,   the distribution has only 
a finite mean and if α = 2 , the distribution has both finite mean and finite variance. 
9 From a financial standpoint it is not restrictive to assume that β = 0 .  In fact, most of the skewness parameters 
estimated from asset returns time series, though different from 0 , are quite close to it. 
10 See Taqqu (1986) and Corazza, Malliaris and Nardelli (1997). 
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4. Empirical Aspects 
 
Although a large empirical literature exists confirming the presence of long-run memory or long-
range dependence in asset prices, there are no universally accepted quantitative methodologies by 
which it is possible to detect such long-term dependence in (finite) time series as argued by 
Taqqu, Teverovsky and Willinger (1995). Moreover, some of the methodologies used show 
considerable limitations. Thus, in order to overcome the shortcomings of each methodology, we 
follow two different inferential approaches and compare the corresponding results.  The 
methodologies employed are the classical modified range over standard deviation statisitic, R/S, 
and the periodogram approach.11 
 

4.1. Tests for Long-Term Dependence 
 

The Modified R/S Test 
Lo (1991) proposes a modification of a test based on the classical range over standard deviation 
statistic, R S . To test for no long-term dependence in financial time series consider: 

 
( ) ( )

Q q
R S q

TT
T T=  

(4.1)

where T  is the time series size, q  is the possible short-term dependence (integer) length, ( )R qT  

is the sample range of partial sums of deviations of the time series from its sample mean, and 

( )S qT  is the modified standard deviation of the time series including the autocovariances 

weighted up to lag q .  This new methodology is described in detail in both Lo (1991) and 

Campbell, Lo and MacKinlay (1997).  Precisely, this statistic is able to test the null hypothesis of 
no long-term dependence.12 In particular, unlike the corresponding statistic based on the classical 
R S , it is robust to short-term memory, conditional heteroscedasticity, and non-normal 

innovation. Furthermore, it also has well-defined distributional properties as described in Lo 
(1991) and Campbell, Lo and MacKinlay (1997), although the related (asymptotic) distribution is 
neither standard, nor easily tractable. 

Of course, this statistic is crucially influenced by the statistical structure of short-term 

                                      
11 We are grateful to an anonymous referee for suggesting that we use both methodologies. 
12 Notice that a rejection of such a null hypothesis does not necessarily imply that long-range dependence is present 
but, merely, that the underlying stochastic process does not simultaneously satisfy all the conditions stated by Lo 
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dependence. In order to accommodate this aspect, we apply two different approaches. In the first 
approach we specify in a nonparametric way the short-term memory structure determining the 
optimal value of q  by the use of the Andrews’ (1991) data-dependent rule 

( ) ( )[ ]� �q T* = −3 2 1
1 3 2

2 3
ρ ρ , where the operator � �⋅  denotes the greatest integer less than or 

equal to the argument, and ρ  is the sample first-order autocorrelation coefficient. In the second 

approach, we take into account the remarks of Lo (1991) and Jacobsen (1996) stating that, in 
general, there is little guidance in determining the optimal value of q . In this paper, we follow the 

Jacobsen’s (1996) procedure, and perform the test in two steps. First, we impose some specific 
models for the short-term dependence structure, namely an AR(1) one and a MA(1) one.13 

Second, we apply the statistic ( )Q qT
* , with q* = 0, to the time series of the corresponding 

residuals. 

Finally, by using the fractiles of the distribution of ( )Q qT  as in Lo (1991),  it is possible to 

determine critical values for different significance levels in this two-sided test. At 10, 5 and 1 
percent they are, respectively, 1.747, 1.862, and 2.098. 

 
The Periodogram-based Test 

 Lobato and Savin (1998) employ a suitable approximation to the Lagrange multiplier test in 
order to develop the no long-term dependence in the following time series statistic which is based 
on a periodogram and is given as such:  
 

( )
( )

( )
LM m m

I

I
T

j j
j

m

j
j

m=

�

�

�
�
�
�

�

�

�
�
�
�

=

=

�

�

ν λ

λ

1

1

, 

(4.2)

where m  is an (integer) bandwidth, ( ) ( )[ ]ν j j

m
j j m= −

=�ln ln
1

, and 

( ) ( )[ ] ( )I x it Tj t jt

T
λ λ π=

=� exp
1

2  is the periodogram computed at frequency ( )λ πj j T= 2 , in 

which xt , with t T= 1, ,  � , is the time series, and i = −1 . More specifically, this statistic tests 

the null hypothesis H0 05: .H =  rather than the alternative one H A H: .≠ 05.  Moreover, this test is 

                                                                                                                        
(1991). However, such conditions are satisfied by many of the recently proposed stochastic processes for long-term 
dependence. 
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characterized by a well-known and quite tractable (asymptotic) distribution which is the χ1
2 . 

Of course, in this statistic, the bandwidth m  plays a crucial role. In order to determine its 
optimal value, we need to undertake certain proper assumptions hold (such as the Gaussianity of 
xt , with t T= 1,  ...,  ). Thus we can use the iterative algorithm presented in Delgado and 

Robinson (1996) to estimate m. We could also apply this widely used “rule of thumb” that sets 

m T= . 

Finally, by using the fractiles of the χ1
2  distribution, it is possible to determine the critical 

values for different significance levels for this two-sided test. 
 

4.2. Procedure for Estimating the Hurst Exponent 
 

The Modified R/S Estimation Procedure 

The Hurst exponent is linked to the modified R/S statistic by ( )[ ] ( )limT T T
HE R S q aT→+∞ = 1, 

with a > 0 . With this link it is possible to obtain the following approximate relationship: 

( )[ ]{ } ( ) ( )ln ln lnE R S q a H tT T ≅ + . In order to estimate the value of the Hurst exponent, H , we 

have modified and improved the standard techniques described in Peters (1991, 1994), Corazza 
(1996) and Corazza, Malliaris and Nardelli (1997).  

To do so, we first determine a series of estimates of the Hurst exponent 

{ }H j T Tj , , *  ...,  = <1  by fitting an ordinary least square regression between 

( )[ ]{ }ln ,R S q l jT l T l, , ,   ...,  = 1  and ( ){ }ln , ,l l j  ...,  = 1 , for every j T= 2,  ,  �

* , where RT l,  and 

( )S qT l,  are quantities related to RT  and ( )S qT  respectively. Then, we choose the optimal estimate 

in this series. Figures 6.1 and 6.2 illustrate the corresponding results for some of the analyzed 

time series by plotting Hj  versus j , with j T= 2,  ,  �

* . In particular, this estimation procedure 

is robust, although possibly subject to bias, when the data generating process (dgp) follows a 
highly non-normal distribution as argued by Lo (1991), Cheung and Lai (1993), Robinson 
(1994b), and Campbell, Lo and MacKinlay (1997). It is possible to prove its almost-sure 
convergence for stochastic processes with infinite variance. Consider for example the PLs 

distribution with ( )α ∈ 0 2,  . Furthermore, Robinson (1994b) argues that the R/S estimation 

                                                                                                                        
13 Notice that such an a priori way to choose an AR(1) model and a MA(1) one is not particularly restrictive because 
in general, such models are standard for handling short-term memory in financial returns time series. 
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procedure is suboptimal when the data generating process follows a Gaussian distribution because 
such a procedure does not depend on second moments. 

Overall, the R/S-based estimation procedure described in this section offers the possibility 
to estimate the Hurst exponent without complete information, and without strong a priori 
assumptions on the distributional properties of the considered stochastic process.14 

 
The Periodogram-based Estimation Procedure 

From a spectral density point of view, the Hurst exponent is linked to the discretely averaged 

periodogram ( ) ( )� �[ ]F I Tjj

T
λ π λ

λ π
=

=�2
1

2
. Starting from this relationship, Robinson (1994a) 

proposed the following closed form semiparametric estimator for H : 
 

( ) ( )
( )
( )H m r

r
F r
F

m

m

, = −
�

�
�
�

�

�
�
�

1
1

2 ln
ln

λ
λ

, 
(4.3)

where m  is the bandwidth introduced earlier and ( )r ∈ 0,1  is a suitable user-chosen variable. In 

particular, under the hypothesis that the data-generating process follows a Gaussian distribution, 
it is possible to prove that this estimator is consistent15 and that it has well-defined (asymptotic) 
distributional properties both normal and non-normal, depending on the estimated value of 

( )H m r, 16. 

Of course, r plays a crucial role in this estimator. In particular, if some proper 

assumptions hold (among them the restrictions that ( )H ∈ 05 0 75. , . ), then it is possible to 

determine its optimal value as discussed in Lobato and Robinson (1996). Thus, since both m  and 

r  depend on ( )H m r, , in order to optimally estimate the Hurst exponent, we must determine a 

suitable series of converging estimates of H , ( ){ }H m r j Jj j j, ,,   ...,  = 1 . This can be done using 

the iterative algorithm proposed in Delgado and Robinson (1996). Figure 6.3 illustrates the 

corresponding results for one of the analyzed time series by plotting ( )H m rj j j,  versus j , with 

j J= 1,  ,  � ). 

 

                                      
14 See Pancham (1994),  Peltier and Levy (1994) and Taqqu, Teverovsky and Willinger (1995) for a different 
methodology. 
15 See Robinson (1994a). 
16 See Lobato and Robinson (1996). 
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5. Data Set and Descriptive Statistics 
 
The data we analyze are the time series of the daily returns using closing prices of exchange rates 

expressed in US dollars, that is, ( )[ ] ( )[ ]{ }100 1ln lnP t P t+ − . We use data from June 1972 to 

September 1994, for the following five spot and (nearby) futures foreign currency markets: 
British Pound, Canadian Dollar, German Mark, Swiss Franc and Japanese Yen. In particular, in 

order to implement our multifractal analysis, we assume that the dynamic Hurst exponent ( )H t  is 

a stepwise constant function whose intervals are determined by splitting up each time series into 
four non-overlapping sub-periods: June 1972 to July 1976; August 1976 to January 1982; 
February 1982 to June 1987; and July 1987 to September 1994. The choice of these four time 
sub-periods is driven by the (relative) homogeneity of the economic and political conditions in 
each geographical region. 

In Table 5.1 to Table 5.5, we report some standard descriptive statistics. The quantities 
reported indicate the number of observations, the minimum and maximum values of the time 
series, the means, the medians, the standard deviations, the skewness, and the kurtosis. 
 

<Table 5.1 approximately here> 
<Table 5.2 approximately here> 
<Table 5.3 approximately here> 
<Table 5.4 approximately here> 
<Table 5.5 approximately here> 

 

Generally, all the considered time series qualitatively denote to some degree a departure 
from normality. This is evidenced by the medians that differ from the corresponding means, 
skewness values, and particularly, kurtosis values. These departures are also confirmed by the 

performance of a simple χ 2 -type test for distribution fitting, which rejects the null hypothesis of 

normality for all the time series at 1% significance level. 
From a short- and medium-term autocorrelation point of view, we investigate the sample 

autocorrelation function up to lag 22 (about a one-month trading period). In general, with the 
exception of certain time series,17 such an autocorrelation structure is negligible. In Table 5.6, we 
report the lag(s) for which the corresponding autocorrelation coefficient is significantly different 
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from 0 at the 5% significance level for each time series under observation. 
 

<Table 5.6 approximately here> 
 

Finally, some authors, such as Lobato and Savin (1998), suggest that evidence of long-
term memory could be spuriously caused by non-stationarity in the time series itself.  To test for 
non-stationarity, we perform the basic Dickey-Fuller test and its properly augmented version.18 
For all the considered series, both tests reject the null hypothesis of non-stationarity (more 
precisely the tests reject the presence of a unit root in the autoregressive representation) at the 2% 
significance level.19 
 
 
6. MultiFractal Analysis: Results20 
 
The empirical results obtained are reported in Table 6.1 to Table 6.5. In particular, the results 
relative to each of the considered single time periods are presented in four rows. The first three 
rows are devoted to the modified R/S-based approach, and the fourth row is devoted to the 
periodogram-based approach. In the columns labeled “*” we report the information concerning 
the assumed short-term dependence structure (in the first three rows relative to each period), and 
the bandwidth value (in the fourth row relative to each period).  In the columns labeled “ H0 ” we 

report the results of the test for no long-term dependence (acceptance or non-rejection is indicated 
by “A”, rejection is indicated by its significance level)21, and in the columns labeled “ H ” we 
report the values of the Hurst exponent. 
 

<Table 6.1 approximately here> 
<Table 6.2 approximately here> 

                                                                                                                        
17 Such as the the Canadian Dollar spot, the Canadian Dollar futures, the German Mark spot, the Japanese Yen spot, 
and the Swiss Franc futures in some sub- and full-sample periods. 
18 For more details see Dickey and Fuller (1979, 1981). 
19 The 2% significance level is the lowest boundary of the significance levels tabulated in Dickey and Fuller (1979). 
20 Statistical computations were performed by Marco Corazza. 
21 Notice that, although for completeness of exposition we also report the cases when the null hypothesis is rejected at 
the 20% significance level, practically we consider such rejections as acceptances in Table 6.6. 
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Generally, from the results reported in Table 6.1 to Table 6.5, we observe that for the 
66% of the considered time periods, both the modified R/S-based and the periodogram-based-
tests qualitatively agree to accept or reject the null hypothesis of no long-term memory.22 

We also wish to note that, in general, the estimates of H  based on the modified R/S 
approach are greater than the corresponding estimates based on the periodogram approach.  This 
is in accordance with the findings of Mandelbrot and Wallis (1969) and Jacobsen (1996), which 
confirm that the modified R/S-based estimation procedure overestimates the value of H  when the 
true value is lower than 0.72 (as it seems to be in the majority of our cases). 

Again, for all time periods and for both spot and (nearby) futures foreign currency 

markets, the corresponding value of the dynamic Hurst exponent ( )H t  is neither equal to 0.5 nor 

constant over time. This provides us with important empirical evidence for the MFMH or, at 
least, for the need to revise the EMH. In particular, the dynamic dimension is well supported by 
the test for no long-term dependence results. In fact, both the spot and (nearby) futures foreign 
currency markets are characterized over time by different underlying stochastic processes: the 
fBm, the PLs motion and an undetectable one23. 
 

<Table 6.3 approximately here> 
<Table 6.4 approximately here> 
<Table 6.5 approximately here> 
<Table 6.6 approximately here> 

 

Almost all the fBms describing the stochastic behavior of a wide percentage of the time 

sub-periods show a persistent long-term dependence, that is ( )H ∈ 05 1. ,  , and all the PLs motions 

describing the stochastic behavior of another wide percentage of the time sub-periods are 

distinguished by the non-finiteness of the variance, that is by ( )α ∈ 1 2,   (by α = 1 H ). Coupling 

both these aspects (long-term dependence/independence and variance finiteness/non-finiteness), 
we show that the structure of financial risk can vary widely from one time sub-period to the next. 
 

<Figure 6.1 approximately here> 

<Figure 6.2 approximately here> 

                                      
22 There are instances when at least two of the three sub-cases of the modified R/S-based approach (q= #, AR(1), and 
MA(1)) qualitatively agree with the only accept/reject decision given by the periodogram-based approach. 
23 For these processes jointly characterized by H ∈ ( . )0 05,   and long-term independence, some authors, such as 
Evertsz (1995a, 1995b), suggest suitable mixtures of fBms and PLs motions. Others, like Zou (1996) suggest that 
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In general, the spot and the (nearby) futures foreign currency markets for each currency 
are characterized by similar dynamic stochastic structures, especially from a short- and long-term 
dependence/independence point of view.  

<Figure 6.3 approximately here> 
 
 

7. Economic Interpretations 
 
From an economic point of view, the results reported in the previous section imply the following. 

In general, all the analyzed foreign currency markets exhibit a behavior over time 
influenced by their Hurst exponent and by their long-term independence/dependence. This 
behavior provides empirical support for the MFMH as a reasonable extension of the EMH. In 
fact, the dynamics of the corresponding market structures are characterized by different 
underlying stochastic processes. Because of such an articulated stochastic frame, we can 
distinguish three phases characterizing the conjectured MFMH (instead of the two standard ones): 
a “regular” phase, a new phase that we identify as “semi-regular” and an “irregular” phase. 

The “regular” phase is associated with the fBm via long-term dependence, that is, with the 

Hurst exponent ( )H ∈ 05 1. ,  . In fact, the characteristics of the financial risk described by the 

corresponding distributional law are such as to permit a relatively simple matching between the 
demand and supply for two reasons:  

First, the statistical self-similarity characterizing the fBms guarantees that the risk 
associated with investments of different horizon lengths t  and at , with a > 0 , are evaluated in 

the same proportion by their corresponding investors. Actually, ( ){ }B t tH ,  ≥ 0  and 

( ){ }a B at tH
H

− ≥,  0 , with a > 0 , have the same distributional law.24 Because of this, the demands 

and supplies of these investors with different horizon lengths match, and thus ensure a certain 
liquidity for the foreign currency markets. Notice that the statistical self-similarity implicitly 
asserts the existence of some relationships between the Hurst exponent, H , and the liquidity 
level.  

                                                                                                                        
some proper PLs distribution sub-families, such as a fractional distribution may be suitable. These issues have not 
been settled and are beyond the scope of this work. 
24 Notice that a H−  plays the role of  a proportionality factor. 
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Second, the long-term persistent memory distinguishing these foreign currency markets 
makes it possible to partially forecast future returns, and consequently, ex ceteris paribus, to 
“manage” a lower risk than in the classical independently and identically log-normally distributed 
environment.25 Of course, this is another source of “attractiveness” for investors of valuing 
horizon lengths, and so, for a higher liquidity level. 

In particular, in order to explain such a long-term persistent memory, we can conjecture 
that the analyzed foreign currency markets are characterized by the regular arrival of new 
information confirming the (underlying) economic trends. Of course, this reduces the spread 
between the ability of the economic agents to make optimal decisions and the complexity of 
decisions, made under uncertainty. 

The “semi-regular” phase is associated with the PLs motion, which is distinguished both 

by the non-finiteness of the variance (because of ( )α ∈ 1 2,  ) and by the no long-term dependence. 

The characteristics of the financial risk arising from the corresponding distributional law permit, 
again, the matching between the demand and the supply, but to a lower degree as compared to the 
“regular” phase. In fact, in the current case, the only source of “attractiveness” for investors of 
valuing horizon length and, so, for a certain liquidity levels, is the statistical self-similarity. In 
particular, notice that the values of the Hurst exponents, characterizing the “regular” and the 
“semi-regular” phases are within a limited range and, so, their “impacts” on the liquidity levels 
are quite similar for both phases. At least, no significant differences are apparent. To the contrary, 
the unpredictability of future returns (due to the absence of some long-term dependence) puts the 
“semi-regular” phase volatility in higher risk class than does the unpredictability of the “regular” 
phase (however, ex ceteris paribus, both normal). Furthermore, the distributional properties of the 
underlying stochastic process put this PLs volatility in higher risk class than the normal one.26 Of 
course, this latter financial risk characteristic causes a lower participation of investors in the 
“semi-regular” foreign currency market than in the “regular” foreign currency market and, in 
particular, a lower participation of investors having long horizon lengths (who are associated with 
highest risk). Because of this, in the corresponding “semi-regular” foreign currency market there 
are both a lower liquidity level, and a lower mean investment horizon length than in the “regular” 
phase foreign currency one. 

                                      
25 Notice that, because of the “trend” due to long-term dependence, the standard deviation of the considered fBms 
provides an over-evaluation of the actual volatility of the corresponding foreign currency markets. 
26 Recall that the tails of the PLs motions with α ∈ ( )0 2,   decay slower than the fBm ones. 
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In order to explain such a higher risk level distinguishing the “semi-regular” phase, we 
can conjecture that the corresponding foreign currency markets are characterized by an irregular 
arrival of exogenous noise. Of course, this makes it difficult for investors to detect any “trends” 
that exist in the fundamentals of the economy, influence their ability to make “rational” decisions. 

The “irregular” phase is associated with the undetectable stochastic process, which may be 
a suitable mixture of fBms and PLs motions, or which may belong to some proper PLs 
distribution sub-family. Although such lack of detection exists, the (generic) identifiable 
characteristics of the corresponding distributional law (and, consequently, of the financial risk) 
are such as to prevent a simple matching between the demand and supply. In fact, the “irregular” 
phase volatility belongs to a risk class quite similar to the one that characterizes the “semi-
regular” phase. Again, this primarily causes a lower participation of investors having long horizon 
lengths (who are associated with the highest level of risk) and, consequently, a lower liquidity 
level and a lower mean investment horizon length than in the “regular” phase foreign currency 
markets. Moreover, the underlying stochastic process may or may not be characterized by the 
statistical self-similarity. In the first case, for the “irregular” phase, the corresponding Hurst 
exponent, H , is lower than that for the “regular” and “semi-regular” phases. It is simple to prove, 
under a reasonable assumption on a , that the proportionality factor a H−  is higher for these latter 
phases27 . In the second case different horizon length investors do not evaluate investments in the 
same proportional way, and so their demands and supplies do not match. 

In particular, in order to explain such a financial environment, we can conjecture that the 
corresponding foreign currency markets are characterized by the arrival of conflicting 
information. This causes very different and, often, incompatible behavior among the economic 
agents. 

 
 

8. Concluding Remarks 
 
All the foreign currency markets studied in this paper exhibit a Hurst exponent that is statistically 
different from 0.5 in the majority of the samples studied. Furthermore, it is also found that the 
Hurst exponent is not fixed but it changes dynamically over time.  The interpretation of these 
results is that the foreign currency returns follow either a fractional Brownian motion or a Pareto- 
Levy stable distribution. The key question is: what are the implications of such findings on the 
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Efficient Market Hypothesis? Both in its original formulation and in the recent more sophisticated 
elaborations of the random walk hypothesis found in Campbell, Lo and MacKinlay (1997), the 
efficient market hypothesis is associated with returns that follow a Brownian motion with Hurst 
exponent equal to 0.5. Rogers (1997) has shown that a market where the asset returns follow a 
fractional Brownian motion cannot be efficient since there always exists an arbitrage strategy.  
Our approach has been to use the statistical evidence in this paper to support the proposed 
MultiFractal Market Hypothesis. Needless to say, this extension of the traditional Efficient 
Market Hypothesis needs a detailed elaboration that goes beyond the general ideas we offered in 
the previous section. In particular, we need to develop theoretical explanations for both long-term 
positive and negative dependence as well as explanations for the transition of distributions from 
Brownian to fractally Brownian or Pareto-Levy stable. 
 

                                                                                                                        
27 A simple proof of this claim may be obtained from the authors. 
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Table 5.1 - Descriptive Statistics for British Pound 

Spot 
Time Period N. Obs. Min Max Mean Median St. Dev. Skew. Kurtosis

06/72-07/76 1033 -3.0589 3.1812 -0.0369 0.0000 0.4470 -0.2436 9.0562
08/76-01/82 1382 -4.6623 3.7496 0.0037 0.0057 0.6302 -0.6097 6.8748
02/82-06/87 1377 -3.0175 4.5942 -0.0110 0.0000 0.7392 0.4208 3.3990
07/87-09/94 1894 -4.0900 3.2656 -0.0010 0.0000 0.7313 -0.2248 2.5073
06/72-09/94 5686 -4.6623 4.5942 -0.0088 0.0000 0.6659 -0.0857 4.3772

(Nearby) Futures 
Time Period N. Obs. Min Max Mean Median St. Dev. Skew. Kurtosis

06/72-07/76 1045 -2.2103 2.8738 -0.0374 0.0000 0.4694 -0.5182 5.1612
08/76-01/82 1384 -3.4467 3.6057 0.0044 0.0000 0.6541 -0.4975 4.0314
02/82-06/87 1369 -2.7369 4.5529 -0.0113 0.0000 0.7714 0.4842 3.4082
07/87-09/94 1844 -4.4760 3.4748 -0.0010 0.0215 0.7714 -0.2628 2.5643
06/72-09/94 5642 -4.4760 4.5529 -0.0089 0.0000 0.6963 -0.0749 3.7279

 
Table 5.2 - Descriptive Statistics for Canadian Dollar 

Spot 
Time Period N. Obs. Min Max Mean Median St. Dev. Skew. Kurtosis

06/72-07/76 1034 -1.5467 1.1957 0.0006 0.0000 0.1467 -0.5417 17.3788
08/76-01/82 1382 -1.8677 0.8678 -0.0148 -0.0212 0.2439 -0.4324 3.9179
02/82-06/87 1374 -1.6555 1.4323 -0.0078 -0.0122 0.2571 -0.2355 5.0739
07/87-09/94 1895 -1.9088 1.9971 -0.0006 0.0119 0.2735 -0.3115 4.3041
06/72-09/94 5685 -1.9088 1.9971 -0.0056 0.0000 0.2436 -0.3453 5.4804

(Nearby) Futures 
Time Period N. Obs. Min Max Mean Median St. Dev. Skew. Kurtosis

06/72-07/76 1045 -1.1974 0.7754 0.0006 0.0000 0.1622 -0.2832 6.6126
08/76-01/82 1384 -1.1939 1.1851 -0.0144 -0.0118 0.2643 0.0482 1.5593
02/82-06/87 1369 -1.7946 1.6525 -0.0079 -0.0122 0.2745 -0.1552 5.1085
07/87-09/94 1844 -1.7811 1.9916 -0.0005 0.0230 0.3026 -0.5787 4.1179
06/72-09/94 5642 -1.7946 1.9916 -0.0055 0.0000 0.2651 -0.3262 4.5511
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Table 5.3 - Descriptive Statistics for German Mark 

Spot 
Time Period N. Obs. Min Max Mean Median St. Dev. Skew. Kurtosis

06/72-07/76 1033 -4.3193 6.0458 0.0219 0.0000 0.6695 0.5869 12.4245
08/76-01/82 1381 -7.0967 3.1639 0.0060 0.0000 0.6367 -0.7251 13.3480
02/82-06/87 1374 -3.2019 4.9899 0.0177 0.0000 0.7338 0.4353 2.5384
07/87-09/94 1894 -3.4661 3.1659 0.0090 0.0000 0.7149 -0.0533 1.8184
06/72-09/94 5682 -7.0967 6.0458 0.0127 0.0000 0.6933 0.0658 5.7780

(Nearby) Futures 
Time Period N. Obs. Min Max Mean Median St. Dev. Skew. Kurtosis

06/72-07/76 1046 -1.8976 3.8037 0.0219 0.0000 0.5649 0.7705 4.1370
08/76-01/82 1384 -3.6945 3.4361 0.0064 0.0000 0.6416 0.2582 3.3015
02/82-06/87 1369 -3.2351 4.8321 0.0177 0.0000 0.7647 0.5001 2.5882
07/87-09/94 1844 -3.3125 3.6013 0.0088 0.0000 0.7392 -0.0997 1.7442
06/72-09/94 5643 -3.6945 4.8321 0.0128 0.0000 0.6932 0.2497 2.7370

 
Table 5.4 - Descriptive Statistics for Japanese Yen 

Spot 
Time Period N. Obs. Min Max Mean Median St. Dev. Skew. Kurtosis

06/72-07/76 1033 -6.2566 8.7260 0.0035 0.0000 0.4816 3.9312 133.7888
08/76-01/82 1382 -5.2644 3.5703 0.0182 -0.0224 0.6890 0.1337 4.3757
02/82-06/87 1374 -2.3846 5.4055 0.0321 0.0000 0.6558 0.7768 5.2895
07/87-09/94 1894 -4.0991 3.8777 0.0204 -0.0220 0.6953 0.0755 3.5482
06/72-09/94 5683 -6.2566 8.7260 0.0196 0.0000 0.6502 0.5588 11.6583

(Nearby) Futures 
Time Period N. Obs. Min Max Mean Median St. Dev. Skew. Kurtosis

06/72-07/76 1046 -5.6660 5.5346 0.0027 0.0000 0.5526 -0.2844 26.8716
08/76-01/82 1384 -2.7504 4.8110 0.0189 0.0000 0.7290 0.5778 2.8046
02/82-06/87 1369 -2.3653 5.3327 0.0320 0.0000 0.6677 0.7597 4.6245
07/87-09/94 1844 -4.2073 4.7533 0.0208 0.0000 0.7008 0.1364 3.8295
06/72-09/94 5643 -5.6660 5.5346 0.0197 0.0000 0.6751 0.3821 5.8022
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Table 5.5 - Descriptive Statistics for Swiss Franc 

Spot 
Time Period N. Obs. Min Max Mean Median St. Dev. Skew. Kurtosis

06/72-07/76 1033 -4.3367 3.7346 0.0427 0.0249 0.7248 0.1778 6.3538
08/76-01/82 1379 -7.0054 4.4466 0.0210 0.0000 0.8356 0.4140 8.8837
02/82-06/87 1372 -3.9302 5.3094 0.0145 0.0000 0.8187 0.3038 2.6768
07/87-09/94 1891 -3.5750 3.4613 0.0087 0.0000 0.7797 0.0465 1.4185
06/72-09/94 5675 -7.0054 5.3094 0.0193 0.0000 0.7938 0.0003 4.6543

(Nearby) Futures 
Time Period N. Obs. Min Max Mean Median St. Dev. Skew. Kurtosis

06/72-07/76 1047 -3.2377 4.6886 0.0424 0.0000 0.6461 0.4319 5.0734
08/76-01/82 1384 -3.9371 4.3620 0.0213 -0.0173 0.8098 0.4728 2.8961
02/82-06/87 1369 -3.6919 5.5361 0.0144 0.0000 0.8640 0.4471 2.5081
07/87-09/94 1844 -3.6227 3.1341 0.0086 0.0000 0.8074 -0.0210 1.2281
06/72-09/94 5644 -3.9371 5.5361 0.0194 0.0000 0.7953 0.2906 2.5401

 
Table 5.6 - Short-term Dependence Analysis 

 06/72-07/76 08/76-01/82 02/82-06/87 07/87-09/94 06/72-09/94
British Pound (Spot) 9, 14 9 11 6, 10, 18 9, 11, 20

British Pound (Fut.) 9 - 6 6, 15, 18 1, 15

Canadian Dollar (Spot) 1, 2, 7, 10 1, 5 1, 2, 3, 12, 16 4, 16 1, 4, 5, 7, 16

Canadian Dollar (Fut.) - 5 1, 2, 3, 12, 13 12, 15 1, 2
 

German Mark (Spot) 2, 3, 5, 7, 9, 
10, 11, 14

3, 10 10 10 3, 9, 10

German Mark (Fut.) 10, 13, 18 10 3, 8, 11, 16 15 15, 20

Japanese Yen (Spot) 1, 10, 20, 21 1, 9, 10, 13 3, 5, 6 6, 10, 14 9, 10

Japanese Yen (Fut.) 4 10, 20, 21 6 6, 10, 14 8, 9, 10, 14, 21

Swiss Franc (Spot) 2, 7 10 - 10 9, 12

Swiss Franc (Fut.) 1, 8 1, 2, 20 16 2, 15 15
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Table 6.1 - MultiFractal Analysis for British Pound 

Spot (Nearby) Futures 
Time Period * H0  H  Time Period * H0  H  

06/72-07/76 q=1 
AR(1) 
MA(1) 
m=258 

5% 
10% 
10% 

A 

0.5991 
0.6798 
0.6838 
0.5828 

06/72-07/76 q=1 
AR(1) 
MA(1) 
m=261 

5% 
5% 
5% 
A 

0.7079 
0.7057 
0.7474 
0.5816 

08/76-01/82 q=1 
AR(1) 
MA(1) 
m=326 

1% 
20% 
20% 

A 

0.5466 
0.6408 
0.6343 
0.5139 

08/76-01/82 q=2 
AR(1) 
MA(1) 
m=326 

5% 
20% 
20% 
5% 

0.5499 
0.6253 
0.6027 
0.4844 

02/82-06/87 q=1 
AR(1) 
MA(1) 
m=324 

5% 
A 
A 
A 

0.6446 
0.5990 
0.5881 
0.4821 

02/82-06/87 q=0 
AR(1) 
MA(1) 
m=323 

5% 
A 
A 
A 

0.6424 
0.5906 
0.5940 
0.4565 

07/87-09/94 q=2 
AR(1) 
MA(1) 
m=419 

20% 
A 
A 
A 

0.5022 
0.6255 
0.6046 
0.5206 

07/87-09/94 q=2 
AR(1) 
MA(1) 
m=410 

10% 
A 
A 
A 

0.4854 
0.6181 
0.5942 
0.5137 

06/72-09/94 Q=2 
AR(1) 
MA(1) 

m=1009 

1% 
1% 
1% 
5% 

0.6780 
0.6336 
0.6499 
0.5399 

06/72-09/94 q=2 
AR(1) 
MA(1) 

m=1003

1% 
5% 
1% 
A 

0.6778 
0.6658 
0.6228 
0.5305 

 
Table 6.2 - MultiFractal Analysis for Canadian Dollar 

Spot (Nearby) Futures 
Time Period * H0  H  Time Period * H0  H  

06/72-07/76 q=4 
AR(1) 
MA(1) 
m=258 

10% 
A 

10% 
20% 

0.6175 
0.6523 
0.6083 
0.6216 

06/72-07/76 q=1 
AR(1) 
MA(1) 
m=261 

20% 
20% 
20% 

A 

0.6273 
0.6089 
0.6026 
0.5287 

08/76-01/82 q=4 
AR(1) 
MA(1) 
m=326 

20% 
20% 
20% 
10% 

0.4449 
0.4890 
0.4384 
0.6216 

08/76-01/82 q=2 
AR(1) 
MA(1) 
m=326 

10% 
10% 
10% 
20% 

0.4497 
0.4671 
0.4476 
0.5855 

02/82-06/87 q=3 
AR(1) 
MA(1) 
m=324 

10% 
A 

20% 
A 

0.6123 
0.6116 
0.5805 
0.5244 

02/82-06/87 q=5 
AR(1) 
MA(1) 
m=323 

20% 
A 
A 

20% 

0.5947 
0.5916 
0.5601 
0.4430 

07/87-09/94 q=1 
AR(1) 
MA(1) 
m=419 

10% 
A 
A 
A 

0.5873 
0.6046 
0.5833 
0.4929 

07/87-09/94 q=2 
AR(1) 
MA(1) 
m=410 

10% 
20% 

A 
A 

0.5072 
0.5178 
0.5130 
0.4217 

06/72-09/94 q=4 
AR(1) 
MA(1) 

m=1009 

5% 
10% 
10% 

A 

0.5937 
0.6080 
0.5957 
0.5494 

06/72-09/94 q=4 
AR(1) 
MA(1) 

m=1003

10% 
20% 
20% 

A 

0.5896 
0.5997 
0.5935 
0.5033 

 
Table 6.3 - MultiFractal Analysis for German Mark 
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Spot (Nearby) Futures 
Time Period * H0  H  Time Period * H0  H  

06/72-07/76 q=0 
AR(1) 
MA(1) 
m=258 

20% 
20% 
20% 

A 

0.7105 
0.7141 
0.7105 
0.6199 

06/72-07/76 q=2 
AR(1) 
MA(1) 
m=261 

5% 
10% 
5% 
1% 

0.6999 
0.7440 
0.6919 
0.6910 

08/76-01/82 q=1 
AR(1) 
MA(1) 
m=326 

5% 
20% 
20% 

A 

0.6123 
0.5825 
0.5738 
0.5810 

08/76-01/82 q=2 
AR(1) 
MA(1) 
m=326 

5% 
10% 
10% 
20% 

0.5918 
0.5620 
0.5345 
0.5729 

02/82-06/87 q=0 
AR(1) 
MA(1) 
m=324 

1% 
20% 

A 
10% 

0.6519 
0.5711 
0.4088 
0.5799 

02/82-06/87 q=2 
AR(1) 
MA(1) 
m=323 

1% 
A 
A 

10% 

0.6208 
0.6391 
0.6036 
0.5797 

07/87-09/94 q=0 
AR(1) 
MA(1) 
m=419 

A 
A 
A 
A 

0.6356 
0.6342 
0.6356 
0.4930 

07/87-09/94 q=2 
AR(1) 
MA(1) 
m=410 

A 
A 
A 
A 

0.6157 
0.6340 
0.6140 
0.4753 

06/72-09/94 q=0 
AR(1) 
MA(1) 

m=1009 

1% 
10% 
10% 
5% 

0.6600 
0.6175 
0.6179 
0.5832 

06/72-09/94 q=2 
AR(1) 
MA(1) 

m=1003

1% 
10% 
10% 
5% 

0.6563 
0.6161 
0.6120 
0.5795 

 
Table 6.4 - MultiFractal Analysis for Japanese Yen 

Spot (Nearby) Futures 
Time Period * H0  H  Time Period * H0  H  

06/72-07/76 q=2 
AR(1) 
MA(1) 
m=258 

A 
A 
A 

20% 

0.6087 
0.6546 
0.6022 
0.6133 

06/72-07/76 q=2 
AR(1) 
MA(1) 
m=261 

A 
A 
A 
A 

0.6133 
0.6317 
0.6103 
0.5800 

08/76-01/82 q=2 
AR(1) 
MA(1) 
m=326 

1% 
10% 
10% 

A 

0.7173 
0.6572 
0.6340 
0.5724 

08/76-01/82 q=1 
AR(1) 
MA(1) 
m=326 

1% 
10% 
10% 

A 

0.7321 
0.6418 
0.6389 
0.5509 

02/82-06/87 q=1 
AR(1) 
MA(1) 
m=324 

5% 
10% 
10% 
5% 

0.6314 
0.6589 
0.6616 
0.6129 

02/82-06/87 q=1 
AR(1) 
MA(1) 
m=323 

5% 
10% 
10% 
5% 

0.6330 
0.6581 
0.6512 
0.6145 

07/87-09/94 q=1 
AR(1) 
MA(1) 
m=419 

A 
A 

20% 
A 

0.6211 
0.6287 
0.6215 
0.5026 

07/87-09/94 q=1 
AR(1) 
MA(1) 
m=410 

A 
A 
A 
A 

0.6200 
0.6267 
0.6194 
0.4897 

06/72-09/94 q=1 
AR(1) 
MA(1) 

m=1009 

1% 
1% 
1% 
1% 

0.6245 
0.6297 
0.5320 
0.6077 

06/72-09/94 q=1 
AR(1) 
MA(1) 

m=1003

5% 
5% 
5% 

10% 

0.6200 
0.6224 
0.6199 
0.5849 

 
Table 6.5 - MultiFractal Analysis for Swiss Franc 

Spot (Nearby) Futures 
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Time Period * H0  H  Time Period * H0  H  
06/72-07/76 q=0 

AR(1) 
MA(1) 
m=258 

20% 
20% 
20% 
20% 

0.6877 
0.6925 
0.6877 
0.5806 

06/72-07/76 q=3 
AR(1) 
MA(1) 
m=261 

10% 
10% 
10% 
20% 

0.6670 
0.7114 
0.6593 
0.6127 

08/76-01/82 q=2 
AR(1) 
MA(1) 
m=325 

5% 
20% 
20% 

A 

0.6224 
0.6451 
0.6268 
0.5466 

08/76-01/82 q=3 
AR(1) 
MA(1) 
m=326 

10% 
20% 

A 
5% 

0.6119 
0.6386 
0.5897 
0.5517 

02/82-06/87 q=1 
AR(1) 
MA(1) 
m=325 

5% 
20% 
20% 

A 

0.6604 
0.5512 
0.5470 
0.5405 

02/82-06/87 q=2 
AR(1) 
MA(1) 
m=323 

5% 
20% 
20% 

A 

0.6436 
0.5417 
0.5131 
0.5246 

07/87-09/94 q=1 
AR(1) 
MA(1) 
m=418 

20% 
20% 
20% 

A 

0.6306 
0.6362 
0.6303 
0.4988 

07/87-09/94 q=2 
AR(1) 
MA(1) 
m=410 

20% 
A 

20% 
A 

0.6225 
0.6421 
0.6217 
0.4819 

06/72-09/94 q=1 
AR(1) 
MA(1) 

m=1008 

1% 
10% 
10% 

A 

0.6550 
0.5991 
0.5956 
0.5473 

06/72-09/94 q=2 
AR(1) 
MA(1) 

m=1003

1% 
10% 
10% 

A 

0.6517 
0.6015 
0.5933 
0.5495 

 
Table 6.6 - Comparative MultiFractal Analysis 

 B. Pound C. Dollar G. Mark J. Yen S. Franc 
Time Period Spot Fut. Spot Fut. Spot Fut. Spot Fut. Spot Fut. 

06/72-07/76 fBm 
fBm 
fBm 
PLs 

fBm 
fBm 
fBm 
PLs 

fBm 
PLs 
fBm 
PLs 

PLs 
PLs 
PLs 
PLs 

PLs 
PLs 
PLs 
PLs 

fBm 
fBm 
fBm 
fBm 

PLs 
PLs 
PLs 
PLs 

PLs 
PLs 
PLs 
PLs 

PLs 
PLs 
PLs 
PLs 

fBm 
fBm 
fBm 
PLs 

08/76-01/82 fBm 
PLs 
PLs 
PLs 

fBm 
PLs 
PLs 
fBm 

? 
? 
? 

fBm 

fBm 
fBm 
fBm 
PLs 

fBm 
PLs 
PLs 
PLs 

fBm 
fBm 
fBm 
PLs 

fBm 
fBm 
fBm 
PLs 

fBm 
fBm 
fBm 
PLs 

fBm 
PLs 
PLs 
PLs 

fBm 
PLs 
PLs 
fBm 

02/82-06/87 fBm 
PLs 
PLs 

? 

fBm 
PLs 
PLs 

? 

fBm 
PLs 
PLs 
PLs 

PLs 
PLs 
PLs 

? 

fBm 
PLs 

? 
fBm 

fBm 
PLs 
PLs 
fBm 

fBm 
fBm 
fBm 
fBm 

fBm 
fBm 
fBm 
fBm 

fBm 
PLs 
PLs 
PLs 

fBm 
PLs 
PLs 
PLs 

07/87-09/94 PLs 
PLs 
PLs 
PLs 

fBm 
PLs 
PLs 
PLs 

fBm 
PLs 
PLs 

? 

fBm 
PLs 
PLs 

? 

PLs 
PLs 
PLs 

? 

PLs 
PLs 
PLs 

? 

PLs 
PLs 
PLs 
PLs 

PLs 
PLs 
PLs 

? 

PLs 
PLs 
PLs 

? 

PLs 
PLs 
PLs 

? 
06/72-09/94 fBm 

fBm 
fBm 
fBm 

fBm 
fBm 
fBm 
PLs 

fBm 
fBm 
fBm 
PLs 

fBm 
PLs 
PLs 
PLs 

fBm 
fBm 
fBm 
fBm 

fBm 
fBm 
fBm 
fBm 

fBm 
fBm 
fBm 
fBm 

fBm 
fBm 
fBm 
fBm 

fBm 
fBm 
fBm 
PLS 

fBm 
fBm 
fBm 
PLs 
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Figure 6.1 - H versus j for Canadian Dollar S. (08/76-01/82) - The “AR(1)” case (T*=690) 
 

 
 

Figure 6.2 - H versus j for British Pound F. (06/72-07/76): the “q=#” case (T*=520) 
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Figure 6.3 - H versus j for German Mark F. (06/72-07/76): the “Periodogram” case (J=7) 
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